Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 31 stycznia 2026 05:12
  • Data zakończenia: 31 stycznia 2026 05:20

Egzamin niezdany

Wynik: 6/40 punktów (15,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie oznaczenie, zgodnie z Europejskim Komitetem Normalizacyjnym Elektrotechniki CENELEC posiada przewód przedstawiony na rysunku?

Ilustracja do pytania
A. NAYY-O
B. H03VV-F
C. NYM-J
D. H07V-U
Przewody 'NAYY-O' i 'H07V-U' niestety nie spełniają wymagań do tej instalacji, co można zauważyć na rysunku. 'NAYY-O' to przewody aluminiowe, które zazwyczaj wykorzystuje się w instalacjach na zewnątrz. Mają inną konstrukcję izolacyjną, więc nie nadają się do stałych instalacji w budynkach. Natomiast 'H07V-U' to przewód jednożyłowy, który również nie pasuje do wielożyłowych przewodów, jakie były potrzebne, by zapewnić prawidłowe zasilanie. Użycie takich przewodów może prowadzić do różnych błędów, bo jak źle dobierzesz przewód, to wpływa na bezpieczeństwo i funkcjonowanie całego systemu elektrycznego. Oznaczenie 'H03VV-F' odnosi się do przewodów elastycznych, używanych głównie w urządzeniach przenośnych, a nie w stałych instalacjach. Wybór niewłaściwego typu przewodu to nie tylko obniżona efektywność, ale też większe ryzyko awarii systemu, co jest wbrew normom CENELEC, które sugerują dobór przewodów odpowiednich do danej instalacji. Warto pamiętać, żeby wybierając przewody, kierować się ich przeznaczeniem oraz obowiązującymi normami, by zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 2

Jaką z wymienionych czynności należy wykonać podczas inspekcji działającego transformatora?

A. Czyszczenie izolatorów
B. Weryfikacja poziomu oleju w olejowskazie konserwatora
C. Serwis styków oraz połączeń śrubowych
D. Obsługa przełącznika zaczepów
Podczas oceny konserwacji transformatorów wiele osób może błędnie zinterpretować działania, które powinny być podejmowane w trakcie oględzin. Konserwacja przełącznika zaczepów jest z pewnością istotnym aspektem obsługi transformatora, jednak nie jest to czynność bezpośrednio związana z bieżącym nadzorowaniem jego pracy. Przełączniki zaczepów są kluczowe dla regulacji napięcia, ale ich konserwację przeprowadza się w innych cyklach czasowych, a nie w trakcie standardowych oględzin. Również czyszczenie izolatorów jest istotne, jednak skupia się na usuwaniu osadów oraz zanieczyszczeń, które mogą wpływać na właściwości izolacyjne. Ta czynność również nie jest bezpośrednio związana z monitorowaniem poziomu oleju. Konserwacja styków i połączeń śrubowych jest ważna, aby zapewnić stabilne połączenia elektryczne, ale nie jest to czynność, która powinna być przeprowadzana w czasie standardowych oględzin operacyjnych. Mylne podejście do tych czynności wynika często z braku zrozumienia ich priorytetów w kontekście bieżącej eksploatacji transformatora. Ostatecznie, kluczowym aspektem w pracy z transformatorami jest zapewnienie ich bezpieczeństwa i stabilności działania, co jest realizowane poprzez systematyczne monitorowanie i konserwację, gdzie sprawdzanie poziomu oleju stanowi fundament tej procedury.

Pytanie 3

Aby zmierzyć częstotliwość, należy użyć

A. waromierza
B. watomierza
C. częstościomierza
D. fazomierza
Wybór waromierza, watomierza czy fazomierza jako narzędzi do pomiaru częstotliwości jest nieodpowiedni z kilku powodów. Waromierz, który jest używany do pomiaru napięcia w obwodach elektrycznych, nie jest przeznaczony do analizy częstotliwości sygnałów. Jego zastosowanie ogranicza się do oceny wartości napięcia, co czyni go niewłaściwym narzędziem w kontekście pomiarów częstotliwości. Z kolei watomierz, który mierzy moc elektryczną, również nie jest przystosowany do tego typu analizy, ponieważ koncentruje się na wytwarzanej energii, a nie na jej częstotliwości. Może wystąpić mylne przekonanie, że pomiar mocy może dostarczyć informacji o częstotliwości, co jest jednak nieprawdziwe. Fazomierz, który określa różnicę fazową między dwoma sygnałami, również nie dostarcza bezpośrednich informacji o ich częstotliwości. W praktyce, użycie tych urządzeń w kontekście pomiaru częstotliwości może prowadzić do błędnych wniosków oraz nieefektywnego diagnozowania problemów w układach elektronicznych. Kluczowe jest, aby wybierać narzędzia odpowiednie do specyficznych zastosowań, zgodnie z normami i zaleceniami branżowymi, aby uniknąć błędów w analizie i interpretacji wyników.

Pytanie 4

Źródło światła pokazane na zdjęciu to lampa

Ilustracja do pytania
A. halogenowa.
B. rtęciowa.
C. rtęci owo-żarowa.
D. sodowa.
Lampa halogenowa, jaką widzisz na zdjęciu, jest doskonałym przykładem nowoczesnego źródła światła, które charakteryzuje się wyższą efektywnością energetyczną oraz dłuższą żywotnością w porównaniu do tradycyjnych żarówek. Jej budowa składa się z małej bańki, w której znajduje się drucik wolframowy, oraz ze specjalnego naczynia kwarcowego lub szklanego wypełnionego gazem halogenowym, co pozwala na regenerację wolframu i zmniejsza jego parowanie. Dzięki temu, lampa halogenowa emituje jasne i naturalne światło, które jest doskonałe do oświetlenia wnętrz oraz zastosowań w oświetleniu akcentującym. Warto dodać, że lampy halogenowe są powszechnie stosowane w domach, biurach oraz w oświetleniu wystawowym, a ich zastosowanie w przemyśle i motoryzacji jest również znaczące. Przemiany w sektorze oświetleniowym wskazują na rosnącą popularność źródeł LED, jednak lampy halogenowe pozostają cenione za swoje unikalne właściwości w określonych zastosowaniach, takich jak reflektory czy lampy punktowe.

Pytanie 5

Która z poniższych czynności jest częścią oględzin przy konserwacji wirnika silnika komutatorowego?

A. Pomiar rezystancji izolacji
B. Weryfikacja braku zwarć międzyzwojowych
C. Wyważanie
D. Sprawdzenie kondycji wycinków komutatora
Odpowiedzi, które nie dotyczą sprawdzenia stanu wycinków komutatora, choć mogą wydawać się związane z konserwacją silników komutatorowych, nie odpowiadają na kluczową kwestię oględzin wirnika. Wyważenie wirnika jest istotne dla eliminacji drgań, które mogą prowadzić do uszkodzeń łożysk i innych komponentów, jednak nie jest to bezpośrednia czynność związana z ocena stanu komutatora. Pomiar rezystancji izolacji to ważny krok w ocenie stanu izolacji uzwojeń silnika, ale również nie dotyczy bezpośrednio stanu wycinków komutatora. Z kolei sprawdzenie braku zwarć międzyzwojowych jest kluczowe dla bezpieczeństwa i niezawodności silnika, jednak nie dotyczy to bezpośrednio stanu komutatora, który jest kluczowym elementem zapewniającym poprawną pracę silnika. Zrozumienie, że każda z tych czynności odgrywa swoją rolę w konserwacji silnika, jest ważne, ale nie wszystkie są równorzędne w kontekście oględzin wirnika. Często można spotkać się z mylnym przekonaniem, że te wszystkie czynności służą temu samemu celowi, podczas gdy każda z nich ma swoją specyfikę oraz odmienny wpływ na działanie silnika. Dlatego kluczowe jest skupienie się na właściwych czynnościach konserwacyjnych, które odpowiadają na konkretne potrzeby diagnostyczne silnika, a nie tylko na ogólnych działaniach związanych z jego konserwacją.

