Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 11 grudnia 2025 21:47
  • Data zakończenia: 11 grudnia 2025 22:02

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakiego rodzaju pracy powinien być przystosowany silnik elektryczny, który ma napędzać wentylator wyciągowy w procesie obróbki drewna?

A. S7 - praca okresowa długotrwała z hamowaniem elektrycznym
B. S1 - praca ciągła
C. S9 - praca z nieokresowymi zmianami obciążenia i prędkości obrotowej
D. S3 - praca okresowa przerywana
Silnik elektryczny do wentylatora wyciągowego w obróbce drewna powinien być przystosowany do pracy ciągłej. To znaczy, że powinien działać bez przerwy, co jest bardzo ważne w kontekście wentylacji. Wentylatory wyciągowe często są używane tam, gdzie potrzebne jest ciągłe usuwanie powietrza z miejsca pracy. Przykładem mogą być hale produkcyjne, gdzie trzeba na bieżąco pozbywać się pyłów i szkodliwych oparów. Z mojego doświadczenia wynika, że takie warunki są kluczowe, by zapewnić zdrowie pracowników. Silniki do pracy ciągłej są też tak projektowane, żeby uniknąć przegrzewania. To z kolei przekłada się na ich wydajność i niezawodność. W branży są normy, jak IEC 60034, które określają, jak powinny działać silniki w różnych sytuacjach, co zapewnia bezpieczeństwo i efektywność.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Jak zmienią się parametry napięcia wyjściowego prądnicy synchronicznej zasilającej oddzielną sieć energetyczną, jeśli prędkość obrotowa turbiny napędzającej tę prądnicę wzrośnie, a prąd wzbudzenia pozostanie bez zmian?

A. Wartość napięcia zmniejszy się, a częstotliwość wzrośnie
B. Wartość i częstotliwość napięcia wzrosną
C. Wartość napięcia wzrośnie, a częstotliwość zmaleje
D. Wartość i częstotliwość napięcia zmniejszą się
Odpowiedź jest poprawna, ponieważ w prądnicy synchronicznej napięcie wyjściowe jest ściśle związane z prędkością obrotową wirnika oraz z napięciem wzbudzenia. Zwiększenie prędkości obrotowej turbiny prowadzi do zwiększenia częstotliwości generowanego napięcia, co jest zgodne z zasadą synchronizacji prądnic. Wartość napięcia wyjściowego wzrasta, ponieważ prądnica synchroniczna działa na zasadzie indukcji elektromagnetycznej, gdzie zmieniające się pole magnetyczne wytwarzane przez wirnik indukuje prąd w uzwojeniach stojana. W praktyce, w systemach energetycznych, takie zjawisko często obserwuje się przy zwiększaniu mocy produkowanej przez elektrownie, co jest istotne dla utrzymania stabilności sieci. W przypadku prądnicy synchronicznej, przy stałym prądzie wzbudzenia, wzrost prędkości obrotowej skutkuje proporcjonalnym wzrostem zarówno wartości, jak i częstotliwości napięcia. Taki mechanizm jest zgodny z praktykami inżynieryjnymi oraz normami, co zapewnia efektywność i niezawodność działania systemów elektroenergetycznych.

Pytanie 4

W instalacji trójfazowej natężenie prądu obciążenia przewodów fazowych IB wynosi 21 A, natomiast maksymalna obciążalność długotrwała tych przewodów Idd to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji przed skutkami zbyt dużego prądu?

A. B16
B. B25
C. B20
D. B32
Wyłącznik nadprądowy B25 jest odpowiedni do zabezpieczenia instalacji trójfazowej, gdyż prąd obciążenia przewodów fazowych wynosi 21 A, a obciążalność długotrwała tych przewodów to 30 A. Wyłączniki nadprądowe klasy B charakteryzują się czasem zadziałania w zależności od wartości nadmiaru prądu, co czyni je idealnymi do ochrony obwodów o obciążeniu rezystancyjnym. W tym przypadku, wyłącznik B25 posiada nominalny prąd 25 A, co zapewnia dodatkowy margines bezpieczeństwa w stosunku do rzeczywistego prądu obciążenia 21 A. Zastosowanie wyłącznika o wyższej wartości nominalnej, jak B32, mogłoby prowadzić do sytuacji, w której obwód nie byłby odpowiednio chroniony, a wyłączniki o niższej wartości, jak B20 czy B16, mogą zadziałać w sposób niepożądany w przypadku niewielkich skoków prądu. Zgodnie z zasadami projektowania instalacji elektrycznych, wyłącznik należy dobierać w taki sposób, aby jego wartość nominalna była nieco wyższa niż wartość prądu roboczego, co zwiększa niezawodność systemu oraz zapewnia bezpieczeństwo użytkowania.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Która z podanych okoliczności powoduje obniżenie prędkości obrotowej silnika trójfazowego z pierścieniami w trakcie jego działania?

