Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 1 stycznia 2026 22:30
  • Data zakończenia: 1 stycznia 2026 23:00

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie gniazdo instalacyjne oznacza się na schematach symbolem graficznym przedstawionym na rysunku?

Ilustracja do pytania
A. Z wyłącznikiem.
B. Ze stykiem ochronnym.
C. Z transformatorem separacyjnym.
D. Telekomunikacyjne.
Gniazdo instalacyjne ze stykiem ochronnym, które zostało przedstawione na rysunku, jest kluczowym elementem w zapewnieniu bezpieczeństwa w instalacjach elektrycznych. Styk ochronny jest zaprojektowany w celu minimalizacji ryzyka porażenia prądem elektrycznym, a jego obecność w gniazdach jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 60309. Dzięki zastosowaniu gniazd ze stykiem ochronnym, użytkownicy mogą korzystać z urządzeń elektrycznych z większym poczuciem bezpieczeństwa, szczególnie w środowiskach, gdzie istnieje ryzyko kontaktu z wodą lub mokrymi powierzchniami, na przykład w łazienkach czy kuchniach. W praktyce, gniazda te są powszechnie stosowane w obiektach komercyjnych i przemysłowych, gdzie stosowane są maszyny i urządzenia wymagające dużej mocy, co czyni je niezbędnym elementem w każdej instalacji elektrycznej. Warto również zwrócić uwagę na to, że gniazda ze stykiem ochronnym są często stosowane z przedłużaczami i innymi urządzeniami, co przyczynia się do ich większej uniwersalności i funkcjonalności w różnych zastosowaniach elektrycznych.

Pytanie 2

Zgodnie z aktualnymi przepisami prawa budowlanego, w nowych budynkach konieczne jest montowanie gniazdek z zabezpieczeniami.

A. we wszystkich pomieszczeniach.
B. w sypialniach.
C. w holach.
D. w łazienkach.
Odpowiedź 'w łazienkach' jest poprawna, ponieważ zgodnie z obowiązującymi przepisami prawa budowlanego oraz normami bezpieczeństwa, w łazienkach powinny być instalowane gniazda z kołkami ochronnymi. Gniazda te mają na celu zwiększenie bezpieczeństwa użytkowników poprzez minimalizację ryzyka porażenia prądem elektrycznym, co jest szczególnie istotne w pomieszczeniach narażonych na wilgoć. Właściwe zastosowanie takich gniazd w łazienkach jest zgodne z normą PN-IEC 60364-7-701, która reguluje wymagania dotyczące instalacji elektrycznych w pomieszczeniach mokrych. Praktycznie oznacza to, że wszelkie urządzenia elektryczne, które mogą być używane w łazienkach, powinny być podłączone do gniazd z zabezpieczeniem przeciwporażeniowym, co znacznie podnosi poziom bezpieczeństwa użytkowników. Na przykład, podłączenie pralki czy suszarki do gniazd z kołkami ochronnymi jest kluczowe, aby zapewnić pełne bezpieczeństwo w codziennym użytkowaniu. W związku z tym, projektując nowe budynki, warto stosować się do tych wymogów, aby chronić użytkowników przed potencjalnymi zagrożeniami elektrycznymi.

Pytanie 3

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Wkładkę topikową bezpiecznika mocy.
B. Bezpiecznik aparatowy.
C. Izolator wsporczy.
D. Izolator przepustowy wysokiego napięcia.
Wybór innych odpowiedzi może wynikać z nieporozumień dotyczących funkcji i budowy różnych elementów zabezpieczeń elektrycznych. Izolator przepustowy wysokiego napięcia to komponent stosowany do przeprowadzania przewodów przez przegrody, takie jak ściany czy dachy, i nie ma żadnego zastosowania w kontekście zabezpieczeń przed przeciążeniami. Jego konstrukcja różni się znacznie od wkładki topikowej, która jest przeznaczona do ochrony obwodów. Bezpiecznik aparatowy, chociaż również ma na celu ochronę obwodów, jest innego typu urządzeniem – ma zazwyczaj bardziej złożoną budowę i może obejmować mechanizmy ręcznego resetowania, co czyni go odmiennego od prostoty budowy wkładki topikowej. Izolator wsporczy, będący elementem wspierającym przewody w stacjach elektroenergetycznych, również nie ma żadnego związku z funkcją zabezpieczającą obwody przed przeciążeniem. Te różnice w przeznaczeniu i konstrukcji mogą prowadzić do błędnych wniosków i wyboru niewłaściwych odpowiedzi, co podkreśla znaczenie znajomości właściwości oraz zastosowań poszczególnych komponentów w systemach elektrycznych. Warto zauważyć, że gruntowna wiedza na temat elementów zabezpieczających jest kluczowa dla zapewnienia bezpieczeństwa i efektywności w pracy z instalacjami elektrycznymi.

Pytanie 4

Które z przedstawionych narzędzi przeznaczone jest do zdejmowania izolacji z żył przewodów elektrycznych?

Ilustracja do pytania
A. Narzędzie 4.
B. Narzędzie 2.
C. Narzędzie 3.
D. Narzędzie 1.
Narzedzie 1 to kluczowy instrument w pracy z przewodami elektrycznymi, zwłaszcza w kontekście przygotowania ich do połączeń. Szczypce do ściągania izolacji, których użycie zaleca się w branży elektrycznej, są zaprojektowane tak, aby umożliwić precyzyjne usunięcie izolacji z żył bez ryzyka uszkodzenia samego przewodu. Dobrej jakości szczypce posiadają mechanizm regulacji głębokości ściągania, co pozwala na dostosowanie siły do rodzaju przewodu. W praktyce, zastosowanie tych narzędzi sprawia, że prace instalacyjne są nie tylko szybsze, ale także bezpieczniejsze, co jest zgodne z normami bezpieczeństwa elektrycznego. Używając szczypiec, można łatwo przygotować przewody do podłączenia terminali, co jest niezbędne w każdym projekcie elektrycznym. Ponadto, w kontekście dobrych praktyk, zaleca się regularne sprawdzanie stanu narzędzi, aby zapewnić ich efektywność i bezpieczeństwo użytkowania.

Pytanie 5

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Rozpoznaje zwarcia
B. Zatrzymuje łuk elektryczny
C. Identyfikuje przeciążenia
D. Napina sprężynę mechanizmu
Wybór odpowiedzi dotyczącej gaszenia łuku elektrycznego jest mylny, ponieważ proces ten nie jest bezpośrednio związany z funkcją wyzwalacza elektromagnetycznego. Wyłączniki nadprądowe, przy wykrywaniu zwarcia, mogą generować łuk elektryczny, który jest następnie gaszony przez specjalne mechanizmy w urządzeniach, takich jak komory gaszenia łuku. W związku z tym, gaszenie łuku to proces, który zachodzi po detekcji zwarcia, a nie jest funkcją wyzwalacza. Ponadto, odpowiedź odnosząca się do wykrywania przeciążeń jest również nieprawidłowa, ponieważ wyzwalacz elektromagnetyczny skupia się głównie na detekcji zwarć, a przeciążenia są zwykle rozpoznawane przez funkcję wyzwalacza termicznego, który działa na zasadzie wydłużania się elementu bimetalowego pod wpływem ciepła generowanego przez przepływający prąd. Naciąganie sprężyny napędu, chociaż istotne w niektórych mechanizmach wyłączników, nie ma żadnego związku z funkcjami wyzwalacza elektromagnetycznego. W praktyce, mylenie funkcji tych komponentów prowadzi do nieporozumień w zakresie projektowania systemów zabezpieczeń elektrycznych, co może skutkować niewłaściwym doborem urządzeń oraz potencjalnym zagrożeniem dla użytkowników i sprzętu.

