Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 31 stycznia 2026 10:49
  • Data zakończenia: 31 stycznia 2026 11:02

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W miejsce cyfr dobierz symbole graficzne rodzaju przewodów, zachowując kolejność.

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Odpowiedź D jest poprawna, ponieważ zgodnie z zasadami podłączania przewodów w instalacjach elektrycznych, oznaczenia przewodów mają kluczowe znaczenie dla ich prawidłowego funkcjonowania. Przewód oznaczony grubą kropką reprezentuje przewód neutralny (N), podczas gdy przewody bez oznaczeń to przewody fazowe (L). W analizowanym schemacie widzimy, że do łącznika dochodzi przewód fazowy, a jego wyjście również prowadzi do przewodu fazowego. Odpowiedź D ilustruje tę sytuację, przedstawiając dwa przewody fazowe oraz jeden neutralny, co jest zgodne z normami i dobrymi praktykami branżowymi. Właściwe podłączenie przewodów jest istotne, aby zapewnić bezpieczeństwo instalacji oraz jej właściwe działanie. Przykładowo, w instalacjach oświetleniowych, prawidłowe oznaczenie i podłączenie przewodów ma kluczowe znaczenie dla uniknięcia zwarć oraz zapewnienia nieprzerwanego dostępu do energii elektrycznej.

Pytanie 2

Która z poniższych czynności ocenia efektywność ochrony uzupełniającej przed porażeniem prądem elektrycznym?

A. Badanie wyłącznika różnicowoprądowego
B. Badanie stanu izolacji podłóg
C. Pomiar impedancji pętli zwarciowej
D. Pomiar rezystancji izolacji przewodów
Badanie wyłącznika różnicowoprądowego (RCD) jest kluczowym krokiem w ocenie skuteczności ochrony przed porażeniem prądem elektrycznym. Wyłączniki różnicowoprądowe są zaprojektowane w celu wykrywania różnicy prądów między przewodem fazowym a neutralnym. W momencie, gdy prąd upływowy, wskazujący na potencjalne porażenie prądem, przekroczy ustalony próg, wyłącznik natychmiast odłącza zasilanie, co minimalizuje ryzyko urazu. Badanie RCD polega na sprawdzeniu, czy wyłącznik działa prawidłowo i odłącza obwód w określonym czasie i przy zadanym prądzie upływowym, co jest zgodne z normami takimi jak PN-EN 61008. Praktycznym przykładem jest rutynowe testowanie RCD w obiektach użyteczności publicznej, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie. Regularne kontrole RCD powinny być częścią planu konserwacji instalacji elektrycznych, aby zapewnić stałą ochronę przed zagrożeniami związanymi z prądem elektrycznym.

Pytanie 3

Podczas realizacji instalacji elektrycznej w obiektach przemysłowych z wydzielinami korozyjnymi powinno się zastosować sprzęt hermetyczny oraz wykorzystać przewody z żyłami

A. miedzianymi umieszczonymi na tynku
B. miedzianymi umieszczonymi pod tynkiem
C. aluminiowymi umieszczonymi na tynku
D. aluminiowymi umieszczonymi pod tynkiem
Odpowiedzi, które sugerują użycie przewodów aluminiowych w instalacjach elektrycznych w pomieszczeniach przemysłowych z wyziewami żrącymi, są niewłaściwe. Aluminium, choć jest tańszym materiałem i ma swoje zalety, takich jak lekkość, ma znacznie gorsze właściwości w zakresie odporności na korozję w porównaniu do miedzi. W środowiskach z agresywnymi substancjami chemicznymi, aluminiowe przewody mogą szybko ulegać degradacji, co może prowadzić do przerwy w obwodzie elektrycznym, a tym samym zwiększać ryzyko pożaru i uszkodzeń sprzętu. Ponadto, przewody aluminiowe wymagają szczególnej staranności w montażu, aby uniknąć problemów z połączeniami, które mogą prowadzić do przegrzewania. Ułożenie przewodów pod tynkiem, zwłaszcza w warunkach przemysłowych, może być problematyczne ze względu na trudności w naprawach i kontroli stanu technicznego instalacji. Używanie przewodów aluminiowych na tynku również nie jest zalecane, ponieważ naraża je na uszkodzenia mechaniczne oraz niekorzystne działanie czynników atmosferycznych. W kontekście dobrych praktyk branżowych oraz norm, takich jak PN-IEC 60364, instalacje elektryczne w środowiskach przemysłowych powinny być projektowane z myślą o maksymalnej trwałości i bezpieczeństwie. Dlatego wybór materiałów i metod zastosowania przewodów elektrycznych powinien być starannie przemyślany, aby uniknąć błędów, które mogą prowadzić do poważnych konsekwencji.

Pytanie 4

Jakie z podanych powodów wpływa na wzrost iskrzenia na komutatorze w trakcie działania sprawnego silnika bocznikowego prądu stałego po wymianie szczotek?

A. Zbyt małe wzbudzenie silnika
B. Zbyt duże wzbudzenie silnika
C. Zbyt duży nacisk szczotek na komutator
D. Zbyt mała powierzchnia styku szczotek z komutatorem
Wybór odpowiedzi związanej z zbyt dużym wzbudzeniem silnika opiera się na błędnym wrażeniu, że większa moc wzbudzenia prowadzi do zmniejszenia iskrzenia na komutatorze. W rzeczywistości, nadmierne wzbudzenie może skutkować zwiększeniem prędkości obrotowej silnika, co pogarsza warunki pracy szczotek. Wzrost obrotów prowadzi do intensywniejszego kontaktu szczotek z komutatorem, co w połączeniu z niewłaściwą powierzchnią styku może zaostrzyć problem iskrzenia. Kolejne nieporozumienie dotyczy zbyt małego wzbudzenia, które często jest mylone z zaniżonym napięciem czy słabą mocą, co może prowadzić do niestabilności pracy silnika, ale nie jest bezpośrednim czynnikiem powodującym iskrzenie. Z kolei odpowiedź sugerująca zbyt duży nacisk szczotek na komutator, mimo że może prowadzić do ich szybszego zużycia, nie wyjaśnia przyczyny iskrzenia. Zbyt duży nacisk powoduje, że szczotki zużywają się szybciej, ale to nie jest głównym czynnikiem iskrzenia, które, jak pokazuje praktyka, jest w głównej mierze związane z samą powierzchnią styku. Aby unikać problemów z iskrzeniem, kluczowe jest zrozumienie wpływu właściwego wzbudzenia i siły nacisku na wydajność szczotek oraz regularne monitorowanie ich stanu, co powinno stać się standardową praktyką w każdej aplikacji silników prądu stałego.

Pytanie 5

Kiedy instalacja elektryczna nie musi być poddawana konserwacji i/lub naprawie?

A. Gdy eksploatacja instalacji zagraża bezpieczeństwu obsługi lub/i otoczenia. 
B. Gdy przeprowadza się prace konserwacyjne w budynku, np. malowanie ścian. 
C. Gdy stan techniczny instalacji jest zły lub wartości jej parametrów nie mieszczą się w granicach określonych w instrukcji eksploatacji.
D. Gdy stwierdzone zostanie uszkodzenie instalacji elektrycznej. 
Poprawnie wskazana odpowiedź dotyczy sytuacji, w której w budynku prowadzi się zwykłe prace konserwacyjne, np. malowanie ścian, wymiana listew przypodłogowych, drobne prace wykończeniowe, które nie ingerują w instalację elektryczną. Sama czynność malowania czy odświeżania pomieszczeń nie jest powodem do tego, żeby automatycznie wykonywać konserwację lub naprawę instalacji. Oczywiście, zgodnie z dobrą praktyką, przed takimi pracami należy instalację odpowiednio zabezpieczyć – osłonić gniazda, wyłączniki, oprawy, a czasem nawet odłączyć zasilanie w danym obwodzie, ale to nie jest to samo co konserwacja instalacji w sensie technicznym. Konserwacja i naprawa są wymagane, gdy występują objawy zużycia, uszkodzenia albo zagrożenie dla bezpieczeństwa użytkowników, co wynika z przepisów BHP oraz wymagań norm, np. PN‑HD 60364 i przepisów eksploatacji urządzeń elektroenergetycznych. W praktyce technicznej wygląda to tak, że instalację poddajemy przeglądom okresowym (np. co 5 lat w budynkach mieszkalnych, częściej w obiektach o podwyższonym ryzyku) oraz doraźnym kontrolom po stwierdzeniu nieprawidłowości. Jeśli podczas malowania ktoś zauważy nadpalone gniazdo, luźny osprzęt, przebarwienia wokół puszki – to wtedy jest to już sygnał do działań serwisowych. Natomiast samo malowanie, tapetowanie czy inne prace wykończeniowe nie stanowią podstawy do obowiązkowej konserwacji instalacji. Moim zdaniem ważne jest, żeby odróżniać prace budowlano‑wykończeniowe od prac eksploatacyjnych na instalacji elektrycznej – to są dwie różne bajki, chociaż często wykonywane w tym samym czasie. Dlatego dobrze, że kojarzysz, iż przy zwykłych robotach remontowych instalacja nie musi być z automatu konserwowana lub naprawiana, o ile jej stan techniczny jest prawidłowy i zgodny z dokumentacją oraz instrukcją eksploatacji.

