Twoja odpowiedź jest prawidłowa, ponieważ wykres nr 2 doskonale oddaje zasadę działania regulatora z histerezą. W momencie, gdy temperatura spada poniżej dolnej granicy histerezy (89°C), wyjście przekaźnikowe zostaje włączone, co uruchamia element grzewczy. Dzięki temu temperatura znowu wzrasta do poziomu górnej granicy histerezy (91°C), po czym przekaźnik zostaje wyłączony. Takie działanie zapewnia stabilność pracy systemu, unikając zbyt częstych przełączeń, co mogłoby prowadzić do zużycia elementów mechanicznych. W praktycznych zastosowaniach, takich jak ogrzewanie pomieszczeń czy procesy przemysłowe, takie podejście zapewnia efektywność energetyczną i dłuższą żywotność urządzeń. Dobór odpowiedniej histerezy jest kluczowy, aby zbalansować komfort i oszczędność energii. Standardy w branży automatyki, jak np. normy IEC, podkreślają znaczenie tego typu rozwiązań, szczególnie gdy mowa o sterownikach PLC. Warto również pamiętać, że histereza może być różna w zależności od specyficznych wymagań systemu. Moim zdaniem, zrozumienie tej koncepcji to podstawa w pracy z systemami sterowania, gdyż pozwala unikać nadmiernego zużycia energii i przedłuża żywotność urządzeń.
Problem z nieprawidłowymi odpowiedziami polega na niezrozumieniu zasady działania histerezy w układach regulacji temperatury. Wykresy, które pokazują zbyt częste przełączanie wyjścia przekaźnikowego, jak w przypadku niektórych błędnych odpowiedzi, wskazują na brak zastosowania właściwej histerezy. Jeśli wyjście włącza się i wyłącza zbyt szybko, powoduje to nadmierne zużycie elementów przekaźnikowych oraz zwiększone zużycie energii. Taki mechanizm nie jest efektywny, ani praktyczny w rzeczywistych zastosowaniach, jak systemy HVAC czy przemysłowe piece grzewcze. Typowym błędem jest myślenie, że im szybciej system reaguje, tym lepiej, podczas gdy w rzeczywistości prowadzi to do niepożądanych oscylacji w systemie. Brak właściwej histerezy może także prowadzić do niestabilności temperaturowej, co jest niekorzystne dla delikatnych procesów technologicznych. Dlatego tak ważne jest, aby zrozumieć, jak histereza działa jako element buforujący, stabilizujący cały proces regulacji. W systemach automatyki przemysłowej, takich jak sterowniki PLC, właściwe zaimplementowanie histerezy jest kluczem do efektywnego i trwałego działania systemu regulacji temperatury. Z mojego doświadczenia, często spotyka się błędne założenie, że mniejsza histereza oznacza lepszą kontrolę, podczas gdy w rzeczywistości optymalny dobór histerezy to kompromis między efektywnością a stabilnością.