Pytanie 6

Na której ilustracji przedstawiono kabel przeznaczony do wykonania trójfazowego przyłącza ziemnego do budynku jednorodzinnego w sieci TN-S?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 2.
C. Na ilustracji 4.
D. Na ilustracji 3.
Ilustracja 3 przedstawia kabel, który idealnie nadaje się do trójfazowego przyłącza ziemnego w systemie TN-S. W systemie tym kluczowe jest, aby kabel zawierał trzy przewody fazowe, przewód neutralny oraz przewód ochronny. Trzy przewody fazowe (L1, L2, L3) są niezbędne do równomiernego rozłożenia obciążenia w instalacji elektrycznej, co jest istotne dla zapewnienia stabilności oraz efektywności działania systemu. Przewód neutralny (N) jest używany do zamykania obwodu elektrycznego, co jest kluczowe w przypadku asymetrycznego obciążenia, podczas gdy przewód ochronny (PE) zapewnia bezpieczeństwo użytkowników, odprowadzając prąd do ziemi w przypadku awarii. Użycie odpowiednich kabli w instalacjach TN-S jest zgodne z normami PN-IEC 60364, które określają zasady projektowania i wykonania instalacji elektrycznych. Przykładem zastosowania takiego kabla może być budynek jednorodzinny, w którym zapewnienie odpowiedniego zasilania dla urządzeń elektrycznych stało się standardem w nowoczesnym budownictwie.

Pytanie 7

Jak należy interpretować przedstawiony na zdjęciu wynik pomiaru rezystancji izolacji przewodu o napięciu znamionowym 300 V/300 V wykonany miernikiem MIC-2 ustawionym na zakres 500 V?

Ilustracja do pytania
A. Miernik jest uszkodzony.
B. Rezystancja izolacji przewodu jest wystarczająca.
C. Zbyt mała rezystancja izolacji przewodu.
D. Miernik ma rozładowaną baterię.
Odpowiedź, że rezystancja izolacji przewodu jest wystarczająca, jest prawidłowa, ponieważ wynik pomiaru na wyświetlaczu miernika MIC-2 wynosi '>999MΩ'. To oznacza, że miernik nie zdołał zmierzyć wartości rezystancji, ponieważ jest ona znacznie wyższa niż maksymalny zakres, co wskazuje na doskonały stan izolacji przewodu. Dla przewodów o napięciu znamionowym 300 V/300 V, zgodnie z normami bezpieczeństwa (np. PN-EN 60204-1), minimalna rezystancja izolacji powinna wynosić co najmniej 1 MΩ. Przy wartości '>999MΩ' jest to więcej niż wystarczające, co świadczy o braku potencjalnych zagrożeń dla użytkowników i sprzętu. W praktyce, w przypadku instalacji elektrycznych, regularne pomiary rezystancji izolacji są niezbędne do zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych. Odpowiednia rezystancja izolacji zmniejsza ryzyko zwarcia oraz uszkodzenia urządzeń, co jest kluczowe w kontekście ochrony przed porażeniem elektrycznym oraz poprawnego funkcjonowania instalacji.

Pytanie 8

Który element rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Przekaźnik czasowy.
B. Czujnik zaniku fazy.
C. Regulator temperatury.
D. Lampkę sygnalizacyjną trójfazową.
Wybór przekaźnika czasowego, regulatora temperatury czy czujnika zaniku fazy jako elementu przedstawionego na ilustracji wskazuje na pewne nieporozumienia dotyczące funkcji i zastosowania tych urządzeń w rozdzielnicach elektrycznych. Przekaźnik czasowy służy do automatyzacji procesów, włączając i wyłączając obwody zgodnie z zaprogramowanym czasem, a nie do sygnalizacji obecności napięcia. Regulator temperatury jest urządzeniem służącym do monitorowania i kontrolowania temperatury, co jest całkowicie inną funkcją w kontekście rozdzielnic elektrycznych. Z kolei czujnik zaniku fazy jest przeznaczony do ochrony instalacji przed nieprawidłowym działaniem spowodowanym brakiem jednej z faz, ale również nie pełni funkcji sygnalizacji napięcia. Wybierając jedną z tych odpowiedzi, można mylnie łączyć różne funkcje urządzeń, co prowadzi do nieporozumień w zakresie ich zastosowania. Ważne jest, aby w kontekście instalacji elektrycznych rozumieć rolę każdego urządzenia oraz ich specyfikę, co pozwala na poprawne podejmowanie decyzji dotyczących ich instalacji i użytkowania. W praktyce, błędne zrozumienie ról tych elementów może prowadzić do poważnych awarii i zagrożeń dla bezpieczeństwa użytkowników oraz sprzętu.

Pytanie 9

Do czego służy narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Formowania oczek z końców żył przewodów.
B. Zdejmowania powłoki przewodów.
C. Zaciskania końcówek na żyłach przewodów.
D. Zdejmowania izolacji żył przewodów.
Narzędzie przedstawione na zdjęciu to specjalistyczne szczypce do ściągania izolacji, które są kluczowym elementem w pracy z przewodami elektrycznymi. Jego głównym zadaniem jest usuwanie warstwy izolacyjnej z żył przewodów, co jest niezbędne do zapewnienia poprawnego połączenia elektrycznego. Dzięki charakterystycznej budowie, która często posiada regulowany ogranicznik, użytkownik ma możliwość precyzyjnego dostosowania głębokości cięcia. Umożliwia to bezpieczne usunięcie izolacji bez uszkodzenia samej żyły, co jest istotne z punktu widzenia nie tylko wydajności, ale również bezpieczeństwa instalacji elektrycznych. W praktyce, stosując to narzędzie, można wykonać prace takie jak łączenie przewodów w instalacjach domowych czy przygotowywanie kabli do podłączeń w urządzeniach elektronicznych. Przestrzeganie dobrych praktyk, jak na przykład unikanie zbyt głębokiego nacięcia, jest kluczowe, aby zminimalizować ryzyko uszkodzenia przewodów. Narzędzie to jest zgodne z normami branżowymi, co potwierdza jego przydatność i efektywność w codziennym użytkowaniu.

Pytanie 10

Jakie z podanych usterek mogą powodować nadmierne wibracje w silniku indukcyjnym?

A. Zbyt niskie napięcie, przerwa w jednej z faz, przeciążenie silnika
B. Przerwa w uzwojeniu stojana, zatarcie łożysk, nadmierna rezystancja uzwojeń wirnika
C. Zwarcie w uzwojeniu wirnika, zmieniona kolejność faz
D. Skrzywienie wału, niewłaściwe wyważenie wirnika, zbyt duży luz na łożyskach
Twoja odpowiedź jest jak najbardziej trafna! Skrzywienie wału, niewłaściwe wyważenie wirnika i luz na łożyskach to faktycznie te rzeczy, które mogą mocno wpływać na to, jak silnik pracuje. Jak wał jest krzywy, to masa się rozkłada nierówno, co przyczynia się do wzrostu wibracji – to trochę jak z siedzeniem na krzywej ławce, nie? Z kolei kiepskie wyważenie wirnika, które często bierze się z jego zużycia, też powoduje, że silnik się męczy, bo łożyska dostają w kość. No i ten luz – luźne łożyska też robią swoje, bo wirnik nie działa jak powinien. Ważne, żeby regularnie sprawdzać sprzęt i dbać o niego, tak jak produkuje się w instrukcji. Stosując metody monitorowania, jak analiza drgań, można wcześnie zauważyć problemy i coś z tym zrobić. To wszystko pomoże w wydłużeniu życia silnika i uniknięciu przestojów w pracy.