Pytanie 6

W przypadku układu elektrycznego, w którym z jednego punktu zasilane są przynajmniej dwie wewnętrzne linie zasilające, konieczne jest zastosowanie

A. przyłącze
B. instalacje odbiorcze
C. złącze
D. rozdzielnicę główną
Przyłącze, choć często mylone z złączem, pełni inną funkcję w systemie elektroenergetycznym. Przyłącze odnosi się do punktu, w którym instalacja elektryczna łączy się z siecią energetyczną. Jest to miejsce, gdzie energia elektryczna dostarczana jest do budynku, a nie element, który zarządza rozdzieleniem energii na kilka obwodów. W konsekwencji, przyłącze nie spełnia roli rozdzielnika dla linii wewnętrznych. Rozdzielnica główna, z kolei, jest odpowiedzialna za dystrybucję energii elektrycznej do różnych obwodów w instalacji, ale nie jest bezpośrednio przeznaczona do łączenia wielu linii zasilających w jednym punkcie, jak ma to miejsce w przypadku złącza. Instalacje odbiorcze również nie są właściwą odpowiedzią, gdyż odnosi się to do urządzeń, które pobierają energię elektryczną z sieci, takich jak oświetlenie czy urządzenia domowe. Błędne zrozumienie funkcji tych elementów może prowadzić do nieefektywnych lub niebezpiecznych rozwiązań w instalacji, dlatego istotne jest zrozumienie różnicy między złączem a innymi komponentami systemu elektroenergetycznego. Właściwe rozpoznanie funkcji złącz i innych elementów jest kluczowe dla bezpieczeństwa oraz efektywności każdej instalacji elektrycznej.

Pytanie 7

W trakcie korzystania z instalacji elektrycznej często dochodzi do zadziałania wyłącznika różnicowoprądowego. Jakie mogą być przyczyny tej usterki?

A. Wykorzystywanie urządzeń o zbyt dużej mocy
B. Zwarcie w instalacji elektrycznej pomiędzy przewodem L a N
C. Częściowe zwarcie w instalacji elektrycznej pomiędzy przewodem L a PE
D. Użycie wyłącznika o zbyt długim czasie reakcji
Długi czas działania wyłącznika nie jest główną przyczyną częstego zadziałania RCD. Wyłączniki różnicowoprądowe są tak skonstruowane, żeby działały w określonym czasie, kiedy wykryją problemy z prądem upływowym. Więc długi czas zadziałania bardziej może dotyczyć innych zabezpieczeń, jak wyłączniki nadprądowe, które mają swoje własne parametry. Zwarcie między przewodem L a N w ogóle nie powoduje zadziałania RCD, bo nie wytwarza prądu upływowego do ziemi, co jest kluczowe do aktywacji RCD. Również używanie urządzeń o zbyt dużej mocy nie ma związku, bo RCD nie reaguje na przeciążenie, tylko na różnice w prądzie. Często błędne rozumowanie prowadzi do mylenia funkcji różnych zabezpieczeń elektrycznych i braku połączenia między rodzajem zwarcia a reakcją RCD, co może prowadzić do niewłaściwej diagnostyki i realnych zagrożeń.

Pytanie 8

Przy jakiej wartości prądu różnicowego zmiennego sinusoidalnie nie powinien zadziałać sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA?

A. IΔ = 20 mA
B. IΔ = 30 mA
C. IΔ = 40 mA
D. IΔ = 10 mA
Zrozumienie, dlaczego odpowiedzi takie jak IΔ = 20 mA, IΔ = 30 mA oraz IΔ = 40 mA są błędne, wymaga analizy zasad funkcjonowania wyłączników różnicowoprądowych. Wyłącznik różnicowoprądowy o prądzie nominalnym 30 mA ma być zaprojektowany tak, aby działał w przypadku wykrycia różnicy prądów na poziomie 30 mA lub wyższym. Odpowiedzi wskazujące wartości 20 mA, 30 mA i 40 mA przedstawiają różne błędne koncepcje. W szczególności, prąd IΔ = 20 mA jest nadal w obrębie zakresu, w którym wyłącznik może zadziałać, ponieważ jest on niższy niż 30 mA, co oznacza, że w sytuacji, gdy wystąpi prąd różnicowy na tym poziomie, wyłącznik zareaguje, aby chronić użytkowników. Odpowiedź 30 mA jest marnotrawstwem, ponieważ wyłącznik zadziała w momencie osiągnięcia tego poziomu prądu, co nie jest zgodne z pytaniem, które dotyczy wartości, przy której nie powinien zadziałać. Natomiast prąd 40 mA przekracza wartość nominalną wyłącznika, co wskazuje, że w takim przypadku powinien on zadziałać, aby zapobiec niebezpieczeństwu. Takie błędne rozumowanie wynika często z nieprawidłowego zrozumienia funkcji wyłączników różnicowoprądowych oraz ich działania w kontekście ochrony elektrycznej, co potwierdzają standardy takie jak IEC 60364, które podkreślają konieczność stosowania odpowiednich wartości progowych dla zabezpieczeń.

Pytanie 9

W celu sprawdzenia poprawności montażu przewodu fazowego do gniazda wtyczkowego przedstawionego na ilustracji należy

Ilustracja do pytania
A. sprawdzić wskaźnikiem obecność napięcia na styku ochronnym gniazda.
B. zewrzeć przewód N i PE.
C. sprawdzić wskaźnikiem obecność napięcia w lewym otworze gniazda.
D. zewrzeć przewód L i N.
Prawidłowo – w typowym gnieździe jednofazowym z bolcem ochronnym przewód fazowy L powinien znajdować się w lewym otworze (patrząc od przodu gniazda), przewód neutralny N w prawym, a styk ochronny PE na bolcu. Sprawdzenie wskaźnikiem napięcia właśnie w lewym otworze jest więc podstawową i najprostszą metodą weryfikacji, czy przewód fazowy został podłączony zgodnie z przyjętym standardem. W praktyce stosuje się do tego najczęściej próbnik jednobiegunowy, popularnie zwany „śrubokrętem z neonówką”, albo wskaźnik dwubiegunowy – ten drugi jest z mojego doświadczenia znacznie bezpieczniejszy i bardziej wiarygodny. Jeśli wskaźnik pokaże obecność napięcia w lewym otworze, a brak napięcia w prawym, to znaczy, że faza i neutralny nie zostały zamienione miejscami. Taki sposób podłączenia jest zgodny z zaleceniami normy PN‑HD 60364 i dobrą praktyką instalatorską, nawet jeśli urządzenia zazwyczaj zadziałają także przy odwróceniu L i N. Ma to znaczenie zwłaszcza przy serwisowaniu sprzętu, pomiarach, a także przy urządzeniach z jednostronnym wyłączaniem biegunów. Prawidłowe położenie fazy ułatwia też późniejszą diagnostykę – elektryk od razu wie, gdzie spodziewać się napięcia. W codziennej pracy, przy odbiorze instalacji, sprawdza się kolejno: obecność napięcia w lewym otworze, brak napięcia na styku neutralnym oraz ciągłość i brak napięcia na przewodzie ochronnym PE. To jest taki absolutny podstawowy nawyk każdego instalatora – zanim cokolwiek dotknie, najpierw wskaźnik w gniazdo i szybka kontrola, gdzie jest faza, a gdzie nie powinno być napięcia.

Pytanie 10

Jaką z poniższych wkładek bezpiecznikowych powinno się zastosować w celu zabezpieczenia przewodów przed skutkami zwarć oraz przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. gG 20 A
B. aM 20 A
C. aM 16 A
D. gG 16 A
Wybór wkładki bezpiecznikowej gG 16 A do zabezpieczenia obwodu jednofazowego bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V jest uzasadniony z kilku powodów. Po pierwsze, moc bojlera wynosząca 3 kW przy 230 V generuje prąd znamionowy równy około 13 A (obliczane według wzoru I = P/U). W tym przypadku wkładka gG, zaprojektowana do ochrony przewodów przed przeciążeniem i zwarciem, jest odpowiednia, gdyż może wytrzymać chwilowe przeciążenia, jakie mogą wystąpić podczas rozruchu bojlera. Ponadto, wkładki gG mają charakterystykę czasowo-prądową, co oznacza, że mogą tolerować krótkotrwałe przeciążenia, co czyni je idealnym wyborem w aplikacjach, gdzie występują takie zjawiska. Stosowanie wkładek aM, które są bardziej przystosowane do ochrony obwodów silnikowych, nie jest wskazane w tym przypadku, ponieważ ich charakterystyka nie jest optymalna do zabezpieczenia obwodu grzewczego. W praktyce, dobór wkładek bezpiecznikowych powinien opierać się na analizie specyfiki obciążenia oraz na standardach takich jak PN-EN 60269, które definiują wymagania dla wkładek bezpiecznikowych. Dlatego wkładka gG 16 A jest najlepszym wyborem dla tego zastosowania.

