Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 17 grudnia 2025 08:44
  • Data zakończenia: 17 grudnia 2025 08:58

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do pomiaru której wielkości fizycznej służy przetwornik przedstawiony na rysunku?

Ilustracja do pytania
A. Natlenienia.
B. Natężenia przepływu.
C. Temperatury.
D. Ciśnienia.
Przetwornik przedstawiony na rysunku to przetwornik ciśnienia, co można rozpoznać po kilku charakterystycznych elementach. Po pierwsze, zakres pomiarowy podany w jednostkach bar (0-10 bar) jednoznacznie wskazuje na pomiar ciśnienia. Przetworniki ciśnienia są powszechnie używane w różnych branżach, od przemysłu chemicznego po systemy HVAC, gdzie monitorowanie ciśnienia jest kluczowe dla bezpieczeństwa i efektywności procesów. Standardowy sygnał wyjściowy 4-20 mA jest szeroko stosowany w automatyce przemysłowej ze względu na swoją odporność na zakłócenia i możliwość przesyłania sygnałów na duże odległości. Przetworniki ciśnienia mogą być stosowane do monitorowania ciśnienia w systemach hydraulicznych, pneumatycznych, a także w aplikacjach związanych z kontrolą procesów. Dodatkowo, przetworniki takie są niezbędne w aplikacjach związanych z bezpieczeństwem, gdzie monitorowanie ciśnienia może zapobiec awariom. Moim zdaniem, znajomość działania i zastosowań przetworników ciśnienia to podstawa dla każdego inżyniera zajmującego się automatyką przemysłową.

Pytanie 2

Przyrząd do sprawdzania średnicy otworów przedstawia

A. ilustracja 2.
Ilustracja do odpowiedzi A
B. ilustracja 1.
Ilustracja do odpowiedzi B
C. ilustracja 3.
Ilustracja do odpowiedzi C
D. ilustracja 4.
Ilustracja do odpowiedzi D
Ilustracja 1 przedstawia przyrząd do sprawdzania średnicy otworów, znany jako szczelinomierz lub wzornik do otworów. To narzędzie jest niezwykle przydatne w warsztatach i laboratoriach, gdzie precyzyjne pomiary są kluczowe. Szczelinomierze pozwalają na dokładne określenie średnicy otworu, co jest niezbędne np. przy dopasowywaniu śrub czy trzpieni. W praktyce używanie takiego przyrządu jest szczególnie istotne w branżach takich jak motoryzacja, gdzie dokładność ma bezpośredni wpływ na funkcjonalność i bezpieczeństwo. Z mojego doświadczenia wynika, że szczelinomierze są także używane w przemyśle lotniczym czy w produkcji maszyn, gdzie precyzja ma ogromne znaczenie. Standardy branżowe, jak ISO 286, zalecają używanie takich narzędzi do zapewnienia odpowiedniej tolerancji pasowania. Co więcej, regularna kalibracja tych urządzeń gwarantuje ich niezawodność, co jest kluczowe w utrzymaniu jakości produkcji.

Pytanie 3

Który wynik pomiaru rezystancji żyły przewodu YLY 3x10 mm² o długości około 8 m wskazuje na jej ciągłość?

A. Wynik 1.
Ilustracja do odpowiedzi A
B. Wynik 4.
Ilustracja do odpowiedzi B
C. Wynik 2.
Ilustracja do odpowiedzi C
D. Wynik 3.
Ilustracja do odpowiedzi D
Wyniki inne niż 13,999 mΩ sugerują błędną interpretację lub problem z przewodem. Wartość 9,94 Ω, jak na jednym z mierników, jest zbyt wysoka dla przewodu miedzianego o takiej długości i przekroju, co może wskazywać na przerwę lub znaczne uszkodzenie przewodu. W instalacjach elektrycznych, gdzie przewody są krytyczne dla bezpiecznego przesyłu prądu, zbyt duża rezystancja prowadzi do nieefektywności, przegrzewania się i potencjalnych zagrożeń pożarowych. Odczyt 220 mΩ również nie pasuje do oczekiwanej niskiej rezystancji w miliomach, sugerując pomyłkę w ustawieniach miernika lub złe połączenie przewodów pomiarowych. Natomiast wartość 1,01 Ω jest podejrzanie wysoka i może wskazywać na nieprawidłowy styk lub błędy w technice pomiarowej. Niezrozumienie standardowych wartości rezystancji dla określonych przewodów często prowadzi do błędnych diagnoz, które mogą skutkować kosztownymi naprawami lub niepotrzebną wymianą komponentów. Dlatego ważne jest, aby dokładnie znać charakterystyki materiałowe przewodów oraz stosować odpowiednie standardy pomiarowe.

Pytanie 4

Przedstawione na rysunkach narzędzia służą do

Ilustracja do pytania
A. cięcia przewodów.
B. zaciskania wtyków RJ45.
C. zaciskania końcówek tulejkowych.
D. ściągania izolacji.
Dobrze, że wybrałeś tę odpowiedź. Narzędzia przedstawione na rysunkach to zaciskarki do końcówek tulejkowych. W praktyce, takie tulejkowe końcówki są używane do zabezpieczenia końcówek przewodów, co zapobiega ich strzępieniu się i zapewnia lepsze połączenie elektryczne. To niezwykle ważne w instalacjach elektrycznych, gdzie zależy nam na trwałości i bezpieczeństwie połączeń. Zaciskarki umożliwiają precyzyjne i mocne zaciśnięcie tulejki na przewodzie, co jest zgodne ze standardami branżowymi, takimi jak normy IEC czy DIN. Prawidłowo zaciśnięta tulejka zapewnia nie tylko mechaniczne, ale i elektryczne bezpieczeństwo połączenia, co jest kluczowe w zapobieganiu awariom i stratom energii. Warto pamiętać, że używanie odpowiednich narzędzi i technik w pracy z przewodami jest jednym z fundamentów profesjonalizmu w branży elektrycznej. Zaciskarki tego typu mogą mieć regulowany mechanizm zaciskowy, co pozwala na dostosowanie do różnych rozmiarów tulejek, a ich ergonomiczna konstrukcja ułatwia pracę nawet w trudnych warunkach.

Pytanie 5

Do pomiaru ciśnienia cieczy w układach hydraulicznych stosuje się

A. barometry.
B. manometry.
C. higrometry.
D. areometry.
Manometry to podstawowe narzędzia stosowane w hydraulice do pomiaru ciśnienia cieczy. Działają na zasadzie równowagi sił w układzie zamkniętym, co pozwala na dokładne określenie wartości ciśnienia. Są niezwykle powszechne w wielu branżach, od przemysłu petrochemicznego po produkcję maszyn. Praktyczne zastosowania manometrów obejmują monitorowanie ciśnienia w układach chłodniczych, instalacjach wodociągowych czy systemach pneumatycznych. Warto wiedzieć, że manometry są kluczowym elementem bezpieczeństwa w zakładach przemysłowych, ponieważ pozwalają na szybkie wykrycie nieprawidłowości, które mogą prowadzić do awarii lub wypadków. Standardowe praktyki branżowe zalecają regularną kalibrację manometrów, aby zapewnić ich dokładność i niezawodność. Istnieją różne rodzaje manometrów, takie jak manometry mechaniczne czy cyfrowe, które mogą być stosowane w zależności od specyfiki aplikacji. Ważne jest, by wybierać odpowiednie manometry zgodnie z zakresem ciśnienia i medium, z którym będą pracować. Stosowanie manometrów to nie tylko kwestia pomiaru, ale również dbałości o bezpieczeństwo i efektywność procesów.