Pytanie 11

Który z urządzeń elektrycznych, zainstalowany w obwodzie systemu zasilania elektrycznego kuchenki trójfazowej, jest w stanie zidentyfikować przerwę w ciągłości przewodów jednej z faz?

A. Stycznik elektromagnetyczny
B. Odgromnik
C. Czujnik zaniku fazy
D. Przekaźnik priorytetowy
Czujnik zaniku fazy to urządzenie, którego głównym zadaniem jest monitorowanie i wykrywanie ewentualnych przerw w zasilaniu w poszczególnych fazach obwodu elektrycznego. W kontekście kuchenek trójfazowych, które wymagają stabilnego zasilania z trzech faz, czujnik ten odgrywa kluczową rolę w zapewnieniu bezpieczeństwa oraz sprawnego funkcjonowania urządzenia. Gdy zachodzi przerwa w jednej z faz, czujnik natychmiast wykrywa ten stan i może zainicjować odpowiednie działania, takie jak odłączenie urządzenia od zasilania, co zapobiega jego uszkodzeniu. Przykładowo, w kuchniach przemysłowych, gdzie kuchenki trójfazowe są wykorzystywane na dużą skalę, zastosowanie czujników zaniku fazy jest standardem, co wpływa na zwiększenie niezawodności i bezpieczeństwa operacji. Zgodnie z normami branżowymi, takie jak PN-EN 61439, zaleca się stosowanie czujników do monitorowania ciągłości zasilania w instalacjach elektrycznych, co w praktyce przekłada się na wyższą efektywność i minimalizację ryzyka awarii.

Pytanie 12

Jakie narzędzia trzeba przygotować do wyznaczenia miejsca na zainstalowanie rozdzielnicy podtynkowej w ścianie murowanej?

A. Rysik, kątownik, punktak, młotek
B. Przymiar taśmowy, poziomnica, ołówek traserski
C. Przymiar kreskowy, ołówek traserski, rysik
D. Sznurek traserski, młotek, punktak
Poprawna odpowiedź to przymiar taśmowy, poziomnica oraz ołówek traserski. Te narzędzia są kluczowe w procesie trasowania, ponieważ zapewniają precyzję oraz dokładność wymagane przy montażu rozdzielnicy podtynkowej. Przymiar taśmowy pozwala na dokładne mierzenie odległości i wyznaczanie miejsca, gdzie rozdzielnica powinna być umiejscowiona. Poziomnica jest niezbędna do sprawdzenia, czy zamontowana rozdzielnica jest w idealnej pozycji, co ma kluczowe znaczenie dla dalszych prac instalacyjnych. Ołówek traserski umożliwia zaznaczenie punktów na ścianie, co ułatwia przeniesienie wymiarów na materiał budowlany. Standardy branżowe podkreślają znaczenie precyzyjnego pomiaru w instalacjach elektrycznych, co bezpośrednio przekłada się na bezpieczeństwo oraz funkcjonalność całego systemu. Użycie tych narzędzi w odpowiednich technikach trasowania, takich jak wyznaczanie pionów i poziomów, zapewnia, że instalacja będzie zgodna z normami budowlanymi i elektrycznymi, co jest kluczowe dla zachowania bezpieczeństwa użytkowania.

Pytanie 13

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa stosowana do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach: PN = 3 kW, UN = 230 V?

A. gG 16 A
B. aM 20 A
C. aR 16 A
D. gB 20 A
Wybór wkładki topikowej gG 16 A jako zabezpieczenia dla obwodu jednofazowego bojlera elektrycznego o mocy 3 kW i napięciu 230 V jest właściwy z kilku powodów. Przede wszystkim, wkładki gG są stosowane do ochrony obwodów przed przeciążeniem oraz zwarciem, co jest kluczowe w przypadku urządzeń grzewczych, takich jak bojler. Znamionowy prąd bojlera można obliczyć, dzieląc moc przez napięcie, co daje wynik P/N = 3000 W / 230 V ≈ 13 A. Wybierając wkładkę o wartości 16 A, zapewniamy odpowiedni margines bezpieczeństwa, który zapobiega przypadkowemu wyłączeniu z powodu chwilowych przeciążeń. Standardy branżowe, takie jak PN-EN 60269, wskazują na odpowiednie zastosowanie wkładek gG w instalacjach, gdzie wymagane jest zabezpieczenie przed skutkami zwarć i przegrzania. W praktyce, wkładki topikowe gG są powszechnie stosowane w domowych instalacjach elektrycznych i zapewniają skuteczną ochronę oraz niezawodność działania.

Pytanie 14

Przedstawiony na rysunku przełącznik funkcji przyrządu do pomiaru parametrów instalacji elektrycznych ustawiono na pomiar

Ilustracja do pytania
A. impedancji pętli zwarcia.
B. rezystancji uziemienia.
C. ciągłości przewodów.
D. rezystancji izolacji.
Wybierając jedną z pozostałych opcji, można natknąć się na szereg nieporozumień związanych z funkcją przełącznika oraz zasadami pomiarów elektrycznych. Impedancja pętli zwarcia to parametr istotny, jednak nie jest to pomiar, który wykonuje się przy ustawieniu oznaczonym jako "RE". Impedancja pętli zwarcia odnosi się do całkowitej impedancji w obwodzie, co jest istotne dla oceny ochrony przeciwporażeniowej, ale wymaga innego ustawienia w urządzeniu pomiarowym. Podobnie, ciągłość przewodów, oznaczająca sprawdzenie, czy nie ma przerwy w obwodzie, również nie jest tożsame z pomiarem rezystancji uziemienia. Wartość rezystancji izolacji, z kolei, dotyczy stanu izolacji przewodów i nie odnosi się do funkcji uziemiającej. Użycie nieodpowiedniej opcji może skutkować błędną oceną stanu instalacji elektrycznej, co może prowadzić do poważnych konsekwencji dla bezpieczeństwa. Rozumienie różnicy między tymi pojęciami jest kluczowe dla każdego specjalisty zajmującego się instalacjami elektrycznymi, a ich mylne zrozumienie może prowadzić do nieprawidłowych wniosków i decyzji w zakresie bezpieczeństwa elektrycznego.