Pytanie 6

Której końcówki wkrętaka należy użyć do demontażu wyłącznika nadprądowego z szyny TH 35?

Ilustracja do pytania
A. Końcówki 4.
B. Końcówki 2.
C. Końcówki 1.
D. Końcówki 3.
Wybór niewłaściwej końcówki wkrętaka do demontażu wyłącznika nadprądowego z szyny TH 35 może prowadzić do szeregu problemów technicznych oraz zwiększenia ryzyka uszkodzeń. Końcówki 1., 3. i 4. są nieodpowiednie, ponieważ mają różne kształty, które nie są dostosowane do typowych złączy śrubowych stosowanych w tej aplikacji. Końcówka 1. najprawdopodobniej jest typu krzyżowego lub pozbawiona odpowiedniej płaskości, co utrudni prawidłowe wkręcanie czy wykręcanie. Z kolei końcówki 3. i 4. mogą być przeznaczone do specyficznych zastosowań, takich jak śruby torx czy inne nietypowe złącza, a ich użycie w montażu wyłączników nadprądowych może spowodować uszkodzenia elementów lub niepewne połączenia. Błędem myślowym jest zatem założenie, że wszelkie końcówki mogą być stosowane zamiennie, co jest sprzeczne z dobrymi praktykami w branży elektroinstalacyjnej. W praktyce kluczowe jest korzystanie z narzędzi, które są odpowiednio dobrane do specyfiki i standardów instalacji, aby zapewnić bezpieczeństwo oraz niezawodność działania urządzeń. Niezastosowanie się do tych zasad może prowadzić do awarii systemu elektrycznego oraz stwarzać ryzyko wystąpienia zagrożeń, takich jak zwarcia czy przegrzanie.

Pytanie 7

Który z urządzeń umożliwia bezpośredni pomiar cos 9?

A. Watomierz
B. Fazomierz
C. Omomierz
D. Waromierz
Watomierz, omomierz i waromierz to przyrządy, które pełnią różne funkcje, ale nie są odpowiednie do bezpośredniego pomiaru cos φ. Watomierz mierzy moc elektryczną, co jest istotne w kontekście zużycia energii, ale nie informuje nas o kącie fazowym. Zrozumienie tego narzędzia jest kluczowe, jednak nie można go używać do oceny współczynnika mocy, ponieważ wymaga to pomiaru zarówno prądu, jak i napięcia, a także ich faz. Omomierz, z kolei, służy do pomiaru oporu, co w przypadku prądów zmiennych jest niewłaściwe, ponieważ nie uwzględnia on aspektu fazowego. Użycie omomierza w kontekście pomiaru cos φ może prowadzić do mylnych wniosków i błędów w ocenie stanu obwodu. Waromierz, który jest narzędziem do pomiaru energii w obwodach prądu zmiennego, także nie dostarcza informacji o fazie, co czyni go nieprzydatnym w tym kontekście. Wielu użytkowników może myśleć, że wystarcza pomiar mocy lub oporu, jednak te podejścia pomijają kluczowy aspekt, jakim jest kąt fazowy, co jest fundamentalne dla zrozumienia efektywności energetycznej. W praktyce, nieznajomość różnicy między tymi przyrządami a fazomierzem może prowadzić do poważnych problemów w diagnostyce i zarządzaniu systemami elektrycznymi.

Pytanie 8

Który z podanych łączników instalacyjnych dysponuje dwoma klawiszami i trzema zaciskami przyłączeniowymi?

A. Łącznik schodowy pojedynczy
B. Łącznik schodowy podwójny
C. Łącznik krzyżowy
D. Łącznik świecznikowy
Wybór innego typu łącznika, takiego jak łącznik schodowy podwójny, prowadzi do nieporozumienia dotyczącego jego funkcji i zastosowania. Łącznik schodowy podwójny jest zaprojektowany do pracy w układzie schodowym, gdzie umożliwia kontrolę nad tym samym źródłem światła z dwóch różnych miejsc. Posiada on jednak inną liczbę zacisków oraz inny sposób podłączenia w porównaniu do łącznika świecznikowego. Dodatkowo, łącznik schodowy pojedynczy również nie jest odpowiednią odpowiedzią, ponieważ jego konstrukcja zakłada jedynie jeden klawisz i dwa zaciski, co nie spełnia warunków postawionych w pytaniu. Z kolei łącznik krzyżowy, choć jest elementem integrującym w bardziej złożonych systemach oświetleniowych, nie odpowiada wymaganiom związanym z dwoma klawiszami i trzema zaciskami. Kluczowym błędem myślowym, który może prowadzić do nieprawidłowych wyborów, jest niezrozumienie różnicy między funkcjami różnych typów łączników i ich zastosowaniem w praktyce. Wybierając nieodpowiedni typ łącznika, można nie tylko zakłócić działanie całej instalacji elektrycznej, ale również zwiększyć ryzyko awarii. Świadomość różnic pomiędzy poszczególnymi typami łączników to klucz do efektywnego projektowania oraz bezpiecznej eksploatacji systemów oświetleniowych.

Pytanie 9

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji kabla w temperaturze 20 oC, jeżeli rezystancja izolacji tego kabla zmierzona w temperaturze 10 oC wyniosła 8,1 MΩ.

Współczynniki przeliczeniowe K₂₀ dla rezystancji izolacji kabli z izolacją połwinnitową
R₂₀ = K₂₀·Rₜ
Temperatura w °C4810121620242628
Współczynnik przeliczeniowy K₂₀0,110,190,250,330,631,001,852,383,13
A. 4,1 MΩ
B. 2,0 MΩ
C. 16,2 MΩ
D. 32,4 MΩ
Odpowiedzi 4,1 MΩ, 32,4 MΩ i 16,2 MΩ są błędne z kilku powodów. Wartość 4,1 MΩ nie bierze pod uwagę, że rezystancja izolacji spada, kiedy temperatura rośnie, a to kluczowe. W przypadku 32,4 MΩ można pomyśleć, że rezystancja rośnie z temperaturą, co jest całkowicie mylne. Takie myślenie jest sprzeczne z tym, co mówią normy w elektrotechnice, bo wyższe temperatury skutkują niższymi wartościami rezystancji. I jeszcze 16,2 MΩ nie ma sensu, bo nie korzysta z dobrej formuły do obliczeń i nie odnosi się do standardów pomiarowych. Zawsze musisz pamiętać, jak materiały izolacyjne reagują na zmiany temperatury, bo to ma ogromne znaczenie przy ocenie stanu technicznego instalacji elektrycznych.

Pytanie 10

Który symbol graficzny na schemacie ideowym projektowanej instalacji elektrycznej oznacza sposób prowadzenia przewodów w tynku?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Poprawna odpowiedź to B, ponieważ w polskich normach dotyczących schematów instalacji elektrycznych, sposób prowadzenia przewodów w tynku jest zazwyczaj reprezentowany przez symbol składający się z dwóch równoległych linii. Jedna z tych linii jest ciągła, co wskazuje na przewód zamontowany w tynku, a druga jest przerywana, sugerując ewentualne miejsce, w którym przewód jest ukryty lub prowadzenie w trudnych warunkach. Tego rodzaju symbol nie tylko ułatwia zrozumienie schematu instalacji, ale również przyczynia się do zachowania bezpieczeństwa oraz efektywności w projektowaniu i wykonywaniu instalacji elektrycznych. Przykładowo, w praktyce, stosowanie się do tego symbolu pozwala instalatorom na dokładne zaplanowanie trasy przewodów w ścianach budynków, co ma kluczowe znaczenie dla estetyki oraz funkcjonalności instalacji. Ponadto, stosowanie jednolitych symboli zgodnych z normami branżowymi, jak PN-EN 60617, zapewnia, że wszyscy uczestnicy procesu budowlanego mają wspólne zrozumienie projektu, co minimalizuje ryzyko błędów w realizacji.