Pytanie 6

Na rysunku przedstawiono schemat blokowy regulatora

Ilustracja do pytania
A. PID
B. P
C. PD
D. PI
Świetnie, że wskazałeś PID jako poprawną odpowiedź! Ten schemat blokowy rzeczywiście pokazuje regulator PID, który składa się z trzech członów: proporcjonalnego (P), całkującego (I) i różniczkującego (D). Każdy z tych członów odpowiada za określony aspekt działania regulatora. Proporcjonalny człon (Kp) reaguje proporcjonalnie do błędu, co pozwala na szybkie reagowanie na zmiany. Całkujący człon (1/TiS) eliminuje uchyb ustalony przez sumowanie błędu w czasie, co jest kluczowe, gdy potrzebujemy wysokiej precyzji i dokładności. Różniczkujący człon (TdS) z kolei przewiduje przyszłe zachowanie układu na podstawie szybkości zmiany błędu, co pomaga w tłumieniu oscylacji i nadmiernych przeregulowań. W praktyce, PID jest stosowany w różnych branżach, od przemysłu chemicznego po systemy sterowania temperaturą, ponieważ pozwala na precyzyjne i stabilne sterowanie. Ciekawe jest to, że odpowiednie dostrojenie tych trzech parametrów (Kp, Ti, Td) może znacząco poprawić wydajność systemu. Warto również wspomnieć, że w dziedzinie automatyki istnieją różne metody konfiguracji PID, jak Ziegler-Nichols czy Cohen-Coon, które pomagają w ustalaniu optymalnych wartości tych parametrów.

Pytanie 7

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionej ilustracji, a z drugiej żyły pozostały niepodłączone. Którego parametru dotyczył wykonany w ten sposób pomiar?

Ilustracja do pytania
A. Rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN.
B. Sumy rezystancji żył L1, L2, L3 oraz PEN.
C. Rezystancji izolacji między przewodami L1 i L2 i L3.
D. Rezystancji żył L1, L2, L3.
Rozważając inne odpowiedzi, warto zastanowić się, dlaczego mogą być mylące. Pomiar rezystancji żył L1, L2, L3 to typowa procedura podczas oceny przewodów, ale nie dotyczy izolacji. Skupia się na przewodności, a nie na izolacyjności. W praktyce, niska rezystancja może wskazywać na uszkodzenia takie jak wady fabryczne lub uszkodzenia mechaniczne, ale to nie izolacja. Z kolei suma rezystancji żył L1, L2, L3 oraz PEN nie jest standardowym parametrem w testach izolacyjnych. Może to wprowadzać w błąd, sugerując zbiorczy pomiar, który nie ma zastosowania w ocenie jakości izolacji. Rezystancja izolacji między przewodami L1 i L2 i L3 odnosi się tylko do pomiarów między tymi przewodami, co jest ważnym testem w kontekście sprawdzania potencjalnych zwarć, ale w przedstawionej sytuacji chodzi o sprawdzenie izolacji względem PEN. W takich sytuacjach, myślenie o pomiarze rezystancji jako zbiorczym wskaźniku jakości wszystkich elementów może prowadzić do przeoczenia kluczowych aspektów związanych z bezpieczeństwem. Pamiętajmy, że dokładne rozumienie, co i dlaczego mierzymy, jest podstawą zachowania bezpieczeństwa i sprawności instalacji.

Pytanie 8

Na rysunku przedstawiono schemat blokowy regulatora

Ilustracja do pytania
A. P
B. PD
C. PID
D. PI
Regulator PID, czyli Proporcjonalno-Całkująco-Różniczkujący, to jeden z najczęściej stosowanych regulatorów w przemyśle. Schemat, który właśnie widzisz, przedstawia wszystkie trzy elementy składowe tego regulatora: składową proporcjonalną, całkującą i różniczkującą. K_p odpowiada za reakcję proporcjonalną, która jest proporcjonalna do bieżącego błędu. Element 1/T_i s to część całkująca, która sumuje błędy w czasie, co pomaga zredukować błąd ustalony. T_d s to składowa różniczkująca, która przewiduje przyszłe błędy na podstawie tempa zmian. W praktyce PID jest niezastąpiony tam, gdzie wymagana jest precyzyjna kontrola – w systemach HVAC, w automatyce przemysłowej, a nawet w robotyce. Dobór właściwych parametrów K_p, T_i, T_d jest kluczowy i często wymaga tuningu metodą Zieglera-Nicholsa lub metodą prób i błędów. Moim zdaniem, każda osoba zajmująca się automatyką powinna dobrze znać zastosowanie i działanie regulatorów PID.

Pytanie 9

Który przyrząd pomiarowy należy zastosować do pomiaru amplitudy, częstotliwości i kształtu sygnałów w montowanych urządzeniach automatyki przemysłowej?

A. Multimetr.
B. Oscyloskop.
C. Częstotliwościomierz.
D. Mostek RLC.
Oscyloskop to naprawdę niezastąpione narzędzie w dziedzinie automatyki przemysłowej, szczególnie gdy chodzi o analizę sygnałów elektrycznych. Jest to urządzenie, które pozwala nam precyzyjnie zobaczyć, jak wygląda sygnał w czasie rzeczywistym. Możemy mierzyć zarówno amplitudę, jak i częstotliwość oraz kształt sygnału, co jest kluczowe przy diagnozowaniu układów elektronicznych. W praktyce oznacza to, że możemy dokładnie zidentyfikować, czy na przykład sygnały sterujące w maszynach przemysłowych działają poprawnie. Użycie oscyloskopu pozwala na szybkie wykrywanie zakłóceń i innych problemów w sieci elektrycznej, co jest nieocenione w utrzymaniu ciągłości pracy. Co więcej, oscyloskopy są standardem w laboratoriach i serwisach elektronicznych, co świadczy o ich uniwersalności i niezawodności. Moim zdaniem, kto raz dobrze opanuje pracę z oscyloskopem, zawsze znajdzie zastosowanie dla tego urządzenia. Dodatkowo, nowoczesne oscyloskopy cyfrowe oferują funkcje, które pozwalają na jeszcze bardziej szczegółową analizę sygnałów, takie jak zapis danych i ich szczegółowa analiza na komputerze. Bez tego przyrządu trudno wyobrazić sobie skuteczne diagnozowanie i naprawę skomplikowanych systemów automatyki przemysłowej.

Pytanie 10

Która z przedstawionych tabliczek znamionowych opisuje silnik elektryczny przeznaczony do pracy ciągłej?

Ilustracja do pytania
A. Tabliczka 2.
B. Tabliczka 4.
C. Tabliczka 3.
D. Tabliczka 1.
Podejście do wyboru silnika na podstawie tabliczki znamionowej wymaga zrozumienia oznaczeń dotyczących trybu pracy. Tabliczka 2 opisuje silnik z oznaczeniem S3, co wskazuje na pracę przerywaną z określonym cyklem pracy, co nie jest odpowiednie dla aplikacji wymagających pracy ciągłej. Silniki w cyklu S3 są przeznaczone do pracy z przerwami, co pozwala na okresowe chłodzenie, ale nie są zdolne do ciągłego działania w stałym obciążeniu. Tabliczka 3 posiada oznaczenie S2, co odnosi się do krótkotrwałej pracy, np. przez 30 minut, co również nie nadaje się do zastosowań wymagających nieprzerwanego działania. Z kolei tabliczka 4 oznaczona jako S4 to silnik do pracy przerywanej z dużym momentem rozruchowym, co sugeruje zastosowania wymagające częstego uruchamiania i zatrzymywania, jak np. w suwnicach. Błędem jest pominięcie znaczenia klasy ochrony IP oraz specyfikacji elektrycznej napięcia i częstotliwości, które również wpływają na dobór odpowiedniego silnika do danego środowiska pracy. Prawidłowe zrozumienie tych parametrów pozwala uniknąć problemów z przegrzewaniem czy niewłaściwym działaniem urządzeń.