A. Zwarcie pierścieni ślizgowych
B. Zwiększenie napięcia zasilającego
C. Przerwa w zasilaniu jednej fazy
D. Zmniejszenie obciążenia silnika
Przerwa w zasilaniu jednej fazy w trójfazowym silniku pierścieniowym powoduje, że silnik zaczyna pracować w trybie niesymetrycznym. W takim przypadku moment obrotowy generowany przez silnik ulega znacznemu osłabieniu, co prowadzi do zmniejszenia prędkości obrotowej. Silniki te są zaprojektowane do pracy z równomiernym rozkładem napięcia w wszystkich trzech fazach. Kiedy jedna z faz jest przerwana, silnik nie jest w stanie uzyskać maksymalnej mocy, co skutkuje spadkiem prędkości obrotowej. W praktyce, może to prowadzić do przegrzewania się silnika, a w skrajnych przypadkach nawet do uszkodzenia wirnika lub stojana. Z tego powodu, monitorowanie zasilania i jego stabilności jest kluczowe w zastosowaniach przemysłowych. W branżowych standardach, takich jak IEC 60034, zwraca się uwagę na konieczność stosowania urządzeń zabezpieczających przed utratą jednego z faz, aby zapewnić ciągłość pracy silników oraz minimalizować ryzyko awarii.

Pytanie 7

Jaki stopień ochrony powinny mieć oprawy oświetleniowe w silnie zapylonych pomieszczeniach?

A. IP3X
B. IP5X
C. IP4X
D. IP2X
Stopień ochrony IP5X oznacza, że oprawa oświetleniowa jest pyłoszczelna, co jest kluczowe w pomieszczeniach mocno zapylonych. Oznaczenie IP (Ingress Protection) jest standardem międzynarodowym, który określa poziom ochrony urządzeń elektrycznych przed ciałami stałymi oraz cieczami. W przypadku IP5X urządzenie jest całkowicie chronione przed pyłem, co zapewnia jego niezawodność i długowieczność w trudnych warunkach. Przykładem zastosowania IP5X mogą być zakłady przemysłowe, magazyny, czy strefy produkcyjne, gdzie obecność pyłów może wpływać na działanie oświetlenia. Stosowanie opraw oświetleniowych z tym stopniem ochrony minimalizuje ryzyko uszkodzenia komponentów elektrycznych i zwiększa bezpieczeństwo pracy. Dodatkowo, zastosowanie opraw oświetleniowych z wysokim stopniem ochrony jest zgodne z normami takimi jak EN 60529, które regulują wymagania dotyczące stopni ochrony w sprzęcie elektrycznym. W praktyce, wybierając oświetlenie do zapylonych pomieszczeń, warto zawsze kierować się tymi standardami, aby zapewnić zarówno efektywność, jak i bezpieczeństwo działania urządzeń.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Którego z wymienionych pomiarów eksploatacyjnych w instalacji oświetleniowej nie można zrealizować standardowym miernikiem uniwersalnym?

A. Rezystancji izolacji przewodów
B. Prądu pobieranego przez odbiornik
C. Napięć w poszczególnych fazach
D. Ciągłości przewodów ochronnych
Pomiar rezystancji izolacji przewodów jest kluczowym aspektem utrzymania bezpieczeństwa i niezawodności instalacji elektrycznych. Aby dokładnie wykonać ten pomiar, używa się specjalistycznych mierników zwanych megomierzami, które generują wysokie napięcia (zwykle od 250V do 1000V). Tego rodzaju pomiar jest istotny, ponieważ pozwala ocenić, czy izolacja przewodów nie jest uszkodzona oraz czy nie występują upływy prądu, co mogłoby prowadzić do zagrożenia pożarowego lub porażenia elektrycznego. Standardy takie jak PN-EN 61557-1 opisują wymagania dotyczące testowania rezystancji izolacji, a ich przestrzeganie jest kluczowe w ramach regularnych przeglądów oraz konserwacji instalacji. Przykładowo, podczas testowania instalacji oświetleniowej w budynku użycie megomierza może pomóc w identyfikacji potencjalnych problemów zanim doprowadzą one do awarii lub zagrożenia dla użytkowników.

Pytanie 10

Kontrola instalacji elektrycznych w obiektach użyteczności publicznej powinna być przeprowadzana nie rzadziej niż co

A. 2 lata
B. 4 lata
C. 3 lata
D. 5 lat
Wiesz, przeglądy instalacji elektrycznej w budynkach publicznych powinny być robione co 5 lat. To ważne, bo chodzi o bezpieczeństwo ludzi i to, by wszystko działało jak należy. Jak robisz to regularnie, to można szybciej zauważyć różne usterki, takie jak uszkodzone kable czy korozja. Na przykład, w teatrach czy halach sportowych jest mnóstwo ludzi, więc tam warto być szczególnie czujnym, żeby nie było awarii, które mogą być niebezpieczne. Fajnie też mieć dokumentację tych przeglądów, bo widać, co się działo z instalacją przez lata. Ważne, żeby przeglądami zajmowali się fachowcy, którzy potrafią ocenić, co jest do zrobienia. W Polsce można znaleźć przepisy na ten temat w Kodeksie Pracy i normach PN-IEC.