Pytanie 11

Jakie są przyczyny automatycznego wyłączenia wyłącznika instalacyjnego po mniej więcej 10 minutach od włączenia obwodu odbiorczego w instalacji elektrycznej?

A. Przeciążenie
B. Przepięcie
C. Zwarcie bezimpedancyjne
D. Prąd błądzący
Wybór odpowiedzi dotyczącej zwarcia bezimpedancyjnego sugeruje błędne zrozumienie mechanizmu działania wyłączników instalacyjnych. Zwarcie bezimpedancyjne, charakteryzujące się bardzo małą opornością, prowadzi do natychmiastowego wzrostu prądu, co skutkuje natychmiastowym zadziałaniem zabezpieczeń. Zazwyczaj przy zwarciu wyłącznik zadziała praktycznie od razu, a nie po 10 minutach. Z kolei przepięcia, które mogą być wynikiem działania pioruna bądź włączenia dużych urządzeń elektrycznych, również prowadzą do wyzwolenia zabezpieczeń, ale zazwyczaj w znacznie krótszym czasie. Prąd błądzący, który może występować w instalacji z uszkodzoną izolacją, także nie jest przyczyną samoczynnego zadziałania wyłącznika po tak długim czasie. Zwykle wykrycie prądu błądzącego skutkuje natychmiastową reakcją urządzeń zabezpieczających, takich jak wyłączniki różnicowoprądowe. Błędy w diagnozowaniu problemów mogą prowadzić do niepotrzebnych napraw czy kosztów, dlatego ważne jest, aby zrozumieć, że wyłączniki instalacyjne działają na podstawie określonych norm i nie reagują na przeciążenia w sposób, w jaki reagowałyby na zwarcia czy przepięcia. Kluczowe jest także stosowanie się do zasad doboru urządzeń zabezpieczających w instalacjach elektrycznych, aby zminimalizować ryzyko wystąpienia problemów związanych z przeciążeniem.

Pytanie 12

Z instrukcji obsługi przedstawionego na rysunku miernika wynika, że przed pomiarem rezystancji należy wyzerować omomierz. W tym celu należy przełącznikiem funkcji wybrać pomiar rezystancji i ustawić wskazówkę na 0 Ω przy pomocy pokrętła oznaczonego cyfrą

Ilustracja do pytania
A. 1 przy zwartych przewodach pomiarowych.
B. 2 przy zwartych przewodach pomiarowych.
C. 1 przy odłączonych przewodach pomiarowych.
D. 2 przy odłączonych przewodach pomiarowych.
Poprawna odpowiedź to 2 przy zwartych przewodach pomiarowych. Aby uzyskać dokładny pomiar rezystancji, konieczne jest wyzerowanie omomierza przed przystąpieniem do pomiarów. W tym celu należy ustawić przewody pomiarowe w pozycji zwartej, co eliminuje wpływ ich własnej oporności na pomiar. Użycie pokrętła oznaczonego cyfrą 2 w tej konfiguracji pozwala na precyzyjne ustawienie wskazówki miernika na zerową wartość. W praktyce, przed każdym pomiarem rezystancji, zaleca się przeprowadzanie tego kroku, aby zapewnić rzetelność wyników. W branży elektrycznej i elektronicznej, zgodnie z najlepszymi praktykami, takie działanie minimalizuje błędy pomiarowe i zwiększa dokładność urządzeń pomiarowych. Dokładne wyzerowanie omomierza jest kluczowe, zwłaszcza w aplikacjach wymagających dużej precyzji, jak pomiary w obwodach elektronicznych czy analiza materiałów. Warto również pamiętać, że nieprawidłowe przeprowadzenie tego procesu może prowadzić do błędnych wniosków i dalszych problemów w analizie diagnostycznej.

Pytanie 13

Na rysunku przedstawiono sposób podłączenia

Ilustracja do pytania
A. trójfazowego transformatora separacyjnego.
B. trójfazowego licznika energii elektrycznej.
C. dławików w trójfazowej oprawie świetlówkowej.
D. przekładników prądowych w trzech fazach.
Wybór odpowiedzi dotyczącej trójfazowego transformatora separacyjnego jest błędny, ponieważ transformator ten jest urządzeniem służącym do izolacji galwanicznej między obwodami oraz do zmiany poziomów napięcia. W przeciwieństwie do licznika, transformator nie mierzy zużycia energii, lecz przetwarza ją, co nie jest zgodne z przedstawionym schematem. Natomiast odpowiedź dotycząca przekładników prądowych w trzech fazach również jest myląca, ponieważ te urządzenia mają na celu pomiar prądu w obwodach elektrycznych i nie są przedstawiane w taki sposób jak na schemacie. Przekładniki prądowe są używane w połączeniu z licznikami, ale nie stanowią ich samodzielnej funkcji, a ich symbolika graficzna różni się od symbolu licznika. Z kolei dławiki w trójfazowej oprawie świetlówkowej to elementy, które mają na celu ograniczenie prądu w obwodach świetlówkowych i nie są związane z pomiarem energii. Typowe błędy myślowe prowadzące do tych niepoprawnych wniosków mogą wynikać z pomieszania funkcji różnych urządzeń elektrycznych oraz braku znajomości ich symboliki. Właściwe rozpoznawanie urządzeń na podstawie schematów elektrycznych jest kluczowe w praktycznej pracy inżynieryjnej, dlatego ważne jest, aby zrozumieć różnice między tymi rodzajami urządzeń oraz ich zastosowanie w systemach elektrycznych.

Pytanie 14

Jakie urządzenia elektryczne są częścią instalacji przyłączeniowej obiektu budowlanego?

A. Zabezpieczenia nadprądowe poszczególnych obwodów
B. Wyłącznik różnicowoprądowy oraz ograniczniki przepięć
C. Zabezpieczenia przedlicznikowe oraz licznik energii elektrycznej
D. Transformator słupowy z rozłącznikiem
Jak wybierzesz złe odpowiedzi na to pytanie, to może być ciut mylące, bo pomyślisz, że wszystkie wymienione urządzenia są częścią przyłącza budowlanego, a tak nie jest. Wyłącznik różnicowoprądowy czy ograniczniki przepięć są ważne w instalacjach elektrycznych, ale nie są częścią samego przyłącza budynku. Ich rola to ochrona użytkowników i sprzętu w środku, a nie w punkcie, gdzie łączymy się z siecią. Wyłączniki różnicowoprądowe działają tak, że wykrywają prądy, które mogą być niebezpieczne, i wtedy odcinają zasilanie, co jest super ważne, ale nie dotyczy samego przyłącza. Z kolei transformator słupowy z rozłącznikiem to element sieci energetycznej, a nie konkretnego budynku. Może być częścią systemu dystrybucji energii, ale nie jest bezpośrednio związany z przyłączem budowlanym, które powinno być skupione na zabezpieczeniach i licznikach. Zabezpieczenia nadprądowe w obwodach są też istotne, ale ich miejsce jest wewnątrz budynku. Powszechnym błędem jest mylenie różnych poziomów instalacji elektrycznej i ich funkcji, co może prowadzić do błędów w projektowaniu i realnych zagrożeń dla bezpieczeństwa użytkowników.

Pytanie 15

Który element oznacza się na schematach elektrycznych symbolem graficznym przedstawionym na rysunku?

Ilustracja do pytania
A. Łącznik krańcowy.
B. Gniazdo z transformatorem separacyjnym.
C. Dławik.
D. Autotransformator.
Gniazdo z transformatorem separacyjnym, oznaczone na schematach elektrycznych odpowiednim symbolem graficznym, pełni kluczową rolę w instalacjach elektrycznych, szczególnie w kontekście zapewnienia bezpieczeństwa użytkowników. Transformator separacyjny oddziela obwody niskonapięciowe od wysokiego napięcia, co minimalizuje ryzyko porażenia prądem. Zgodnie z normą PN-EN 60617, symbol graficzny dla gniazda z transformatorem separacyjnym jest jasno określony, co pozwala na łatwe rozpoznanie tego elementu na schematach. Przykładowo, w zastosowaniach medycznych, takie gniazda są często używane w aparaturze, gdzie kluczowe jest oddzielenie obwodów dla bezpieczeństwa pacjentów. Dzięki zastosowaniu transformatora separacyjnego, użytkownicy mogą być pewni, że ich sprzęt działa w bezpieczny sposób, a także spełnia wymogi dotyczące ochrony przed porażeniem elektrycznym. W praktyce, instalacja gniazd z transformatorem separacyjnym jest istotnym elementem ochrony w wielu branżach, co podkreśla znaczenie poprawnego rozpoznawania symboli graficznych na schematach.

Pytanie 16

Na której ilustracji przedstawiono rozdzielnicę natynkową?