Pytanie 11

Do bezstykowego pomiaru temperatury gniazda łożyska należy zastosować termometr

A. manometryczny.
B. pirometryczny.
C. rozszerzalnościowy.
D. bimetalowy.
Pirometryczny termometr to narzędzie, które umożliwia bezdotykowy pomiar temperatury. Działa na zasadzie detekcji promieniowania podczerwonego emitowanego przez obiekt, co pozwala na uzyskanie natychmiastowych i dokładnych odczytów. Jest szczególnie przydatny w sytuacjach, gdzie bezpośredni kontakt z mierzonym obiektem jest niemożliwy lub niebezpieczny. Przykładowo, w przemyśle pirometry są stosowane do monitorowania stanu technicznego maszyn i urządzeń, gdzie ważne jest szybkie wykrycie przegrzewania się elementów, takich jak łożyska czy silniki. Zastosowanie pirometru w takich przypadkach pozwala na uniknięcie awarii i kosztownych przestojów w produkcji. Standardy branżowe, takie jak ISO 9001, zalecają użycie pirometrów do monitorowania temperatur w krytycznych punktach procesu produkcyjnego. Pirometry są również używane w laboratoriach, gdzie precyzyjne pomiary temperatury są kluczowe dla dokładności eksperymentów. Moim zdaniem, zrozumienie działania i zastosowania pirometrów to podstawa dla każdego, kto pracuje w branży technicznej, ponieważ pozwala na skuteczne monitorowanie stanu maszyn i zapobieganie ich awariom. Warto więc zagłębić się w ten temat i poznać różne modele i technologie pirometryczne dostępne na rynku.

Pytanie 12

Który wynik pomiaru rezystancji żyły przewodu YLY 3x10 mm² o długości około 8 m wskazuje na jej ciągłość?

A. Wynik 1
Ilustracja do odpowiedzi A
B. Wynik 2
Ilustracja do odpowiedzi B
C. Wynik 4
Ilustracja do odpowiedzi C
D. Wynik 3
Ilustracja do odpowiedzi D
Nieprawidłowe wyniki (1, 2 i 4) wynikają z błędnej interpretacji pomiaru rezystancji lub z zastosowania niewłaściwej skali przyrządu. W pierwszym przypadku multimetr pokazuje 9,94 Ω – to zdecydowanie zbyt dużo, jak na przewód miedziany o długości zaledwie 8 metrów i przekroju 10 mm². Dla takiego przewodu opór powinien być praktycznie pomijalny (rzędu miliomów). Odczyt w granicach 10 Ω oznaczałby poważne uszkodzenie żyły lub brak dobrego styku przewodów pomiarowych. W drugim wyniku (220 Ω) sytuacja jest jeszcze bardziej oczywista – taka rezystancja wskazuje na przerwę w obwodzie lub całkowity brak ciągłości przewodu. Multimetr w tym zakresie po prostu pokazuje wartość bliską nieskończoności, czyli otwarty obwód. Wynik czwarty, 13,999 mΩ, jest z kolei zbyt mały w stosunku do możliwości typowego przewodu i pomiaru, sugeruje użycie mikroohmmetru o wysokiej dokładności, ale dla długości 8 metrów i przekroju 10 mm² rzeczywisty opór wynosi około 0,013 Ω – a więc wartość byłaby widoczna dopiero po przeliczeniu jednostek, co może prowadzić do mylnej interpretacji. Częsty błąd wśród uczniów to nieuwzględnienie skali odczytu i jednostek (Ω, kΩ, mΩ). W praktyce, aby potwierdzić ciągłość przewodu, wynik powinien mieścić się poniżej 1 Ω – to prosta zasada, którą stosują elektrycy podczas przeglądów i pomiarów odbiorczych instalacji.

Pytanie 13

Przedstawiony fragment programu realizuje funkcję

Ilustracja do pytania
A. NAND
B. OR
C. NOR
D. AND
Wybór innych operacji logicznych jak NOR, AND czy NAND w tym przypadku nie jest poprawny. NOR to negacja operacji OR, co oznacza, że wynik jest prawdą tylko wtedy, gdy oba wejścia są fałszem. Taka logika zrealizowałaby odwrotną funkcję do przedstawionej, co nie pasuje do struktury drabinkowej na obrazku. Logika AND wymaga, by oba wejścia były prawdą, by wynik był prawdziwy, co również nie odpowiada działaniu przedstawionego fragmentu. NAND jest negacją AND, czyli daje wynik fałszywy tylko wtedy, gdy oba wejścia są prawdziwe, co również nie jest zgodne z przedstawionym schematem. Częstym błędem jest mylenie tych operacji ze względu na podobne brzmienie nazw lub intuicyjne założenia. W rzeczywistości, różnice te są fundamentalne i zrozumienie ich jest kluczem do projektowania skutecznych systemów automatyki. Z mojego doświadczenia wynika, że wiele błędów w programowaniu automatyki wynika z niewłaściwego użycia logicznych operatorów, dlatego ważne jest, by znać ich specyfikę i stosować odpowiednie według potrzeb.

Pytanie 14

Zintegrowany interfejs komunikacyjny w sterowniku PLC przedstawionym na rysunku to

Ilustracja do pytania
A. RS-232
B. OBD II
C. 8P8C
D. USB
Wybór interfejsu komunikacyjnego ma kluczowe znaczenie w kontekście integracji i funkcjonalności sterowników PLC. RS-232, choć kiedyś popularny, obecnie jest rzadko stosowany w zaawansowanych systemach przemysłowych ze względu na ograniczoną prędkość transmisji i brak możliwości sieciowych. Wspiera jedynie komunikację punkt-punkt, co ogranicza jego zastosowanie w nowoczesnych rozwiązaniach automatyki. OBD II to interfejs diagnostyczny stosowany w motoryzacji, zupełnie nieodpowiedni dla przemysłowych aplikacji PLC, które wymagają integracji z sieciami komputerowymi. USB, choć wszechstronny i używany do podłączania różnych urządzeń w komputerach osobistych, nie jest standardowym interfejsem komunikacyjnym w systemach przemysłowych. Przemysł stawia na stabilność i możliwość pracy w trudnych warunkach, co zapewnia interfejs 8P8C. Użycie standardu Ethernet w PLC to krok w stronę nowoczesności i integracji z systemami IT, których wymaga współczesna automatyka przemysłowa. Dlatego wybór nieodpowiedniego interfejsu może prowadzić do problemów z kompatybilnością i wydajnością w przyszłych implementacjach.

Pytanie 15

Na podstawie danych technicznych zawartych w tabeli ustal parametry zasilania maty grzejnej.

Nazwa produktu:Mata grzejna 5,0 m² 170 W THERMOVAL
Powierzchnia grzewcza5,0 m²
Całkowita moc grzewcza850 W
Moc grzewcza / m²170 W
Napięcie zasilające230 V
Wymiary produktuszer. 0,5 x dł. 10 m
A. Napięcie 230 V, prąd 0,7 A
B. Napięcie 170 V, prąd 3,7 A
C. Napięcie 230 V, prąd 3,7 A
D. Napięcie 230 V, prąd 5,0 A
Odpowiedź z napięciem 230 V i prądem 3,7 A jest poprawna. Z tabeli wynika, że napięcie zasilające matę grzejną wynosi 230 V. Moc całkowita maty to 850 W, a prąd obliczamy z zależności P = U * I, gdzie P to moc, U to napięcie, a I to prąd. Podstawiając dane: 850 W = 230 V * I, otrzymujemy I = 850 W / 230 V, co daje w przybliżeniu 3,7 A. Stosowanie tej zależności to podstawa w elektrotechnice i pozwala na poprawne określenie parametrów zasilania urządzeń. W praktyce, taka mata grzejna znajdzie zastosowanie w ogrzewaniu podłogowym, co jest popularnym rozwiązaniem w nowoczesnym budownictwie. Zastosowanie odpowiedniego napięcia i prądu gwarantuje efektywność pracy urządzenia. Warto wiedzieć, że przy instalacjach elektrycznych zawsze należy przestrzegać odpowiednich norm i standardów, takich jak PN-EN 60335 dotyczący bezpieczeństwa użytkowania urządzeń elektrycznych. Prawidłowe zrozumienie i zastosowanie tej wiedzy jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności systemów grzewczych.