Pytanie 11

Kontrolne pomiary w instalacji elektrycznej niskiego napięcia powinny być wykonane po każdym

A. zadziałaniu wyłącznika różnicowoprądowego
B. rozbudowaniu instalacji
C. zamontowaniu w oprawach nowych źródeł światła
D. zadziałaniu bezpiecznika
Odpowiedź dotycząca przeprowadzenia pomiarów kontrolnych w instalacji elektrycznej niskiego napięcia po każdorazowym rozbudowaniu instalacji jest słuszna. Rozbudowa instalacji wiąże się z wprowadzeniem nowych elementów oraz modyfikacją istniejących, co może wpływać na bezpieczeństwo i funkcjonalność całego systemu. Z tego względu, standardy branżowe, takie jak PN-EN 60364, zalecają przeprowadzanie pomiarów kontrolnych po każdej rozbudowie, aby upewnić się, że instalacja spełnia wszystkie wymagania dotyczące bezpieczeństwa oraz nie stwarza zagrożenia dla użytkowników. Przykładowo, po dodaniu nowych obwodów czy urządzeń, ważne jest, aby sprawdzić ich poprawność pod względem rezystancji izolacji oraz ciągłości przewodów. Tego typu pomiary pozwalają na identyfikację potencjalnych usterek, takich jak niewłaściwe połączenia czy uszkodzenia izolacji, które mogą prowadzić do awarii lub zagrożeń pożarowych.

Pytanie 12

Jaką wartość skuteczną ma przemienne napięcie dotykowe, które może być stosowane przez dłuższy czas w normalnych warunkach środowiskowych, dla oporu ciała ludzkiego wynoszącego około 1 kΩ?

A. 12 V
B. 50 V
C. 25 V
D. 60 V
Wartość skuteczna przemiennego napięcia dotykowego, która jest dopuszczalna długotrwale w warunkach normalnych dla rezystancji ciała ludzkiego wynoszącej około 1 kΩ, wynosi 50 V. To napotykane w praktyce napięcie odnosi się do wyjątkowo istotnych norm bezpieczeństwa elektrycznego, takich jak normy IEC 60479, które klasyfikują skutki działania prądu elektrycznego na ciało ludzkie. Napięcie dotykowe 50 V jest graniczną wartością, poniżej której ryzyko porażenia prądem jest znacznie mniejsze, a powyżej której mogą wystąpić niebezpieczne skutki. W praktyce oznacza to, że instalacje elektryczne, które są do 50 V, są uważane za bezpieczne przy normalnych warunkach użytkowania. Przykłady zastosowania tej wiedzy obejmują projektowanie systemów zasilania w budynkach mieszkalnych oraz w urządzeniach użytkowych, gdzie zastosowane napięcia nie powinny przekraczać tej wartości, aby zminimalizować ryzyko dla użytkowników, zwłaszcza w miejscach narażonych na wilgoć, takich jak łazienki czy kuchnie. Zrozumienie i przestrzeganie tych ograniczeń jest kluczowe dla bezpieczeństwa użytkowników oraz zgodności z obowiązującymi przepisami i normami branżowymi.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jakie dodatkowe urządzenie jest wymagane do funkcjonowania silnika indukcyjnego trójfazowego, zasilanego napięciem jednofazowym U = 230 V, f = 50 Hz?

A. Opornik
B. Kondensator
C. Wyłącznik różnicowoprądowy
D. Bezpiecznik silnikowy
Kondensator jest niezbędnym elementem dla silnika indukcyjnego trójfazowego zasilanego napięciem jednofazowym, ponieważ umożliwia on utworzenie sztucznego przesunięcia fazowego. Silnik indukcyjny trójfazowy wymaga trzech faz zasilania do prawidłowego działania, a zasilanie jednofazowe dostarcza tylko jedną. Dodanie kondensatora do obwodu silnika pozwala na wytworzenie dodatkowej fazy, co z kolei umożliwia rozwinięcie momentu obrotowego i rozpoczęcie pracy silnika. W praktyce zastosowanie kondensatorów jest powszechne w układach, gdzie konieczne jest zasilanie silników trójfazowych z jednofazowych źródeł energii, na przykład w małych warsztatach czy w domach jednorodzinnych. Warto również zaznaczyć, że przy doborze kondensatora należy kierować się jego pojemnością, która powinna być odpowiednia do konkretnego silnika, aby zapewnić optymalne parametry pracy oraz uniknąć uszkodzenia urządzenia. Dobre praktyki wskazują na konieczność stosowania kondensatorów o odpowiedniej klasie i znamionach, aby zapewnić długotrwałą i bezpieczną pracę silnika.

