Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 4 lutego 2026 01:28
  • Data zakończenia: 4 lutego 2026 01:39

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Która usługa pozwala na zdalne zainstalowanie systemu operacyjnego?

A. DNS
B. IRC
C. IIS
D. WDS
WDS, czyli Windows Deployment Services, to usługa firmy Microsoft, która umożliwia zdalną instalację systemów operacyjnych Windows na komputerach klienckich w sieci. WDS jest szczególnie przydatny w środowiskach, gdzie konieczne jest szybkie i efektywne wdrożenie systemów operacyjnych na wielu maszynach jednocześnie. Dzięki WDS, administratorzy mogą zarządzać obrazami systemów operacyjnych, tworzyć niestandardowe obrazy oraz przeprowadzać instalacje w trybie zdalnym bez potrzeby fizycznego dostępu do urządzeń. Przykłady zastosowania obejmują firmy, które regularnie aktualizują swoje stacje robocze lub instytucje edukacyjne, które potrzebują zainstalować systemy na wielu komputerach w pracowniach komputerowych. WDS wspiera standardy takie jak PXE (Preboot Execution Environment), co pozwala na uruchamianie komputerów klienckich z sieci i pobieranie obrazu systemu operacyjnego bezpośrednio z serwera.

Pytanie 2

Jakie są korzyści płynące z użycia systemu plików NTFS?

A. przechowywanie tylko jednej kopii tabeli plików
B. możliwość sformatowania nośnika o niewielkiej pojemności (1,44MiB)
C. możliwość szyfrowania folderów i plików
D. zapisywanie plików z nazwami dłuższymi niż 255 znaków
System plików NTFS (New Technology File System) to nowoczesne rozwiązanie, które oferuje wiele zaawansowanych funkcji zarządzania danymi. Jedną z kluczowych zalet jest możliwość szyfrowania folderów i plików, co zapewnia wysoki poziom bezpieczeństwa przechowywanych informacji. Funkcja ta wykorzystuje technologię EFS (Encrypting File System), która pozwala użytkownikom na szyfrowanie danych na poziomie systemu plików. Dzięki temu, nawet w przypadku fizycznego dostępu do nośnika, nieautoryzowane osoby nie będą mogły odczytać zaszyfrowanych plików bez odpowiednich uprawnień. Praktyczne zastosowanie tej funkcjonalności jest szczególnie istotne w środowiskach korporacyjnych oraz w pracy z danymi wrażliwymi, gdzie bezpieczeństwo informacji jest kluczowe. Warto również zauważyć, że NTFS wspiera długie nazwy plików, co w połączeniu z szyfrowaniem, umożliwia komfortowe i bezpieczne zarządzanie dużymi zbiorami danych. W branży IT stosowanie NTFS jest standardem, szczególnie w systemach operacyjnych Windows, gdzie funkcjonalności te są szczególnie doceniane.

Pytanie 3

Jakie przyporządkowanie: urządzenie - funkcja, którą pełni, jest błędne?

A. Modem - łączenie sieci lokalnej z Internetem
B. Przełącznik - segmentacja sieci na VLAN-y
C. Ruter - łączenie komputerów w tej samej sieci
D. Access Point - bezprzewodowe połączenie komputerów z siecią lokalną
Wybór odpowiedzi dotyczącej rutera jako urządzenia do połączenia komputerów w tej samej sieci jest poprawny, ponieważ ruter w rzeczywistości pełni znacznie bardziej skomplikowaną rolę. Ruter jest urządzeniem sieciowym, które łączy różne sieci, na przykład sieć lokalną z Internetem, a jego głównym zadaniem jest kierowanie ruchem danych pomiędzy tymi sieciami. Routery nie łączą jedynie komputerów w obrębie jednej sieci, ale także zarządzają ruchem danych, umożliwiając jednocześnie komunikację z innymi sieciami. Na przykład, w sieci domowej, ruter łączy urządzenia takie jak komputery, smartfony czy telewizory smart, a także zapewnia dostęp do Internetu poprzez modem. Zastosowanie rutera w architekturze sieci jest zgodne z najlepszymi praktykami, w tym standardem TCP/IP, który definiuje, jak dane są przesyłane i odbierane w sieciach komputerowych. W praktyce, ruter umożliwia również implementację zaawansowanych funkcji, takich jak NAT (Network Address Translation) czy QoS (Quality of Service), które są kluczowe dla efektywności i bezpieczeństwa sieci.

Pytanie 4

Do zrealizowania macierzy RAID 1 wymagane jest co najmniej

A. 2 dysków
B. 5 dysków
C. 3 dysków
D. 4 dysków
Macierz RAID 1, znana jako mirroring, wymaga minimum dwóch dysków, aby mogła efektywnie funkcjonować. W tym konfiguracji dane są kopiowane na dwa lub więcej dysków, co zapewnia ich redundancję. Gdy jeden z dysków ulegnie awarii, system nadal działa, korzystając z danych przechowywanych na pozostałym dysku. To podejście jest szczególnie cenione w środowiskach, gdzie dostępność danych jest kluczowa, na przykład w serwerach plików, bazach danych oraz systemach krytycznych dla działalności. Przykładem zastosowania RAID 1 mogą być serwery WWW oraz systemy backupowe, gdzie utrata danych może prowadzić do znacznych strat finansowych oraz problemów z reputacją. Standardy branżowe, takie jak te opracowane przez organizację RAID Advisory Board, podkreślają znaczenie RAID 1 jako jednego z podstawowych rozwiązań w kontekście ochrony danych. Z perspektywy praktycznej warto również zauważyć, że chociaż RAID 1 nie zapewnia zwiększenia wydajności zapisu, to jednak może poprawić wydajność odczytu, co czyni go atrakcyjnym rozwiązaniem dla niektórych zastosowań.

Pytanie 5

Jakie narzędzie w systemie Windows pozwala na kontrolowanie stanu sprzętu, aktualizowanie sterowników oraz rozwiązywanie problemów z urządzeniami?

A. devmgmt
B. perfmon
C. eventvwr
D. services
Odpowiedzi "services", "perfmon" oraz "eventvwr" są związane z innymi funkcjami systemu Windows, które nie spełniają roli Menedżera urządzeń. "Services" odnosi się do narzędzia umożliwiającego zarządzanie usługami systemowymi, które mogą być uruchamiane lub zatrzymywane, ale nie dostarcza informacji o stanie sprzętu ani nie pozwala na aktualizację sterowników. Użytkownicy często mylą te funkcje, sądząc, że mogą one wpływać na sprzęt, a tymczasem ich głównym celem jest zarządzanie oprogramowaniem działającym w tle. "Perfmon", czyli Monitor wydajności, koncentruje się na analizowaniu wydajności systemu poprzez zbieranie danych na temat różnych zasobów, jednak nie oferuje możliwości interakcji ze sprzętem ani sterownikami. Z kolei "eventvwr" to Podgląd zdarzeń, który rejestruje dzienniki zdarzeń systemowych, aplikacji i zabezpieczeń, jednak jego funkcjonalność nie obejmuje zarządzania sprzętem, co może prowadzić do mylnych przekonań o jego przydatności w kontekście rozwiązywania problemów sprzętowych. Oparcie się na tych narzędziach w sytuacji konfliktów sprzętowych lub problemów z działaniem urządzeń może prowadzić do błędnych diagnoz i wydłużenia procesu naprawy urządzeń, dlatego ważne jest, aby użytkownicy rozumieli różnice pomiędzy tymi narzędziami a Menedżerem urządzeń.