Pytanie 16

Zgodnie z zamieszczonym schematem lampka sygnalizacyjna H1 będzie świecić, gdy

Ilustracja do pytania
A. będzie naciśnięty tylko przycisk S1
B. będą naciśnięte tylko przyciski S1 i S2
C. będzie naciśnięty tylko przycisk S3
D. będą naciśnięte tylko przyciski S1 i S3
Wiele osób patrząc na taki schemat, może automatycznie założyć, że wystarczy wcisnąć dowolny z przycisków albo nawet kilka naraz, żeby lampka H1 się zapaliła. To jest dość częsty błąd wynikający z nieprzeanalizowania, w jaki sposób przewodzenie prądu jest uzależnione od stanu każdego z przekaźników. Jeżeli wybiera się opcję, że muszą być naciśnięte dwa lub trzy przyciski, albo tylko S3, to ignoruje się fakt, że przekaźniki w tym układzie pracują w taki sposób, że ich styki są połączone szeregowo – a więc otwarcie któregokolwiek z nich przerywa całą drogę prądu do lampki. Wciśnięcie tylko S3 spowoduje zadziałanie K3, ale ponieważ K1 i K2 nie są aktywne, ich styki nie zamykają obwodu, więc lampa się nie zaświeci. Podobnie, jednoczesne naciśnięcie kilku przycisków, np. S1 i S2, oznacza załączenie przekaźników K1 i K2, ale jeżeli K3 nie jest aktywny, to obwód nadal jest otwarty. Dobrym nawykiem jest analizowanie, czy układ jest typu 'AND', czyli wszystkie warunki muszą być spełnione, czy 'OR', czyli wystarczy spełnić jeden z warunków. W tym układzie mamy do czynienia z klasycznym połączeniem szeregowym, które sprawia, że brak zadziałania choćby jednego przekaźnika skutkuje rozwarciem całej gałęzi zasilającej lampkę. Mylenie się w tej kwestii prowadzi do błędnych wniosków i jest dość powszechne – szczególnie u osób, które nie mają jeszcze wyczucia w czytaniu schematów elektrycznych. Dobrą praktyką jest zawsze śledzenie drogi prądu od zasilania do odbiornika krok po kroku, sprawdzanie, które styki muszą być zamknięte, a które otwarte – to pomaga unikać takich pomyłek.

Pytanie 17

Na podstawie tabeli wskaż jakie powinno być ustawienie sekcji przełącznika, by było możliwe sterowanie za pomocą sygnału prądowego o wartości z przedziału 0 ÷ 20 mA.

Sekcja przełącznika
1234
Sygnał sterujący0 ÷ 5 VOFFONOFFOFF
0 ÷ 10 VOFFOFFOFFOFF
0 ÷ 20 mAONOFFOFFOFF
4 ÷ 20 mAONONONON
Rodzaj odbiornikarezystancyjny----
rezystancyjno-indukcyjny
(0,7 ≤ cos φ ≤ 0,9)
----
A. 1 – ON, 2 – ON, 3 – ON, 4 – ON
B. 1 – OFF, 2 – ON, 3 – OFF, 4 – OFF
C. 1 – ON, 2 – OFF, 3 – OFF, 4 – OFF
D. 1 – OFF, 2 – OFF, 3 – OFF, 4 – OFF
Odpowiedź 2 jest prawidłowa, ponieważ dla sygnału sterującego o zakresie 0 ÷ 20 mA ustawienie sekcji przełącznika powinno być w pozycji: 1 – ON, 2 – OFF, 3 – OFF, 4 – OFF. Tabela jasno to wskazuje. Ta konkretna kombinacja ustawień przełącznika pozwala na poprawne odczytywanie i interpretację sygnału prądowego o podanym zakresie. W praktyce, sygnały 0–20 mA są szeroko stosowane w systemach automatyki przemysłowej, ponieważ są mniej podatne na zakłócenia i mogą być przesyłane na większe odległości bez znaczącej utraty jakości. Standard 0–20 mA, a także podobny 4–20 mA, jest jednym z najstarszych i najczęściej używanych protokołów w przemyśle. Przykładowo, w układach kontroli temperatury sygnał 0–20 mA może być użyty do sterowania zaworem regulacyjnym na podstawie odczytów z czujnika temperatury. Ważne jest również, aby pamiętać o odpowiednim kalibrowaniu czujników i urządzeń, aby zapewnić precyzyjne pomiary i sterowanie. Dobrą praktyką jest regularne sprawdzanie zgodności urządzeń z wymaganiami technicznymi i normami, co zapewnia niezawodność i bezpieczeństwo systemu.

Pytanie 18

Na którym rysunku przedstawiono symbol graficzny będący oznaczeniem napędu łącznika uruchamianego przez obrót?

A. Rysunek 3
Ilustracja do odpowiedzi A
B. Rysunek 1
Ilustracja do odpowiedzi B
C. Rysunek 2
Ilustracja do odpowiedzi C
D. Rysunek 4
Ilustracja do odpowiedzi D
Symbol przedstawiony na rysunku 3 jest oznaczeniem napędu łącznika uruchamianego przez obrót. Jest to standard w projektowaniu schematów elektrycznych, gdzie symbole graficzne wizualizują funkcjonalność danego elementu. Taki sposób oznaczania jest bardzo przydatny w praktyce, zwłaszcza gdy mamy do czynienia z szafami sterowniczymi czy tablicami rozdzielczymi. Napęd obrotowy jest często stosowany w mechanizmach, które wymagają precyzyjnego i niezawodnego przełączania, jak np. przełączniki krzywkowe czy styczniki. Z mojego doświadczenia, dobrze jest znać różne symbole, bo to ułatwia pracę i komunikację w zespole projektowym. Pamiętaj też, że zgodność ze standardami, takimi jak normy IEC, zapewnia spójność i uniwersalność schematów elektrycznych. W praktyce, stosowanie poprawnych symboli pomaga w unikaniu błędów podczas montażu i konserwacji urządzeń, co przekłada się na bezpieczeństwo i efektywność pracy.

Pytanie 19

Do pomiaru luzów pomiędzy współpracującymi powierzchniami służy

A. liniał sinusowy.
B. przymiar kreskowy.
C. mikrometr.
D. szczelinomierz.
Szczelinomierz to narzędzie powszechnie stosowane w przemyśle, gdy chcemy zmierzyć niewielkie luki między powierzchniami. Złożony jest z zestawu cienkich blaszek o różnej grubości, które pozwalają na dokładne określenie wielkości szczeliny. Wyobraź sobie sytuację, w której montujesz dwie metalowe części i musisz upewnić się, że pasują do siebie idealnie. W takim przypadku szczelinomierz jest nieoceniony. Często używają go mechanicy samochodowi do ustawiania luzów zaworowych w silnikach spalinowych. Z mojego doświadczenia wynika, że umiejętne posługiwanie się szczelinomierzem potrafi zaoszczędzić wiele problemów związanych z nadmiernym zużyciem części lub hałasem. W standardach przemysłowych często wymaga się precyzyjnego dopasowania elementów, a szczelinomierz jest narzędziem, które umożliwia sprostanie tym wymaganiom. Pamiętaj, że właściwy dobór narzędzi pomiarowych w dużym stopniu wpływa na jakość gotowego produktu, co jest kluczowe, szczególnie w produkcji masowej. Dodatkowo, użycie szczelinomierza jest stosunkowo proste i szybkie, nie wymaga skomplikowanych procedur kalibracyjnych, co czyni go idealnym wyborem w wielu sytuacjach przemysłowych.

Pytanie 20

Do wykonania połączeń w przedstawionej na rysunku puszce zaciskowej silnika elektrycznego należy wykorzystać

Ilustracja do pytania
A. klucz płaski.
B. wkrętak płaski.
C. wkrętak torx.
D. klucz imbusowy.
Do wykonania połączeń w puszce zaciskowej przedstawionej na zdjęciu należy użyć klucza płaskiego. Widoczne na fotografii śruby z sześciokątnymi łbami to typowe elementy stosowane w połączeniach elektrycznych silników trójfazowych – najczęściej do montażu mostków (zwór) w konfiguracji gwiazdy lub trójkąta. Klucz płaski pozwala na dokładne i równomierne dokręcenie tych połączeń, co jest bardzo istotne, ponieważ zbyt słabe dokręcenie może prowadzić do grzania się styków, a w konsekwencji do uszkodzenia izolacji lub nawet pożaru. Z kolei zbyt mocne dociśnięcie może zniszczyć końcówki oczkowe lub pęknięcie gwintu. W praktyce warto stosować klucz o odpowiednim rozmiarze (najczęściej 8, 10 lub 13 mm w zależności od silnika). Moim zdaniem to jeden z tych przypadków, gdzie precyzja manualna i świadomość techniczna mają ogromne znaczenie – silnik z luźnym połączeniem fazy to gotowy przepis na awarię. Dodatkowo, w profesjonalnym serwisie używa się kluczy dynamometrycznych, by zachować właściwy moment dokręcania zgodny z normami producenta.