Pytanie 15

Kontrolę instalacji elektrycznej, znajdującej się w miejscach o podwyższonej wilgotności (75-100%), pod kątem efektywności zabezpieczeń przeciwporażeniowych należy przeprowadzać nie rzadziej niż co

A. 2 lata
B. 1 rok
C. 3 lata
D. 4 lata
Zgodnie z polskimi normami oraz przepisami związanymi z instalacjami elektrycznymi w pomieszczeniach wilgotnych, inspekcje i kontrole instalacji powinny być przeprowadzane nie rzadziej niż co 1 rok. Wilgoć w takich pomieszczeniach może znacząco wpływać na bezpieczeństwo użytkowników, prowadząc do zwiększonego ryzyka porażenia prądem. Regularne kontrole pozwalają na wczesne wykrycie potencjalnych usterek oraz degradacji materiałów izolacyjnych, co jest kluczowe dla zapewnienia skutecznej ochrony przeciwporażeniowej. Przykładowo, w łazienkach, które są klasyfikowane jako pomieszczenia wilgotne, należy regularnie sprawdzać stan gniazdek, włączników oraz przewodów elektrycznych. Warto pamiętać, że nieprzestrzeganie tych zasad może prowadzić do poważnych wypadków, dlatego organizacje i osoby odpowiedzialne za instalacje muszą stosować się do takich wytycznych, aby zapewnić bezpieczeństwo użytkowników.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Który z poniżej wymienionych instrumentów umożliwia najbardziej precyzyjny pomiar rezystancji uzwojenia komutacyjnego prądnicy obcowzbudnej prądu stałego o dużej mocy?

A. Mostek Thomsona
B. Mostek Wheatstone'a
C. Omomierz cyfrowy
D. Omomierz analogowy
Mostek Thomsona jest narzędziem pomiarowym, które pozwala na bardzo dokładne pomiary rezystancji, zwłaszcza w kontekście pomiarów uzwojeń komutacyjnych prądnic obcowzbudnych dużej mocy. Jego zasada działania opiera się na równoważeniu dwóch gałęzi obwodu, co pozwala na eliminację błędów pomiarowych związanych z wpływem rezystancji przewodów oraz innych parametrów, które mogą zniekształcać wynik. Przykładowo, w zastosowaniach przemysłowych, kiedy konieczne jest monitorowanie stanu technicznego maszyn, mostek Thomsona jest idealny do określenia dokładnych wartości rezystancji uzwojeń, co z kolei przekłada się na bezpieczeństwo i wydajność pracy urządzeń. Dzięki swojej precyzji, mostek ten jest zgodny z normami pomiarowymi, co czyni go nieocenionym narzędziem w warsztatach serwisowych oraz laboratoriach zajmujących się badaniem właściwości elektrycznych materiałów.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Jaki przekrój przewodu należy dobrać do zasilania odbiornika jednofazowego o danych Sn = 4,6 kVA i Un = 230 V, stosując kryterium obciążalności prądowej na podstawie danych przedstawionych w tabeli?

Obciążalność
mm21,01,52,54,06,0
A1519243242
A. 4,0 mm2
B. 6,0 mm2
C. 1,5 mm2
D. 2,5 mm2
Wybór przekroju przewodu 2,5 mm2 jest uzasadniony, ponieważ przekrój ten zapewnia odpowiednią obciążalność prądową dla odbiornika jednofazowego o mocy 4,6 kVA i napięciu 230 V. Obliczony prąd obciążenia wynosi około 20 A, co mieści się w granicach obciążalności prądowej przewodu 2,5 mm2, wynoszącej 24 A. Zastosowanie przewodu o właściwej średnicy jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznej i minimalizowania strat energetycznych. W praktyce, dobór odpowiedniego przekroju przewodu powinien być zawsze oparty na rzeczywistych warunkach eksploatacji, takich jak długość przewodu, temperatura otoczenia oraz sposób układania (np. w rurach, na otwartej przestrzeni). Przy projektowaniu instalacji elektrycznych warto również uwzględnić normy PN-IEC, które określają wymagania dotyczące obciążalności przewodów oraz ich zastosowania w różnych warunkach. Prawidłowy dobór przekroju przewodu jest kluczowym elementem zapobiegania przegrzewaniu się instalacji, co może prowadzić do uszkodzeń oraz zwiększonego ryzyka pożaru.

Pytanie 20

Jaką wartość powinno mieć napięcie pomiarowe przy pomiarze rezystancji izolacji kabla umieszczonego w gruncie?