Ilustracja do pytania
A. Na ilustracji 2.
B. Na ilustracji 3.
C. Na ilustracji 4.
D. Na ilustracji 1.
Prawidłowo wskazana została ilustracja 4, bo właśnie tam widzimy typową rozdzielnicę natynkową przeznaczoną do montażu na ścianie, a nie w jej wnętrzu. Charakterystyczne cechy to wyraźnie wystająca obudowa, brak kołnierza do osadzenia w tynku oraz zaokrąglone krawędzie korpusu, które po prostu „siadają” na gotowej ścianie. Taka rozdzielnica ma zwykle przygotowane miejsca na przepusty kablowe z góry, z dołu lub z tyłu, żeby można było wygodnie wprowadzić przewody w istniejącej instalacji. Od frontu widoczna jest uchylna, najczęściej przezroczysta pokrywa, pod którą montuje się aparaturę na szynie DIN: wyłączniki nadprądowe, różnicowoprądowe, ograniczniki przepięć, liczniki energii itp. W praktyce natynkowe rozdzielnice stosuje się głównie w garażach, piwnicach, pomieszczeniach gospodarczych, warsztatach, a także w instalacjach modernizowanych, gdzie nie ma sensu kuć ścian pod wersję podtynkową. Moim zdaniem to jest najwygodniejsze rozwiązanie wszędzie tam, gdzie liczy się łatwy dostęp serwisowy i możliwość późniejszej rozbudowy obwodów. Zgodnie z dobrą praktyką i wymaganiami norm (PN‑HD 60364 i norm producentów osprzętu) dobierając taką rozdzielnicę zwraca się uwagę na stopień ochrony IP, klasę izolacji, ilość modułów oraz sposób wprowadzenia kabli. Ważne jest też prawidłowe mocowanie do podłoża – kołki rozporowe lub odpowiednie śruby – tak, aby obudowa była stabilna, nie przenosiła naprężeń na przewody i zapewniała odpowiednie warunki chłodzenia aparatów. W instalacjach domowych często spotyka się rozdzielnice natynkowe w wykonaniu z tworzywa, dokładnie takie jak na ilustracji 4, bo są lekkie, łatwe w montażu i odporne na korozję.

Pytanie 17

Jakim symbolem oznacza się przewód jednożyłowy z żyłą wykonaną z drutu aluminiowego, w izolacji PCV, o przekroju żyły 2,5 mm2?

A. ALY 2,5 mm2
B. ADY 2,5 mm2
C. YDY 2,5 mm2
D. YLY 2,5 mm2
Odpowiedź ADY 2,5 mm² jest poprawna, ponieważ oznaczenie to odnosi się do przewodów jednożyłowych wykonanych z drutu aluminiowego, które są izolowane polwinitą (PVC). Przewody te charakteryzują się odpowiednimi właściwościami elektrycznymi i mechanicznymi, co czyni je odpowiednimi do stosowania w różnorodnych instalacjach elektrycznych, w tym w budownictwie, przemyśle czy instalacjach domowych. Przekrój żyły wynoszący 2,5 mm² jest standardowym rozwiązaniem dla obwodów o niewielkim poborze prądu, takich jak oświetlenie czy gniazdka. Zastosowanie przewodów aluminiowych staje się coraz bardziej popularne ze względu na ich niską masę i korzystne właściwości przewodzące, pod warunkiem, że są odpowiednio dobrane do obciążenia. W przemyśle elektrycznym ważne jest również, aby wszelkie elementy instalacji spełniały normy bezpieczeństwa, co potwierdza odpowiednia certyfikacja. W kontekście zastosowania, przewody ADY często wykorzystuje się w instalacjach, gdzie nie ma dużych przeciążeń, a warunki pracy są umiarkowane.

Pytanie 18

Który z opisów dotyczy funkcji B przekaźnika czasowego o przedstawionych diagramach jego pracy?

Ilustracja do pytania
A. Opóźnione cykliczne wyłączanie.
B. Opóźnione cykliczne załączanie.
C. Opóźnione załączenie.
D. Opóźnione wyłączenie.
Poprawnie powiązałeś funkcję B z opisem „opóźnione załączenie”. Na diagramie widać, że po pojawieniu się napięcia zasilania U przekaźnik nie załącza swoich styków od razu – pozioma kreska przy funkcji B zaczyna się dopiero po czasie t. To właśnie jest klasyczna funkcja „ON-delay”: najpierw odliczanie, potem dopiero przełączenie styków wykonawczych. W praktyce oznacza to, że po podaniu sygnału sterującego (np. pojawienie się napięcia na cewce) przekaźnik czeka ustawiony czas, a dopiero później zamyka lub otwiera styki robocze. Takie przekaźniki stosuje się bardzo często w automatyce budynkowej i przemysłowej. Typowy przykład: łagodne załączanie dużych odbiorników, żeby uniknąć udaru prądowego – najpierw startuje np. wentylacja, a dopiero po kilku sekundach nagrzewnica. Albo sekwencyjne załączanie kilku silników, każdy z opóźnieniem, żeby nie przeciążyć sieci. Z mojego doświadczenia, funkcja opóźnionego załączenia jest też standardem przy sterowaniu oświetleniem awaryjnym, systemami wentylacji, układami gwiazda–trójkąt (jako element logiki sterowania). Ważne jest, że po zaniku napięcia i ponownym podaniu, cykl odmierzania czasu zaczyna się od nowa, zgodnie z katalogowymi opisami producentów (Relpol, Finder, Eaton itp.). Dobrą praktyką jest zawsze dokładne czytanie diagramów czasowych w kartach katalogowych – oznaczenie funkcji samą literą (A, B, C, D) bywa różne u producentów, ale kształt przebiegu zawsze jednoznacznie pokazuje, czy chodzi o opóźnione załączenie, czy wyłączenie, czy pracę cykliczną. Tu funkcja B ewidentnie pokazuje: sygnał wejściowy jest obecny, liczony jest czas t, a dopiero potem następuje załączenie – czyli klasyczne opóźnione załączenie.

Pytanie 19

W układzie przedstawionym na rysunku, po podłączeniu odbiornika, zadziałał wyłącznik różnicowoprądowy. Przyczyną tego jest

Ilustracja do pytania
A. dotyk bezpośredni przewodu pod napięciem.
B. nieprawidłowe połączenie przewodu neutralnego i ochronnego.
C. pojawienie się napięcia na części metalowej normalnie nie przewodzącej.
D. zwarcie między przewodem neutralnym i ochronnym.
Nieprawidłowe połączenie przewodu neutralnego (N) z przewodem ochronnym (PE) jest kluczowym czynnikiem, który spowodował zadziałanie wyłącznika różnicowoprądowego. W momencie, gdy te dwa przewody są połączone, wyłącznik różnicowoprądowy wykrywa różnicę w prądzie, co prowadzi do jego zadziałania w celu ochrony użytkowników przed porażeniem prądem. Przykładowo, w przypadku instalacji elektrycznych w budynkach mieszkalnych, zaleca się stosowanie wyłączników różnicowoprądowych w obwodach zasilających gniazda, co zwiększa bezpieczeństwo użytkowników. W praktyce, aby zapewnić prawidłowe działanie wyłączników, konieczne jest przestrzeganie standardów, takich jak norma PN-EN 61008-1, która określa wymagania dla różnicowoprądowych wyłączników nadprądowych. Dobre praktyki obejmują regularne testowanie tych urządzeń, aby upewnić się, że działają prawidłowo i mogą skutecznie chronić przed zagrożeniami elektrycznymi.

Pytanie 20

Jaka maksymalna wartość może mieć impedancja pętli zwarcia w trójfazowym systemie elektrycznym o napięciu nominalnym 230/400 V, aby ochrona przeciwporażeniowa przy awarii izolacji była skuteczna, wiedząc, że odpowiednie szybkie wyłączenie tego obwodu ma zapewnić instalacyjny wyłącznik nadprądowy B20?

A. 4,0 Ω
B. 2,3 Ω
C. 6,6 Ω
D. 3,8 Ω
Wartość 2,3 Ω jest prawidłowa dla impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu 230/400 V, ponieważ gwarantuje wystarczająco niską impedancję, aby wyłącznik nadprądowy B20 mógł zadziałać w przypadku uszkodzenia izolacji. Zgodnie z zasadami ochrony przeciwporażeniowej, aby zapewnić skuteczną reakcję wyłącznika, impedancja pętli zwarcia powinna być niższa niż wartość krytyczna, ustalona na podstawie prądu zwarciowego, który jest niezbędny do wyzwolenia wyłącznika. W przypadku B20, przy nominalnym prądzie 20 A, minimalny prąd zwarciowy powinien wynosić co najmniej 100 A, co odpowiada maksymalnej impedancji 2,3 Ω. W praktyce oznacza to, że w przypadku wystąpienia zwarcia, wyłącznik zareaguje w odpowiednim czasie, minimalizując ryzyko porażenia prądem. Zgodnie z normą PN-IEC 60364-4-41, dobór odpowiedniej impedancji pętli zwarcia jest kluczowym elementem w projektowaniu instalacji elektrycznych.