Pytanie 6

Aby zmontować komputer z poszczególnych elementów, korzystając z obudowy SFF, trzeba wybrać płytę główną w formacie

A. WTX
B. BTX
C. E-ATX
D. mini ITX
Wybór płyty głównej w standardzie BTX, WTX lub E-ATX do złożenia komputera w obudowie SFF to podejście, które opiera się na błędnych założeniach dotyczących wymagań przestrzennych oraz kompatybilności komponentów. Standard BTX, mimo że wprowadzał innowacje w zakresie wentylacji i układów chłodzenia, został wycofany z użytku i nigdy nie osiągnął popularności, co sprawia, że jego zastosowanie w nowoczesnych systemach jest niepraktyczne. WTX to większy standard, stworzony dla serwerów i stacji roboczych, który również wymaga znacznie większej przestrzeni niż to, co oferują typowe obudowy SFF. E-ATX jest standardem stosowanym w dużych i zaawansowanych systemach, z wymiarami przekraczającymi standard ATX, co czyni go zupełnie nieodpowiednim do małych obudów, gdzie kluczowe jest ograniczenie rozmiaru komponentów. Wybierając te standardy, można napotkać problemy z dopasowaniem płyty głównej do obudowy, co może prowadzić do trudności montażowych, problemów z chłodzeniem, a także ograniczenia w dalszej rozbudowie systemu. Dlatego bardzo ważne jest, aby podczas budowy komputera w obudowie SFF kierować się odpowiednimi standardami, takimi jak mini ITX, które gwarantują prawidłowe funkcjonowanie i łatwość montażu.

Pytanie 7

Która edycja systemu operacyjnego Windows Server 2008 charakteryzuje się najuboższym interfejsem graficznym?

A. Enterprise
B. Standard Edition
C. Server Core
D. Datacenter
Server Core to minimalna wersja systemu operacyjnego Windows Server 2008, która oferuje znacznie ograniczony interfejs graficzny w porównaniu do innych edycji, takich jak Standard Edition, Enterprise czy Datacenter. Została zaprojektowana z myślą o maksymalnej wydajności i bezpieczeństwie, eliminując zbędne komponenty graficzne i funkcje interfejsu użytkownika, co pozwala na zmniejszenie powierzchni ataku oraz minimalizację zużycia zasobów systemowych. Dzięki temu Administratorzy mogą skoncentrować się na zarządzaniu serwerem za pomocą poleceń PowerShell oraz zdalnych narzędzi administracyjnych, co jest zgodne z nowoczesnymi praktykami w zakresie zarządzania serwerami. Przykładowe zastosowanie Server Core znajduje się w kontekście serwerów webowych, baz danych czy aplikacji wysokodostępnych, gdzie maksymalna stabilność i wydajność są kluczowe. Dobrą praktyką jest również stosowanie tego trybu w środowiskach wirtualnych, gdzie ograniczenie zasobów jest istotne dla efektywności operacyjnej.

Pytanie 8

Które z poniższych urządzeń jest przykładem urządzenia peryferyjnego wejściowego?

A. Monitor
B. Klawiatura
C. Drukarka
D. Projektor
Urządzenie peryferyjne wejściowe to sprzęt, który służy do wprowadzania danych do systemu komputerowego. Klawiatura jest doskonałym przykładem takiego urządzenia. Umożliwia użytkownikowi wprowadzanie danych tekstowych, poleceń oraz interakcji z oprogramowaniem. Jest niezbędna w wielu zastosowaniach, od codziennego użytku po profesjonalne programowanie. Klawiatury mogą mieć różne układy i funkcje, w tym klawiatury numeryczne, multimedialne, czy mechaniczne, które są popularne wśród graczy i programistów. Klawiatura jest jednym z najważniejszych narzędzi w arsenale każdego użytkownika komputera. Wprowadza dane w sposób precyzyjny i szybki, co jest kluczowe w świecie informatyki. Przy projektowaniu interfejsów użytkownika oraz oprogramowania, uwzględnia się ergonomię i funkcjonalność klawiatur, co odzwierciedla ich znaczenie w codziennym użytkowaniu komputerów. W kontekście administracji systemów komputerowych, klawiatura jest fundamentalna, umożliwiając zarządzanie systemem, wprowadzanie poleceń i konfigurację urządzeń.

Pytanie 9

Osoba pragnąca wydrukować dokumenty w oryginale oraz w trzech egzemplarzach na papierze samokopiującym powinna zainwestować w drukarkę

A. atramentową
B. laserową
C. termotransferową
D. igłową
Wybór innej technologii drukarskiej, takiej jak atramentowa, termotransferowa czy laserowa, do drukowania dokumentów na papierze samokopiującym nie jest optymalny. Drukarki atramentowe używają tuszu, który przesycha na papierze, co uniemożliwia uzyskanie kopii w formacie samokopiującym. Z kolei drukarki termotransferowe stosują technologię, w której obraz jest przenoszony za pomocą ciepła na powierzchnię materiału, co również nie jest skuteczne w kontekście papieru samokopiującego. Często użytkownicy myślą, że wystarczy użyć dowolnej drukarki, ale każda technologia ma swoje ograniczenia. Drukarki laserowe, z drugiej strony, są znakomite do szybkiego drukowania dużych nakładów, jednak ich zasada działania opiera się na tonerze, który nie jest przystosowany do uzyskiwania kopii na papierze samokopiującym. Typowym błędem w myśleniu jest przekonanie, że jakość druku lub szybkość są najważniejsze, podczas gdy kluczowym aspektem w tym przypadku jest zdolność do produkcji kopii w jednym cyklu. Wybierając niewłaściwą technologię, można nie tylko zmarnować materiały eksploatacyjne, ale także spowolnić proces pracy w biurze.

Pytanie 10

Użytkownik systemu Windows wybrał opcję powrót do punktu przywracania. Które pliki powstałe po wybranym punkcie nie zostaną naruszone przez tę akcję?

A. Pliki sterowników.
B. Pliki aktualizacji.
C. Pliki aplikacji.
D. Pliki osobiste.
Często zdarza się, że ludzie mylą funkcję przywracania systemu z kopiami zapasowymi lub myślą, że cofnięcie systemu usunie lub zmieni wszystkie dane na komputerze. W rzeczywistości mechanizm przywracania w Windows został tak skonstruowany, aby dotyczyć głównie plików systemowych, rejestru, ustawień konfiguracyjnych, zainstalowanych aplikacji, sterowników oraz aktualizacji systemowych. Oznacza to, że po wybraniu opcji powrotu do punktu przywracania, Windows próbuje odtworzyć stan systemu operacyjnego z wybranej daty, co skutkuje cofnięciem zmian, które mogły być wprowadzone przez instalacje programów, nowych sterowników czy poprawek bezpieczeństwa. Te elementy rzeczywiście zostaną usunięte lub przywrócone do wcześniejszej wersji, bo to one potencjalnie mogą powodować problemy z działaniem systemu. Jednak według dokumentacji Microsoftu oraz dobrych praktyk branżowych, pliki osobiste użytkownika – takie jak zdjęcia, muzyka, dokumenty czy filmy – zostają celowo pominięte. Przywracanie systemu nie dotyka ich, bo te dane są uznawane za niezależne od funkcjonowania systemu operacyjnego i nie powinny być naruszane podczas prób naprawczych. Błąd polega więc na utożsamianiu przywracania systemu z narzędziami backupu lub myśleniu, że odzyskując poprzedni stan systemu, jednocześnie tracimy wszystkie nowsze pliki – tak nie jest. Dla własnego bezpieczeństwa zawsze warto dbać o osobne kopie zapasowe danych użytkownika, ale nie należy obawiać się, że przywracając system, utracimy ważne dokumenty powstałe już po utworzeniu punktu przywracania. To jedno z tych nieporozumień, które potrafią wiele osób przestraszyć, ale praktyka pokazuje, że Windows naprawdę dba tutaj o Twoje prywatne dane.

Pytanie 11

Jakie informacje można uzyskać na temat konstrukcji skrętki S/FTP?