A. 1 000 V
B. 500 V
C. 250 V
D. 2 500 V
Odpowiedź 2 500 V jest prawidłowa, ponieważ podczas pomiarów rezystancji izolacji kabli ułożonych w ziemi, stosowanie napięcia rzędu 2 500 V jest standardem uznawanym w branży elektroenergetycznej. Taki poziom napięcia zapewnia wystarczającą siłę do wykrycia potencjalnych uszkodzeń izolacji, które mogą nie być widoczne przy niższych napięciach. W praktyce, zastosowanie wyższego napięcia pozwala na dokładniejsze określenie stanu izolacji, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności sieci zasilającej. Dobre praktyki zalecają, aby przed przystąpieniem do pomiarów, upewnić się, że kabel jest odłączony od źródła zasilania, co pozwoli na uzyskanie wiarygodnych wyników. Dodatkowo, pomiary powinny być przeprowadzane z użyciem odpowiednich narzędzi pomiarowych, które są przystosowane do pracy z takimi napięciami. Warto również zauważyć, że normy, takie jak PN-EN 61557-2, wskazują na znaczenie pomiaru rezystancji izolacji w celu zapobiegania awariom i zapewniania ciągłości dostaw energii.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

W systemach z stycznikami kategorii użytkowania DC-6 mogą być wykorzystywane

A. żarówki
B. lampy rtęciowe
C. świetlówki
D. lampy sodowe
Wybór świetlówek, lamp sodowych i lamp rtęciowych jako potencjalnych odpowiedzi na to pytanie jest mylący, ponieważ te typy źródeł światła mają różne właściwości, które wpływają na ich zastosowanie w układach prądu stałego, takich jak DC-6. Świetlówki, chociaż szeroko stosowane w oświetleniu, wymagają specjalnych układów elektronicznych do uruchamiania, co czyni je nieodpowiednimi dla prostych styczników stosowanych w układach DC-6. Dodatkowo, ich działanie opiera się na zjawisku wyładowania elektrycznego w gazie, co w połączeniu z prądem stałym może prowadzić do niestabilności i niewłaściwego działania. Lampy sodowe i rtęciowe z kolei są projektowane głównie z myślą o pracy w obwodach prądu przemiennego, a ich zastosowanie w systemach prądu stałego może prowadzić do przegrzewania się i uszkodzenia, ze względu na różnice w charakterystyce obciążeniowej. Te błędne podejścia wynikają z braku zrozumienia, jak różne źródła światła reagują na różne typy prądów oraz jakie są wymagania techniczne dla ich prawidłowego działania. Kluczowe jest, aby przy doborze elementów w instalacjach elektrycznych, opierać się na ich specyfikacjach technicznych oraz normach branżowych, aby zapewnić bezpieczeństwo i efektywność działania całego systemu oświetleniowego.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Jakie z wymienionych uszkodzeń można zidentyfikować podczas inspekcji instalacji elektrycznej?

A. Przerwanie pionowego uziomu w ziemi
B. Obniżenie rezystancji izolacji przewodów
C. Zbyt długi czas reakcji wyłącznika różnicowoprądowego
D. Pogorszenie stanu mechanicznego połączeń przewodów
W kontekście oględzin instalacji elektrycznej, zmniejszenie rezystancji izolacji przewodów, zbyt długi czas działania wyłącznika różnicowoprądowego oraz przerwanie uziomu pionowego w ziemi stanowią koncepcje, które mogą być mylące w kontekście ich lokalizacji podczas inspekcji. Zmniejszenie rezystancji izolacji przewodów jest krytycznym parametrem w ocenie stanu technicznego instalacji, jednak podczas wizualnej weryfikacji nie jest możliwe bezpośrednie zidentyfikowanie tego problemu. Wymaga to odpowiednich pomiarów przy użyciu specjalistycznych narzędzi, takich jak megger. Z kolei zbyt długi czas działania wyłącznika różnicowoprądowego może świadczyć o nieprawidłowościach w instalacji, ale również wymaga szczegółowych testów diagnostycznych, aby określić przyczynę opóźnienia. Ostatecznie przerwanie uziomu pionowego w ziemi, mimo że istotne dla bezpieczeństwa, również nie jest bezpośrednio zauważalne podczas podstawowej wizualizacji. Podczas inspekcji należy kierować się zasadą, że wiele ukrytych usterek wymaga użycia specjalistycznych narzędzi i technik, co wzmacnia potrzebę kompetentnych przeglądów i pomiarów, aby właściwie ocenić stan instalacji elektrycznej oraz zapewnić jej bezpieczeństwo i funkcjonalność.

Pytanie 29

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między zaciskami silnikaRezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1 – W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ
A. uszkodzoną izolację w uzwojeniach U1 – U2 oraz V1 – V2
B. zwarcie międzyzwojowe w uzwojeniu W1 – W2
C. zwarcie między uzwojeniami U1 – U2 oraz W1 – W2
D. przerwę w uzwojeniu U1 – U2
Odpowiedź wskazująca na uszkodzoną izolację w uzwojeniach U1 – U2 oraz V1 – V2 jest prawidłowa ze względu na wyniki pomiarów rezystancji, które zostały przedstawione w tabeli. Wartości wynoszące 0 Ω dla izolacji są alarmującym sygnałem, wskazującym na bezpośrednie połączenie z masą, co oznacza, że nie ma odpowiedniej bariery izolacyjnej. Zgodnie z normą IEC 60034, rezystancja izolacji powinna wynosić przynajmniej kilkaset megaomów, aby zapewnić bezpieczną i niezawodną pracę silnika. Praktyka przemysłowa zaleca, aby regularnie monitorować stan izolacji silników poprzez pomiary rezystancji, co pozwala na wczesne wykrywanie potencjalnych problemów. W przypadku stwierdzenia uszkodzonej izolacji, należy podjąć natychmiastowe działania, takie jak odłączenie silnika od zasilania i dokładna inspekcja uzwojeń, aby zapobiec poważniejszym uszkodzeniom oraz zminimalizować ryzyko pożaru. Usunięcie tego typu defektów jest kluczowe dla zapewnienia bezpieczeństwa na stanowisku pracy oraz długoterminowej efektywności urządzenia.