Pytanie 11

Na której ilustracji przedstawiono kabel typu YAKY?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 4.
C. Na ilustracji 1.
D. Na ilustracji 2.
Wybór innej ilustracji niż ta, która przedstawia kabel YAKY, może wynikać z braku zrozumienia specyfikacji tego typu kabla. Kable YAKY są rozpoznawalne dzięki swojej charakterystycznej budowie, która obejmuje trzy przewody izolowane materiałem polwinitowym oraz dodatkowy oplot PVC. Na ilustracjach, które nie przedstawiają kabla YAKY, możemy dostrzec inne typy kabli, które mogą mieć różne zastosowania, lecz nie spełniają kryteriów YAKY. Na przykład, kabel z izolacją gumową lub innym rodzajem tworzywa sztucznego może wyglądać na pierwszy rzut oka podobnie, ale jego właściwości, takie jak odporność na temperaturę czy działanie chemikaliów, mogą się znacznie różnić. Często mylone są również kable o różnych przeznaczeniach, jak kable do instalacji telekomunikacyjnych czy sygnalizacyjnych, które nie nadają się do zasilania urządzeń elektrycznych w sposób bezpieczny. Konsekwencje błędnego doboru kabli mogą być poważne, prowadząc do awarii, a w skrajnych przypadkach do zagrożenia pożarowego. Kluczowe jest, aby przy wyborze kabla kierować się nie tylko jego wyglądem, ale przede wszystkim parametrami technicznymi oraz zaleceniami producentów, które są zgodne z obowiązującymi normami i standardami branżowymi.

Pytanie 12

Na zdjęciu przedstawiono

Ilustracja do pytania
A. odłącznik.
B. wyłącznik.
C. bezpiecznik.
D. rozłącznik.
Często ludzie mylą rozłącznik z innymi urządzeniami elektrycznymi, co prowadzi do zamieszania. Wyłącznik działa trochę inaczej, bo przerywa obwód automatycznie przy przeciążeniu czy zwarciu, a jego funkcja jest inna niż rozłącznika, który nie wyłącza automatycznie. Odłącznik też się myli, bo chociaż służy do rozłączania, to ma swoje ograniczenia i nie nadaje się do pracy pod obciążeniem. Wiele osób nie zdaje sobie sprawy, że odłącznik nie jest dobrym wyborem w sytuacjach, kiedy jest ryzyko rozłączania pod napięciem. Bezpiecznik to inna sprawa, działa na zasadzie przepalania się, gdy jest przeciążenie, czyli też jest zupełnie czym innym niż rozłącznik. Wiele osób myśli, że te trzy urządzenia są takie same, a to może powodować problemy przy doborze sprzętu w instalacjach elektrycznych. Dlatego zrozumienie różnic między nimi to podstawa dla każdego technika czy inżyniera, żeby wszystko działało jak należy i było bezpieczne.

Pytanie 13

Z którym zaciskiem będzie połączony zacisk 42 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem A2 stycznika K1
B. Z zaciskiem 22 stycznika K1
C. Z zaciskiem 4 listwy zaciskowej X1
D. Z zaciskiem 3 listwy zaciskowej X1
Zacisk 42 stycznika K2 jest połączony z zaciskiem 4 listwy zaciskowej X1, co można zweryfikować na podstawie schematu montażowego. Ważne jest, aby dokładnie analizować schematy w kontekście połączeń elektrycznych, ponieważ zapewniają one wizualizację, która jest kluczowa dla właściwego zrozumienia działania obwodu. W praktyce, połączenia takie umożliwiają prawidłowe funkcjonowanie urządzeń, na przykład sterowanie silnikami lub innymi komponentami systemu. W przypadku styczników, poprawne połączenia są istotne dla zapewnienia ich niezawodnej pracy. Dobrą praktyką jest również dokumentowanie wszelkich połączeń, co ułatwia późniejsze serwisowanie oraz modyfikacje w instalacji. Zrozumienie schematu oraz umiejętność interpretacji połączeń elektrycznych są fundamentami pracy w branży elektroinstalacyjnej. Warto również zaznaczyć, że zgodność z normami oraz standardami branżowymi, takimi jak IEC, jest niezbędna dla zapewnienia bezpieczeństwa i efektywności działania systemów elektrycznych.

Pytanie 14

Które z wymienionych czynności należy wykonać po próbnym uruchomieniu silnika indukcyjnego klatkowego (kierunek obrotów silnika jest prawidłowy), podczas jego pracy w warunkach znamionowego zasilania i obciążenia?

A. Zmierzyć wartość napięcia zasilania, ocenić poprawność doboru typu silnika do maszyny napędzanej.
B. Zmierzyć wartość pobieranego prądu, sprawdzić stan sprzężenia z maszyną napędzaną i poprawność pracy łożysk.
C. Sprawdzić stan izolacji uzwojeń silnika, sprawdzić zapewnienie swobodnego dopływu powietrza do przewietrznika.
D. Ocenić stan urządzeń do przeprowadzenia rozruchu, aparatury sterującej i zabezpieczającej.
Prawidłowo wskazana czynność dotyczy tego, co w praktyce robi się po ostatecznym, próbnym uruchomieniu silnika klatkowego w jego normalnych warunkach pracy – czyli przy znamionowym napięciu i znamionowym obciążeniu. W tym momencie zakładamy, że kierunek obrotów jest już sprawdzony i poprawny, instalacja jest wykonana, a rozruch się udał. Teraz trzeba ocenić, czy silnik i napęd mechaniczny faktycznie pracują bezpiecznie i w granicach parametrów katalogowych. Dlatego mierzy się przede wszystkim wartość pobieranego prądu w warunkach ustalonej pracy. Porównuje się ją z prądem znamionowym z tabliczki znamionowej. Jeżeli prąd jest wyraźnie wyższy, może to oznaczać przeciążenie, zbyt dużą moc wymaganą przez maszynę roboczą, zbyt niskie napięcie zasilania albo problemy mechaniczne (np. zatarte łożyska, złe osiowanie). Z drugiej strony prąd dużo niższy od znamionowego przy pełnym obciążeniu zwykle sugeruje, że coś nie gra z samym obciążeniem, np. maszyna nie pracuje na pełnej mocy. Drugim istotnym krokiem jest sprawdzenie stanu sprzężenia silnika z maszyną napędzaną: sprzęgła, przekładni, pasów klinowych, połączeń wałów. Patrzy się czy nie ma bicia, luzów, niewspółosiowości, nadmiernych drgań. Z mojego doświadczenia to właśnie niewspółosiowość i luźne sprzęgło najczęściej powodują późniejsze awarie, mimo że elektrycznie wszystko wygląda dobrze. Trzeci element to ocena poprawności pracy łożysk: nasłuchuje się nietypowych odgłosów (chrobotanie, wycie), kontroluje temperaturę obudów, drgania. Dobre praktyki utrzymania ruchu wymagają, żeby po uruchomieniu nowego lub remontowanego silnika przez dłuższą chwilę obserwować go pod kątem nagrzewania łożysk i nietypowych dźwięków. Normy i instrukcje producentów (np. wytyczne dotyczące eksploatacji silników indukcyjnych) wyraźnie podkreślają konieczność kontroli obciążenia prądowego oraz układu mechanicznego napędu po rozruchu. Sam pomiar prądu i oględziny sprzężenia oraz łożysk pozwalają wcześnie wykryć problemy, zanim dojdzie do zadziałania zabezpieczeń, przegrzania uzwojeń czy wręcz zniszczenia silnika lub maszyny roboczej.