Pytanie 15

Rysunek przedstawia pomiar impedancji pętli zwarciowej metodą

Ilustracja do pytania
A. zastosowania dodatkowego źródła.
B. spadku napięcia.
C. kompensacyjną.
D. bezpośredniego pomiaru.
Pomiar impedancji pętli zwarciowej można przeprowadzać różnymi metodami, jednak nie każda z nich zapewnia taką samą dokładność i wiarygodność. Pierwsza z nieprawidłowych odpowiedzi, dotycząca zastosowania dodatkowego źródła, sugeruje, że użycie źródła napięcia jest wystarczające do przeprowadzenia tego pomiaru bez wskazania na konieczność jego kompensacji. Odpowiedź ta myli koncepcję pomiaru z prostym zastosowaniem źródła, co nie odzwierciedla rzeczywistych warunków w obwodzie. Kolejna odpowiedź, dotycząca pomiaru spadku napięcia, również jest problematyczna, ponieważ metoda ta nie uwzględnia wpływu rezystancji przewodów, co może prowadzić do znacznych błędów w odczytach. Bezpośrednie pomiary opierają się na idealnych warunkach, które rzadko występują w rzeczywistości, i nie są w stanie dostarczyć pełnego obrazu sytuacji w instalacji elektrycznej. Metoda kompensacyjna zaś, która uwzględnia te zmienne, pozwala na uzyskanie bardziej precyzyjnych wyników. Z kolei odpowiedź dotycząca pomiaru kompensacyjnego, mimo że prawidłowa, nie oddaje pełni zalet tej metody, a także zniekształca zrozumienie jej zastosowania, co może prowadzić do niewłaściwych wniosków w praktyce. Kluczowe jest zrozumienie, że w każdym pomiarze należy brać pod uwagę wszystkie zmienne, aby uzyskać rzetelne wyniki, a metody uproszczone mogą nie być wystarczające dla skutecznej analizy.

Pytanie 16

Co oznacza oznaczenie IP00 widoczne na obudowie urządzenia elektrycznego?

A. Najwyższy poziom ochrony.
B. Wykorzystanie separacji ochronnej.
C. Brak ochrony przed wilgocią i pyłem.
D. Brak klasy ochronności przed porażeniem.
Napis IP00 na obudowie urządzenia elektrycznego oznacza brak ochrony przed wilgocią i kurzem. Klasyfikacja IP (Ingress Protection) jest standardem opracowanym przez Międzynarodową Organizację Normalizacyjną (IEC), który określa poziomy ochrony oferowane przez obudowy urządzeń elektrycznych. W przypadku IP00, brak jakiejkolwiek cyfry oznacza, że urządzenie nie jest chronione ani przed wnikaniem ciał stałych, ani przed wilgocią. W praktyce oznacza to, że takie urządzenia powinny być używane w suchych, czystych i kontrolowanych warunkach, przez co minimalizuje się ryzyko uszkodzenia komponentów w wyniku nadmiernego zapylenia lub kontaktu z wodą. Przykładem zastosowania urządzeń oznaczonych jako IP00 mogą być niektóre elementy wewnętrzne systemów elektronicznych, które są odpowiednio zabezpieczone w zamkniętych obudowach i nie są narażone na działanie czynników zewnętrznych.

Pytanie 17

Który z wymienionych zestawów materiałów i narzędzi, oprócz wiertarki i poziomnicy, umożliwia ułożenie podtynkowej instalacji elektrycznej prowadzonej w rurkach stalowych?

Bruzdownica
Gips
Młotek
Otwornica koronkowa
Punktak
Bruzdownica
Drut wiązałkowy
Młotek
Otwornica koronkowa
Stalowe gwoździe
Drut wiązałkowy
Młotek
Otwornica koronkowa
Przecinak
Punktak
Bruzdownica
Drut wiązałkowy
Pistolet do kleju
Stalowe gwoździe
Zestaw wierteł
A.B.C.D.
A. C.
B. A.
C. D.
D. B.
Odpowiedź B jest poprawna, ponieważ zestaw ten zawiera wszystkie niezbędne narzędzia i materiały potrzebne do ułożenia podtynkowej instalacji elektrycznej w rurkach stalowych. Bruzdownica jest kluczowym narzędziem, które umożliwia precyzyjne wykonanie bruzd w ścianie, co jest niezbędne do umieszczenia rurek. Dodatkowo, drut wiązałkowy oraz stalowe gwoździe są zbawienne przy mocowaniu rurek, zapewniając ich stabilność i bezpieczeństwo instalacji. Młotek wykorzystywany jest do prac montażowych, co podkreśla znaczenie precyzyjnych prac ręcznych w instalacjach elektrycznych. Otwornica koronowa pozwala natomiast na wykonanie otworów pod puszki instalacyjne, co jest istotnym elementem końcowego wykończenia każdej instalacji. W kontekście standardów branżowych, wybór odpowiednich narzędzi i materiałów jest kluczowy dla zapewnienia bezpieczeństwa i trwałości instalacji, co jest zgodne z normami PN-IEC dotyczących instalacji elektrycznych. Wiedza o właściwym doborze narzędzi oraz materiałów przekłada się na efektywność i bezpieczeństwo pracy, co jest niezbędne w każdym projekcie budowlanym.

Pytanie 18

Która z wymienionych list czynności opisuje w jakiej kolejności demontuje się elementy stojana silnika indukcyjnego z uzwojeniem wsypywanym w celu jego przezwojenia?

1odcięcie połączeń czołowychodcięcie połączeń czołowychusunięcie izolacji żłobkowejusunięcie uzwojenia
2usunięcie izolacji żłobkowejusunięcie uzwojeniaodcięcie połączeń czołowychodcięcie połączeń czołowych
3usunięcie uzwojeniausunięcie izolacji żłobkowejusunięcie uzwojeniausunięcie izolacji żłobkowej
ABCD
A. D.
B. A.
C. C.
D. B.
Wybór niewłaściwej odpowiedzi często wynika z niepełnego zrozumienia procesu demontażu stojana silnika indukcyjnego. Wiele osób może pomylić kolejność czynności, co prowadzi do nieprawidłowych praktyk. Na przykład, jeśli demontaż rozpoczyna się od usunięcia uzwojenia przed odcięciem połączeń czołowych, naraża to technika na niebezpieczeństwo, ponieważ może dojść do niezamierzonego kontaktu z prądem. Kolejnym częstym błędem jest pomijanie etapu odcięcia zasilania, co jest kluczowe dla zapewnienia bezpieczeństwa. Bezpieczeństwo przy pracy z urządzeniami elektrycznymi powinno być zawsze na pierwszym miejscu. Ważne jest, aby również zrozumieć, że niewłaściwa kolejność demontażu może prowadzić do uszkodzenia elementów silnika, co z kolei zwiększa koszty naprawy i przestojów w pracy. Każda z tych czynności ma swoje uzasadnienie w kontekście mechaniki oraz elektryki i jest zgodna z obowiązującymi normami i standardami bezpieczeństwa, takimi jak normy IEC (Międzynarodowej Komisji Elektrotechnicznej). Dlatego kluczowe jest, aby przed przystąpieniem do demontażu, każdy technik był dokładnie przeszkolony w zakresie procedur demontażu i był świadomy zagrożeń związanych z niewłaściwym postępowaniem.

Pytanie 19

Której piły należy użyć do przycięcia korytka instalacyjnego?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Okej, to piła oznaczona jako C to taka specyficzna piła do metalu. Ma cienkie ostrze i drobne zęby, więc idealnie nadaje się do precyzyjnego cięcia korytek instalacyjnych, zwłaszcza tych metalowych. Widziałem, że często używa się takich korytek w elektryce lub hydraulice, gdzie ważne jest, żeby wszystko ładnie wyglądało i było poukładane. Jak użyjesz tej piły, to cięcia będą równe, co naprawdę ma znaczenie, bo to pozwala uniknąć deformacji materiału. W budownictwie mówi się, że trzeba używać odpowiednich narzędzi do rodzaju materiału, bo to zmniejsza ryzyko, że coś się uszkodzi. Przykładowo, można precyzyjnie przyciąć korytka do odpowiedniej długości, żeby dopasować je do różnych instalacji, co jest super ważne.

Pytanie 20

W jakim z podanych typów źródeł światła wykorzystuje się zapłonnik?