A. Każda para przewodów jest pokryta foliowaniem, a całość znajduje się w ekranie z siatki
B. Każda para przewodów ma osobny ekran z folii, a całość nie jest ekranowana
C. Każda para przewodów ma osobny ekran z folii, a dodatkowo całość jest w ekranie z folii
D. Każda para przewodów jest foliowana, a całość znajduje się w ekranie z folii i siatki
Budowa skrętki S/FTP jest często mylona z innymi typami kabli, co może prowadzić do nieporozumień. Odpowiedzi, które wskazują na brak ekranowania całej konstrukcji, są nieprawidłowe, ponieważ S/FTP z definicji zakłada podwójne ekranowanie. W przypadku pojedynczego ekranowania par przewodów, jak to sugeruje jedna z niepoprawnych odpowiedzi, dochodzi do wzrostu podatności na zakłócenia, co jest niepożądane w środowiskach z intensywną emisją elektromagnetyczną. Ponadto, sugerowanie, że każda para jest w osobnym ekranie z folii, nie uwzględnia faktu, że niektóre systemy wymagają dodatkowej ochrony całej struktury, co jest kluczowe dla utrzymania wysokiej jakości transmisji danych. Takie podejście, jak brak ekranowania całości, może

Pytanie 12

Narzędzie diagnostyczne tracert służy do ustalania

Ikona CMDWiersz polecenia
_X
C:\>tracert wp.pl
Trasa śledzenia do wp.pl [212.77.100.101]
przewyższa maksymalną liczbę przeskoków 30
1    2 ms    3 ms    2 ms  192.168.0.1
2    8 ms    8 ms   10 ms  10.135.96.1
3    *       *       *     Upłynął limit czasu żądania.
4    9 ms    7 ms   10 ms  upc-task-gw.task.gda.pl [153.19.0.5]
5   10 ms   14 ms   10 ms  task-tr-wp.pl [153.19.102.1]
6   91 ms    *      10 ms  zeu.ptr02.sdm.wp-sa.pl [212.77.105.29]
7   11 ms   10 ms   11 ms  www.wp.pl [212.77.100.101]

Śledzenie zakończone.

C:\>
A. możliwości analizy struktury systemu DNS
B. poprawności ustawień protokołu TCP/IP
C. ścieżki do miejsca docelowego
D. wydajności połączenia w protokole IPX/SPX
Polecenie tracert, znane również jako traceroute, jest narzędziem służącym do diagnozowania sieci komputerowych poprzez wyznaczanie ścieżki pakietu IP do określonego hosta. Działa ono poprzez wysyłanie serii komunikatów ICMP Echo Request do docelowego adresu IP z rosnącą wartością TTL (Time To Live). Każdy router na trasie zmniejsza wartość TTL o 1 i jeśli TTL osiągnie zero, router odrzuca pakiet i wysyła komunikat ICMP Time Exceeded z powrotem do nadawcy. Dzięki temu tracert identyfikuje każdy węzeł na drodze do celu wraz z czasem potrzebnym na przejście przez ten węzeł. To narzędzie jest użyteczne w wykrywaniu problemów z routingiem, takich jak nieosiągalne sieci czy wolne połączenia. Praktycznym zastosowaniem tracert jest analiza opóźnień i identyfikacja punktów, gdzie mogą występować wąskie gardła w transmisji danych. W środowisku zawodowym jest to standardowa praktyka w zarządzaniu sieciami, a wiedza o tym, jak używać tracert, jest niezbędna dla administratorów sieci dbających o płynność i efektywność komunikacji sieciowej.

Pytanie 13

Strzałka na diagramie ilustrującym schemat systemu sieciowego według normy PN-EN 50173 wskazuje na rodzaj okablowania

Ilustracja do pytania
A. kampusowe
B. pionowe
C. szkieletowe zewnętrzne
D. poziome
Okablowanie szkieletowe zewnętrzne odnosi się do infrastruktury zapewniającej połączenia między budynkami w ramach kampusu. Jest to okablowanie, które musi być odporne na warunki atmosferyczne i spełniać wymogi dotyczące bezpieczeństwa oraz ochrony środowiska. Wybór tego terminu jako odpowiedzi na pytanie dotyczące schematu wskazującego na połączenia wewnątrz budynku jest błędnym zrozumieniem kontekstu. Okablowanie kampusowe natomiast dotyczy rozwiązań łączących różne budynki w kompleksie i obejmuje zarówno okablowanie pionowe, jak i poziome, ale w szerszym zakresie geograficznym. Poziome okablowanie odnosi się do połączeń w obrębie tego samego piętra budynku, łącząc punkty dystrybucyjne z gniazdami telekomunikacyjnymi. Jest to kluczowe w zapewnieniu komunikacji w ramach danego piętra, jednak nie dotyczy połączeń między piętrami, co jest główną funkcją okablowania pionowego. Częstym błędem jest mylenie okablowania pionowego z poziomym, ponieważ oba dotyczą sieci strukturalnych, ale ich zastosowanie i funkcje są definitywnie różne. Właściwe rozróżnienie tych pojęć jest kluczowe dla poprawnego projektowania i zarządzania infrastrukturą sieciową w budynkach zgodnie z obowiązującymi standardami.

Pytanie 14

NAT64 (Network Address Translation 64) to proces, który dokonuje mapowania adresów

A. prywatne na adresy publiczne
B. IPv4 na adresy IPv6
C. IPv4 na adresy MAC
D. MAC na adresy IPv4
NAT64 jest technologią translacji adresów, która umożliwia komunikację między sieciami IPv4 i IPv6, co jest niezbędne w dobie przechodzenia na nowy protokół. NAT64 realizuje mapowanie adresów IPv4 na adresy IPv6, co pozwala na wykorzystanie istniejącej infrastruktury IPv4 w środowisku IPv6. Przykładem zastosowania NAT64 może być sytuacja, gdy organizacja posiada zasoby dostępne tylko w IPv4, ale użytkownicy korzystają z sieci IPv6. Umożliwiając dostęp do tych zasobów, NAT64 przyczynia się do płynnej migracji i współistnienia obu protokołów. Technologia ta jest zgodna z wytycznymi IETF, które podkreślają znaczenie interoperacyjności między różnymi protokołami. Ponadto, NAT64 współpracuje z mechanizmem DNS64, który mapuje zapytania DNS IPv6 na odpowiednie adresy IPv4, co stanowi ważny element ekosystemu sieciowego. Dzięki NAT64 administratorzy sieci mogą efektywnie zarządzać przejściem z IPv4 na IPv6, co jest kluczowe w kontekście globalnego wyczerpywania się adresów IPv4.

Pytanie 15

Podaj prefiks, który identyfikuje adresy globalne w protokole IPv6?

A. 2000::/3
B. 20::/3
C. 2::/3
D. 200::/3
Inne odpowiedzi, takie jak 2::/3, 200::/3 i 20::/3, są niepoprawne, ponieważ nie identyfikują adresów globalnych w protokole IPv6. Prefiks 2::/3 w rzeczywistości nie jest przydzielany do żadnej znanej klasy adresów, co czyni go nieprzydatnym w praktycznych zastosowaniach. Adres 200::/3 obejmuje tylko mały zakres adresów, a nie pełne spektrum potrzebne dla globalnej komunikacji; z kolei prefiks 20::/3 jest również zbyt wąski do efektywnego adresowania globalnego. Użytkownicy często mylą prefiksy z lokalnymi adresami prywatnymi, które są używane w zamkniętych sieciach i nie są routowalne w Internecie. To może prowadzić do nieporozumień przy projektowaniu architektury sieci. Kluczowe jest zrozumienie, że adresy globalne muszą być routowalne przez Internet, co oznacza, że muszą należeć do odpowiednich prefiksów zgodnych z przydziałami RIR. Zastosowanie niewłaściwych adresów może skutkować brakiem łączności z siecią, co w praktyce uniemożliwia komunikację z innymi urządzeniami w Internecie. Dlatego ważne jest, aby zrozumieć różnice pomiędzy tymi prefiksami oraz ich zastosowanie w praktyce, co również podkreśla znaczenie stosowania standardów i najlepszych praktyk w projektowaniu i wdrażaniu infrastruktury sieciowej.