Pytanie 15

Który z podanych materiałów najlepiej przewodzi strumień magnetyczny?

A. Miedź
B. Brąz
C. Stal
D. Aluminium
Stal jest najlepszym przewodnikiem strumienia magnetycznego spośród wymienionych materiałów, ponieważ ma znacznie wyższą permeabilność w porównaniu do innych wymienionych metali. Permeabilność odnosi się do zdolności materiału do przewodzenia pola magnetycznego, co czyni stal idealnym materiałem do zastosowań w elektrotechnice, takich jak rdzenie transformatorów czy elektromagnesy. W konstrukcjach takich jak silniki elektryczne czy generatory, stal jest powszechnie stosowana ze względu na swoją zdolność do zwiększania efektywności działania poprzez skoncentrowanie strumienia magnetycznego. W praktyce, użycie stali w takich aplikacjach pozwala na mniejsze straty energii oraz poprawia wydajność urządzeń. Warto również zaznaczyć, że stal można łatwo poddawać obróbce, co umożliwia produkcję różnych kształtów rdzeni, co jest istotne w projektowaniu urządzeń elektronicznych. Zgodność z normami, takimi jak IEC, w zakresie materiałów magnetycznych, podkreśla znaczenie stali w branży elektrotechnicznej, gdzie standardy jakości i wydajności są kluczowe.

Pytanie 16

W rozdzielnicy instalacji mieszkaniowej, wykonanej zgodnie z przedstawionym schematem, należy zainstalować

Ilustracja do pytania
A. jeden wyłącznik różnicowoprądowy, cztery trójfazowe wyłączniki nadprądowe i cztery jednofazowe wyłączniki nadprądowe.
B. cztery wyłączniki różnicowoprądowe i pięć jednofazowych wyłączników nadprądowych.
C. pięć wyłączników różnicowoprądowych i cztery jednofazowe wyłączniki nadprądowe.
D. cztery wyłączniki różnicowoprądowe, cztery trójfazowe wyłączniki nadprądowe i jeden jednofazowy wyłącznik nadprądowy.
Analizując błędne odpowiedzi, można zauważyć kilka kluczowych nieporozumień dotyczących zasad projektowania i instalacji rozdzielnic. W przypadku odpowiedzi wskazujących na większą liczbę wyłączników różnicowoprądowych, warto zauważyć, że każdy wyłącznik różnicowoprądowy chroni określony obszar instalacji, a ich nadmiar prowadziłby do nieefektywności oraz złożoności w użytkowaniu i konserwacji. Zastosowanie pięciu wyłączników różnicowoprądowych, jak sugeruje jedna z nieprawidłowych odpowiedzi, mogłoby prowadzić do zbędnych kosztów, a także do większego ryzyka błędnych wyzwalań, co jest niepożądane w praktyce. Kolejnym istotnym błędem jest zrozumienie roli wyłączników nadprądowych. Wyłączniki te są projektowane do ochrony obwodów przed przeciążeniem i zwarciem, a ich liczba musi odpowiadać liczbie podłączonych obwodów. W przypadku rozdzielnicy, która ma pięć obwodów jednofazowych, konieczne jest zastosowanie pięciu jednofazowych wyłączników nadprądowych, co jest zgodne z dobrymi praktykami w zakresie instalacji elektrycznych. Ponadto, stosowanie wyłączników trójfazowych w rozdzielnicy, gdzie nie ma odpowiedniej liczby obwodów trójfazowych, również byłoby błędne, ponieważ nie zapewniłoby to odpowiedniej ochrony i mogłoby prowadzić do nieefektywności pracy całego systemu. W związku z tym, ważne jest nie tylko posiadanie wiedzy teoretycznej, ale także umiejętność jej zastosowania w praktyce, aby uniknąć takich błędów w projektowaniu i instalacji systemów elektrycznych.

Pytanie 17

Na rysunku przedstawiono graficzne oznaczenie przewodu

Ilustracja do pytania
A. ochronno-neutralnego.
B. czynnego pod napięciem.
C. ochronnego.
D. uziemiającego.
Prawidłowe zrozumienie funkcji przewodów w instalacjach elektrycznych jest kluczowe dla bezpieczeństwa i efektywności. Odpowiedzi sugerujące, że symbol przedstawia przewód ochronny lub uziemiający, są nieprawidłowe, ponieważ te przewody mają odrębne zadania. Przewód ochronny (PE) jest dedykowany wyłącznie do odprowadzania prądu w przypadku awarii, nie pełniąc funkcji przewodu neutralnego. Z kolei przewód uziemiający jest podłączony do ziemi i jego rola polega na zabezpieczaniu instalacji przed niebezpiecznymi napięciami, co jest inna funkcjonalnością niż funkcja przewodu neutralnego. Odpowiedzi wskazujące na przewód czynny pod napięciem także są mylne, ponieważ przewód czynny (faza) nie ma związku z ochroną elektryczną ani neutralizowaniem prądu. Typowym błędem myślowym jest mylenie funkcji przewodu ochronno-neutralnego z innymi rodzajami przewodów, co może prowadzić do nieprawidłowego projektowania i wykonawstwa instalacji elektrycznych. Zrozumienie różnic między tymi przewodami jest kluczowe dla prawidłowego stosowania w systemach TN-C, zgodnie z normami elektrycznymi, co wpływa na bezpieczeństwo użytkowników oraz efektywność systemu elektrycznego.

Pytanie 18

Na którym rysunku przedstawiono schemat połączeń umożliwiający pomiar energii elektrycznej pobranej przez użytkownika?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Schemat C pokazuje, jak powinny być połączone przewody fazowe (L) i neutralne (N). To jest ważne, bo tylko w ten sposób można dobrze zmierzyć, ile energii elektrycznej zużywa użytkownik. Licznik musi być odpowiednio podłączony, żeby dokładnie naliczał zużycie energii. Liczniki działają na zasadzie pomiaru prądu, który płynie przez obciążenie, a także napięcia między przewodami. Jeśli coś jest źle podłączone, to mogą być błędy w odczycie, a to nie jest zgodne z normami, które mówią o pomiarach energii elektrycznej, jak PN-EN 62053. Regularne kalibrowanie liczników też jest dobrym pomysłem, bo wtedy są bardziej dokładne i lepiej działają. Wiedza o tym, jak właściwie podłączać wszystko, jest naprawdę kluczowa dla elektryków i inżynierów zajmujących się pomiarami energii. Dzięki temu można lepiej zarządzać energią i unikać niepotrzebnych kosztów.

Pytanie 19

Który z podanych wyłączników różnicowoprądowych powinien być zastosowany jako ochrona przed porażeniem, przeciążeniem oraz zwarciem w obwodzie gniazd wtykowych instalacji jednofazowej 230 V/50 Hz?

A. P 344 C-16-30-AC
B. P 312 B-16-30-AC
C. P 304 25-30-AC
D. P 302 25-30-AC
Wybierając te wyłączniki różnicowoprądowe P 302 25-30-AC, P 304 25-30-AC i P 344 C-16-30-AC, to tak trochę się pogubiliśmy w ich funkcjach i zastosowaniu. Przykład? Wyłącznik P 302 25-30-AC niby ma ochronę różnicowoprądową, ale w rzeczywistości jest stworzony do innych zastosowań, co może spowodować, że nie zadziała w przypadku przeciążenia lub zwarcia w gniazdach. Podobnie P 304 25-30-AC, który też nie daje pełnej ochrony w standardowych warunkach, co może narazić nasze urządzenia na uszkodzenia i zwiększyć ryzyko porażenia. A P 344 C-16-30-AC, mimo że w niektórych sytuacjach się sprawdzi, nie ma wszystkich potrzebnych funkcji zabezpieczeń, więc nie jest najlepszym wyborem do gniazdek. Wybierając nieodpowiedni wyłącznik, stawiamy użytkowników w niebezpieczeństwie i ryzykujemy całą instalacją elektryczną. Dlatego warto zrozumieć co każdy wyłącznik oferuje i czy pasuje do naszych potrzeb, żeby zapewnić bezpieczeństwo i użytkownikom, i całej instalacji.