Pytanie 21

Aby zabezpieczyć silnik indukcyjny trójfazowy w układzie zasilania ze stycznikiem przed przeciążeniem, należy użyć przekaźnika termobimetalowego. Jaki typ przekaźnika powinien być zastosowany?

A. trójtorowy bez styku kontrolnego
B. jednotorowy ze stykiem kontrolnym
C. trójtorowy ze stykiem kontrolnym
D. jednotorowy bez styku kontrolnego
Przekaźnik termobimetalowy trójtorowy ze stykiem sterującym jest idealnym rozwiązaniem do zabezpieczania silników trójfazowych przed przeciążeniem. Dzięki zastosowaniu tego typu przekaźnika możemy monitorować prąd w trzech fazach jednocześnie, co pozwala na szybsze wykrycie nadmiernego obciążenia oraz wyłączenie silnika w przypadku wystąpienia awarii. W praktyce, takie rozwiązanie jest zgodne z normami ochrony silników, jak IEC 60947, które zalecają stosowanie przekaźników termicznych w celu zapewnienia bezpieczeństwa pracy urządzeń elektrycznych. Przykładowo, w przypadku silników o większej mocy lub w aplikacjach wymagających wysokiej niezawodności, takich jak przemysł ciężki, stosowanie trójtorowego przekaźnika termobimetalowego staje się standardem. Dodatkowo, styk sterujący umożliwia integrację z układami automatyki oraz systemami alarmowymi, co zwiększa efektywność i bezpieczeństwo operacji. W rezultacie, wybór przekaźnika trójtorowego ze stykiem sterującym jest nie tylko najlepszą praktyką, ale też wymogiem w wielu zastosowaniach przemysłowych.

Pytanie 22

Który z wymienionych parametrów można zmierzyć przedstawionym przyrządem?

Ilustracja do pytania
A. Czas wyłączenia wyłącznika nadprądowego.
B. Rezystancję izolacji.
C. Rezystancję uziemienia.
D. Impedancję pętli zwarcia.
Zrozumienie różnicy między różnymi pomiarami elektrycznymi jest kluczowe dla prawidłowego funkcjonowania instalacji elektrycznych. Wybór rezystancji uziemienia jako odpowiedzi jest błędny, ponieważ chociaż niektóre mierniki wielofunkcyjne mogą mieć możliwość pomiaru tego parametru, nie jest to funkcja, która jest standardowo dostępna w każdym modelu. Rezystancja uziemienia jest pomiarem, który ocenia skuteczność systemu uziemiającego, a jego niewłaściwe pomiary mogą prowadzić do wadliwego funkcjonowania ochrony przeciwporażeniowej. Kolejnym błędnym wyborem jest rezystancja izolacji, która mierzy integralność izolacji elektrycznej, a jej pomiar wymaga innych technik oraz odpowiednich testerów izolacji, które są zaprojektowane specjalnie do tego celu. Użytkownicy często mylą te dwa pojęcia, co może wynikać z braku wiedzy na temat specyfiki funkcji różnych przyrządów. Czas wyłączenia wyłącznika nadprądowego również nie jest mierzony przez standardowy miernik wielofunkcyjny. Jest to proces, który zwykle wymaga bardziej zaawansowanego sprzętu testowego, w tym analizatorów jakości energii elektrycznej. Właściwe rozumienie tych zasad jest niezbędne dla zapewnienia bezpieczeństwa i skuteczności instalacji elektrycznych, a także do przestrzegania norm i standardów branżowych. W przypadku błędnych odpowiedzi istotne jest, aby przyjąć podejście analityczne i przyjrzeć się, dlaczego takie wybory mogą być mylne, co pomoże uniknąć podobnych pomyłek w przyszłości.

Pytanie 23

Prace przeprowadzane pod napięciem w instalacji domowej wymagają użycia narzędzi izolowanych o minimalnym poziomie napięcia izolacji

A. 1000 V
B. 500 V
C. 120 V
D. 250 V
Wybór wartości 500 V jako minimalnego napięcia izolacji dla narzędzi używanych w pracach pod napięciem w instalacjach mieszkaniowych jest zgodny z normami bezpieczeństwa, które nakładają wymogi dotyczące odpowiedniego poziomu izolacji. Narzędzia izolowane o napięciu 500 V są powszechnie stosowane w branży elektrycznej, aby zapewnić bezpieczeństwo podczas wykonywania czynności konserwacyjnych lub naprawczych. Takie narzędzia są zaprojektowane w taki sposób, aby minimalizować ryzyko porażenia prądem elektrycznym, a ich izolacja powinna być testowana w odpowiednich warunkach. Przykłady takich narzędzi to wkrętaki, szczypce czy kombinerki, które mają oznaczenia jakościowe i są produkowane zgodnie z międzynarodowymi standardami, takimi jak IEC 60900, które definiują wymagania dla narzędzi izolowanych. Użycie narzędzi o odpowiedniej izolacji nie tylko chroni technika, ale także zapewnia, że prace są wykonywane zgodnie z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego.

Pytanie 24

W jaki sposób powinna odbywać się wymiana nożowych wkładek topikowych w bezpiecznikach przemysłowych?

A. Przy użyciu kombinerek, pod napięciem
B. Uchwytem izolacyjnym bez obciążenia
C. Za pomocą kombinerek w braku napięcia
D. Uchwytem izolacyjnym pod obciążeniem
Wymiana nożowych wkładek topikowych bezpieczników przemysłowych powinna być przeprowadzana w sposób bezpieczny, najlepiej przy użyciu uchwytu izolacyjnego i tylko wtedy, gdy nie ma obciążenia na obwodzie. Taki sposób działania minimalizuje ryzyko porażenia prądem oraz uszkodzenia sprzętu. Uchwyt izolacyjny, wykonany z materiałów odpornych na działanie wysokich napięć, zapewnia, że osoba dokonująca wymiany nie ma kontaktu z przewodami pod napięciem. Przykładem zastosowania tej metody są procedury serwisowe w zakładach przemysłowych, gdzie kluczowe jest przestrzeganie zasad BHP oraz normy IEC 60947-3 dotyczącej bezpieczników. Dodatkowo, przed przystąpieniem do wymiany, ważne jest upewnienie się, że wyłączono zasilanie, co można zweryfikować przy pomocy wskaźników napięcia, a także zastosowanie blokad, aby zapobiec przypadkowemu włączeniu obwodu. Przestrzeganie tych zasad nie tylko chroni technika, ale również zapewnia, że prace serwisowe są wykonane w sposób efektywny i zgodny z normami branżowymi.

Pytanie 25

Na rysunku przedstawiono symbol graficzny przewodu

Ilustracja do pytania
A. PE
B. PEN
C. N
D. L
Symbol przedstawiony na rysunku oznacza przewód neutralny, który w instalacjach elektrycznych jest kluczowym elementem systemu zasilania. Oznaczenie "N" wskazuje na przewód, który ma za zadanie prowadzić prąd powracający z obciążenia do źródła zasilania. Przewód neutralny jest niezbędny w układach jedno- i trójfazowych, gdzie zapewnia równowagę obciążenia w instalacji. W praktyce oznaczenie to jest stosowane zgodnie z normami IEC 60446, które definiują sposób oznaczania przewodów w instalacjach elektrycznych. Poprawne rozróżnianie między przewodami fazowymi a neutralnym jest kluczowe dla bezpieczeństwa eksploatacji instalacji. Przykładowo, w budynkach mieszkalnych przewód neutralny jest wykorzystywany w instalacjach oświetleniowych oraz gniazdach elektrycznych, gdzie zapewnia powrót prądu do źródła zasilania, co jest niezbędne do prawidłowego działania urządzeń elektrycznych. Bez przewodu neutralnego, obwody nie byłyby w stanie funkcjonować prawidłowo, co mogłoby prowadzić do niebezpiecznych sytuacji takich jak przegrzanie czy zwarcia.

Pytanie 26

Do jakiej kategorii zaliczają się kable współosiowe?

A. Grzewczych
B. Telekomunikacyjnych
C. Oponowych
D. Kabelkowych
Przewody współosiowe, znane również jako kable koncentryczne, są kluczowym elementem w systemach telekomunikacyjnych. Ich budowa składa się z centralnego przewodu, który jest otoczony dielektrykiem, a następnie metalową osłoną. Taka konstrukcja pozwala na przesyłanie sygnałów radiowych i telewizyjnych z minimalnymi zakłóceniami, co jest szczególnie ważne w telekomunikacji. Przewody współosiowe są powszechnie wykorzystywane w instalacjach telewizyjnych, sieciach komputerowych oraz w systemach audio, gdzie istotna jest jakość przesyłanych danych. Zgodnie z normami branżowymi, takie jak ANSI/TIA-568, przewody te muszą spełniać określone standardy dotyczące tłumienia sygnału i zakłóceń elektromagnetycznych, co gwarantuje ich niezawodność. Stosowanie przewodów współosiowych w telekomunikacji jest także uzasadnione ich łatwością w instalacji oraz dużą odpornością na uszkodzenia mechaniczne, co czyni je preferowanym rozwiązaniem w wielu aplikacjach.

