Siłownik 1A1 nie wysunie się z powodu braku zasilania cewki Y1, co pozostawia zawór 1V1 w pozycji, która odcina dopływ powietrza do siłownika 1A1. To jest zgodne z zasadą działania zaworów rozdzielających, które kierują przepływem medium w zależności od stanu cewek. W praktyce oznacza to, że siłownik pozostanie w pozycji wsuniętej, co jest często stosowane w sytuacjach, gdzie bezpieczeństwo wymaga, aby ruch nie został wykonany bez wyraźnego sygnału sterującego. Z kolei siłownik 2A1 wysunie się, ponieważ zawór 2V1, w stanie niewzbudzonym, umożliwia przepływ powietrza, co powoduje ruch tłoczyska. Taka konstrukcja jest używana w systemach, gdzie natychmiastowe działanie siłowników jest wymagane, np. do szybkiego uruchamiania procesów produkcyjnych. Standardy pneumatyki przemysłowej, takie jak ISO 1219, opisują właśnie takie układy jako podstawowe dla zrozumienia sterowania pneumatycznego. Dzięki temu możemy lepiej zaplanować i kontrolować procesy, minimalizując ryzyko błędów i zwiększając efektywność produkcji.
W przypadku gdy tłoczyska obu siłowników miałyby się wysunąć, musiałby być spełniony warunek zasilania obu cewek Y1 i Y2, co w tym pytaniu nie ma miejsca. Niewzbudzone cewki pozostawiają zawory w pozycjach, które nie umożliwiają przepływu powietrza do siłownika 1A1, a jednocześnie pozwalają na przepływ do 2A1, co powoduje błędne myślenie, że oba tłoczyska się wysuną. To jest typowy błąd myślowy polegający na założeniu, że brak zasilania cewki nie ma wpływu na pozycję zaworu, co jest nieprawdą w układach pneumatycznych. Podobnie, odpowiedź zakładająca, że tłoczyska obu siłowników pozostaną wsunięte, ignoruje fakt, że zawór 2V1, w stanie niewzbudzonym, faktycznie umożliwia przepływ powietrza do siłownika 2A1, co prowadzi do jego wysunięcia. Dlatego ważne jest, aby dokładnie zrozumieć zasadę działania zaworów i siłowników oraz ich wzajemne oddziaływanie w systemach pneumatycznych. Standardowe normy, takie jak ISO 5599-1, dokładnie opisują, jak powinny działać poszczególne komponenty w zależności od stanu zasilania cewek, co jest kluczowe dla projektowania i diagnostyki układów.