Pytanie 20

Który symbol graficzny w ideowym schemacie jednoliniowym instalacji elektrycznej obrazuje łącznik ze schematu wieloliniowego pokazany na rysunku?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź A jest prawidłowa, ponieważ symbol graficzny przedstawiony w tej opcji najdokładniej odwzorowuje łącznik ze schematu wieloliniowego. W standardach dotyczących projektowania instalacji elektrycznych, takich jak norma PN-EN 60617, łącznik jest reprezentowany w sposób, który zapewnia jasność i jednoznaczność w interpretacji schematów. W tym przypadku, symbol składający się z okręgu z przecinającą go linią pod kątem jest powszechnie akceptowanym sposobem graficznej reprezentacji łącznika. Zastosowanie takich symboli w praktyce inżynierskiej ułatwia komunikację pomiędzy projektantami, wykonawcami i inspektorami. Przy projektowaniu instalacji elektrycznych, znajomość tych symboli jest kluczowa dla zapewnienia bezpieczeństwa i efektywności działania systemów. Dobre praktyki wskazują, że każdy projektant powinien nie tylko znać te symbole, ale także rozumieć ich znaczenie i kontekst, w którym są używane.

Pytanie 21

Jakie z podanych powodów wpływa na wzrost iskrzenia na komutatorze w trakcie działania sprawnego silnika bocznikowego prądu stałego po wymianie szczotek?

A. Zbyt mała powierzchnia styku szczotek z komutatorem
B. Zbyt małe wzbudzenie silnika
C. Zbyt duży nacisk szczotek na komutator
D. Zbyt duże wzbudzenie silnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca za małej powierzchni styku szczotek z komutatorem jest poprawna, ponieważ kontakt między szczotkami a komutatorem jest kluczowy dla prawidłowego działania silnika prądu stałego. Niewłaściwa powierzchnia styku może prowadzić do zwiększonego oporu elektrycznego, co skutkuje większym iskrzeniem i nadmiernym zużyciem szczotek. W praktyce, odpowiedni dobór szczotek, które powinny być dobrze dopasowane do średnicy komutatora, jest istotny dla optymalizacji ich kontaktu. Standardy branżowe, takie jak normy IEC, podkreślają znaczenie jakości materiałów używanych do produkcji szczotek i ich geometrii, aby zapewnić skuteczny transfer prądu. Wymiana szczotek na modele o większej powierzchni styku lub z lepszymi właściwościami przewodzącymi może znacząco poprawić wydajność silnika i zmniejszyć iskrzenie, co zwiększa jego trwałość oraz bezpieczeństwo eksploatacji. Poprawny dobór szczotek i regularne ich kontrolowanie to praktyki, które powinny być stosowane w każdej aplikacji wykorzystującej silniki prądu stałego.

Pytanie 22

Które parametry techniczne określają stycznik przedstawiony na rysunku?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź C jest prawidłowa, ponieważ odnosi się do konkretnego modelu stycznika marki Eaton, oznaczonego jako Z-SCH230/40-31. Analizując dane techniczne, możemy zauważyć, że znamionowy prąd pracy tego stycznika wynosi 40 A, co odpowiada wymogom zastosowań w typowych instalacjach elektrycznych. Liczba styków NO (normalnie otwartych) wynosi 3, a liczba styków NC (normalnie zamkniętych) to 1, co jest zgodne z danymi przedstawionymi na zdjęciu. Takie styczniki są szeroko stosowane w automatyce budynkowej oraz w instalacjach przemysłowych, umożliwiając kontrolę nad obwodami elektrycznymi. Zastosowanie styczników o odpowiednich parametrach jest kluczowe, aby zapewnić bezpieczeństwo oraz efektywność energetyczną w różnych systemach. Warto również zaznaczyć, że przy doborze styczników należy kierować się normami IEC 60947-4-1, co zapewnia ich odpowiednie właściwości eksploatacyjne oraz bezpieczeństwo użytkowania.

Pytanie 23

Który z opisów dotyczy funkcji B przekaźnika czasowego o przedstawionych diagramach jego pracy?

Ilustracja do pytania
A. Opóźnione cykliczne załączanie.
B. Opóźnione załączenie.
C. Opóźnione cykliczne wyłączanie.
D. Opóźnione wyłączenie.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawnie powiązałeś funkcję B z opisem „opóźnione załączenie”. Na diagramie widać, że po pojawieniu się napięcia zasilania U przekaźnik nie załącza swoich styków od razu – pozioma kreska przy funkcji B zaczyna się dopiero po czasie t. To właśnie jest klasyczna funkcja „ON-delay”: najpierw odliczanie, potem dopiero przełączenie styków wykonawczych. W praktyce oznacza to, że po podaniu sygnału sterującego (np. pojawienie się napięcia na cewce) przekaźnik czeka ustawiony czas, a dopiero później zamyka lub otwiera styki robocze. Takie przekaźniki stosuje się bardzo często w automatyce budynkowej i przemysłowej. Typowy przykład: łagodne załączanie dużych odbiorników, żeby uniknąć udaru prądowego – najpierw startuje np. wentylacja, a dopiero po kilku sekundach nagrzewnica. Albo sekwencyjne załączanie kilku silników, każdy z opóźnieniem, żeby nie przeciążyć sieci. Z mojego doświadczenia, funkcja opóźnionego załączenia jest też standardem przy sterowaniu oświetleniem awaryjnym, systemami wentylacji, układami gwiazda–trójkąt (jako element logiki sterowania). Ważne jest, że po zaniku napięcia i ponownym podaniu, cykl odmierzania czasu zaczyna się od nowa, zgodnie z katalogowymi opisami producentów (Relpol, Finder, Eaton itp.). Dobrą praktyką jest zawsze dokładne czytanie diagramów czasowych w kartach katalogowych – oznaczenie funkcji samą literą (A, B, C, D) bywa różne u producentów, ale kształt przebiegu zawsze jednoznacznie pokazuje, czy chodzi o opóźnione załączenie, czy wyłączenie, czy pracę cykliczną. Tu funkcja B ewidentnie pokazuje: sygnał wejściowy jest obecny, liczony jest czas t, a dopiero potem następuje załączenie – czyli klasyczne opóźnione załączenie.

Pytanie 24

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa stosowana do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach: PN = 3 kW, UN = 230 V?

A. gB 20 A
B. aR 16 A
C. gG 16 A
D. aM 20 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór wkładki topikowej gG 16 A jako zabezpieczenia dla obwodu jednofazowego bojlera elektrycznego o mocy 3 kW i napięciu 230 V jest właściwy z kilku powodów. Przede wszystkim, wkładki gG są stosowane do ochrony obwodów przed przeciążeniem oraz zwarciem, co jest kluczowe w przypadku urządzeń grzewczych, takich jak bojler. Znamionowy prąd bojlera można obliczyć, dzieląc moc przez napięcie, co daje wynik P/N = 3000 W / 230 V ≈ 13 A. Wybierając wkładkę o wartości 16 A, zapewniamy odpowiedni margines bezpieczeństwa, który zapobiega przypadkowemu wyłączeniu z powodu chwilowych przeciążeń. Standardy branżowe, takie jak PN-EN 60269, wskazują na odpowiednie zastosowanie wkładek gG w instalacjach, gdzie wymagane jest zabezpieczenie przed skutkami zwarć i przegrzania. W praktyce, wkładki topikowe gG są powszechnie stosowane w domowych instalacjach elektrycznych i zapewniają skuteczną ochronę oraz niezawodność działania.