Pytanie 27

Jakie narzędzia powinny być zastosowane przy trasowaniu instalacji elektrycznej w ścianach w pomieszczeniach mieszkalnych?

A. Ołówek, miarka taśmowa, kleszcze monterskie, młotek
B. Poziomnica, kleszcze monterskie, zestaw wkrętaków, młotek
C. Zestaw wkrętaków, kleszcze monterskie, sznurek traserski, młotek
D. Ołówek, poziomnica, miarka taśmowa, sznurek traserski
Wybór odpowiedzi "Ołówek, poziomnica, przymiar taśmowy, sznurek traserski" jest właściwy, ponieważ te narzędzia są kluczowe dla precyzyjnego trasowania instalacji elektrycznej podtynkowej w pomieszczeniach mieszkalnych. Ołówek służy do nanoszenia punktów oraz linii na ścianach, co ułatwia późniejsze wiercenie i układanie kabli. Poziomnica jest niezastąpiona przy sprawdzaniu poziomu instalacji, co jest niezbędne dla zachowania estetyki i funkcjonalności. Przymiar taśmowy pozwala na dokładne mierzenie odległości, co jest kluczowe dla precyzyjnego układania kabli, gniazdek oraz przełączników. Sznurek traserski umożliwia szybkie i łatwe zaznaczanie prostych linii na dużych powierzchniach, co znacznie przyspiesza proces trasowania. Te narzędzia są zgodne z najlepszymi praktykami branżowymi oraz standardami bezpieczeństwa, co czyni je niezbędnymi w procesie przygotowawczym przed wykonaniem instalacji elektrycznej.

Pytanie 28

Na zdjęciu przedstawiono kabel

Ilustracja do pytania
A. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w osłonie polwinitowej.
B. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
C. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V.
D. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.
Analizując niepoprawne odpowiedzi, można zauważyć szereg istotnych nieporozumień związanych z klasyfikacją kabli i ich zastosowaniami. W pierwszej z nich sugerowany kabel sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV nie pasuje do charakterystyki przedstawionego kabla. Kable sygnalizacyjne na ogół operują na niższych napięciach, a ich budowa z żyłami jednodrutowymi nie jest typowa dla aplikacji wymagających elastyczności i odporności na zakłócenia. Podobnie, drugi typ kabla, czyli kontrolny z żyłami wielodrutowymi na napięcie 300/500 V, z ekranowaniem, nie odpowiada wizualnym cechom przedstawionego kabla. Ekranowanie jest kluczowe w redukcji zakłóceń, jednak brak takiej ochrony w analizowanym przypadku wskazuje na inne przeznaczenie. Odpowiedź dotycząca kabla elektroenergetycznego również jest błędna, gdyż odnosi się do wyższych napięć, co nie zgadza się z widocznymi cechami izolacyjnymi i konstrukcją kabla. Typowe błędy myślowe prowadzące do tych niepoprawnych wniosków obejmują nadmierne generalizowanie właściwości kabli oraz ignorowanie specyfikacji technicznych. Niezrozumienie różnic między typami kabli oraz ich zastosowaniem w praktyce może prowadzić do niewłaściwych wyborów w projektowaniu instalacji elektrycznych i sygnalizacyjnych, co w konsekwencji może wpływać na niezawodność i bezpieczeństwo systemów.

Pytanie 29

Który z przedstawionych przyrządów jest przeznaczony do wykrywania pod obciążeniem wadliwych połączeń elektrycznych w torach wielkoprądowych?

Ilustracja do pytania
A. Przyrząd 4.
B. Przyrząd 2.
C. Przyrząd 1.
D. Przyrząd 3.
Przyrząd 3, czyli termowizor, jest kluczowym narzędziem w diagnostyce systemów elektrycznych, zwłaszcza w kontekście torów wielkoprądowych. Jego zdolność do wykrywania wadliwych połączeń elektrycznych opiera się na analizie rozkładu temperatury, co jest istotne w sytuacjach, gdzie obciążenie jest wysokie. W praktyce, gdy dochodzi do uszkodzenia połączenia, może pojawić się nadmierne nagrzewanie, które termowizor jest w stanie zidentyfikować z bezpiecznej odległości. Zastosowanie termowizji w monitorowaniu infrastruktury elektrycznej stało się standardem w wielu branżach, w tym w energetyce i przemyśle. Dzięki temu można szybko i efektywnie lokalizować problemy, co z kolei przyczynia się do zmniejszenia ryzyka awarii oraz obniżenia kosztów eksploatacji. Ponadto, regularne inspekcje za pomocą termowizora wspierają utrzymanie zgodności z normami bezpieczeństwa i jakości, co jest kluczowe w utrzymaniu infrastruktury elektrycznej w dobrym stanie.

Pytanie 30

Który z wymienionych jest silnikiem elektrycznym prądu stałego?

A. Obcowzbudny. 
B. Klatkowy.
C. Repulsyjny. 
D. Pierścieniowy.
Poprawna odpowiedź to silnik obcowzbudny, czyli klasyczny silnik prądu stałego, w którym uzwojenie wzbudzenia (stojana) jest zasilane z osobnego obwodu niż uzwojenie twornika. To właśnie ten sposób zasilania – osobne źródło dla wzbudzenia i osobne dla twornika – odróżnia go od większości popularnych silników prądu przemiennego. W praktyce oznacza to, że możemy niezależnie regulować strumień magnetyczny i prędkość obrotową, co daje bardzo dobrą charakterystykę regulacyjną. W wielu zakładach przemysłowych, zwłaszcza starszych instalacjach, takie silniki były (i nadal są) używane do napędów, gdzie wymagana jest płynna regulacja prędkości, np. w suwnicach, wciągarkach, walcarkach, liniach transportowych czy napędach maszyn drukarskich. Z mojego doświadczenia wynika, że silniki obcowzbudne są też dość wdzięczne w diagnostyce – łatwo obserwować wpływ zmian napięcia wzbudzenia na prędkość i moment. W literaturze i normach dotyczących maszyn elektrycznych, np. w opracowaniach opartych na normach PN-EN z zakresu maszyn wirujących, silniki obcowzbudne są klasycznym przykładem maszyn prądu stałego. Dobre praktyki mówią, żeby zwracać uwagę na stan komutatora, szczotek, układu wzbudzenia oraz stabilność zasilania obwodu wzbudzenia, bo jego utrata może powodować niebezpieczne rozbieganie się prędkości. W nowoczesnych układach automatyki często zastępuje się je silnikami asynchronicznymi z falownikiem, ale zasada działania DC obcowzbudnego dalej jest podstawą do zrozumienia regulacji napędów. Jeżeli ktoś dobrze rozumie silnik obcowzbudny, dużo łatwiej ogarnia później napędy z przekształtnikami, sterowanie momentem, charakterystyki mechaniczne itp. Dlatego to pytanie jest takie typowe w testach dla elektryków – sprawdza, czy rozróżniasz rodzaje maszyn: AC i DC, oraz czy kojarzysz nazewnictwo stosowane w branży.

Pytanie 31

Którą z funkcji w obwodzie prądu stałego pełni układ przedstawiony na schemacie?

Ilustracja do pytania
A. Wzmacnia sygnały wejściowe.
B. Filtruje przebiegi odkształcone.
C. Prostuje napięcie.
D. Stabilizuje napięcie.
Poprawnie – układ z rezystorem szeregowym R i diodą Zenera DZ włączoną równolegle do obciążenia to klasyczny, najprostszy stabilizator napięcia w obwodzie prądu stałego. Działa to tak, że rezystor ogranicza prąd, a dioda Zenera utrzymuje prawie stałe napięcie na swoim zacisku w kierunku zaporowym, po przekroczeniu napięcia Zenera Uz. W praktyce oznacza to, że dopóki prąd diody mieści się w zakresie roboczym katalogowym, napięcie wyjściowe Uo jest zbliżone do napięcia Zenera, niezależnie od umiarkowanych zmian napięcia wejściowego Uwe i prądu obciążenia. Moim zdaniem to jeden z pierwszych układów, które warto mieć „w małym palcu”, bo pojawia się wszędzie: w prostych zasilaczach, w układach referencji napięcia, w zabezpieczeniach wejść pomiarowych. W wielu starszych urządzeniach elektronicznych spotkasz właśnie takie stabilizatory dyskretne, zanim pojawią się scalone stabilizatory typu 78xx czy przetwornice impulsowe. Dobra praktyka mówi, żeby zawsze policzyć rezystor R tak, aby przy maksymalnym napięciu wejściowym i minimalnym prądzie obciążenia prąd diody nie przekroczył wartości dopuszczalnej, a przy minimalnym napięciu wejściowym i maksymalnym obciążeniu dioda wciąż była w stanie stabilizacji. W normach i poradnikach projektowych mocno podkreśla się też sprawdzenie mocy strat: zarówno na rezystorze, jak i na samej diodzie Zenera, bo w stabilizatorach tego typu to właśnie przegrzanie jest najczęstszym praktycznym problemem. Ten prosty układ nie jest super dokładny jak wzorcowe źródła napięcia, ale w wielu zastosowaniach technicznych w zupełności wystarcza i jest bardzo tani, co z mojego doświadczenia w warsztacie ma ogromne znaczenie.

