Przetwornik poziomu o zakresie 0 cm do 100 cm, który przetwarza poziom na prąd w zakresie 4 mA do 20 mA, działa na zasadzie proporcjonalności. Oznacza to, że każdy centymetr zmiany poziomu odpowiada określonej zmianie prądu. W tym przypadku, mamy do czynienia z pełnym zakresem 100 cm, który odpowiada rozpiętości 16 mA (od 4 mA do 20 mA). Oznacza to, że każdy centymetr zmiany poziomu odpowiada zmianie prądu o 0,16 mA. Skoro poziom wzrasta z 55 cm na 75 cm, to zmienia się o 20 cm. Przy zmianie o 20 cm, prąd wzrośnie o 20 * 0,16 mA, co daje 3,2 mA. To dokładnie ta różnica, którą obliczyliśmy. W praktyce, takie przetworniki są często stosowane w przemyśle, na przykład w zbiornikach magazynujących płyny, gdzie precyzyjny odczyt poziomu jest kluczowy dla zarządzania zasobami i uniknięcia przepełnienia. Technicy często kalibrują takie urządzenia, aby zapewnić, że działają zgodnie z oczekiwaniami, co jest zgodne z dobrymi praktykami branżowymi. Dzięki temu, mamy pewność, że systemy te działają precyzyjnie i niezawodnie, co jest niezwykle ważne w kontekście automatyzacji procesów przemysłowych.
Kiedy mamy do czynienia z przetwornikiem przetwarzającym poziom na prąd, kluczowe jest zrozumienie, jak funkcjonuje jego liniowość. Zakres od 0 cm do 100 cm jest przekształcany na 4 mA do 20 mA, co oznacza, że każdy centymetr zmiany poziomu ma przypisany konkretny przyrost prądu. W tym przypadku, zmiana o 1 cm odpowiada zmianie prądu o 0,16 mA. Często błędnym jest założenie, że wzrost poziomu automatycznie zmniejsza prąd, choć logicznie byłoby to sprzeczne z proporcjonalnością funkcji liniowej, gdzie większy poziom to wyższy prąd. Podobnie, niektórzy mogą zakładać, że zmiana z 55 cm na 75 cm jest mniejsza niż rzeczywistości, co prowadzi do wniosku, że wzrost mógłby być mniejszy. Takie błędne rozumowanie często wynika z nieuwagi lub niewłaściwego przeliczenia proporcji. Niezrozumienie, że zakresy muszą być bezpośrednio związane proporcjonalnie do siebie, jest typowym źródłem błędów. Dlatego w praktyce, technicy i inżynierowie muszą często sprawdzać swoje obliczenia i stosować wypracowane metody kalibracji, aby uniknąć takich pomyłek. Właściwe zrozumienie zasad działania takich systemów jest kluczowe w kontekście ich zastosowania w automatyzacji procesów przemysłowych, gdzie dokładność odczytów jest fundamentalna dla bezpieczeństwa i efektywności produkcji.