Pytanie 25

Którym symbolem graficznym oznacza się prowadzenie przewodów elektrycznych na drabinkach kablowych?

Ilustracja do pytania
A. Symbolem 4.
B. Symbolem 3.
C. Symbolem 1.
D. Symbolem 2.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol graficzny, który dobrze oznacza prowadzenie przewodów na drabinkach kablowych, to symbol 2. Przedstawia on drabinkę z poprzeczkami. Drabinki kablowe są naprawdę ważne w instalacjach elektrycznych, bo pomagają w utrzymaniu porządku i ułatwiają konserwację. W praktyce używanie odpowiednich symboli jest kluczowe dla zrozumienia schematów elektrycznych. Dzięki temu możemy uniknąć wielu problemów i zapewnić sobie bezpieczeństwo podczas pracy z instalacjami. W normach jak PN-EN 60617 mówi się o tym, jak ważne są jednoznaczne oznaczenia, by uniknąć błędów. Dlatego symbol 2 jest powszechnie akceptowany w branży, co czyni go bardzo przydatnym.

Pytanie 26

Jak nazywa się element stosowany w instalacjach mieszkaniowych przedstawiony na rysunku?

Ilustracja do pytania
A. Regulator oświetlenia.
B. Regulator temperatury.
C. Przekaźnik bistabilny.
D. Przekaźnik priorytetowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przekaźnik bistabilny, przedstawiony na rysunku, to element stosowany w instalacjach automatyki i sterowania, który zmienia swój stan na przeciwny po przyłożeniu napięcia i utrzymuje ten stan nawet po zaniku zasilania. Oznaczenie "BIS-403" potwierdza, że jest to rzeczywiście przekaźnik bistabilny. Przekaźniki bistabilne są powszechnie wykorzystywane w systemach oświetleniowych, gdzie można je stosować do sterowania światłem w pomieszczeniach. Dzięki ich właściwościom, mogą być używane do zdalnego włączania i wyłączania urządzeń, co zwiększa efektywność energetyczną i komfort użytkowania. W standardach automatyki budynkowej, takich jak KNX czy LON, przekaźniki bistabilne odgrywają kluczową rolę w inteligentnych systemach zarządzania budynkiem, a ich zastosowanie pozwala na eliminację zbędnych przełączników oraz ułatwienie integracji z innymi elementami systemu.

Pytanie 27

Na którym schemacie połączeń przedstawiono zgodne z zamieszczonym planem instalacji podłączenie przewodów w puszce numer 3?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Schemat D przedstawia poprawne podłączenie przewodów w puszce numer 3, zgodne z planem instalacji elektrycznej. W instalacjach elektrycznych kluczowe jest właściwe prowadzenie przewodów, aby zapewnić bezpieczeństwo oraz efektywność działania systemu. W tym schemacie przewód fazowy L jest poprowadzony przez łącznik, co umożliwia jego załączanie i wyłączanie. To zgodne z dobrymi praktykami, które nakazują, aby w obwodach oświetleniowych umieszczać łączniki w obwodzie fazowym, co minimalizuje ryzyko wystąpienia porażenia prądem. Dodatkowo, schemat D uwzględnia odpowiednie oznaczenia i kolorystykę przewodów, co jest zgodne z normami PN-IEC 60446. Przykładowo, przewód neutralny N powinien być niebieski, a przewód ochronny PE zielono-żółty. Użycie właściwych kolorów oraz odpowiednich połączeń zabezpiecza przed ewentualnymi awariami oraz błędami w instalacji, co jest kluczowe w każdej nowoczesnej instalacji elektrycznej.

Pytanie 28

Stosując kryterium obciążalności prądowej, dobierz na podstawie tabeli minimalny przekrój przewodu do zasilenia grzejnika elektrycznego o danych: PN = 4,6 kW, UN = 230 V.

S, mm21,01,52,54,06,0
Idd, A1519243242
A. 4,0 mm2
B. 6,0 mm2
C. 2,5 mm2
D. 1,5 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobra robota z wybraniem przekroju przewodu 2,5 mm²! Z tego co pamiętam, taki przekrój jest ok, gdy chodzi o obciążalność prądową. Kiedy obliczamy prąd dla grzejnika elektrycznego 4,6 kW przy 230 V, to wychodzi nam około 20 A. Jak spojrzysz na tabelę obciążalności przewodów, to zobaczysz, że 2,5 mm² spokojnie wytrzyma do 24 A, co oznacza, że jest to bezpieczny wybór. Moim zdaniem, dobrze dobrany przekrój przewodu to klucz do efektywnej pracy urządzenia i bezpieczeństwa naszych instalacji. Taki przekrój jest także często używany w instalacjach oświetleniowych czy przy zasilaniu urządzeń o podobnych parametrach. Zawsze warto mieć na uwadze tabele obciążalności i normy, jak PN-IEC 60364 – to pomoże uniknąć problemów w przyszłości.

Pytanie 29

Który typ źródła światła przedstawiono na rysunku?

Ilustracja do pytania
A. Wolframowe.
B. Rtęciowe.
C. Diodowe.
D. Halogenowe.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź diodowe jest poprawna, ponieważ na zdjęciu znajduje się żarówka LED, która jest jednym z najnowocześniejszych źródeł światła dostępnych na rynku. Żarówki LED, czyli diody elektroluminescencyjne, charakteryzują się wysoką efektywnością energetyczną, co oznacza, że emitują więcej światła przy mniejszym zużyciu energii w porównaniu do tradycyjnych żarówek wolframowych czy halogenowych. Dzięki temu są one doskonałym wyborem do oświetlenia domów, biur oraz przestrzeni publicznych. W praktyce, zastosowanie żarówek LED pozwala na znaczną redukcję kosztów energii oraz dłuższy czas użytkowania, sięgający nawet 25 000 godzin. Warto również zwrócić uwagę na standardy ekologiczne, które promują użycie źródeł światła o niskim wpływie na środowisko; żarówki LED nie emitują szkodliwych substancji, takich jak rtęć, co czyni je bardziej ekologicznym wyborem. Dodatkowo, LED-y są dostępne w szerokiej gamie kolorów i temperatur barwowych, co umożliwia ich zastosowanie w różnorodnych projektach oświetleniowych, dostosowanych do indywidualnych potrzeb użytkowników.

Pytanie 30

Niszczenie części metalowych silnika wskutek zetknięcia się ich z roztworem, mogącym stanowić elektrolit przewodzący prąd między lokalnymi ogniwami znajdującymi się na powierzchni metalu, jest uszkodzeniem spowodowanym