Pytanie 16

Urządzeniem wykorzystywanym do formowania kształtów oraz grawerowania m.in. w materiałach drewnianych, szklanych i metalowych jest ploter

A. laserowy
B. bębnowy
C. tnący
D. solwentowy
Odpowiedzi związane z ploterami solwentowymi, tnącymi i bębnowymi są nieprawidłowe, ponieważ dotyczą zupełnie innych technologii i zastosowań. Plotery solwentowe są wykorzystywane głównie w druku wielkoformatowym, gdzie stosuje się atramenty na bazie rozpuszczalników, aby uzyskać wysokiej jakości wydruki na różnych podłożach, takich jak banery czy folie. Ich głównym celem jest reprodukcja obrazu, a nie precyzyjne wycinanie czy grawerowanie kształtów. Natomiast plotery tnące specjalizują się w wycinaniu z materiałów, takich jak folia samoprzylepna czy papier, jednak nie wykorzystują technologii laserowej, co ogranicza ich możliwości w zakresie grawerowania. Z kolei plotery bębnowe, które najczęściej są stosowane w zastosowaniach takich jak skanowanie i kopiowanie, nie są projektowane do wycinania czy grawerowania, przez co są nieodpowiednie do zadań wymagających dużej precyzji i detaliczności, jakie oferują plotery laserowe. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków to mylenie funkcji urządzeń oraz niewłaściwe przypisanie ich zastosowań w kontekście wycinania i grawerowania, co może prowadzić do nieefektywnego wykorzystania technologii oraz błędnych decyzji w procesie produkcji.

Pytanie 17

W systemach Windows XP Pro/ Windows Vista Bizness/Windows 7 Pro/Windows 8 Pro, rozwiązaniem zapewniającym poufność danych dla użytkowników korzystających z jednego komputera, których informacje mogą być wykorzystywane wyłącznie przez nich, jest

A. korzystanie z prywatnych kont z ograniczeniami
B. ręczne przypisywanie plikom atrybutu: zaszyfrowany
C. korzystanie z prywatnych kont z uprawnieniami administratora
D. ręczne przypisywanie plikom atrybutu: ukryty
Wybór opcji związanej z korzystaniem z własnych kont z ograniczeniami, przypisywaniem plikom atrybutu "ukryty" czy "zaszyfrowany", czy też korzystanie z kont z uprawnieniami administratora, nie zapewnia odpowiedniego poziomu poufności danych w kontekście opisanym w pytaniu. Konta z ograniczeniami mogą ograniczać dostęp do niektórych funkcji systemowych, ale nie zabezpieczają danych przed innymi użytkownikami, którzy mogą mieć dostęp do systemu. Przypisanie plikom atrybutu "ukryty" jedynie sprawia, że pliki nie są widoczne w standardowych ustawieniach eksploratora, co nie chroni ich przed dostępem, a jedynie przed przypadkowym usunięciem czy modyfikacją. W kontekście bezpieczeństwa danych, to podejście jest niewystarczające, ponieważ każdy użytkownik z odpowiednią wiedzą może łatwo zmienić ustawienia, aby zobaczyć ukryte pliki. Natomiast przypisanie atrybutu "zaszyfrowany" jest kluczowe, ale może być mylone z innymi atrybutami, które nie oferują rzeczywistej ochrony. Użytkowanie kont z uprawnieniami administratora stwarza dodatkowe ryzyko, ponieważ administratorzy mają pełny dostęp do wszystkich plików, co może prowadzić do niezamierzonych naruszeń prywatności. W praktyce, najlepsze metody zarządzania poufnością danych obejmują stosowanie silnych mechanizmów szyfrowania oraz polityk dotyczących dostępu, co nie jest zapewnione przez te inne metody.

Pytanie 18

Na rysunku widać ustawienia protokołu TCP/IP serwera oraz komputera roboczego. Na serwerze działa rola serwera DNS. Wykonanie polecenia ping www.cke.edu.pl na serwerze zwraca wynik pozytywny, natomiast na stacji roboczej wynik jest negatywny. Co należy zmienić, aby usługa DNS na stacji pracowała poprawnie?

Ilustracja do pytania
A. bramy na serwerze na 192.168.1.11
B. bramy na stacji roboczej na 192.168.1.10
C. serwera DNS na stacji roboczej na 192.168.1.11
D. serwera DNS na stacji roboczej na 192.168.1.10
Odpowiedź numer 4 jest prawidłowa, ponieważ wskazuje na konieczność ustawienia właściwego adresu serwera DNS na stacji roboczej. W konfiguracjach sieciowych serwera DNS, serwer na ogół działa jako pośrednik, tłumacząc adresy domenowe na adresy IP. W przedstawionym scenariuszu, na serwerze DNS działa lokalnie przypisane IP 127.0.0.1, co sugeruje, że serwer sam obsługuje swoje własne zapytania DNS. Dla stacji roboczej, aby mogła korzystać z funkcji DNS serwera, powinna wskazywać na adres IP, pod którym serwer jest dostępny wewnętrznie, czyli 192.168.1.10. Błędna konfiguracja powoduje, że stacja robocza nie może prawidłowo rozwiązywać zapytań DNS, co skutkuje negatywnym wynikiem ping. Prawidłowe ustawienie adresu DNS na stacji roboczej jako 192.168.1.10 zapewni jej prawidłowy dostęp do usługi DNS. W praktyce oznacza to, że stacje robocze w sieci lokalnej powinny być skonfigurowane tak, aby jako serwer DNS mają wskazany adres serwera sieciowego, co jest zgodne z najlepszymi praktykami sieciowymi.

Pytanie 19

Aby zintegrować komputer z siecią LAN, należy użyć interfejsu

A. RJ-45
B. D-SUB
C. S/PDIF
D. LPT
Interfejs RJ-45 jest standardem używanym w sieciach Ethernet oraz LAN, który pozwala na fizyczne połączenie komputerów i innych urządzeń sieciowych. Zastosowanie tego interfejsu umożliwia przesyłanie danych z prędkościami typowymi dla sieci lokalnych, wynoszącymi od 10 Mbps do nawet 10 Gbps w przypadku nowoczesnych technologii. Złącze RJ-45 jest odpowiedzialne za łączenie kabli miedzianych typu twisted pair, które są powszechnie stosowane w budowie infrastruktury sieciowej. W codziennych zastosowaniach, RJ-45 znajduje zastosowanie w podłączaniu komputerów do routerów, przełączników oraz punktów dostępowych. W standardzie ANSI/TIA-568 określono kolory przewodów w kablu Ethernet, co zapewnia spójność w instalacjach sieciowych. Warto również zwrócić uwagę na właściwości kabli, takie jak kategorie (np. Cat5e, Cat6), które wpływają na wydajność i przepustowość sieci. Przykładem zastosowania RJ-45 jest sieć biurowa, gdzie wiele komputerów jest podłączonych do switcha, umożliwiając współdzielenie zasobów i dostęp do internetu.

Pytanie 20

Który protokół zamienia adresy IP na adresy MAC, używane w sieciach Ethernet?

A. SNMP
B. IRC
C. ARP
D. IP
Protokół ARP (Address Resolution Protocol) jest kluczowym elementem w komunikacji sieciowej, który umożliwia przekształcenie logicznych adresów IP na fizyczne adresy MAC (Media Access Control). Gdy urządzenie w sieci potrzebuje wysłać dane do innego urządzenia, musi znać jego adres MAC, ale zazwyczaj ma jedynie jego adres IP. Protokół ARP rozwiązuje ten problem, wysyłając zapytanie do lokalnej sieci, pytając, który z podłączonych urządzeń ma dany adres IP. Urządzenie, które rozpozna swój adres IP, odpowiada swoim adresem MAC. ARP działa w warstwie drugiej modelu OSI, co oznacza, że jest bezpośrednio związany z komunikacją na poziomie dostępu do sieci. Przykładem zastosowania ARP jest sytuacja, gdy komputer łączy się z routerem, aby uzyskać dostęp do internetu. ARP pozwala na wydajne przesyłanie danych w sieci Ethernet, co jest zgodne z normami IEEE 802.3. Bez ARP, komunikacja w sieciach opartych na protokole IP byłaby znacznie bardziej skomplikowana i mniej efektywna, co podkreśla jego fundamentalne znaczenie w architekturze sieciowej.