Pytanie 30

Przeglądy okresowe instalacji elektrycznej w budynkach mieszkalnych powinny być realizowane co najmniej raz na

A. 4 lata
B. 1 rok
C. 3 lata
D. 5 lat
Badania okresowe mieszkaniowej instalacji elektrycznej powinny być przeprowadzane co pięć lat, co jest zgodne z obowiązującymi przepisami prawa budowlanego oraz normami PN-HD 60364. Regularne kontrole instalacji elektrycznej są kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania systemu. W trakcie takich badań specjaliści sprawdzają między innymi stan izolacji przewodów, działanie zabezpieczeń oraz ich prawidłowe umiejscowienie. W praktyce oznacza to, że po pięciu latach użytkowania instalacji, warto zlecić jej audyt, aby upewnić się, że nie doszło do degradacji elementów elektrycznych, co mogłoby prowadzić do zwarcia lub pożaru. Dobrą praktyką jest również prowadzenie dokumentacji z przeprowadzonych badań, co ułatwia późniejsze analizy i decyzje dotyczące eksploatacji oraz ewentualnych modernizacji. Osoby wynajmujące mieszkania powinny być świadome, że odpowiedzialność za stan instalacji spoczywa na właścicielu, a regularne przeglądy są nie tylko wyrazem dbałości o bezpieczeństwo, ale również wymaganiem prawnym.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

W celu oceny stanu technicznego silnika indukcyjnego trójfazowego zasilanego napięciem 230/400 V, który nie był uruchamiany od dłuższego czasu, dokonano jego oględzin i pomiarów. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ stan techniczny tego silnika.

Wartość rezystancji pomiędzy zaciskami:
U1-U2V1-V2W1-W2U1-PEV1-PEW1-PE
5,1 Ω4,9 Ω4,7 Ω8,0 MΩ9,5 MΩ7,6 MΩ
A. Zbyt duża asymetria rezystancji uzwojeń.
B. Zbyt duża rezystancja uzwojenia U.
C. Wyniki pomiarów pozytywne.
D. Uszkodzona izolacja uzwojenia W.
Wyniki pomiarów są pozytywne, co oznacza, że silnik indukcyjny trójfazowy jest w dobrym stanie technicznym. Podczas oceny stanu technicznego silnika, kluczowe jest sprawdzenie rezystancji uzwojeń oraz izolacji. Rezystancje uzwojeń powinny być zbliżone do siebie, co świadczy o prawidłowym funkcjonowaniu silnika. W tym przypadku wartości rezystancji uzwojeń wynoszą 5,1 Ω, 4,9 Ω oraz 4,7 Ω, co wskazuje na ich równowagę i prawidłowość. Dodatkowo, rezystancja izolacji jest również bardzo wysoka, co jest niezwykle istotne, ponieważ niska rezystancja może prowadzić do zwarć i uszkodzeń silnika. Wartości izolacji wynoszą 8,0 MΩ, 9,5 MΩ oraz 7,6 MΩ, co wskazuje na dobrą kondycję izolacji i brak potencjalnych uszkodzeń. Przykładem dobrych praktyk w przemyśle jest regularne monitorowanie stanu technicznego maszyn, co pozwala na wczesne wykrywanie problemów i ich naprawę przed wystąpieniem poważniejszych awarii. Warto również przestrzegać standardów, takich jak PN-EN 60034-1, które definiują wymagania dotyczące silników elektrycznych.

Pytanie 34

Czas pomiędzy kolejnymi kontrolami oraz próbami instalacji elektrycznych w budynkach mieszkalnych zbiorowego użytku nie powinien przekraczać okresu

A. 2 lata
B. 1 rok
C. 5 lat
D. 3 lata
Odpowiedzi, które sugerują krótsze okresy przeglądów, jak 2 czy 3 lata, mogą wydawać się sensowne, bo to bardziej na bezpieczeństwo, ale w rzeczywistości to raczej nieodpowiednie podejście. Zbyt częste przeglądy mogą wiązać się z niepotrzebnymi kosztami dla właścicieli budynków i obciążać służby techniczne, które mogą być zajęte innymi sprawami. Dodatkowo, krótsze okresy mogą wprowadzać w błąd i powodować nieuzasadniony niepokój wśród mieszkańców. Ważne jest, żeby przeglądy robić zgodnie z wytycznymi, które uwzględniają rzeczywiste potrzeby i stan techniczny instalacji. Dobrze jest też robić audyty techniczne, żeby wcześniej wykrywać ewentualne problemy. A co do odpowiedzi, która mówi o 1 roku, to jest zupełnie nietrafiona, bo w tak krótkim czasie nie ma szans na zauważenie efektów użytkowania i degradacji. Dbanie o bezpieczeństwo w budynkach wielorodzinnych powinno opierać się na rozsądnych zasadach, które biorą pod uwagę nie tylko koszty, ale i utrzymanie wysokich standardów bezpieczeństwa.