A. przyczyną mechaniczną.
B. korozją chemiczną.
C. przyczyną termiczną.
D. korozją elektrochemiczną.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawnie wskazana została korozja elektrochemiczna, bo w opisie pytania kluczowe są dwie rzeczy: obecność roztworu działającego jak elektrolit oraz lokalne ogniwa na powierzchni metalu. To jest dokładnie definicja korozji elektrochemicznej – metal w środowisku przewodzącym prąd (np. woda z solami, płyn chłodniczy, kondensat z dodatkami) tworzy mini-ogniwa galwaniczne, w których zachodzą reakcje anodowe i katodowe. W miejscach anodowych metal się rozpuszcza, czyli po prostu ubywa materiału. W silnikach elektrycznych i spalinowych zjawisko to dotyczy np. obudów, wałów, śrub, kadłubów, a nawet zacisków elektrycznych, jeśli mają kontakt z wilgocią i zanieczyszczeniami. W praktyce widać to jako wżery, naloty, zmatowienia, czasem zielonkawe osady na połączeniach miedzianych. Dobre praktyki branżowe mówią jasno: trzeba ograniczać dostęp elektrolitu (czyli wilgoci i agresywnych związków), stosować odpowiednie powłoki ochronne (farby, galwanizację, anodowanie), właściwe dobieranie par materiałowych (żeby nie robić sobie przypadkiem ogniwa galwanicznego np. stal–miedź w wilgotnym środowisku) oraz dbać o odprowadzanie kondensatu. W dokumentacjach producentów silników i normach dotyczących eksploatacji urządzeń elektrycznych często jest mowa o wymaganej klasie szczelności IP, dopuszczalnej wilgotności oraz konieczności okresowych przeglądów antykorozyjnych. Z mojego doświadczenia w warsztacie największym problemem jest ignorowanie drobnych śladów korozji – potem nagle okazuje się, że śruba się urwała albo zacisk grzeje się, bo kontakt jest zniszczony przez korozję elektrochemiczną. Tu naprawdę opłaca się profilaktyka: czyste środowisko pracy, właściwe uszczelnienia, dobre jakościowo płyny eksploatacyjne i regularne oględziny elementów metalowych narażonych na wilgoć.

Pytanie 31

Do której czynności przeznaczone jest narzędzie przedstawione na ilustracji?

Ilustracja do pytania
A. Do zaciskania końcówek tulejkowych.
B. Do docinania przewodów.
C. Do ściągania izolacji z żył przewodów.
D. Do zaciskania końcówek oczkowych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
To, co widzisz na obrazku, to szczypce do ściągania izolacji. To naprawdę ważne narzędzie, jeśli pracujesz z kablami elektrycznymi. Mają one fajną budowę, bo mają regulowany ogranicznik, dzięki czemu możesz dokładnie ściągnąć izolację i nie uszkodzić samego przewodu. Jak już wiesz, do podłączania przewodów elektrycznych trzeba dobrze przygotować te kable, dlatego te szczypce są wręcz niezbędne. W elektryce bezpieczeństwo jest priorytetem, więc robienie tego z dużą uwagą zmniejsza ryzyko zwarć i innych problemów. Kiedy wszystko jest dobrze połączone, to znaczy, że instalacja będzie trwała i bezpieczna. No i nie można zapomnieć, że używając takich szczypiec, oszczędzasz czas, co na budowie albo przy modernizacji instalacji jest super ważne.

Pytanie 32

Na podstawie przedstawionego schematu instalacji określ liczbę jednofazowych obwodów gniazd wtyczkowych.

Ilustracja do pytania
A. 7 obwodów.
B. 5 obwodów.
C. 12 obwodów.
D. 14 obwodów.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "5 obwodów" jest prawidłowa, ponieważ w systemach elektroinstalacyjnych każdy obwód gniazd wtyczkowych powinien być zabezpieczony odpowiednim wyłącznikiem nadprądowym, który w tym przypadku ma oznaczenie B16. Dokładna liczba jednofazowych obwodów gniazd wtyczkowych można ustalić poprzez zliczenie wyłączników przypisanych do tych obwodów. Na przedstawionym schemacie instalacji widoczne są 5 wyłączników B16, co oznacza, że mamy do czynienia z pięcioma niezależnymi obwodami zasilającymi gniazda. Warto zwrócić uwagę, że zgodnie z normą PN-IEC 60364-4-41, każdy obwód powinien być projektowany w taki sposób, aby zapewnić odpowiednią ochronę przed przeciążeniem i zwarciem. Odpowiednia liczba obwodów gniazd wtyczkowych jest kluczowa dla bezpieczeństwa i funkcjonalności instalacji elektrycznej, co może być istotne w praktycznych zastosowaniach domowych oraz przemysłowych.

Pytanie 33

Oprawa oświetleniowa przedstawiona na zdjęciu ma być zamontowana za pomocą wkrętów i dybli, pokazanych na zdjęciu. Jakich narzędzi należy użyć do tego montażu?

Ilustracja do pytania
A. Wiertarki, wkrętaka płaskiego, klucza płaskiego, noża monterskiego, ściągacza izolacji.
B. Wkrętaka płaskiego, wkrętaka PH, klucza nasadowego, wiertarki, noża monterskiego.
C. Wiertarki, wkrętaka płaskiego, klucza nasadowego, noża monterskiego, ściągacza izolacji.
D. Wkrętaka płaskiego, wkrętaka PH, wkrętaka bit M10, ściągacza izolacji.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
No, wybrałeś dobrą odpowiedź! Do montażu oprawy oświetleniowej potrzebujesz paru specjalnych narzędzi. Wiertarka jest mega ważna, bo to ona pozwala nawiercić otwory w ścianie, żeby wsadzić dyble. Klucz nasadowy przyda się do wkręcania śrub, a to ważne, żeby oprawa była stabilna. Wkrętak płaski może być użyty do drobnych poprawek, żeby wszystko ładnie pasowało. Nóż monterski z kolei dobrze posłuży do przygotowania przewodów, a ściągacz izolacji to konieczność, by pozbyć się izolacji z końców, bo musimy je dobrze podłączyć. Jak znasz te narzędzia i wiesz, do czego służą, to już jesteś na dobrej drodze w elektrotechnice, a to zwiększa bezpieczeństwo i jakość naszej pracy.

Pytanie 34

Narzędzie pokazane na rysunku służy do

Ilustracja do pytania
A. zaciskania końcówek tulejkowych.
B. zaginania końcówek.
C. zdejmowania izolacji.
D. cięcia przewodów.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "cięcia przewodów" jest poprawna, ponieważ narzędzie pokazane na zdjęciu to szczypce boczne, które są specjalnie zaprojektowane do precyzyjnego cięcia różnorodnych przewodów elektrycznych. Szczypce te charakteryzują się ostrymi, wąskimi krawędziami, które umożliwiają dotarcie do trudno dostępnych miejsc, co jest istotne w pracach instalacyjnych oraz naprawczych. W praktyce, użycie szczypiec bocznych pozwala na dokładne cięcie przewodów bez ryzyka uszkodzenia ich izolacji, co jest kluczowe dla zachowania bezpieczeństwa w instalacjach elektrycznych. To narzędzie jest niezbędne w branży elektrycznej oraz w wielu projektach DIY, gdzie precyzyjne cięcie przewodów jest wymagane, aby uniknąć zwarć oraz zapewnić estetykę i funkcjonalność instalacji. Zgodnie z normami bezpieczeństwa, właściwe użycie szczypiec bocznych powinno obejmować również stosowanie odzieży ochronnej, aby zminimalizować ryzyko kontuzji podczas pracy.

Pytanie 35

Jaki minimalny przekrój, ze względu na obciążalność długotrwałą, powinny mieć przewody DY ułożone w rurze izolacyjnej, zasilające odbiornik trójfazowy o mocy 10 kW z sieci trójfazowej o napięciu 400 V?

Ilustracja do pytania
A. 1,5 mm2
B. 4 mm2
C. 2,5 mm2
D. 6 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1,5 mm2 jest prawidłowa, ponieważ zgodnie z normą PN-IEC 60364-5-52, dobór przekroju przewodów elektrycznych powinien być oparty na obciążalności długotrwałej i warunkach ich układania. W przypadku przewodów zasilających odbiornik trójfazowy o mocy 10 kW z napięciem 400 V, obciążenie nominalne wynosi około 14,5 A. Przewody o przekroju 1,5 mm2, przy odpowiednich warunkach chłodzenia i zastosowaniu, są w stanie bezpiecznie przewodzić prąd o takim natężeniu bez ryzyka przegrzania. Dodatkowo, dla instalacji ułożonych w rurach izolacyjnych, należy uwzględnić współczynnik korekcyjny dotyczący temperatury oraz liczby przewodów. W praktyce oznacza to, że dobór przewodu o tym przekroju jest zgodny z obowiązującymi przepisami i zasady ochrony przeciwporażeniowej, co ma kluczowe znaczenie w zapewnieniu bezpieczeństwa użytkowników. Warto również pamiętać o regularnej inspekcji i konserwacji instalacji elektrycznych, aby zapewnić ich niezawodność i długowieczność.