A. Lampa rtęciowa
B. Lampa sodowa
C. Żarówka halogenowa
D. Świetlówka tradycyjna
Wybór lampy sodowej, rtęciowej czy żarówki halogenowej jako źródła światła, w którym stosuje się zapłonnik, jest nieprawidłowy z powodu różnic w technologii i zasadzie działania tych lamp. Lampy sodowe wykorzystują zjawisko emisji światła poprzez naładowany gaz sodowy, jednak nie potrzebują zapłonnika, gdyż zamiast tego działają na zasadzie bezpośredniego przepływu prądu. Ponadto, lampy rtęciowe również nie wymagają zapłonnika w tradycyjnym sensie, ponieważ ich uruchomienie odbywa się poprzez elektryczne rozładowanie w gazie rtęciowym, co jest realizowane przez układ zapłonowy zintegrowany z balastem. Żarówki halogenowe, z kolei, są konstrukcją opartą na technologii żarowej, w której nie stosuje się zapłonników; zamiast tego, działają na zasadzie podgrzewania włókna wolframowego do wysokiej temperatury, co generuje światło. Zrozumienie różnic między tymi technologiami jest kluczowe, ponieważ prowadzi do lepszego doboru źródeł światła w zależności od zastosowania. Ignorowanie tych różnic może skutkować nieefektywnym działaniem systemów oświetleniowych i wyższymi kosztami eksploatacyjnymi. W praktyce, kluczowe jest stosowanie odpowiednich rozwiązań technologicznych w zależności od potrzeb i charakterystyki danego środowiska oświetleniowego.

Pytanie 21

Na rysunku przedstawiono schemat łącznika

Ilustracja do pytania
A. schodowego.
B. jednobiegunowego.
C. hotelowego.
D. dwubiegunowego.
Odpowiedź "schodowego" jest poprawna, ponieważ na przedstawionym schemacie znajduje się symbol łącznika schodowego, który jest kluczowym elementem w systemach oświetleniowych. Łącznik schodowy umożliwia sterowanie oświetleniem z dwóch lub więcej miejsc, co jest szczególnie przydatne w korytarzach, na schodach czy w dużych pomieszczeniach. Istotnym elementem tego rozwiązania są dodatkowe styki krzyżowe, które pozwalają na wygodne przełączanie między różnymi punktami zasilania, co zwiększa komfort użytkowników. Przykładowo, w domach jednorodzinnych, łączniki schodowe są często instalowane na pierwszym i ostatnim piętrze schodów, umożliwiając włączanie i wyłączanie światła bez konieczności przechodzenia przez całe pomieszczenie. Zgodnie z normą PN-EN 60669, projektowanie obwodów oświetleniowych przy użyciu łączników schodowych jest uznawane za standardową praktykę, co dodatkowo potwierdza ich znaczenie w nowoczesnych instalacjach elektrycznych.

Pytanie 22

Podłączenie odbiornika II klasy ochronności do gniazda z bolcem ochronnym skutkuje zadziałaniem wyłącznika różnicowoprądowego, natomiast podłączenie do innego gniazda w tym samym obwodzie nie wywołuje reakcji zabezpieczenia, a odbiornik działa normalnie. Jakiego rodzaju usterkę można stwierdzić w pierwszym gnieździe?

A. Zamieniony przewód ochronny z neutralnym
B. Uszkodzona izolacja przewodu fazowego
C. Zamieniony przewód fazowy z neutralnym
D. Odłączony przewód ochronny
Odpowiedź "Zamieniony przewód ochronny z neutralnym" jest prawidłowa, ponieważ w opisanej sytuacji, gdy odbiornik II klasy ochronności podłączony do gniazda ze stykiem ochronnym powoduje zadziałanie wyłącznika różnicowoprądowego, a w innym gniazdku na tym samym obwodzie odbiornik działa prawidłowo, wskazuje na problem z przewodami w pierwszym gnieździe. Zamiana przewodów ochronnego i neutralnego prowadzi do sytuacji, w której przewód neutralny, zamiast pełnić swoją rolę, staje się przewodem ochronnym. W rezultacie, w momencie, gdy odbiornik próbuje pobrać prąd, każdy potencjalny błąd może prowadzić do niebezpiecznego napięcia na obudowie urządzenia, co jest szczególnie niebezpieczne. Przepisy normy PN-IEC 60364 podkreślają znaczenie prawidłowego podłączenia przewodów ochronnych w celu zapewnienia bezpieczeństwa użytkowników. W praktyce, regularne przeglądy instalacji elektrycznych oraz stosowanie kolorów przewodów zgodnych z normami mogą zapobiec takim błędom. Zrozumienie funkcji każdego z przewodów oraz ich poprawne podłączenie jest kluczowe dla bezpieczeństwa i sprawności instalacji elektrycznej.

Pytanie 23

Podczas inspekcji świeżo zrealizowanej instalacji elektrycznej nie ma potrzeby weryfikacji

A. wartości natężenia oświetlenia na stanowiskach pracy
B. wyboru zabezpieczeń oraz urządzeń
C. rozmieszczenia tablic informacyjnych i ostrzegawczych
D. wyboru i oznakowania przewodów
Wartość natężenia oświetlenia na stanowiskach pracy nie jest bezpośrednio związana z podstawowymi wymaganiami, jakimi są bezpieczeństwo i sprawność instalacji elektrycznej. W kontekście nadzoru nad nowo wykonanymi instalacjami, ważniejsze jest upewnienie się, że instalacja jest zgodna z normami oraz dobrze zorganizowana pod względem zabezpieczeń, oznaczeń i tablic informacyjnych. Obowiązki związane z badaniem natężenia oświetlenia są zazwyczaj związane z ergonomią pracy i komfortem użytkowników, co zalicza się do bardziej szczegółowych aspektów eksploatacji. W praktyce, standardy takie jak PN-EN 12464-1 oferują wytyczne dotyczące oświetlenia miejsc pracy, ale przed przystąpieniem do pomiarów natężenia, należy upewnić się, że sama instalacja elektryczna działa sprawnie i jest bezpieczna.

Pytanie 24

Jakiego zestawu narzędzi potrzebujesz do złożenia aparatury oraz wykonania połączeń elektrycznych w rozdzielnicy w mieszkaniu?

A. Szczypce monterskie uniwersalne, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
B. Szczypce monterskie uniwersalne, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
C. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
D. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
Zestaw narzędzi, który wymieniłeś, jest naprawdę ważny przy montażu aparatury elektrycznej. Szczypce do cięcia przewodów są super przydatne, bo dzięki nim możesz łatwo obciąć przewody na odpowiednią długość – to ważne, żeby wszystko wyglądało schludnie. Przyrząd do ściągania powłoki to też niezła sprawa, bo pozwala na ściągnięcie zewnętrznej izolacji, co jest niezbędne, żeby dostać się do przewodów. No i przyrząd do ściągania izolacji - bez niego trudno by było zrobić dobre i trwałe połączenia. Co do zestawu wkrętaków, to jasne, że musisz mieć zarówno płaskie, jak i krzyżowe, żeby wszystko dobrze zamocować. Pamiętaj, że poprawne korzystanie z tych narzędzi to także kwestia bezpieczeństwa, więc dobrze jest się trzymać zasad BHP. To wszystko naprawdę wpływa na bezpieczeństwo i trwałość całej instalacji.