Pytanie 35

Której z poniżej wymienionych czynności nie da się wykonać podczas próbnego uruchomienia zgrzewarki oporowej?

A. Sprawdzenia funkcjonowania przełącznika do zgrzewania pojedynczego oraz ciągłego
B. Pomiaru rezystancji izolacji między uzwojeniem pierwotnym transformatora a obudową
C. Weryfikacji stanu i poprawności ustawienia elektrod
D. Mierzenia czasu poszczególnych etapów zgrzewania: docisku oraz przerwy
Pomiar rezystancji izolacji między uzwojeniem pierwotnym transformatora a obudową jest kluczowy dla zapewnienia bezpieczeństwa pracy zgrzewarki oporowej. W czasie próbnego uruchamiania urządzenia, istotne jest, aby skupić się na sprawdzeniu stanu elektrod, prawidłowości ustawienia oraz funkcji zgrzewania. Pomiar rezystancji izolacji, który jest standardową procedurą konserwacyjną, powinien być przeprowadzany przed włączeniem urządzenia do pracy, aby upewnić się, że nie ma niebezpiecznych przebicia elektrycznych, które mogłyby spowodować uszkodzenie sprzętu lub zagrożenie dla operatora. Dobre praktyki w branży wymagają, aby przed rozpoczęciem jakiejkolwiek pracy z urządzeniem elektrycznym, przeprowadzić dokładne pomiary izolacji, co nie jest częścią próbnego uruchamiania, lecz regularnych przeglądów. Takie działania ograniczają ryzyko awarii i zwiększają bezpieczeństwo operacyjne, co jest zgodne z normami ISO 9001 dotyczącymi systemów zarządzania jakością oraz normami bezpieczeństwa elektrycznego. Przykładem zastosowania tych zasad jest wykonywanie pomiarów rezystancji izolacji w przemyśle elektronicznym, gdzie regularne kontrole stanu izolacji są normą.

Pytanie 36

Na wartość impedancji pętli zwarcia w systemie sieciowym TN-C mają wpływ

A. rodzaj zamontowanych ochronników przeciwprzepięciowych
B. wytrzymałość napięciowa izolacji przewodów
C. liczba zamontowanych ochronników przeciwprzepięciowych
D. pole przekroju poprzecznego żył przewodów
Wybór niewłaściwej odpowiedzi, związany z ilością lub typem ochronników przeciwprzepięciowych, wskazuje na niepełne zrozumienie wpływu, jaki mają te elementy na impedancję pętli zwarcia. Ochronniki przeciwprzepięciowe są istotne dla zabezpieczenia przed przepięciami, ale nie mają wpływu na wartość impedancji pętli zwarcia, ponieważ ich zadaniem jest ochrona przed nagłymi wzrostami napięcia, a nie zarządzanie przepływem prądu w normalnych warunkach. W kontekście wytrzymałości napięciowej izolacji przewodów, warto zauważyć, że ta cecha odnosi się do zdolności materiału do wytrzymywania określonych wartości napięcia bez uszkodzeń, co nie ma bezpośredniego związku z impedancją pętli zwarcia. Ponadto, niewłaściwe zrozumienie roli przekroju żył w aspekcie bezpieczeństwa elektrycznego może prowadzić do błędnych decyzji projektowych, co skutkuje nieodpowiednim doborze komponentów w instalacji. Należy pamiętać, że zarówno analiza impedancji pętli zwarcia, jak i dobór chroniących elementów powinny być zrealizowane zgodnie z obowiązującymi normami, co zapewnia nie tylko funkcjonalność, ale i bezpieczeństwo całego systemu elektrycznego.

Pytanie 37

W instalacji trójfazowej działającej w układzie TN-C, gdy na odbiornikach wystąpi napięcie fazowe przekraczające 300 V, co może być tego przyczyną?