Pytanie 21

Jakie stwierdzenie dotyczące konta użytkownika Active Directory w systemie Windows jest właściwe?

A. Nazwa logowania użytkownika nie może mieć długości większej niż 100 bajtów
B. Nazwa logowania użytkownika musi mieć mniej niż 21 znaków
C. Nazwa logowania użytkownika musi mieć mniej niż 20 znaków
D. Nazwa logowania użytkownika może mieć długość większą niż 100 bajtów
Wielu użytkowników może mieć trudności z interpretacją wymagań dotyczących długości nazwy logowania użytkownika w Active Directory, co prowadzi do powszechnych nieporozumień. Stwierdzenie, że nazwa logowania musi mieć mniej niż 20 lub 21 znaków, jest mylące, ponieważ w rzeczywistości ograniczenia są znacznie bardziej elastyczne. Warto zauważyć, że maksymalna długość nazwy logowania użytkownika w Active Directory wynosi 256 znaków, co stanowi istotny element praktyk administracyjnych dla dużych instytucji. Zastosowanie zbyt krótkich nazw logowania może prowadzić do sytuacji, w których identyfikacja użytkowników staje się problematyczna, zwłaszcza w przypadku, gdy w organizacji działa wiele osób z podobnymi imionami i nazwiskami. Ograniczenia długości nazwy mogą również wpływać na integrację z innymi systemami, gdzie dłuższe identyfikatory są wymagane. Wreszcie, błędne przekonania na temat ograniczeń długości mogą skutkować nieefektywnym zarządzaniem kontami użytkowników, co z kolei może prowadzić do nieporozumień, zwiększenia ryzyka bezpieczeństwa oraz utrudnień w audytach. Dlatego ważne jest, aby administratorzy byli dobrze poinformowani o faktycznych możliwościach oraz standardach dotyczących długości nazw logowania w systemie Active Directory.

Pytanie 22

Lista sprzętu kompatybilnego z systemem operacyjnym Windows, publikowana przez firmę Microsoft to

A. DOS
B. GPT
C. HCL
D. DSL
HCL, czyli Hardware Compatibility List, to dokument publikowany przez firmę Microsoft, który zawiera szczegółową listę sprzętu komputerowego, który jest zgodny z określonymi wersjami systemu operacyjnego Windows. HCL jest niezwykle ważny dla administratorów IT oraz użytkowników końcowych, ponieważ pozwala na dokonanie świadomego wyboru sprzętu, który będzie w stanie prawidłowo współpracować z systemem operacyjnym. Przykładowo, przed zakupem nowego komputera lub komponentów, użytkownicy mogą sprawdzić HCL, aby upewnić się, że ich sprzęt jest wspierany przez wybraną wersję Windows, co minimalizuje ryzyko problemów z instalacją i działaniem oprogramowania. Dobrym przykładem zastosowania HCL w praktyce jest sytuacja, gdy firma planuje modernizację infrastruktury IT i potrzebuje zakupić nowe serwery. Konsultacja HCL pozwala na wybór modeli, które są oficjalnie wspierane przez Microsoft, co zapewnia stabilność oraz wsparcie techniczne w przypadku pojawiających się problemów.

Pytanie 23

Jakie oprogramowanie nie jest przeznaczone do diagnozowania komponentów komputera?

A. Everest
B. Cryptic Disk
C. HD Tune
D. CPU-Z
Wybór programów takich jak Everest, CPU-Z czy HD Tune wskazuje na niezrozumienie funkcji, jakie pełnią te aplikacje. Everest, znany również jako AIDA64, to narzędzie do szczegółowej diagnostyki sprzętu, które dostarcza informacji o wszystkich podzespołach komputera, takich jak procesor, karta graficzna, pamięć RAM, a także parametry systemowe, temperatury i napięcia. Jego główną funkcjonalnością jest monitorowanie stanu urządzeń, co pozwala użytkownikom na szybką identyfikację problemów związanych ze sprzętem. CPU-Z jest kolejnym narzędziem, które koncentruje się na analizie procesora i pamięci RAM, dostarczając szczegółowe dane dotyczące ich parametrów technicznych. HD Tune natomiast zajmuje się diagnostyką dysków twardych, oferując informacje o ich stanie technicznym, prędkości transferu, a także możliwościach naprawy. Wybierając te programy jako alternatywy dla Cryptic Disk, można nieświadomie zignorować znaczenie diagnostyki sprzętu w kontekście utrzymania stabilności i wydajności systemu komputerowego. Powszechnym błędem jest mylenie narzędzi do ochrony danych z narzędziami diagnostycznymi, co może prowadzić do niewłaściwych decyzji podczas zarządzania zasobami IT.

Pytanie 24

W sieciach bezprzewodowych Ad-Hoc (Independent Basic Service Set) wykorzystywana jest fizyczna struktura

A. magistrali
B. siatki
C. pierścienia
D. gwiazdy
W sieciach bezprzewodowych Ad-Hoc, które operują na zasadzie Independent Basic Service Set (IBSS), fizyczna topologia ma formę siatki. Tego rodzaju sieci charakteryzują się tym, że urządzenia komunikują się bezpośrednio między sobą bez potrzeby centralnego punktu dostępowego. W praktyce oznacza to, że każde urządzenie (np. laptop, smartfon) może nawiązać połączenie z innymi, tworząc elastyczną i dynamiczną sieć. To rozwiązanie jest szczególnie przydatne w scenariuszach, gdzie infrastruktura jest ograniczona lub nie ma dostępu do tradycyjnych punktów dostępowych, takich jak w czasie wydarzeń plenerowych czy w sytuacjach kryzysowych. Z punktu widzenia standardów, takie sieci są zgodne z normami IEEE 802.11, które definiują specyfikacje dla komunikacji bezprzewodowej. Dzięki temu użytkownicy mogą cieszyć się większą swobodą i mobilnością, co jest kluczowe w wielu nowoczesnych zastosowaniach.

Pytanie 25

Wskaż błędny podział dysku MBR na partycje?

A. 1 partycja podstawowa oraz 2 rozszerzone
B. 1 partycja podstawowa oraz 1 rozszerzona
C. 2 partycje podstawowe oraz 1 rozszerzona
D. 3 partycje podstawowe oraz 1 rozszerzona
W Twojej odpowiedzi wskazałeś jedną partycję podstawową i dwie rozszerzone, co jest zgodne z zasadami podziału dysków w standardzie MBR. A tak szczerze, to dobrze, że to zauważyłeś. W MBR można mieć maks 4 partycje – albo 4 podstawowe, albo 3 podstawowe i jedna rozszerzona. Te rozszerzone są przydatne, gdy trzeba stworzyć dodatkowe partycje logiczne, co ułatwia zarządzanie przestrzenią na dysku. Wyobraź sobie, że potrzebujesz kilku partycji, bo dzielisz dysk na różne systemy operacyjne. No, to wtedy jedna partycja rozszerzona z kilkoma logicznymi to świetne rozwiązanie. To jest w sumie najlepszy sposób na wykorzystanie miejsca na dysku i zapanowanie nad danymi, więc masz tu całkiem dobry wgląd w temat.

Pytanie 26

Jak nazywa się serwer Windows, na którym zainstalowano usługę Active Directory?