Pytanie 21

Którą funkcję logiczną realizuje program zapisany w pamięci sterownika PLC przedstawiony na rysunku?

Ilustracja do pytania
A. NAND.
B. XOR.
C. NOR.
D. OR.
Wybór niewłaściwej odpowiedzi może wynikać często z błędnego zrozumienia funkcji logicznych OR, XOR czy NAND. Funkcja OR, na przykład, aktywuje wyjście, gdy przynajmniej jedno z wejść jest aktywne. Jest to zdecydowane przeciwieństwo NOR, który wymaga, by oba wejścia były nieaktywne, aby uzyskać aktywne wyjście. Nieporozumienia mogą również dotyczyć funkcji XOR, która aktywuje wyjście tylko wtedy, gdy dokładnie jedno z wejść jest aktywne. Działanie XOR jest często mylone z OR, ale kluczową różnicą jest wymaganie XOR dotyczące różności sygnałów wejściowych. Kolejno, funkcja NAND, która jest odwrotnością funkcji AND, aktywuje wyjście, gdy przynajmniej jedno z wejść jest nieaktywne. Błędy myślowe mogą pochodzić z nieznajomości tych subtelnych różnic. Moim zdaniem, istotne jest, aby dobrze zrozumieć każdą z tych funkcji logicznych, ponieważ są one fundamentem w programowaniu PLC. Praktyka pokazuje, że dokładne przećwiczenie i zrozumienie każdego z operatorów logicznych pozwala na uniknięcie takich pomyłek w przyszłości. Zwiększa to również efektywność i bezpieczeństwo w projektowaniu systemów automatyki przemysłowej. Warto poświęcić czas na zapamiętanie, że NOR jest jednym z bardziej restrykcyjnych operatorów, wymagającym nieaktywnych sygnałów wejściowych.

Pytanie 22

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionej ilustracji, a z drugiej żyły pozostały niepodłączone. Którego parametru dotyczył wykonany w ten sposób pomiar?

Ilustracja do pytania
A. Rezystancji żył L1, L2, L3.
B. Rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN.
C. Sumy rezystancji żył L1, L2, L3 oraz PEN.
D. Rezystancji izolacji między przewodami L1 i L2 i L3.
Wykonanie pomiaru rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN jest kluczowe w ocenie bezpieczeństwa elektrycznego instalacji. Taki pomiar pomaga zidentyfikować możliwe uszkodzenia izolacji, które mogłyby prowadzić do zwarć lub porażenia prądem. Rezystancja izolacji jest mierzona przy użyciu specjalnych mierników, które podają wysokie napięcie pomiarowe, aby dokładnie ocenić stan izolacji. Standardy branżowe, takie jak PN-HD 60364, zalecają regularne wykonywanie takich pomiarów w celu utrzymania bezpieczeństwa instalacji. Praktyczne zastosowanie tej wiedzy można znaleźć w przemyśle budowlanym, gdzie bezpieczeństwo instalacji elektrycznych jest priorytetem. W domowych warunkach, choć rzadko wykonywane przez laików, pomiary te mogą być kluczowe przy odbiorze nowych instalacji. Moim zdaniem, znajomość i wykonywanie takich pomiarów to podstawa zdrowego rozsądku w zawodzie elektryka. Z doświadczenia wiem, że regularne pomiary rezystancji izolacji pozwalają na wczesne wykrycie potencjalnych problemów, co przekłada się na bezpieczeństwo użytkowników.

Pytanie 23

Elektronarzędzie, którym można wykonywać precyzyjną obróbkę mechaniczną polegającą na frezowaniu i szlifowaniu powierzchni, przedstawiono na ilustracji

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
To elektronarzędzie w odpowiedzi numer 2 to miniaturowa szlifierka, znana jako multi-tool lub dremel. Jest idealna do precyzyjnej obróbki, takiej jak frezowanie, szlifowanie, polerowanie czy nawet cięcie drobnych elementów. Dzięki swojej wszechstronności znajduje zastosowanie w modelarstwie, rzemiosłach artystycznych oraz w drobnych pracach naprawczych. To narzędzie ma możliwość wymiany końcówek, co pozwala na dostosowanie go do konkretnej pracy. Dremel jest bardzo popularny w warsztatach domowych, ale również w profesjonalnych. Umożliwia pracę z różnymi materiałami, od drewna, przez metal, po tworzywa sztuczne. Warto pamiętać, że korzystanie z niego wymaga pewnej wprawy i ostrożności, ponieważ jego prędkość obrotowa jest wysoka. Stosowanie odpowiednich końcówek i właściwych prędkości obrotowych jest kluczowe, aby uniknąć przegrzewania materiału i zapewnić idealne wykończenie. Z mojego doświadczenia, użycie takiego narzędzia znacząco przyspiesza drobne prace i pozwala na osiągnięcie wysokiej precyzji w obróbce.

Pytanie 24

W celu wykonania połączenia między zasilaczem a sterownikiem punktów oznaczonych jako PE należy zastosować przewód którego izolacja ma kolor

A. niebieski.
B. czerwony.
C. niebiesko-zielony.
D. żółto-zielony.
W instalacjach elektrycznych kolor żółto-zielony jest zarezerwowany dla przewodów ochronnych, znanych również jako przewody PE (Protective Earth). Takie przewody pełnią kluczową rolę w zapewnieniu bezpieczeństwa, chroniąc użytkowników przed porażeniem prądem oraz zabezpieczając urządzenia przed uszkodzeniami. Kolory izolacji w instalacjach elektrycznych są standaryzowane przez normy, takie jak PN-EN 60446, które określają, że przewód ochronny musi być żółto-zielony. Dlatego właśnie, łącząc zasilacz ze sterownikiem, punkty oznaczone jako PE powinny być połączone przewodem o takiej izolacji. W praktyce, w przypadku wystąpienia zwarcia, prąd zwarciowy zostaje skierowany do ziemi, co zapobiega porażeniu użytkownika. Warto również pamiętać, że odpowiednie oznaczenie przewodów w instalacji jest nie tylko kwestią zgodności z normami, ale również dobrym nawykiem, który ułatwia późniejsze prace serwisowe i zmniejsza ryzyko błędów podczas wykonywania instalacji. Moim zdaniem, zrozumienie znaczenia kolorów przewodów to podstawa bezpiecznej i zgodnej z normami pracy każdego elektryka.

Pytanie 25

Na przedstawionym rysunku siłownik jest połączony ze słupkiem za pomocą

Ilustracja do pytania
A. łapy.
B. kołnierza przedniego.
C. ucha.
D. jarzma.
Wybierając metodę połączenia siłownika ze słupkiem, warto zrozumieć dlaczego niektóre rozwiązania są bardziej popularne niż inne. Rozważmy opcję kołnierza przedniego. Kołnierz jest często stosowany do mocowania elementów w pozycji stacjonarnej, jednak w przypadku siłownika, który musi się obracać podczas pracy, takie połączenie byłoby niepraktyczne. Jarzmo z kolei jest używane w sytuacjach, gdy konieczne jest jednoczesne uchwycenie dwóch równoległych elementów, co nie jest wymagane w przypadku siłownika. Łapa mogłaby być stosowana do przytwierdzenia czegoś do podłoża, lecz w kontekście siłownika, który musi mieć możliwość pewnego zakresu ruchu, jej zastosowanie byłoby nieoptymalne. Typowym błędem jest mylenie funkcji poszczególnych elementów mocujących i ich wpływu na funkcjonowanie systemu. Ważne jest, by wybrać takie połączenie, które zapewni optymalną ruchliwość i stabilność, co osiągamy właśnie poprzez zastosowanie ucha w połączeniach ruchomych.