Pytanie 32

Na której ilustracji przedstawiono puszkę do montażu w ścianie gipsowo-kartonowej?

Ilustracja do pytania
A. Na ilustracji 2.
B. Na ilustracji 4.
C. Na ilustracji 3.
D. Na ilustracji 1.
W tym zadaniu bardzo łatwo pomylić różne rodzaje puszek instalacyjnych, bo wszystkie służą do łączenia przewodów, ale nie wszystkie są przeznaczone do ścian gipsowo‑kartonowych. Na ilustracjach 1, 2 i 3 widać puszki typowo natynkowe lub podtynkowe do ścian masywnych, a nie do lekkich konstrukcji GK. Puszka z ilustracji 1 to okrągła puszka natynkowa, najczęściej o podwyższonym stopniu ochrony IP (np. IP65, IP67). Stosuje się ją w instalacjach prowadzonych po wierzchu, w garażach, halach, czasem na zewnątrz budynku, gdzie wymagane jest uszczelnienie przed wilgocią i pyłem. Ma gwintowane dławiki kablowe albo wyłamywane przepusty, ale nie ma żadnych elementów do kotwienia w cienkiej płycie GK. Na ilustracji 2 pokazano typową prostokątną puszkę rozgałęźną, którą przykręca się do podłoża – ściany, sufitu lub innej konstrukcji – za pomocą wkrętów przez specjalne otwory montażowe. To rozwiązanie sprawdza się w instalacjach natynkowych lub podtynkowych w murze, ale znowu: nie ma tu łapek rozporowych ani rantu, który opiera się na karton‑gipsie. Ilustracja 3 przedstawia z kolei większą puszkę rozdzielczą, także przeznaczoną głównie do montażu natynkowego, często w instalacjach przemysłowych albo w miejscach, gdzie zbiegają się grubsze przewody i trzeba wykonać więcej połączeń. Wszystkie te obudowy montuje się do stabilnego, sztywnego podłoża, a nie w wyciętym otworze w płycie. Typowym błędem jest myślenie w stylu: "skoro to też puszka, to pewnie da się ją jakoś wstawić w GK". Owszem, da się ją tam przykręcić do profilu, ale to nie jest zgodne z ideą puszek do ścian lekkich i zwykle komplikuje montaż osprzętu. Puszka do karton‑gipsu musi mieć specjalne łapki lub inne zaczepy, które rozkładają nacisk na cienką płytę i pozwalają na szybki montaż bez dodatkowych elementów. Właśnie dlatego poprawnym wyborem jest tylko rozwiązanie z ilustracji 4.

Pytanie 33

Który układ połączeń sond pomiarowych miernika rezystancji IMU względem badanego uziomu Rx jest zgodny z zasadami pomiaru rezystancji uziemienia?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
W przypadku niepoprawnych odpowiedzi, takich jak A, C i D, można zauważyć, że nie spełniają one wymogów dotyczących układu sond pomiarowych. W odpowiedzi A, potencjalna sonda znajduje się zbyt blisko badanego uziomu, co prowadzi do zniekształcenia wyników, ponieważ nie uwzględnia się rzeczywistego spadku napięcia w gruncie. W odpowiedzi C, nieprawidłowe rozmieszczenie sond skutkuje brakiem możliwości precyzyjnego pomiaru rezystancji, co może prowadzić do błędnych wniosków na temat stanu uziomu. W odpowiedzi D, konieczność zrozumienia, jak prąd wpływa na pomiary rezystancji, nie została spełniona, co jest kluczowe dla obliczeń związanych z bezpieczeństwem instalacji elektrycznych. Typowe błędy myślowe to ignorowanie zasad dotyczących odległości sond, co może prowadzić do błędnych wniosków o efektywności uziemienia. W praktyce, brak znajomości zasad pomiarowych może mieć poważne konsekwencje, takie jak uszkodzenie sprzętu lub zagrożenie dla bezpieczeństwa użytkowników. Dlatego ważne jest, aby przed przystąpieniem do pomiarów zrozumieć podstawowe zasady dotyczące rozmieszczenia sond oraz ich wpływu na dokładność wyniku, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 34

Na podstawie zamieszczonych w tabeli wyników pomiarów dotyczących przewodu przedstawionego na ilustracji określ, które z jego żył są ze sobą zwarte.

Ilustracja do pytania
A. N i PE
B. L1 i L3
C. L1 i PE
D. N i L3
Odpowiedź N i PE jest poprawna, ponieważ analizując wyniki pomiarów rezystancji, stwierdzamy, że rezystancja wynosi 0 Ω, co jednoznacznie wskazuje na zwarcie między tymi przewodami. W standardach elektrycznych, takich jak PN-IEC 60364, ważne jest, aby prawidłowo identyfikować różne żyły, zwłaszcza w kontekście ochrony przed porażeniem elektrycznym. W przypadku przewodu neutralnego (N) i przewodu ochronnego (PE) ich zwarcie może wskazywać na nieprawidłowości w instalacji, które mogą prowadzić do niebezpiecznych sytuacji. Wiedza na temat pomiarów rezystancji jest kluczowa w utrzymaniu bezpieczeństwa systemów elektrycznych, a także w diagnostyce awarii. W praktyce, przed przystąpieniem do pracy przy instalacjach elektrycznych, zaleca się przeprowadzanie dokładnych pomiarów, aby upewnić się, że nie występuje żadne zwarcie, co jest zgodne z najlepszymi praktykami w branży, takimi jak regularne kontrole i inspekcje instalacji.

Pytanie 35

Schemat którego aparatu elektrycznego przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznika nadmiarowo-prądowego.
B. Wyłącznika różnicowoprądowego.
C. Przekaźnika impulsowego.
D. Przekaźnika termicznego.
Pomimo że odpowiedzi sugerujące przekaźnik impulsowy, wyłącznik nadmiarowo-prądowy oraz przekaźnik termiczny mogą na pierwszy rzut oka wydawać się odpowiednie, każda z nich opiera się na mylnych założeniach dotyczących funkcji i zastosowania tych urządzeń. Przekaźnik impulsowy jest używany głównie do automatyzacji procesów, a nie do ochrony przed porażeniem prądem. Jego działanie opiera się na generowaniu impulsów elektrycznych w odpowiedzi na sygnały z innych urządzeń, co znacząco różni się od funkcji wyłącznika różnicowoprądowego. Z kolei wyłącznik nadmiarowo-prądowy jest zaprojektowany do ochrony obwodów przed przeciążeniem prądowym, co oznacza, że reaguje na nadmiar prądu, ale nie jest w stanie wychwycić niewielkich wycieków prądu, jak to czyni wyłącznik różnicowoprądowy. Przekaźnik termiczny również działa na zupełnie innych zasadach, monitorując temperaturę i chroniąc przed przegrzaniem silników i innego wyposażenia elektrycznego, nie mając nic wspólnego z ochrona przed porażeniem. Te podstawowe różnice pokazują, że zastosowanie każdego z tych urządzeń jest inne i dostosowane do specyficznych warunków operacyjnych, co może prowadzić do nieporozumień w zrozumieniu ich roli w systemie elektrycznym. Dlatego ważne jest, aby dobrze rozumieć funkcje i zastosowania każdego z tych urządzeń, aby uniknąć niebezpiecznych sytuacji oraz zapewnić odpowiedni poziom ochrony w instalacjach elektrycznych.

Pytanie 36

W układzie przedstawionym na rysunku zmierzono rezystancję pomiędzy poszczególnymi żyłami kabla, otrzymując następujące wyniki: RA-B = 0; RB-C = ∞; RC-D = ∞; RD-A= 0. Z wyników pomiarów wynika, że przerwana jest

Ilustracja do pytania
A. żyła C
B. żyła A
C. żyła B
D. żyła D
Wybór żyły A, B lub D jako przerwanej może wynikać z kilku błędnych założeń dotyczących pomiarów rezystancji w układzie. Żyła A, będąca częścią obwodu, wykazuje rezystancję 0 w połączeniu z żyłą B oraz D. Sugerowanie przerwy w tej żyły jest nieuzasadnione, ponieważ jej pełna przewodność wskazuje na prawidłowe połączenie. W przypadku żyły B, wynik R_B-C oznaczający nieskończoną rezystancję nie jest wystarczającym dowodem na jej uszkodzenie, ponieważ wymagałoby to dodatkowych pomiarów i analizy całego obwodu. W rzeczywistości, nie można stwierdzić, że żyła B jest uszkodzona na podstawie jednego pomiaru. Żyła D również wykazuje 0 rezystancji w połączeniu z żyłą A, co podważa tezę o jej przerwie. Kluczowym błędem myślowym jest nie dostrzeżenie, że wyniki pomiarów muszą być analizowane w kontekście całego układu, a nie pojedynczych żył. Dlatego ważne jest, aby pamiętać o całkowitej topologii obwodu podczas analizy pomiarów, aby uniknąć mylnych wniosków. W rzeczywistości takie błędy mogą prowadzić do nieprawidłowej diagnozy i kosztownych napraw, co podkreśla znaczenie precyzyjnego podejścia do analizy wyników w praktyce inżynieryjnej.