A. kontrolerem domeny
B. serwerem DHCP
C. serwerem WWW
D. serwerem plików
Kontroler domeny to serwer, na którym zainstalowana jest usługa Active Directory, będąca kluczowym elementem w zarządzaniu zasobami sieciowymi w środowisku Windows. Jego głównym zadaniem jest przechowywanie informacji o użytkownikach, komputerach oraz innych zasobach w sieci, a także zarządzanie dostępem do tych zasobów. Kontroler domeny odpowiada za weryfikację tożsamości użytkowników oraz autoryzację ich dostępu do usług i zasobów, co jest kluczowe w zapewnieniu bezpieczeństwa w organizacji. W praktyce, kontroler domeny umożliwia centralne zarządzanie politykami bezpieczeństwa, co pozwala na łatwiejsze wdrażanie zmian oraz monitorowanie dostępu. Dodatkowo, dzięki replikacji, wiele kontrolerów domeny może współpracować, co zwiększa niezawodność i odporność na awarie. W kontekście standardów branżowych, organizacje często wdrażają rozwiązania oparte na Active Directory, aby zapewnić zgodność z wymogami bezpieczeństwa i zarządzania informacjami, co podkreśla jego znaczenie w nowoczesnym zarządzaniu IT.

Pytanie 27

W przypadku adresacji IPv6, zastosowanie podwójnego dwukropka służy do

A. wielokrotnego zastąpienia różnych bloków zer oddzielonych blokiem jedynek
B. jednorazowego zamienienia jednego lub kolejno położonych bloków wyłącznie z zer
C. wielokrotnego zastąpienia różnych bloków jedynek
D. jednorazowego zamienienia jednego bloku jedynek
Podwójny dwukropek (::) w adresacji IPv6 służy do jednorazowego zastąpienia jednego lub więcej bloków złożonych wyłącznie z zer. To pozwala na uproszczenie i skrócenie zapisu adresów, co jest szczególnie istotne w przypadku długich adresów IPv6. Przykładowo, adres 2001:0db8:0000:0000:0000:0000:0000:0001 może być zapisany jako 2001:db8::1, co znacznie ułatwia jego odczyt i wprowadzanie. Podwójny dwukropek może zostać użyty tylko raz w jednym adresie, aby uniknąć niejasności co do liczby zer. Przy planowaniu sieci IPv6, właściwe wykorzystanie podwójnego dwukropka może przyczynić się do czytelności dokumentacji oraz ułatwienia zarządzania adresami. Warto również zwrócić uwagę, że RFC 5952 dostarcza wskazówek dotyczących formatu adresów IPv6, co jest dobrą praktyką w branży sieciowej.

Pytanie 28

Konwencja zapisu ścieżki do udziału sieciowego zgodna z UNC (Universal Naming Convention) ma postać

A. //nazwa_komputera/nazwa_zasobu
B. //nazwa_zasobu/nazwa_komputera
C. \\ nazwa_zasobu\ nazwa_komputera
D. \\ nazwa_komputera\ nazwa_zasobu
Niepoprawne odpowiedzi bazują na niepełnym zrozumieniu konwencji zapisu ścieżek UNC. Użycie //nazwa_komputera/nazwa_zasobu jest nieprawidłowe, ponieważ dwa ukośniki są stosowane w protokole URL (np. HTTP), a nie w UNC. Protokół UNC wymaga, aby ścieżka zaczynała się od podwójnego znaku \\ i nie powinna być mylona z innymi formatami adresacji. Z kolei odpowiedź \\nazwa_zasobu\nazwa_komputera myli kolejność, ponieważ pierwsza część ścieżki powinna zawsze odnosić się do nazwy komputera, a nie zasobu. Ostatecznie, //nazwa_zasobu/nazwa_komputera to całkowicie błędny zapis, ponieważ nie ma zastosowania w kontekście UNC. Typowe błędy myślowe, które prowadzą do takich niepoprawnych koncepcji, to mylenie różnych protokołów i sposobów adresacji w sieciach komputerowych. Niezrozumienie, że UNC jest specyficzne dla systemów operacyjnych Windows, może prowadzić do dezinformacji w środowiskach mieszanych, gdzie używane są różne systemy operacyjne. Kluczowe jest, aby zachować ostrożność i stosować się do uznanych norm oraz najlepszych praktyk dotyczących nazewnictwa i formatowania ścieżek, co zapewni prawidłowe funkcjonowanie aplikacji i dostępu do zasobów.

Pytanie 29

Thunderbolt jest typem interfejsu:

A. równoległym, asynchronicznym i przewodowym
B. równoległym, dwukanałowym, dwukierunkowym i bezprzewodowym
C. szeregowym, asynchronicznym i bezprzewodowym
D. szeregowym, dwukanałowym, dwukierunkowym i przewodowym
Pierwsza alternatywna odpowiedź, którą podałeś, mówi o równoległym, asynchronicznym i przewodowym interfejsie. Prawda jest taka, że równoległe przesyłanie danych, czyli wysyłanie kilku bitów na raz po różnych liniach, jest mniej efektywne, gdy mówimy o dłuższych dystansach. Asynchroniczność wiąże się z opóźnieniami, a to może namieszać w synchronizacji. Thunderbolt to z kolei interfejs, który projektowano z myślą o synchronizacji i dużych prędkościach, więc te opisy nie pasują. Druga odpowiedź sugeruje, że Thunderbolt jest interfejsem szeregowym, asynchronicznym i bezprzewodowym. To w ogóle nie ma sensu, bo Thunderbolt działa na zasadzie przewodowej, co zapewnia lepszą stabilność i większe prędkości przesyłania. A trzecia odpowiedź, która mówi o równoległym, dwukanałowym i bezprzewodowym połączeniu, wprowadza jeszcze większy chaos. Pamiętaj, że równoległe przesyłanie jest mniej wydajne, a połączenia bezprzewodowe zawsze będą miały swoje ograniczenia. Często ludzie mylą różne standardy komunikacji, co prowadzi do błędnych wniosków o ich zastosowaniu. Zrozumienie tych różnic to klucz do skutecznej pracy z technologią.

Pytanie 30

Na podstawie filmu wskaż z ilu modułów składa się zainstalowana w komputerze pamięć RAM oraz jaką ma pojemność.

A. 2 modułów, każdy po 16 GB.
B. 1 modułu 16 GB.
C. 1 modułu 32 GB.
D. 2 modułów, każdy po 8 GB.
W tym zadaniu kluczowe są dwie rzeczy: liczba fizycznych modułów pamięci RAM oraz pojemność pojedynczej kości. Na filmie można zwykle wyraźnie zobaczyć, ile modułów jest wpiętych w sloty DIMM na płycie głównej. Każdy taki moduł to oddzielna kość RAM, więc jeśli widzimy dwie identyczne kości obok siebie, oznacza to dwa moduły. Typowym błędem jest patrzenie tylko na łączną pojemność podawaną przez system, np. „32 GB”, i automatyczne założenie, że jest to jeden moduł 32 GB. W praktyce w komputerach stacjonarnych i w większości laptopów bardzo często stosuje się konfiguracje wielomodułowe, właśnie po to, żeby wykorzystać tryb dual channel lub nawet quad channel. To jest jedna z podstawowych dobrych praktyk przy montażu pamięci – zamiast jednej dużej kości, używa się dwóch mniejszych o tej samej pojemności, częstotliwości i opóźnieniach. Dzięki temu kontroler pamięci w procesorze może pracować na dwóch kanałach, co znacząco zwiększa przepustowość i zmniejsza wąskie gardła przy pracy procesora. Odpowiedzi zakładające pojedynczy moduł 16 GB lub 32 GB ignorują ten aspekt i nie zgadzają się z tym, co widać fizycznie na płycie głównej. Kolejna typowa pułapka polega na myleniu pojemności całkowitej z pojemnością modułu. Jeśli system raportuje 32 GB RAM, to może to być 1×32 GB, 2×16 GB, a nawet 4×8 GB – sam wynik z systemu nie wystarcza, trzeba jeszcze zweryfikować liczbę zainstalowanych kości. Właśnie dlatego w zadaniu pojawia się odniesienie do filmu: chodzi o wizualne rozpoznanie liczby modułów. Dobrą praktyką w serwisie i diagnostyce jest zawsze sprawdzenie zarówno parametrów logicznych (w BIOS/UEFI, w systemie, w narzędziach diagnostycznych), jak i fizycznej konfiguracji na płycie. Pomija się też czasem fakt, że producenci płyt głównych w dokumentacji wprost rekomendują konfiguracje 2×8 GB, 2×16 GB zamiast pojedynczej kości, z uwagi na wydajność i stabilność. Błędne odpowiedzi wynikają więc zwykle z szybkiego zgadywania pojemności, bez przeanalizowania, jak pamięć jest faktycznie zamontowana i jak działają kanały pamięci w nowoczesnych platformach.