Pytanie 26

Na rysunku przedstawiono przytwierdzenie siłownika za pomocą

Ilustracja do pytania
A. łap mocujących.
B. ucha ze sworzniem.
C. kołnierza.
D. uchwytu widełkowego ze sworzniem.
Łapy mocujące to bardzo popularny sposób przytwierdzania siłowników, zwłaszcza w zastosowaniach przemysłowych. Dzięki swojej konstrukcji zapewniają stabilność i łatwość montażu w różnych pozycjach. Są często używane w systemach, gdzie istnieje potrzeba montażu na powierzchniach płaskich. Mocowanie za pomocą łap jest zgodne z wieloma standardami, takimi jak ISO 6020/2 dla siłowników hydraulicznych. W praktyce stosuje się je w maszynach budowlanych, liniach produkcyjnych czy w przemyśle samochodowym. Przewagą łap mocujących jest możliwość łatwego dostosowania i demontażu, co jest kluczowe w środowiskach, gdzie częsta konserwacja jest niezbędna. Co więcej, umożliwiają one absorpcję obciążeń bocznych, co zwiększa trwałość i żywotność całego układu. Dzięki temu ich użycie jest efektywne i ekonomiczne na dłuższą metę. Warto również pamiętać, że odpowiednie rozmieszczenie śrub mocujących łapy do podłoża gwarantuje równomierne rozłożenie obciążeń, co jest podstawą dobrej praktyki inżynierskiej.

Pytanie 27

Urządzenie, którego schemat przedstawiono na rysunku, pracuje w sposób oscylacyjny. Który zawór należy zamontować w miejscu oznaczonym X, aby prędkość wysuwania tłoczyska siłownika była większa od prędkości wsuwania?

Ilustracja do pytania
A. Dławiąco-zwrotny.
B. Podwójnego sygnału.
C. Progowy.
D. Przełącznik obiegu.
Odpowiedź dławiąco-zwrotny jest prawidłowa, ponieważ ten zawór pozwala na regulację przepływu cieczy lub powietrza w jednym kierunku, jednocześnie umożliwiając swobodny przepływ w przeciwnym. W kontekście siłowników dwustronnego działania, taki zawór umożliwia precyzyjne dostosowanie prędkości wysuwania tłoczyska, co jest kluczowe w wielu aplikacjach przemysłowych oraz automatyce. Dzięki temu można zwiększyć efektywność i precyzję działania maszyn. Instalacja zaworu dławiąco-zwrotnego to standardowa praktyka w systemach pneumatycznych i hydraulicznych, gdzie kontrola prędkości ruchu jest istotna. Praktyczne zastosowanie takiego rozwiązania można znaleźć w liniach produkcyjnych, gdzie różne fazy operacji muszą być zsynchronizowane. Ten zawór jest również często wykorzystywany w maszynach CNC, gdzie precyzyjne sterowanie elementami roboczymi jest niezbędne. Dzięki zastosowaniu zaworów dławiąco-zwrotnych można również zmniejszyć zużycie energii poprzez optymalizację przepływu, co jest ważne z punktu widzenia ekonomii produkcji i ochrony środowiska.

Pytanie 28

Na rysunku przedstawiono diagram działania jednego z bloków funkcyjnych sterownika PLC. Jest to blok

Ilustracja do pytania
A. licznika impulsów zliczającego w dół CTD.
B. licznika impulsów zliczającego w górę CTU.
C. timera opóźniającego wyłączenie TOF.
D. timera opóźniającego załączenie TON.
Blok przedstawiony na rysunku to licznik impulsów zliczający w dół, znany jako CTD. Działa on w ten sposób, że na każde zbocze opadające sygnału zegarowego (CD), wartość rzeczywista (CV) licznika zmniejsza się o jeden. Kiedy licznik osiąga wartość zero, wyjście Q zmienia stan, co sygnalizuje osiągnięcie zadanej liczby impulsów. To powszechnie stosowane narzędzie w automatyzacji, szczególnie przy kontrolowaniu sekwencji procesów produkcyjnych. Użycie CTD jest popularne w aplikacjach, gdzie potrzebne jest ścisłe zliczanie elementów, np. w liniach montażowych. Warto pamiętać, że w praktyce liczniki mogą być resetowane za pomocą sygnału RST, co przywraca je do stanu początkowego, umożliwiając rozpoczęcie nowego cyklu zliczania. Liczniki tego typu są nieocenione w systemach, gdzie precyzyjne kontrolowanie ilości jest kluczowe, np. przy pakowaniu produktów. Moim zdaniem, znajomość obsługi takich liczników to podstawa dla każdego inżyniera automatyka, gdyż umożliwia projektowanie skutecznych i niezawodnych systemów sterowania procesem.

Pytanie 29

W jaki sposób należy ustawić separator dla toru pomiarowego czujnika 0-100 ºC/0-20 mA dla wejścia sterownika PLC 0-20 mA?

Ilustracja do pytania
A. input SW1 - 01001001, output SW2 - 0000.
B. input SW1 - 10001100, output SW2 - 0000.
C. input SW1 - 01011010, output SW2 - 0110.
D. input SW1 - 01011010, output SW2 - 1001.
Odpowiedź jest prawidłowa, ponieważ konfiguracja input SW1 - 01001001 i output SW2 - 0000 jest idealna dla toru pomiarowego czujnika 0-100 ºC/0-20 mA przy wejściu sterownika PLC 0-20 mA. Wybierając taką konfigurację, ustawiamy właściwe zakresy działania czujnika i sterownika, co jest kluczowe dla dokładności pomiarów. W praktyce oznacza to, że sygnał prądowy 0-20 mA odpowiada mierzonym temperaturom od 0 do 100 ºC. Jest to zgodne z dobrymi praktykami, gdzie precyzyjne dopasowanie zakresu pomiarowego do rzeczywistych warunków pracy minimalizuje błędy. Taka konfiguracja pozwala na pełne wykorzystanie rozdzielczości i dokładności przetwarzania sygnałów w systemach sterowania. Warto pamiętać, że poprawne ustawienie dip-switchy jest istotne, gdyż nawet mała niedokładność może prowadzić do dużych błędów w przetwarzaniu danych w PLC, co w przypadku przemysłowych aplikacji może mieć poważne konsekwencje.

Pytanie 30

Według której zasady należy w układzie sterowania zaprojektować działanie umożliwiające wyłączenie zautomatyzowanego systemu sterowanego przez sterownik PLC?

A. Zasady przerwy roboczej - podanie stanu 0 na wejście sterownika.
B. Zasady blokady sygnałów wyjściowych.
C. Zasady blokady programowej sygnałów wejściowych.
D. Zasady prądu roboczego - podanie stanu 1 na wejście sterownika.
Zasady blokady sygnałów wyjściowych oraz blokady programowej sygnałów wejściowych to częste błędy koncepcyjne, gdy myślimy o wyłączaniu systemów sterowania. Pierwsza z nich sugeruje, że można po prostu zablokować sygnały na wyjściu, ale to nie rozwiązuje problemu potencjalnych awarii sterownika lub innych komponentów systemu. Blokowanie sygnałów wyjściowych może jedynie zatrzymać działanie siłowników czy innych wykonawczych elementów, ale nie gwarantuje, że system faktycznie przestanie działać w bezpieczny sposób. Podobnie zasady blokady programowej sygnałów wejściowych mogą wprowadzać fałszywe poczucie bezpieczeństwa – nawet jeśli blokujemy niektóre sygnały, to sterownik PLC może nadal operować na pozostałych danych, co może prowadzić do niekontrolowanych działań. Zasady prądu roboczego, które sugerują podanie stanu 1 na wejście, również są mylące. W sytuacjach awaryjnych wymagamy, aby system automatycznie przechodził w stan bezpieczny, co oznacza, że powinien przyjąć stan 0 jako domyślne ustawienie. W praktyce, błędne założenie, że podanie stanu 1 rozwiąże problem, może prowadzić do zwiększenia ryzyka awarii. Często spotykanym błędem jest niedocenianie potrzeby implementacji procedur fail-safe, które są fundamentem w projektowaniu systemów zautomatyzowanych, zwłaszcza tam, gdzie stawiamy na minimalizację ryzyka dla zdrowia i mienia. W kontekście standardów i dobrych praktyk unikanie przełączania systemu w stan aktywny w krytycznych momentach jest kluczowe dla zapewnienia bezpieczeństwa operacyjnego.