Pytanie 25

Zdjęcie przedstawia

Ilustracja do pytania
A. listwę montażową.
B. drabinkę kablową.
C. płytkę zaciskową.
D. szynę łączeniową.
Szyna łączeniowa to kluczowy element w instalacjach elektrycznych, służący do łączenia przewodów neutralnych w rozdzielnicach. Odpowiedź jest poprawna, ponieważ zdjęcie przedstawia właśnie ten element. Szyny łączeniowe są wykorzystywane w celu zapewnienia efektywności i bezpieczeństwa instalacji, umożliwiając łatwe połączenie wielu przewodów w jednym punkcie. Dzięki nim, instalacje są bardziej uporządkowane, co pozwala na łatwiejszą konserwację i zarządzanie okablowaniem. W praktyce, szyny łączeniowe są projektowane zgodnie z normami IEC oraz PN-EN, co zapewnia ich wysoką jakość i bezpieczeństwo. Zastosowanie szyn łączeniowych jest szczególnie istotne w rozdzielnicach, gdzie konieczne jest zminimalizowanie ryzyka zwarcia i zapewnienie niezawodności działania systemu. Warto również zaznaczyć, że różne typy szyn mogą być dostosowane do specyficznych potrzeb instalacji, co czyni je niezwykle wszechstronnym rozwiązaniem.

Pytanie 26

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. warystora.
B. odgromnika zaworowego.
C. iskiernika.
D. odgromnika wydmuchowego.
Wybór odpowiedzi 'wary stora' jest poprawny, ponieważ symbol graficzny przedstawiony na rysunku rzeczywiście reprezentuje warystor, który jest kluczowym elementem w systemach ochrony przed przepięciami. Warystor działa na zasadzie zmiany rezystancji w odpowiedzi na przyłożone napięcie, co pozwala na skuteczne odprowadzanie nadmiaru energii w sytuacjach awaryjnych. Jest on często stosowany w obwodach zasilających, aby chronić urządzenia elektroniczne przed uszkodzeniami spowodowanymi nagłymi wzrostami napięcia. Standardy takie jak IEC 61643-1 określają wymagania dla urządzeń ochronnych, w tym warystorów, co czyni je niezbędnymi w projektowaniu systemów zabezpieczeń. Warto również zauważyć, że warystory są często łączone z innymi elementami ochrony, takimi jak odgromniki czy bezpieczniki, aby zapewnić kompleksową ochronę. Zastosowanie warystorów w urządzeniach domowych oraz przemysłowych pomaga w zwiększeniu ich żywotności i niezawodności.

Pytanie 27

Które z parametrów są podane na przedstawionym urządzeniu?

Ilustracja do pytania
A. Napięcie probiercze i prąd zadziałania.
B. Napięcie probiercze i prąd znamionowy.
C. Napięcie znamionowe i prąd znamionowy.
D. Napięcie znamionowe i prąd zadziałania.
Na tym urządzeniu widzimy oznaczenia "230V AC" i "16A 250VAC cosφ=1", co jasno pokazuje jakich mamy do czynienia z parametrami. Napięcie 230V oznacza, że jest ono przystosowane do standardowego zasilania w Europie. Z kolei prąd 16A przy 250V AC pokazuje maksymalny prąd, który urządzenie może bezpiecznie obsłużyć. Zrozumienie tych wartości jest mega ważne, żeby zapewnić bezpieczeństwo i efektywność w pracy urządzeń elektrycznych. W praktyce znajomość tych danych pozwala nam na dobór odpowiednich zabezpieczeń, jak na przykład wyłączniki nadprądowe dopasowane do tych wartości. Dodatkowo, wiedza o współczynniku mocy (cosφ=1) mówi nam, że urządzenie działa w idealnych warunkach, bez strat energii. Spełnianie norm takich jak IEC 60364 jest kluczowe, bo zwiększa bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 28

Na izolatorach wsporczych instaluje się przewody

A. kabelkowe
B. szynowe
C. rdzeniowe
D. uzbrojone
Odpowiedź szynowe jest prawidłowa, ponieważ przewody szynowe są wykorzystywane w systemach elektroenergetycznych do przesyłania energii elektrycznej pomiędzy różnymi elementami instalacji. Izolatory wsporcze są kluczowym elementem, który podtrzymuje przewody szynowe, zapewniając ich stabilność i bezpieczeństwo w różnych warunkach atmosferycznych. Przewody szynowe charakteryzują się dużą zdolnością do prowadzenia prądu oraz odpornością na obciążenia mechaniczne, co czyni je odpowiednimi do zastosowań w stacjach transformacyjnych i rozdzielniach. Przykładem ich zastosowania są instalacje w elektrowniach, gdzie przewody szynowe łączą transformatory z systemem dystrybucji energii. Zgodnie z normami branżowymi, stosowanie przewodów szynowych w połączeniu z odpowiednimi izolatorami jest uznawane za jedną z najlepszych praktyk w projektowaniu sieci elektroenergetycznych.

Pytanie 29

Których aparatów montowanych na szynie TH 35 dotyczą przedstawione w tabeli parametry techniczne?

Parametry techniczne
Prąd znamionowy
In w A
Szerokość
w modułach
o wymiarach
17,5 mm
Charakterystyka
61B
101B
161B
201B
251B
321B
401B
501B
631B
A. Transformatorów.
B. Wyłączników nadprądowych.
C. Wyłączników różnicowoprądowych.
D. Styczników.
Wyłączniki nadprądowe to naprawdę ważne elementy w systemach elektrycznych, bo chronią nas przed przeciążeniami i zwarciami. Patrząc na parametry w tabeli, takie jak prąd znamionowy (In) czy szerokość 17,5 mm, to są one typowe dla takich urządzeń, które zakłada się na szynę TH 35. Ciekawostką jest, że wyłączniki z charakterystyką B są idealne do obwodów, gdzie mogą występować krótkotrwałe skoki prądu, co często zdarza się w instalacjach oświetleniowych czy gniazdkowych. Dzięki nim, jak prąd przekroczy ustalony poziom, to automatycznie odłączają zasilanie, co zapobiega uszkodzeniu sprzętu i zmniejsza ryzyko pożaru. Warto pamiętać, że zgodnie z normą PN-EN 60898, musi się je regularnie testować, żeby wszystko działało jak należy. Dlatego ważne jest, żeby dobrze dobierać i instalować te wyłączniki, bo mają ogromne znaczenie dla bezpieczeństwa i niezawodności naszych instalacji elektrycznych.

Pytanie 30

Który z podanych łączników elektrycznych jest przeznaczony do osobnego sterowania dwiema sekcjami oświetlenia w żyrandolu?

A. Dwubiegunowy
B. Krzyżowy
C. Schodowy
D. Świecznikowy
Świecznikowy łącznik instalacyjny jest zaprojektowany w taki sposób, aby umożliwiać niezależne sterowanie różnymi sekcjami źródeł światła w lampach, w tym żyrandolach. Jego konstrukcja pozwala na włączenie i wyłączenie poszczególnych źródeł światła, co jest szczególnie przydatne w przypadku żyrandoli z wieloma żarówkami. Dzięki temu użytkownik może dostosować natężenie oświetlenia w pomieszczeniu w zależności od potrzeb, co zwiększa funkcjonalność i komfort użytkowania. Przykładowo, w jadalni, gdzie często zasiadamy z rodziną lub gośćmi, można włączyć tylko kilka żarówek, aby stworzyć przytulną atmosferę. Zastosowanie łącznika świecznikowego jest zgodne z ogólnymi normami instalacji elektrycznych, które zalecają elastyczność w sterowaniu oświetleniem. Dobrą praktyką w projektowaniu systemów oświetleniowych jest również uwzględnienie możliwości dalszej rozbudowy instalacji oraz zastosowanie łączników, które umożliwiają późniejszą modyfikację układów oświetleniowych.