Pytanie 36

Którym symbolem graficznym należy oznaczyć łącznik świecznikowy w schemacie ideowym instalacji elektrycznej?

Ilustracja do pytania
A. Symbolem 4.
B. Symbolem 2.
C. Symbolem 1.
D. Symbolem 3.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź oznaczona symbolem 4 jest poprawna, ponieważ w schematach ideowych instalacji elektrycznych stosuje się ściśle określone symbole graficzne. Łącznik świecznikowy, będący kluczowym elementem w instalacjach oświetleniowych, posiada swój specyficzny symbol, który wyróżnia go spośród innych urządzeń. W kontekście norm, takich jak PN-EN 60617, symbol ten jest przedstawiany jako wyłącznik z dodatkowym oznaczeniem, co sugeruje możliwość regulacji oświetlenia. Przykładowo, w praktyce instalacyjnej, łącznik świecznikowy jest często stosowany w pomieszczeniach mieszkalnych, gdzie użytkownik ma potrzebę łatwego włączania i wyłączania oświetlenia, a także jego przyciemniania. Prawidłowe rozpoznanie symboli w schematach ideowych jest kluczowe dla właściwego montażu i późniejszej eksploatacji instalacji elektrycznej, co z kolei ma wpływ na bezpieczeństwo użytkowników oraz efektywność energetyczną budynku.

Pytanie 37

Jaką rurę instalacyjną przedstawia symbol RKLF 20?

A. Karbowaną o średnicy 20 mm
B. Sztywną o średnicy 20 mm
C. Sztywną o przekroju 20 mm2
D. Karbowaną o przekroju 20 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Karbowaną o średnicy 20 mm' jest prawidłowa, ponieważ symbol RKLF odnosi się do rur karbowanych, które charakteryzują się elastycznością i możliwością łatwego formowania. Rura o średnicy 20 mm jest standardowym rozmiarem stosowanym w instalacjach elektrycznych i telekomunikacyjnych, co czyni ją praktycznym wyborem w projektach budowlanych. Kiedy stosuje się rury karbowane, ich struktura pozwala na łatwe dopasowanie do różnych kształtów oraz ułatwia układanie w trudnych warunkach, co jest istotne w przypadku instalacji w miejscach o ograniczonej przestrzeni. Rury te są również odporne na działanie czynników atmosferycznych i chemicznych, co zwiększa ich trwałość. Zgodnie z obowiązującymi standardami w branży budowlanej, użycie rur karbowanych w instalacjach elektrycznych zapewnia bezpieczeństwo oraz zgodność z przepisami. W związku z tym, znajomość oznaczeń takich jak RKLF jest kluczowa dla każdego profesjonalisty zajmującego się instalacjami. Przykładem zastosowania są instalacje w budynkach mieszkalnych oraz przemysłowych, gdzie elastyczność rur karbowanych pozwala na zminimalizowanie ryzyka uszkodzeń i ułatwienie konserwacji.

Pytanie 38

Jaki parametr trójfazowego gniazda wtyczkowego jest określany symbolem IP20?

A. Klasę ochronności przed porażeniem energią elektryczną
B. Minimalny przekrój przewodów podłączonych do zacisków
C. Najwyższą temperaturę otoczenia podczas eksploatacji
D. Stopień zabezpieczenia przed dostępem ciał stałych oraz wody

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol IP20 mówi nam o tym, jak dobrze urządzenia elektryczne są chronione przed różnymi rzeczami, jak np. kurz i woda. W praktyce oznacza to, że urządzenie jest ok, jeśli chodzi o duże obiekty (czyli te, które mają więcej niż 12,5 mm), ale niestety nie ma żadnej ochrony przed wodą. To jest ważne, zwłaszcza gdy myślimy o tym, gdzie te urządzenia będą używane. Na przykład gniazdka w biurze – nie jesteśmy tam narażeni na wodę, ale dobrze, że są zbudowane tak, żeby nikt nie mógł łatwo zajrzeć do środka. Fajnie, że istnieją standardy IEC 60529, bo dzięki nim można lepiej dobierać urządzenia do konkretnych miejsc, zwłaszcza tam, gdzie bezpieczeństwo elektryczne to mega ważna sprawa.

Pytanie 39

Narzędzie przestawione na ilustracji przeznaczone jest do

Ilustracja do pytania
A. zdejmowania powłoki z przewodu.
B. zaciskania końcówek tulejkowych.
C. zaciskania końcówek oczkowych.
D. profilowania żył przewodów.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Profilowanie żył przewodów jest kluczowym procesem w pracach elektrycznych, który zapewnia właściwe przygotowanie przewodów do dalszej obróbki, takiej jak ich łączenie czy izolacja. Narzędzie przedstawione na ilustracji, mianowicie szczypce okrągłe, jest idealne do tego celu dzięki swojej stożkowej budowie, która umożliwia formowanie przewodów w różne kształty. Takie profilowanie pozwala na łatwe wprowadzenie żył do złączek, co zwiększa efektywność i bezpieczeństwo całej instalacji. Zgodnie z normami branżowymi, odpowiednie przygotowanie końców przewodów ma kluczowe znaczenie dla zapewnienia ich stabilności i minimalizacji ryzyka zwarć. W praktyce, profesjonalni elektrycy często korzystają z tego rodzaju narzędzi, aby dostosować przewody do specyficznych wymogów instalacji, co poprawia jakość wykonywanej pracy oraz wpływa na trwałość całej instalacji. Dobrą praktyką jest również przeszkolenie pracowników w zakresie używania takich narzędzi oraz regularne kontrolowanie ich stanu technicznego, aby uniknąć błędów w obróbce przewodów.

Pytanie 40

Jaki z podanych warunków powinien być zrealizowany podczas instalacji elektrycznej prowadzonej na tynku na zewnątrz budynku mieszkalnego?

A. Zastosowanie wyłączników różnicowoprądowych o dużej czułości
B. Montaż ochronników przepięciowych w głównej rozdzielnicy
C. Użycie transformatora separacyjnego do zasilania
D. Zamontowanie osłon, które chronią przewody przed promieniowaniem słonecznym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zamontowanie osłon zabezpieczających przewody przed działaniem promieni słonecznych jest kluczowym wymogiem przy instalacji elektrycznej w warunkach zewnętrznych. Ekspozycja na promieniowanie UV może prowadzić do degradacji materiałów izolacyjnych, co zwiększa ryzyko zwarć i awarii. Osłony chronią przewody przed niekorzystnymi warunkami atmosferycznymi, co jest szczególnie istotne w kontekście bezpieczeństwa użytkowania. Przykładem skutecznych osłon są rurki ochronne z PVC, które nie tylko izolują przewody, ale również chronią je przed mechanicznymi uszkodzeniami. Zgodnie z normą PN-IEC 60364, instalacje elektryczne muszą być projektowane w taki sposób, aby minimalizować ryzyko uszkodzeń, a stosowanie osłon to jedna z podstawowych zasad. Dodatkowo, regulacje branżowe podkreślają, że w przypadku instalacji na tynku, stosowanie takich zabezpieczeń jest nie tylko zalecane, ale wręcz wymagane, aby zapewnić długotrwałą i bezpieczną eksploatację systemu elektrycznego.