Pytanie 31

Który przetwornik pomiarowy umożliwia bezdotykowy pomiar temperatury?

A. Rezystancyjny.
B. Termoelektryczny.
C. Pirometryczny.
D. Rozszerzalnościowy.
Pirometryczny przetwornik pomiarowy to fascynujące urządzenie, które umożliwia bezdotykowe pomiary temperatury dzięki emisji promieniowania podczerwonego przez ciała o temperaturze wyższej od zera absolutnego. Można zatem dokonywać pomiarów na odległość, co jest niezwykle przydatne w przemyśle, gdzie często mamy do czynienia z trudnymi warunkami, jak wysokie temperatury lub niebezpieczne substancje. Moim zdaniem to właśnie ta bezdotykowość czyni pirometry tak popularnymi w aplikacjach przemysłowych, takich jak monitoring wysokotemperaturowych procesów w hutach czy zakładach chemicznych. Zastosowanie pirometrów jest szerokie, od przemysłu spożywczego, gdzie ważne jest utrzymanie odpowiednich temperatur w procesach produkcyjnych, po medycynę, gdzie używa się ich do bezkontaktowego mierzenia temperatury ciała pacjentów. Pirometry są zgodne z normami ISO, co zapewnia ich dokładność i niezawodność. Oczywiście, jak każde urządzenie, wymagają kalibracji i regularnego serwisowania. Są jednak niezwykle precyzyjne i mogą mierzyć temperatury nawet do kilku tysięcy stopni Celsjusza. Pamiętajmy, że wybór odpowiedniego pirometru zależy od specyficznej aplikacji, w której ma być używany, więc warto zwrócić uwagę na wszelkie parametry techniczne przy zakupie.

Pytanie 32

Czujnik przedstawiony na schemacie ma wyjścia sygnałowe typu

Ilustracja do pytania
A. PNP NC
B. NPN NO
C. NPN NC
D. PNP NO
Rozważając różne typy wyjść czujników, warto zwrócić uwagę na różnice między konfiguracjami PNP i NPN oraz NO i NC. Wyjście PNP oznacza, że czujnik w stanie aktywnym podaje napięcie na wyjście, co często jest używane w miejscach, gdzie obciążenie jest podłączone bezpośrednio do masy. To może być mylące, zwłaszcza gdy pracuje się w systemach wymagających odwrotnego podejścia. Wyjście NO (normalnie otwarte) działa w taki sposób, że w stanie spoczynku obwód jest otwarty, co w przypadku przerwy w działaniu czujnika może nie sygnalizować problemu od razu, co jest mniej pożądane w systemach wymagających wysokiego poziomu bezpieczeństwa. Częstym błędem jest założenie, że konfiguracje NO są zawsze lepsze ze względu na prostotę ich działania, co nie zawsze jest prawdą w zastosowaniach wymagających niezawodności. Warto pamiętać, że nieodpowiedni dobór typu wyjścia może prowadzić do nieprawidłowego sygnalizowania stanów awaryjnych, co jest krytyczne w aplikacjach przemysłowych. Dlatego dobór odpowiedniego typu wyjścia powinien być przemyślany i dostosowany do specyfiki projektu oraz wymagań systemowych.

Pytanie 33

Odpowiedź skokowa regulatora ciągłego przedstawiona na rysunku wskazuje, że w układzie regulacji zastosowano regulator typu

Ilustracja do pytania
A. PID
B. PD
C. P
D. PI
Regulatory P, PD oraz PID różnią się od PI i mają swoje specyficzne zastosowania. Regulator P wpływa jedynie proporcjonalnie na błąd, co może nie być wystarczające w systemach wymagających eliminacji błędu ustalonego. Takie podejście może prowadzić do utrzymywania się stałego uchybu, co nie jest pożądane w większości aplikacji precyzyjnych. Natomiast regulator PD, dodając człon różniczkowy, jest użyteczny w systemach, gdzie ważna jest szybka reakcja na zmiany. Często stosuje się go w aplikacjach, gdzie potrzebne jest tłumienie oscylacji, jednak jego brak zdolności eliminacji błędu ustalonego ogranicza jego zastosowalność. Z kolei regulator PID, łączący wszystkie trzy komponenty, jest najbardziej wszechstronny, ale jego implementacja bywa bardziej skomplikowana. Może prowadzić do przeregulowań, jeśli nie jest właściwie skonfigurowany. Często popełnianym błędem jest przyjmowanie, że uniwersalność PID jest zawsze pożądana, co nie jest prawdą, zwłaszcza w prostszych układach, gdzie PI wystarczy. Dlatego ważne jest, aby nie sugerować się intuicją, lecz zrozumieć specyfikę każdej aplikacji.

Pytanie 34

Na rysunku przedstawiono diagram działania jednego z bloków funkcjonalnych sterownika PLC. Jest to blok

Ilustracja do pytania
A. timera opóźniającego załączenie TON
B. timera opóźniającego wyłączenie TOF
C. licznika impulsów zliczającego w dół CTD
D. licznika impulsów zliczającego w górę CTU
Wybrałeś prawidłową odpowiedź, a mianowicie licznik impulsów zliczający w dół (CTD). Liczniki impulsów są niezwykle istotne w automatyce przemysłowej, ponieważ pozwalają na kontrolowanie sekwencji zdarzeń w procesach produkcyjnych. Licznik zliczający w dół będzie zmniejszał swoją wartość przy każdym impulsie, co można wykorzystać do odmierzania czasu bądź ilości cykli, aż do osiągnięcia zera. W takim momencie można wyzwolić różne działania, na przykład zatrzymanie maszyny lub przełączenie na inne zadanie. W kontekście PLC, liczniki CTD są często używane w połączeniu z innymi blokami funkcjonalnymi, jak liczniki CTU czy timery, aby tworzyć bardziej złożone układy logiczne. Licznik CTD w diagramie pokazuje proces, gdzie wartość licznika zmniejsza się za każdym razem, gdy otrzymuje impuls CD, co jest typowym działaniem dla tego typu bloków. W praktyce liczniki te są bardzo przydatne w systemach sortowania, pakowania czy nawet w przemyśle spożywczym, gdzie ilość przetwarzanych elementów musi być precyzyjnie kontrolowana.

Pytanie 35

Które narzędzie należy zastosować do nacięcia gwintu w otworze?

A. Narzędzie 4.
Ilustracja do odpowiedzi A
B. Narzędzie 3.
Ilustracja do odpowiedzi B
C. Narzędzie 1.
Ilustracja do odpowiedzi C
D. Narzędzie 2.
Ilustracja do odpowiedzi D
Poprawna odpowiedź to narzędzie 1 – czyli gwintownik. Służy ono do nacinania gwintów wewnętrznych w otworach, dzięki czemu można wkręcać w nie śruby lub wkręty o odpowiednim profilu gwintu. Gwintownik ma charakterystyczne rowki wzdłużne, które odprowadzają wióry powstające podczas skrawania metalu. W praktyce stosuje się zwykle zestaw trzech gwintowników: zdzierak, pośredni i wykańczak – każdy pogłębia gwint coraz bardziej, aż do uzyskania pełnego profilu. Podczas pracy należy używać odpowiedniego środka smarującego, np. oleju do gwintowania, który poprawia jakość powierzchni i wydłuża żywotność narzędzia. Z mojego doświadczenia wynika, że kluczowe jest utrzymanie osi gwintownika idealnie w jednej linii z otworem – nawet niewielkie odchylenie powoduje, że śruba nie wchodzi płynnie lub zrywa gwint. W przemyśle mechaniczno-montażowym gwintowniki są podstawowym narzędziem w produkcji elementów z otworami gwintowanymi.