Pytanie 37

Jakim symbolem oznacza się jednożyłowy przewód z wielodrutową miedzianą żyłą o przekroju 2,5 mm² w izolacji z PVC?

A. YLY 7×2,5 mm2
B. LY 2,5 mm2
C. YDY 5×2,5 mm2
D. DY 2,5 mm2
Odpowiedź 'LY 2,5 mm2' jest prawidłowa, ponieważ oznaczenie to odnosi się do przewodu jednożyłowego z wielodrutową żyłą miedzianą o przekroju 2,5 mm², który jest stosowany w instalacjach elektrycznych. Przewody typu LY charakteryzują się tym, że są wykonane z materiałów odpornych na działanie wysokich temperatur oraz chemikaliów, co czyni je idealnym wyborem do zastosowania w różnych warunkach przemysłowych. Przykładowe zastosowania obejmują instalacje w budynkach mieszkalnych, biurowych oraz przemysłowych, gdzie niezbędne jest zapewnienie bezpieczeństwa i niezawodności. Przewody te spełniają normy PN-EN 60228, które określają wymagania dotyczące właściwości przewodów elektrycznych. Użycie przewodów LY w instalacjach domowych zapewnia nie tylko poprawne działanie urządzeń elektrycznych, ale również minimalizuje ryzyko wystąpienia awarii elektrycznych. Dodatkowo, przewody te wykazują niską rezystancję, co zapewnia efektywne przewodzenie prądu i minimalizuje straty energetyczne.

Pytanie 38

Z którego z wymienionych materiałów wykonuje się rury elektroinstalacyjne przeznaczone do prowadzenia przewodów na podłożu palnym?

A. Z naturalnej gumy.
B. Z bawełny.
C. Z pleksi.
D. Z nierdzewnej stali.
Dobór materiału rur elektroinstalacyjnych do prowadzenia przewodów na podłożu palnym to temat, w którym łatwo kierować się skojarzeniami zamiast wymaganiami norm i praktyki pożarowej. Częsty błąd polega na tym, że ktoś myśli: „skoro to tylko osłona przewodów, to wystarczy, że będzie elastyczna albo izolacyjna elektrycznie”. Tymczasem przy podłożu palnym najważniejsze jest, czy materiał jest niepalny, jak zachowuje się w wysokiej temperaturze i czy w razie zwarcia nie przyczyni się do rozprzestrzeniania ognia. Materiały takie jak naturalna guma czy bawełna są wprost materiałami łatwopalnymi albo przynajmniej bardzo podatnymi na zwęglenie. Guma może się topić, palić, dymić, wydzielać toksyczne gazy. Bawełna to włókno organiczne – zapala się stosunkowo łatwo, zwłaszcza przy dłuższym działaniu podwyższonej temperatury lub iskier. Traktowanie ich jako osłony przewodów na drewnie czy innych palnych powierzchniach byłoby kompletnie sprzeczne z zasadami BHP i zdrowym rozsądkiem. Pleksi, czyli tworzywo akrylowe, również nie jest dobrym wyborem. Choć wygląda „solidnie” i kojarzy się z twardym plastikiem, to pod wpływem temperatury mięknie, topi się i może kapać płonącymi kroplami, co dodatkowo rozprzestrzenia ogień po powierzchni palnej. W instalacjach na podłożach palnych nie chodzi tylko o estetykę czy łatwość obróbki, ale o klasę reakcji na ogień i zachowanie w warunkach zwarcia. Typowym błędem myślowym jest też utożsamianie izolacyjności elektrycznej z bezpieczeństwem pożarowym: ktoś widzi materiał nieprzewodzący prądu i zakłada, że będzie „bezpieczny”. Tymczasem normy instalacyjne jasno wskazują, że na podłożach łatwopalnych preferuje się rozwiązania metalowe, niepalne, szczególnie tam, gdzie przewody są narażone na uszkodzenia. Rury z nierdzewnej stali pełnią tu rolę zarówno mechaniczną, jak i przeciwpożarową. Tworzywa sztuczne stosuje się głównie w instalacjach podtynkowych, w ścianach niepalnych lub o odpowiednio dobranej klasie odporności ogniowej, a nie na odkrytym, palnym podłożu. Z mojego doświadczenia wynika, że jak tylko zacznie się patrzeć na instalację oczami strażaka i projektanta ochrony przeciwpożarowej, to od razu widać, dlaczego guma, bawełna czy pleksi w tym miejscu po prostu nie mają racji bytu.

Pytanie 39

Obwód oświetleniowy zasilany z rozdzielnicy przedstawionej na rysunku może pobierać długotrwale prąd nieprzekraczający

Ilustracja do pytania
A. 16 A
B. 6 A
C. 32 A
D. 20 A
Wybierając odpowiedzi inne niż 20 A, można łatwo popaść w pułapkę błędnego myślenia dotyczącego doboru prądów znamionowych w obwodach elektrycznych. Odpowiedzi takie jak 6 A lub 16 A są nieodpowiednie, ponieważ nie uwzględniają rzeczywistych parametrów stycznika SM-320, który jest kluczowym elementem w tym obwodzie. Osoby mogące wybrać 6 A mogą nie rozumieć, że wartość ta odnosi się do prądu znamionowego wyłącznika nadprądowego B6, który jednak nie powinien być brany pod uwagę jako decydujący przy określaniu maksymalnego obciążenia obwodu oświetleniowego. W rzeczywistości wyłącznik nadprądowy jest urządzeniem zabezpieczającym, którego zadaniem jest ochrona obwodu przed przeciążeniem, ale to stycznik określa, jakie obciążenie można podłączyć w sposób ciągły. Wybór 32 A jest również błędny, jako że sugeruje znacznie wyższe obciążenie, które może prowadzić do niewłaściwego doboru pozostałych komponentów instalacji elektrycznej, co w efekcie stwarza ryzyko przegrzania i uszkodzenia instalacji. Zrozumienie różnicy między wartościami nominalnymi różnych elementów jest kluczowe dla zapewnienia bezpieczeństwa i efektywności obwodu elektrycznego. Właściwe podejście do doboru prądów znamionowych w instalacjach elektrycznych nie tylko chroni urządzenia, ale także zapobiega sytuacjom awaryjnym, które mogą być wynikiem nieodpowiednich ustawień prądowych.

Pytanie 40

Gdzie powinny być umieszczone liczniki zużycia energii elektrycznej w budynkach wielorodzinnych?

A. w lokalach mieszkalnych w miejscach o łatwym dostępie
B. poza lokalami mieszkalnymi w miejscach o łatwym dostępie
C. poza lokalami mieszkalnymi jedynie w zamkniętych szafkach
D. w lokalach mieszkalnych tylko w zamkniętych szafkach
Umieszczanie liczników zużycia energii elektrycznej w lokalach mieszkalnych, w tym w zamkniętych szafkach lub w miejscach łatwo dostępnych, nie jest zgodne z aktualnymi standardami i dobrymi praktykami w zakresie zarządzania infrastrukturą budowlaną. Istnieje kilka kluczowych powodów, które tłumaczą, dlaczego takie rozwiązanie może być niewłaściwe. Po pierwsze, lokalizacja liczników w mieszkaniach może prowadzić do naruszenia prywatności mieszkańców, co jest nieakceptowalne z punktu widzenia ochrony danych osobowych. Liczniki są urządzeniami technicznymi, a ich obecność w lokalach mieszkalnych może generować dodatkowe problemy, takie jak hałas czy ograniczenie przestrzeni. Ponadto, umieszczanie ich w łatwo dostępnych miejscach w lokalach może stwarzać ryzyko przypadkowego uszkodzenia lub manipulacji przez osoby trzecie, co jest szczególnie niebezpieczne. W kontekście wymogów dotyczących bezpieczeństwa, przechowywanie liczników w wydzielonych pomieszczeniach technicznych, zamykanych szafkach, pozwala na skuteczną kontrolę i ograniczenie dostępu do nich. Warto pamiętać, że zgodnie z przepisami prawa budowlanego oraz normami branżowymi, liczniki powinny być umiejscowione tak, aby mogły być łatwo dostępne dla wykwalifikowanego personelu, ale jednocześnie maksymalnie chronione przed dostępem osób nieuprawnionych. Tego typu podejścia zapewniają lepszą kontrolę nad systemem dystrybucji energii oraz zwiększają bezpieczeństwo zarówno użytkowników, jak i samej infrastruktury.