Pytanie 31

Gdy system operacyjny laptopa działa normalnie, na ekranie wyświetla się komunikat o konieczności sformatowania wewnętrznego dysku twardego. Może to sugerować

A. niezainicjowany lub nieprzygotowany do pracy nośnik
B. przegrzewanie się procesora
C. uszkodzoną pamięć RAM
D. błędy systemu operacyjnego spowodowane szkodliwym oprogramowaniem
Wybór odpowiedzi dotyczącej uszkodzonej pamięci RAM jest nieprawidłowy, ponieważ problemy z pamięcią RAM zazwyczaj nie prowadzą do komunikatów o konieczności formatowania dysku twardego. Uszkodzenia pamięci RAM mogą objawiać się w postaci niestabilności systemu, losowych zawieszeń lub błędów w aplikacjach, ale nie wpływają bezpośrednio na integralność nośnika danych. Przegrzewanie się procesora również nie jest bezpośrednio związane z pojawieniem się komunikatów o konieczności formatowania dysku. Chociaż przegrzewanie może prowadzić do awarii sprzętu, najczęściej objawia się spadkiem wydajności lub automatycznym wyłączaniem komputera w celu ochrony przed uszkodzeniem. Błędy systemu operacyjnego spowodowane szkodliwym oprogramowaniem mogą prowadzić do poważnych problemów z systemem, jednak nie skutkują zazwyczaj koniecznością formatowania dysku, a raczej spróbą przywrócenia systemu do stanu sprzed infekcji. Takie błędne wnioski wynikają często z mylnego utożsamiania różnych objawów awarii systemowych. Przy interpretacji komunikatów o błędach niezwykle ważne jest zrozumienie podstaw działania sprzętu i oprogramowania, co pozwala na skuteczniejsze diagnozowanie problemów oraz ich rozwiązanie zgodnie z najlepszymi praktykami zarządzania systemami komputerowymi.

Pytanie 32

Sieć lokalna posiada adres IP 192.168.0.0/25. Który adres IP odpowiada stacji roboczej w tej sieci?

A. 192.160.1.25
B. 192.168.1.1
C. 192.168.0.192
D. 192.168.0.100
Adres IP 192.168.0.100 jest prawidłowym adresem stacji roboczej w sieci lokalnej z adresem 192.168.0.0/25. Podział taki oznacza, że pierwsze 25 bitów adresu jest przeznaczone na identyfikację sieci, co daje nam maskę 255.255.255.128. W takim przypadku dostępne adresy IP dla urządzeń w tej sieci mieszczą się w przedziale od 192.168.0.1 do 192.168.0.126. Adres 192.168.0.100 mieści się w tym przedziale, co oznacza, że jest poprawnym adresem stacji roboczej. Zastosowanie takiej struktury adresowej jest kluczowe w małych i średnich firmach oraz w domowych sieciach lokalnych, gdzie efektywne zarządzanie adresacją IP pozwala na lepsze wykorzystanie zasobów. W praktyce, przydzielanie adresów IP w sieciach lokalnych powinno być zgodne z zasadami DHCP, co znacznie ułatwia administrację i zmniejsza ryzyko konfliktów adresowych.

Pytanie 33

Równoważnym zapisem 232 bajtów jest zapis

A. 2GB
B. 1GiB
C. 8GB
D. 4GiB
Dokładnie tak, zapis 2^32 bajtów to właśnie 4 GiB, czyli 4 gibibajty. W informatyce bardzo często napotykamy się na rozróżnienie pomiędzy jednostkami opartymi na potęgach dwójki (GiB, MiB, KiB) a tymi opartymi na potęgach dziesiątki (GB, MB, kB). Standard IEC precyzyjnie definiuje, że 1 GiB to 1024^3 bajtów, czyli 1 073 741 824 bajtów. Skoro 2^32 to dokładnie 4 294 967 296 bajtów, po podzieleniu tej liczby przez wartość 1 GiB otrzymujemy właśnie 4 GiB bez żadnych zaokrągleń. W praktyce, chociaż w sklepach czy reklamach często używa się GB, to w technicznych zastosowaniach—na przykład przy partycjonowaniu dysków, adresacji pamięci RAM czy systemowych narzędziach—korzysta się z jednostek GiB, żeby uniknąć nieporozumień. Moim zdaniem to bardzo ważne, żeby już na etapie nauki wyraźnie rozróżniać te jednostki, bo potem przy pracy z systemami operacyjnymi, serwerami czy programowaniem niskopoziomowym niejednokrotnie można się na tym "przejechać". Opieranie się na potęgach dwójki jest naturalne dla komputerów, bo cała architektura bazuje na binarnym systemie liczbowym. Warto wiedzieć, że np. adresacja w 32-bitowych systemach operacyjnych naturalnie zamyka się w zakresie 4 GiB, co jest ograniczeniem architekturalnym. Takie niuanse są kluczowe w praktyce, szczególnie gdy pracuje się z dużą ilością danych lub sprzętem na poziomie systemowym.

Pytanie 34

Jakie narzędzie w systemie Windows Server umożliwia zarządzanie zasadami grupy?

A. Menedżer procesów
B. Serwer DNS
C. Ustawienia systemowe
D. Konsola GPMC
Wybór panelu sterowania jako narzędzia do zarządzania zasadami grupy jest nieprawidłowy, ponieważ panel sterowania skupia się głównie na lokalnych ustawieniach systemowych i konfiguracji komputera, a nie na zarządzaniu politykami w środowisku sieciowym. Jego funkcjonalność jest ograniczona do zarządzania lokalnymi konfiguracjami systemu operacyjnego, co nie odpowiada potrzebom zarządzania w skali całej domeny. Z kolei menedżer zadań jest narzędziem do monitorowania procesów i zarządzania wydajnością systemu, co również nie ma związku z politykami grupowymi. Narzędzie to służy do analizy i zarządzania bieżącymi procesami w systemie, a nie do wdrażania i egzekwowania zasad bezpieczeństwa czy konfiguracji na wielu maszynach jednocześnie. Serwer DNS, mimo że jest kluczowym elementem infrastruktury sieciowej, nie ma nic wspólnego z zarządzaniem zasadami grupy. DNS koncentruje się na rozwiązywaniu nazw i zarządzaniu adresowaniem w sieci, co jest zupełnie inną funkcjonalnością. Wybór nieodpowiednich narzędzi do zarządzania politykami grupowymi może prowadzić do nieefektywności w administracji IT, co podkreśla znaczenie świadomego podejścia do wyboru narzędzi administracyjnych oraz ich odpowiedniego zastosowania w kontekście zarządzania infrastrukturą sieciową.

Pytanie 35

Wskaż ilustrację ilustrującą symbol stosowany do oznaczania portu równoległego LPT?

Ilustracja do pytania
A. C
B. D
C. B
D. A
Odpowiedź D to symbol portu równoległego LPT, który kiedyś był dość popularny do podłączania drukarek do komputerów. LPT działał według standardu IEEE 1284, a ten standard miał różne tryby, na przykład EPP i ECP, dzięki którym można było przesyłać dane szybciej niż w tradycyjnych trybach jednokierunkowych. Często port LPT jest przedstawiany w formie graficznej jako drukarka, bo początkowo właśnie do drukowania był głównie używany. Choć teraz mamy nowsze technologie jak USB, porty LPT wciąż czasem się przydają w starszych sprzętach czy w niektórych specyficznych zastosowaniach przemysłowych. Niezależnie od tego, że LPT jest już mniej popularny, warto znać ten symbol. Może się przydać, żeby lepiej rozumieć, jak działają starsze systemy i jakie mogą być problemy z kompatybilnością, gdy korzystamy z różnych urządzeń. To też daje lepszy obraz tego, jak technologia się rozwijała w kontekście połączeń sprzętowych oraz standardów w branży IT.