Pytanie 36

Na rysunku przedstawiono symbol graficzny czujnika

Ilustracja do pytania
A. pojemnościowego.
B. indukcyjnego.
C. magnetycznego.
D. optycznego.
Przedstawiony symbol to czujnik optyczny. Na rysunku widać charakterystyczny symbol diody emitującej światło (LED) oraz odbiornika, najczęściej fototranzystora lub fotodiody. To właśnie ten zestaw elementów odpowiada za działanie czujników optycznych, które wykrywają obiekty poprzez analizę promienia światła – odbitego lub przerwanego. W praktyce czujniki optyczne dzielą się na refleksyjne, bariery i odbiciowe. W automatyce przemysłowej wykorzystuje się je np. do zliczania elementów na taśmie, wykrywania obecności detali, kontroli etykiet lub pomiaru prędkości obrotowej. Ich ogromną zaletą jest bezkontaktowa praca i bardzo szybka reakcja, co pozwala uniknąć zużycia mechanicznego. Moim zdaniem warto zwrócić uwagę na strzałki przy symbolu – pokazują kierunek emisji światła, co pomaga odróżnić czujniki optyczne od innych typów w dokumentacji technicznej.

Pytanie 37

Element przedstawiany na schemacie symbolem graficznym jak na przedstawionym rysunku najczęściej w układzie automatyki pełni funkcję elementu

Ilustracja do pytania
A. regulującego.
B. wykonawczego.
C. pomiarowego.
D. sterującego.
Symbol przedstawiony na rysunku to symbol silnika elektrycznego, który w automatyce przemysłowej pełni funkcję elementu wykonawczego. Silniki elektryczne są kluczowe w układach automatyzacji, ponieważ przekształcają energię elektryczną w mechaniczną, co pozwala na napędzanie różnych maszyn i urządzeń. W praktyce, kiedy mówimy o elementach wykonawczych, mamy na myśli komponenty, które faktycznie wykonują zadanie, takie jak włączanie taśmy produkcyjnej, obracanie wałka czy podnoszenie ładunku. W układach sterowania, silniki są sterowane przez układy elektryczne, które regulują ich prędkość, kierunek obrotu oraz moment obrotowy. Standardowe praktyki w inżynierii obejmują użycie falowników do płynnej regulacji parametrów silnika. Ważne jest, aby odpowiednio dobrać silnik do aplikacji, biorąc pod uwagę jego moc, napięcie zasilania oraz charakterystykę obciążenia. W systemach automatyki, silniki są często używane w tandemach z przekładniami, co pozwala na zwiększenie momentu obrotowego przy niskiej prędkości, co jest pożądane w wielu aplikacjach przemysłowych. Moim zdaniem, zrozumienie roli elementów wykonawczych, takich jak silniki, jest kluczowe dla projektowania efektywnych i niezawodnych systemów automatyki.

Pytanie 38

Która ilustracja przedstawia zawór szybkiego spustu?

A. Ilustracja 3
Ilustracja do odpowiedzi A
B. Ilustracja 1
Ilustracja do odpowiedzi B
C. Ilustracja 4
Ilustracja do odpowiedzi C
D. Ilustracja 2
Ilustracja do odpowiedzi D
Na ilustracjach 2, 3 i 4 widoczne są zupełnie inne elementy pneumatyki i automatyki, które często bywają mylone z zaworami szybkiego spustu. Drugi element to zawór rozdzielający (najczęściej 5/2 lub 4/2) sterowany ręcznie – służy do zmiany kierunku przepływu powietrza, a nie do jego szybkiego upustu. Trzeci element to zawór dławiąco-zwrotny, którego zadaniem jest regulacja prędkości przepływu powietrza w jednym kierunku (czyli kontrola szybkości ruchu siłownika). Czwarty element natomiast to wyłącznik krańcowy (mechaniczny), wykorzystywany w automatyce do sygnalizacji położenia elementu ruchomego, nie mający żadnego związku z pneumatyką przepływową. Zawór szybkiego spustu można rozpoznać po masywnej, często metalowej obudowie i trzech przyłączach – jedno do zasilania, jedno do siłownika i jedno odpowietrzające. W praktyce stosuje się go bezpośrednio przy siłowniku, żeby skrócić czas opróżniania przewodu roboczego. Typowym błędem jest użycie zwykłego zaworu sterującego zamiast szybkiego spustu, co prowadzi do spowolnienia ruchu tłoka. W układach przemysłowych taki zawór zwiększa efektywność i pozwala osiągnąć większą częstotliwość cykli pracy urządzenia. Rozpoznanie właściwego elementu opiera się więc na analizie jego funkcji – szybkie odprowadzenie powietrza po stronie roboczej jest jednoznacznym zadaniem zaworu szybkiego spustu.

Pytanie 39

Program sterowniczy przedstawiony na rysunku realizuje funkcję

Ilustracja do pytania
A. OR
B. NOR
C. Ex-NOR
D. Ex-OR
Analizując błędne odpowiedzi, warto zwrócić uwagę na charakterystyki poszczególnych funkcji logicznych, które mogły wprowadzić w błąd. Funkcja OR, znana także jako suma logiczna, daje wynik prawdy, jeśli przynajmniej jeden z jej argumentów jest prawdziwy. To najprostsze do zrozumienia, ale jej zastosowanie w kontekście przedstawionego diagramu może być mylące, gdyż nie uwzględnia różnicy między sygnałami. NOR to nic innego jak negacja funkcji OR. W przypadku NOR, wyjście jest prawdziwe tylko wtedy, gdy wszystkie wejścia są fałszywe. To odwrotność OR i często używana jest w sytuacjach wymagających zanegowania sumy logicznej. Z kolei Ex-NOR, czyli negacja Ex-OR, działa na zasadzie wykrywania zgodności - wyjście jest prawdziwe, gdy oba wejścia są takie same. Typowy błąd myślowy polega na myleniu podobieństw Ex-NOR z różnicami Ex-OR. Funkcje te mogą wydawać się podobne, jednak ich zastosowania są różne i wymagają zrozumienia specyficznych warunków działania. Warto pamiętać, że w automatyce przemysłowej każda z tych funkcji ma swoje unikalne zastosowania i używa się ich w specyficznych okolicznościach. Poprawne zrozumienie różnic między nimi jest kluczowe dla projektowania skutecznych systemów sterowania.

Pytanie 40

W regulatorze PID symbolem Kₚ oznacza się współczynnik

A. zdwojenia.
B. propagacji.
C. proporcjonalności.
D. wyprzedzenia.
Regulator PID to jedno z najczęściej stosowanych narzędzi w inżynierii procesowej i automatyce. Kiedy mówimy o współczynniki K_p, mamy na myśli współczynnik proporcjonalności. To właściwie kluczowy element, który odpowiada za natychmiastową reakcję systemu na błąd. W praktycznych zastosowaniach, K_p jest używany do zwiększenia reaktywności systemu na zmiany. Im wyższa wartość K_p, tym system jest bardziej czuły na różnice między wartością rzeczywistą a zadaną. Oczywiście, nie zawsze wyższe oznacza lepsze – zbyt duży K_p może powodować oscylacje, co jest zjawiskiem niekorzystnym. Praktyka pokazuje, że najlepiej jest znaleźć optymalną wartość, która zapewnia stabilność systemu. Dobre praktyki branżowe zalecają przeprowadzanie tuningu regulatora PID, aby uzyskać najlepsze wyniki w specyficznych warunkach pracy, co często odbywa się metodą Zieglera-Nicholsa. Warto pamiętać, że regulator PID jest centralnym elementem wielu systemów sterowania, od prostych kontrolerów temperatury po skomplikowane systemy sterowania w branży lotniczej czy chemicznej. Takie podejście pozwala na przewidywalne i stabilne zachowanie całego systemu sterowania, zwiększając jego efektywność i niezawodność.