Pytanie 31

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±2,5% + 1 cyfra
B. ±1,0% + 4 cyfry
C. ±2,0% + 2 cyfry
D. ±1,5% + 3 cyfry
Wybór błędnych opcji wynika często z niepełnego zrozumienia zasad działania mierników oraz błędnego interpretowania wartości procentowych i cyfr. Na przykład odpowiedzi z dokładnością ±2,0% + 2 cyfry czy ±1,5% + 3 cyfry oferują znacznie większy margines błędu, co sprawia, że ​​są mniej odpowiednie do precyzyjnych pomiarów. Przy odpowiedzi ±2,0% + 2 cyfry, maksymalny błąd wyniósłby 30 mA × 2,0% + 2 cyfry, co daje 0,6 mA + 0,02 mA, czyli 0,62 mA, a to już znacznie przekracza akceptowalny poziom dokładności w wielu zastosowaniach. Podobnie, dla ±1,5% + 3 cyfry, obliczenia prowadzą do maksymalnego błędu 0,45 mA + 0,03 mA, czyli 0,48 mA. Te wartości są niewystarczające w kontekście aplikacji, które wymagają dużej precyzji. W praktyce, większa dokładność miernika pozwala na dokładniejsze przyrządzanie obwodów elektronicznych oraz zmniejsza ryzyko wystąpienia błędów w obliczeniach związanych z analizą danych. W branży inżynieryjnej, ważne jest, aby dobierać urządzenia zgodnie z wymaganiami pomiarowymi, co przekłada się na jakość i wiarygodność wyników.

Pytanie 32

Kiedy należy dokonać przeglądu instalacji elektrycznej w obiekcie przemysłowym?

A. Co pięć lat
B. Tylko przed uruchomieniem nowych maszyn
C. Co najmniej raz na rok
D. Po każdej naprawie maszyn
Przegląd instalacji elektrycznej w obiektach przemysłowych powinien być dokonywany co najmniej raz na rok. Częstotliwość ta jest zgodna z normami i przepisami dotyczącymi bezpieczeństwa w przemyśle, które wymagają regularnych przeglądów w celu zapewnienia bezpiecznego i efektywnego działania instalacji. Przykładowo, roczne przeglądy pozwalają na wczesne wykrycie potencjalnych uszkodzeń, które mogą prowadzić do awarii lub zagrożeń dla bezpieczeństwa pracowników. Dodatkowo, regularne przeglądy umożliwiają identyfikację zużycia podzespołów i przewodów, co jest kluczowe w kontekście ich konserwacji i wymiany. W praktyce, podczas takiego przeglądu sprawdza się m.in. stan izolacji przewodów, działanie zabezpieczeń oraz poprawność połączeń, co ma na celu zminimalizowanie ryzyka porażenia prądem czy pożaru. Ponadto, zgodnie z dobrymi praktykami branżowymi, przeglądy roczne są uznawane za minimalny standard dla utrzymania optymalnego stanu technicznego instalacji w intensywnie eksploatowanych środowiskach przemysłowych.

Pytanie 33

Na którym rysunku przedstawiono oprawę oświetleniową rastrową?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Wybór innej odpowiedzi może wynikać z niezrozumienia podstawowych różnic pomiędzy różnymi typami opraw oświetleniowych. Oprawy oznaczone jako A, C i D mogą wydawać się odpowiednie z perspektywy ich wyglądu, jednak nie posiadają one charakterystycznej konstrukcji rastrowej. Często błędnie sądzimy, że każda oprawa, która rozprasza światło, spełnia funkcje rastrowe. Oprawy z innymi typami osłon, mogą być wyposażone w przesłony, które jedynie zmniejszają natężenie światła, ale nie rozpraszają go w sposób równomierny. Istotnym aspektem jest fakt, że oświetlenie rastrowe jest projektowane z myślą o minimalizacji olśnienia, co jest realizowane przez zastosowanie odpowiednich materiałów i struktury. Ponadto, nieodpowiednie zrozumienie tych zasad może prowadzić do wyboru opraw, które nie tylko nie spełniają oczekiwań użytkowników, ale mogą także wprowadzać w błąd w kontekście spełniania norm dotyczących jakości oświetlenia w miejscach pracy. Dlatego kluczowe jest, aby przed podjęciem decyzji o wyborze oprawy oświetleniowej, dokładnie zapoznać się z ich właściwościami oraz przeznaczeniem, aby uniknąć typowych błędów związanych z niewłaściwym doborem oświetlenia.

Pytanie 34

Na podstawie zamieszczonych wyników pomiarów rezystancji w przewodzie elektrycznym przedstawionym na ilustracji można stwierdzić, że żyły

Ilustracja do pytania
A. L1 i L2 są przerwane.
B. N i L3 są zwarte oraz PE jest przerwana.
C. L1 i L2 są zwarte.
D. N i PE są zwarte oraz L3 jest przerwana.
Poprawna odpowiedź wskazuje, że żyły N i PE są zwarte oraz L3 jest przerwana. Wyniki pomiarów rezystancji potwierdzają, że między żyłami N i PE nie ma oporu, co oznacza, że są one ze sobą połączone. Przykładowo, w instalacjach elektrycznych, żyła neutralna (N) oraz żyła ochronna (PE) powinny być połączone w punkcie zerowym, co jest zgodne z normami bezpieczeństwa. W przypadku, gdy rezystancja między L3.1 a L3.2 wynosi ∞, mamy do czynienia z przerwaniem w tej żyle, co może prowadzić do niebezpiecznych sytuacji, takich jak wzrost napięcia na żyłach fazowych. Istotne jest, aby przy każdorazowej kontroli instalacji elektrycznych stosować takie pomiary, aby zidentyfikować wszelkie nieprawidłowości. Praktyki te są zgodne z normami PN-IEC 60364, które określają wymagania dotyczące bezpieczeństwa instalacji elektrycznych. Zrozumienie tych zależności jest kluczowe dla zapewnienia bezpieczeństwa oraz długotrwałej eksploatacji instalacji elektrycznych.

Pytanie 35

Którą oprawę oświetleniową należy zastosować w piwnicy o zwiększonej wilgotności powietrza?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Oprawa oświetleniowa oznaczona jako D. jest odpowiednia do zastosowania w piwnicy o zwiększonej wilgotności powietrza, ponieważ spełnia normy dotyczące szczelności i odporności na działanie wilgoci. W takich warunkach, zastosowanie oprawy z wyższym stopniem ochrony, jak IP65 lub IP67, jest kluczowe, aby uniknąć ryzyka uszkodzenia instalacji elektrycznej oraz zapewnić bezpieczeństwo użytkowników. Dobrą praktyką jest wybór opraw wyekwipowanych w zatrzaski, co zwiększa ich szczelność i zapobiega przedostawaniu się pary wodnej oraz zanieczyszczeń. W piwnicach, gdzie może występować wilgoć, szczególnie istotne jest regularne sprawdzanie stanu technicznego oświetlenia, a także stosowanie źródeł światła odpornych na wahania temperatury oraz wilgotności, takich jak diody LED. Przykładem mogą być instalacje oświetleniowe w magazynach lub piwnicach, które wymagają nie tylko właściwego doboru opraw, ale także odpowiedniego montażu, aby zapewnić ich długotrwałą i bezpieczną eksploatację.