Pytanie 36

Podczas skanowania reprodukcji obrazu z magazynu, na skanie obrazu ukazały się regularne wzory, zwane morą. Jakiej funkcji skanera należy użyć, aby usunąć te wzory?

A. Rozdzielczości interpolowanej
B. Odrastrowywania
C. Skanowania według krzywej tonalnej
D. Korekcji Gamma
Korekcja gamma służy do regulacji jasności i kontrastu obrazu, a nie do eliminacji efektów moiré. Choć jej zastosowanie może poprawić ogólny wygląd skanu, nie rozwiązuje problemu interferencji rastrów. Z kolei rozdzielczość interpolowana odnosi się do techniki zwiększania liczby pikseli w obrazie dla uzyskania wyższej jakości, co również nie wpływa na usunięcie wzorów moiré. Interpolacja nie zmienia struktury oryginalnego obrazu, a jedynie dodaje dodatkowe dane na podstawie istniejących pikseli, co może nawet pogorszyć efekty moiré. Skanowanie według krzywej tonalnej polega na dostosowaniu wartości tonalnych w obrazie, co również nie ma związku z problemem rastrów. Typowe błędy myślowe prowadzące do takich wniosków obejmują mylenie podstawowych funkcji obróbczych skanera oraz niewłaściwe zrozumienie, czym jest efekt moiré. Użytkownicy często mylą różne techniki przetwarzania obrazu, nie zdając sobie sprawy, że każda z nich ma swoje specyficzne zastosowanie, które nie zawsze jest związane z problemem, który chcą rozwiązać.

Pytanie 37

Diagnostykę systemu Linux można przeprowadzić za pomocą komendy

Thread(s) per core:1
Core(s) per socket:4
Socket(s):1
NUMA node(s):1
A. whoami
B. pwd
C. lscpu
D. cat
Polecenie lscpu jest używane do wyświetlania szczegółowych informacji o architekturze procesora w systemie Linux. Jest to narzędzie, które zbiera dane z systemu operacyjnego na temat jednostek obliczeniowych takich jak liczba rdzeni na gniazdo liczba wątków na rdzeń liczba gniazd procesorowych oraz inne kluczowe parametry. Dzięki temu administratorzy systemów mogą lepiej zrozumieć zasoby sprzętowe dostępne na serwerze co jest niezbędne przy planowaniu wdrażania aplikacji optymalizacji wydajności oraz monitorowaniu zasobów. Praktyczne zastosowanie lscpu obejmuje scenariusze w których konieczne jest dostosowanie aplikacji do dostępnych zasobów czy też optymalizacja ustawień systemowych. Standardowa praktyka to używanie lscpu w ramach audytu sprzętowego co pozwala na efektywne zarządzanie zasobami oraz unikanie potencjalnych problemów związanych z nieadekwatnym przydzieleniem zasobów. Dodatkowo lscpu może być używane w skryptach automatyzujących procesy docierania do szczegółowych danych sprzętowych co wspiera administratorów w codziennych operacjach związanych z zarządzaniem infrastrukturą IT. Rozumienie tych informacji jest kluczowe dla efektywnego zarządzania i planowania zasobów komputerowych w nowoczesnych środowiskach IT.

Pytanie 38

Polecenie Gpresult

A. prezentuje dane dotyczące kontrolera
B. przywraca domyślne zasady grupowe dla kontrolera
C. odświeża ustawienia zasad grupowych
D. wyświetla wynikowy zestaw zasad dla użytkownika lub komputera
Wybór odpowiedzi dotyczących wyświetlania informacji o kontrolerze, aktualizacji ustawień zasad grup czy przywracania domyślnych zasad grup dla kontrolera wskazuje na pewne nieporozumienia dotyczące funkcji narzędzia Gpresult. Narzędzie to jest skoncentrowane na analizie stosowanych zasad grup, a nie na administracyjnych funkcjach związanych z kontrolerem domeny. Informacje o kontrolerze domeny można uzyskać za pomocą innych narzędzi, takich jak 'dcdiag' lub 'nltest', które dostarczają szczegółowych danych na temat stanu kontrolera oraz jego funkcjonalności. Aktualizacja zasad grup polega na ich edytowaniu w konsoli zarządzania zasadami grup, a nie na używaniu Gpresult. Przywracanie domyślnych zasad grup również wykracza poza zakres funkcji Gpresult, ponieważ to narzędzie nie jest zaprojektowane do modyfikacji ustawień, lecz do ich wizualizacji. Typowym błędem myślowym jest mylenie narzędzi diagnostycznych z narzędziami administracyjnymi, co prowadzi do niepoprawnych wniosków na temat ich funkcji. Gpresult jest narzędziem analitycznym, które powinno być wykorzystywane w kontekście audytów i weryfikacji, a nie do bezpośredniej administracji politykami grupowymi. Zrozumienie tych różnic jest kluczowe w kontekście efektywnego zarządzania środowiskiem IT.

Pytanie 39

Do akumulatora w jednostce ALU wprowadzono liczbę dziesiętną 253. Jak wygląda jej reprezentacja binarna?

A. 11111101
B. 11111001
C. 11111011
D. 11110111
Liczba dziesiętna 253 w systemie binarnym jest reprezentowana jako 11111101. Aby uzyskać tę reprezentację, należy wykonać konwersję liczby dziesiętnej na binarną. Proces ten polega na dzieleniu liczby przez 2 i zapisywaniu reszt z tych dzielenia. Gdy 253 dzielimy przez 2, otrzymujemy 126 z resztą 1. Następnie dzielimy 126 przez 2, co daje 63 z resztą 0, i kontynuujemy ten proces, aż dotrzemy do zera. Zbierając reszty w odwrotnej kolejności, otrzymujemy 11111101. Takie konwersje są kluczowe w informatyce, szczególnie w kontekście programowania niskopoziomowego oraz w systemach wbudowanych, gdzie operacje na liczbach binarnych są powszechne i niezbędne do implementacji algorytmów. Warto również zaznaczyć, że każda liczba całkowita w systemie komputerowym jest ostatecznie reprezentowana w postaci binarnej, co czyni tę umiejętność fundamentalną dla każdego programisty.

Pytanie 40

Aby osiągnąć optymalną prędkość przesyłu danych, gdy domowy ruter działa w paśmie 5 GHz, do laptopa należy zainstalować kartę sieciową bezprzewodową obsługującą standard

A. 802.11n
B. 802.11g
C. 802.11b
D. 802.11a
Odpowiedzi takie jak 802.11b, 802.11g i 802.11a są nieodpowiednie w kontekście uzyskiwania maksymalnej prędkości przepływu danych w sieci bezprzewodowej działającej na paśmie 5 GHz. Standard 802.11b, działający na paśmie 2,4 GHz, oferuje maksymalną prędkość przesyłu danych do 11 Mbps, co jest znacznie niższe od możliwości nowszych standardów. Wybór 802.11g, który również operuje w paśmie 2,4 GHz, pozwala na osiągnięcie prędkości do 54 Mbps, lecz nadal nie dorównuje wydajności 802.11n. Z kolei standard 802.11a, działający w paśmie 5 GHz, mimo że oferuje wyższe prędkości do 54 Mbps, nie obsługuje technologii MIMO, co ogranicza jego wydajność w porównaniu do 802.11n. Typowym błędem myślowym jest mylenie wyższej częstotliwości z wyższą przepustowością, co prowadzi do wniosku, że 802.11a jest lepszym wyborem bez uwzględnienia technologii MIMO. W praktyce, 802.11n, działając zarówno w paśmie 2,4 GHz, jak i 5 GHz, zapewnia lepszą elastyczność i wydajność, co czyni go najlepszym rozwiązaniem dla nowoczesnych zastosowań sieciowych.