A. przerwaniem ciągłości przewodu PEN
B. przerwą w jednej z faz
C. zwarciem między fazą a przewodem PEN
D. zwarciem pomiędzy fazami
Przerwanie ciągłości przewodu PEN w instalacji 3-fazowej pracującej w układzie TN-C prowadzi do sytuacji, w której napięcie fazowe może wzrosnąć powyżej 300 V. W takiej konfiguracji przewód PEN pełni zarówno funkcje przewodu neutralnego, jak i ochronnego. W przypadku przerwania jego ciągłości, nie tylko zanikają połączenia ochronne, ale również występuje ryzyko, że napięcie na odbiornikach z fazy, do której dochodzi, wzrośnie do wartości zagrażających bezpieczeństwu, co jest szczególnie niebezpieczne dla urządzeń i ludzi. W praktyce, w przypadku przerwania przewodu PEN, pozostałe przewody fazowe zaczynają 'przeciążać' system, co może doprowadzić do niebezpiecznych sytuacji, takich jak uszkodzenie sprzętu, wyzwolenie zabezpieczeń, a w skrajnych przypadkach do porażenia prądem. Stosowanie odpowiednich zabezpieczeń oraz regularne kontrole instalacji są kluczowe dla zapobiegania takim awariom. W kontekście norm, warto odwołać się do PN-IEC 60364, który definiuje zasady ochrony przed porażeniem prądem elektrycznym.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jak zmieni się ilość ciepła wydobywanego przez grzejnik elektryczny w jednostce czasu, jeśli jego spiralę grzejną skróci się o połowę, a napięcie zasilające pozostanie takie samo?

A. Zwiększy się czterokrotnie
B. Zwiększy się dwukrotnie
C. Zmniejszy się czterokrotnie
D. Zmniejszy się dwukrotnie
Wybierając odpowiedzi, które sugerują, że zmiana długości spiral grzejnych skutkuje znacznym zmniejszeniem ilości wydzielanego ciepła, można popaść w pułapkę błędnych założeń dotyczących zasad działania grzejników elektrycznych. Odpowiedzi takie jak "Zmniejszy się czterokrotnie" lub "Zmniejszy się dwukrotnie" opierają się na mylnym założeniu, że skrócenie elementu grzewczego automatycznie prowadzi do proporcjonalnego spadku wydajności cieplnej, co jest sprzeczne z prawem Ohma oraz zasadą zachowania energii. Kluczowym aspektem jest zrozumienie, że moc wydobywana z grzejnika elektrycznego nie tylko zależy od długości spirali, ale również od napięcia i oporu. Przy stałym napięciu zasilania, zmniejszenie oporu (wynikające ze skrócenia spirali) prowadzi do wzrostu prądu, a tym samym do wzrostu mocy.Odpowiedzi sugerujące, że moc spadnie, mogą wynikać z nieporozumień dotyczących tego, jak opór i prąd elektryczny współdziałają w obwodach. W rzeczywistości, przy krótszej spirali, opór maleje, a prąd rośnie, co skutkuje wyższą mocą. W praktyce, projektując urządzenia grzewcze, należy brać pod uwagę te fundamentalne zasady, aby uniknąć nieefektywności oraz potencjalnych uszkodzeń sprzętu. Zatem wszelkie wnioski opierające się na intuicji a nie na solidnych podstawach teoretycznych mogą prowadzić do nieprawidłowych wyników i decyzji w inżynierii grzewczej.

Pytanie 40

Najtrudniejsze okoliczności gaszenia łuku elektrycznego występują w obwodzie o charakterze

A. indukcyjnym, przy przepływie prądu sinusoidalnego
B. rezystancyjnym, przy przepływie prądu stałego
C. indukcyjnym, przy przepływie prądu stałego
D. rezystancyjnym, przy przepływie prądu przemiennego
Obwody rezystancyjne, zarówno przy prądzie stałym, jak i przemiennym, charakteryzują się innymi zasadami działania, które wpływają na zjawisko gaszenia łuku elektrycznego. W przypadku obwodów rezystancyjnych, prąd elektryczny ma tendencję do zmniejszania się, co prowadzi do łatwiejszego gaszenia łuku. W obwodach z przepływem prądu zmiennego, zjawisko gaszenia łuku jest dodatkowo wspomagane przez cykliczne przechodzenie prądu przez zero. Ludzie często myślą, że wszystkie obwody działają na podobnych zasadach, jednak kluczowym aspektem jest różnica w charakterystyce indukcyjnej i rezystancyjnej. W obwodach indukcyjnych, obecność reaktancji indukcyjnej powoduje dążenie do utrzymania łuku za sprawą nagromadzonej energii w polu elektromagnetycznym. Dlatego w zastosowaniach przemysłowych, takich jak zasilanie silników elektrycznych, gdzie obwody są dość często indukcyjne, musimy projektować zabezpieczenia, które radzą sobie z trudnościami gaszenia łuku. Ignorowanie tych różnic prowadzi do poważnych problemów w systemach zabezpieczeń i może skutkować awariami w instalacjach. Kluczowe jest zrozumienie, że obwody indukcyjne wymagają specjalnych metod gaszenia, takich jak zastosowanie łuków gaszących lub technologii MMC (Modular Multilevel Converter), które są zgodne z normami IEEE i IEC. Takie podejście minimalizuje ryzyko oraz zwiększa bezpieczeństwo w codziennych operacjach elektrycznych.