Pytanie 36

Które oznaczenie dotyczy przedstawionego trzonka elektrycznego źródła światła?

Ilustracja do pytania
A. G9
B. GU10
C. MR16
D. E14
Trzonek typu GU10, który został przedstawiony na zdjęciu, jest powszechnie stosowany w oświetleniu halogenowym oraz LED. Cechą charakterystyczną trzonka GU10 są dwa bolce o średnicy 10 mm, które umożliwiają łatwe i pewne zamocowanie w gniazdach. Ten rodzaj trzonka jest szczególnie popularny w reflektorach, co czyni go idealnym do zastosowań w oświetleniu akcentującym, gdzie istotne jest skierowanie światła na konkretne obszary. Standard GU10 jest zgodny z normami międzynarodowymi dotyczącymi wymiany i instalacji źródeł światła, co zapewnia uniwersalność i łatwość w stosowaniu. Użytkownicy powinni zwrócić uwagę na to, że trzonki GU10 są dostępne w różnych wariantach mocy oraz barwie światła, co pozwala na dostosowanie oświetlenia do indywidualnych potrzeb. Warto również zauważyć, że trzonek GU10 jest szczególnie efektywny pod względem energetycznym, zwłaszcza w wersjach LED, co wpisuje się w aktualne trendy w zakresie zrównoważonego rozwoju i oszczędności energii.

Pytanie 37

Jakie mogą być przyczyny nadmiernego przegrzewania się wyłącznika nadmiarowo-prądowego podczas długotrwałego zasilania sprawnego odbiornika?

A. Zbyt wysoka moc zasilanego odbiornika
B. Słabo dokręcone złącza wyłącznika
C. Zbyt niski prąd znamionowy wyłącznika
D. Niewłaściwe napięcie zasilania
Nieodpowiednie napięcie zasilające, za mały prąd znamionowy wyłącznika oraz zbyt duża moc zasilanego odbiornika mogą wydawać się logicznymi przyczynami nadmiernego nagrzewania się wyłącznika nadmiarowo-prądowego, jednak nie są one bezpośrednio związane z tym zjawiskiem w kontekście długotrwałego zasilania sprawnego odbiornika. Niewłaściwe napięcie zasilające może prowadzić do problemów z wydajnością urządzeń, jednak niekoniecznie skutkuje to nadmiernym nagrzewaniem się samego wyłącznika. Prąd znamionowy wyłącznika jest zaprojektowany tak, aby tolerować określone wartości prądu, a jego nadmierne obciążenie może rzeczywiście prowadzić do przegrzewania, lecz w przypadku sprawnego odbiornika działającego w granicach norm, nie powinno to być problemem. Z kolei zbyt duża moc zasilanego odbiornika może sprawić, że wyłącznik zareaguje i zadziała, co ochroni obwód, a nie spowoduje jego przegrzania. W praktyce, najczęściej występującym problemem jest właśnie niewłaściwe dokręcenie zacisków, co podkreśla rolę odpowiedniego montażu i konserwacji w zapewnieniu bezpieczeństwa i efektywności systemów elektrycznych.

Pytanie 38

Jaką oprawę oświetleniową pokazano na rysunku?

Ilustracja do pytania
A. Uliczną.
B. Biurową.
C. Punktową.
D. Przenośną.
Oprawa oświetleniowa przedstawiona na rysunku jest klasycznym przykładem oświetlenia ulicznego. Charakteryzuje się ona specyficznym kształtem i montażem, które są dostosowane do oświetlania przestrzeni publicznych, takich jak ulice, parki czy chodniki. W praktyce, oprawy uliczne są projektowane z myślą o maksymalnej efektywności świetlnej oraz odporności na warunki atmosferyczne. Standardy branżowe, takie jak normy PN-EN 13201, określają wymagania dotyczące oświetlenia dróg, co zapewnia bezpieczeństwo użytkowników dróg. W zależności od specyfiki terenu, oprawy te mogą być stosowane z różnymi źródłami światła, w tym LED, co zwiększa ich efektywność energetyczną i żywotność. Dobre praktyki w zakresie instalacji oświetlenia ulicznego uwzględniają także odpowiednie rozmieszczenie opraw, co ma kluczowe znaczenie dla zapewnienia równomiernego oświetlenia i minimalizacji efektu olśnienia dla kierowców i pieszych. Odpowiednia oprawa uliczna nie tylko poprawia widoczność, ale również wpływa na bezpieczeństwo oraz komfort użytkowników dróg.

Pytanie 39

Które z przedstawionych narzędzi jest przeznaczone do demontażu przewietrznika z wału silnika elektrycznego?

Ilustracja do pytania
A. Narzędzie 3.
B. Narzędzie 2.
C. Narzędzie 4.
D. Narzędzie 1.
Narzędzie 2, czyli ściągacz, jest kluczowym narzędziem wykorzystywanym w procesie demontażu przewietrznika z wału silnika elektrycznego. Jego konstrukcja umożliwia równomierne rozłożenie siły, co jest niezwykle istotne, aby uniknąć uszkodzenia elementów. W praktyce, ściągacz stosuje się w sytuacjach, gdy przewietrznik mocno przylega do wału, co może zdarzyć się w wyniku długotrwałego użytkowania silnika. Właściwe użycie ściągacza polega na umieszczeniu go tak, aby mocno, ale delikatnie, chwytał za brzegi demontowanego elementu. Zgodnie z najlepszymi praktykami branżowymi, przed przystąpieniem do demontażu należy zawsze upewnić się, że silnik jest odłączony od źródła zasilania. Użycie ściągacza w ten sposób minimalizuje ryzyko uszkodzenia zarówno przewietrznika, jak i wału silnika. Pozostałe narzędzia, takie jak narzędzie 1, 3 i 4, nie są dostosowane do tej specyficznej pracy, co może prowadzić do nieefektywnego demontażu i potencjalnych uszkodzeń.

Pytanie 40

Rysunek przedstawia schemat lampy z układem zapłonowym. Jaka to lampa?

Ilustracja do pytania
A. Żarowa.
B. Rtęciowa wysokoprężna.
C. Sodowa niskoprężna.
D. Fluorescencyjna.
Wybierając odpowiedzi takie jak sodowa niskoprężna, fluorescencyjna czy żarowa, mogą pojawić się nieporozumienia dotyczące różnic między różnymi rodzajami lamp. Lampy sodowe niskoprężne są często stosowane w oświetleniu ulicznym, jednak działają na innej zasadzie niż lampy rtęciowe wysokoprężne. Ich układ zapłonowy jest oparty na innym typie technologii, co znacząco wpływa na ich parametry świetlne oraz trwałość. Z kolei lampy fluorescencyjne, które wykorzystują gaz i luminofor do generowania światła, nie wymagają dławika ani wysokiego napięcia do zapłonu, co jest fundamentalne w przypadku lamp rtęciowych. Lampy żarowe, mimo że powszechnie używane, charakteryzują się znacznie niższą wydajnością świetlną oraz krótszą żywotnością, co sprawia, że nie są odpowiednie do zastosowań, które wymagają intensywnego i trwałego oświetlenia. Często błędne odpowiedzi wynikają z niezrozumienia różnic w technologii oraz zastosowania poszczególnych typów lamp. Istotne jest, aby przy wyborze źródła światła brać pod uwagę nie tylko jego właściwości, ale również przeznaczenie, co powinno być oparte na analizie wymagań oświetleniowych w danej lokalizacji.