Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 7 grudnia 2025 21:48
  • Data zakończenia: 7 grudnia 2025 22:13

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Napięcie testowe, strata dielektryczna, maksymalne napięcie, opór izolacji, temperatury współczynnik pojemności - to parametry znamionowe

A. diody pojemnościowej
B. rezystora
C. solenoidu
D. kondensatora
Kondensator jest elementem elektronicznym, który gromadzi ładunek elektryczny, a jego zachowanie jest określane przez szereg parametrów znamionowych, takich jak napięcie probiercze, stratność dielektryczna, dopuszczalna wartość napięcia, rezystancja izolacji oraz temperaturowy współczynnik pojemności. Napięcie probiercze odnosi się do maksymalnego napięcia, które kondensator może wytrzymać bez uszkodzeń. Stratność dielektryczna jest miarą strat energii w dielektryku, co wpływa na efektywność kondensatora. Dopuszczalna wartość napięcia to maksymalne napięcie robocze, przy którym kondensator działa prawidłowo. Rezystancja izolacji jest istotna dla przewodności dielektryka, a temperaturowy współczynnik pojemności wskazuje, jak wartość pojemności zmienia się w funkcji temperatury. W praktyce kondensatory są wykorzystywane w filtrach, układach czasowych, oraz w stabilizacji napięcia w zasilaczach, co czyni je niezbędnymi w wielu zastosowaniach elektronicznych. W branży istnieją normy, takie jak IEC 60384, które definiują wymagania dotyczące jakości i bezpieczeństwa kondensatorów.

Pytanie 2

Jakie urządzenia służą do pomiaru wartości przyśpieszenia drgań elektrycznego silnika napędowego pompy hydraulicznej, działającego w systemie mechatronicznym?

A. galwanometry
B. akcelerometry
C. tensometry
D. rotametry
Akcelerometry są urządzeniami pomiarowymi, które służą do pomiaru przyspieszeń oraz drgań w różnych systemach mechanicznych, w tym w elektrycznych silnikach napędowych, jak w przypadku pomp hydraulicznych. Ich działanie polega na rejestrowaniu przyspieszeń w różnych osiach, co pozwala na dokładne monitorowanie stanu technicznego urządzenia. Przykładowo, w przemyśle motoryzacyjnym akcelerometry są powszechnie wykorzystywane do analizy drgań pojazdów, co przyczynia się do poprawy komfortu jazdy oraz bezpieczeństwa. W kontekście układów mechatronicznych, akcelerometry mogą być zintegrowane z systemami kontroli, umożliwiając automatyczne dostosowywanie parametrów pracy maszyny w odpowiedzi na zmieniające się warunki. Zgodnie z normami ISO 5349, które dotyczą pomiaru drgań, akcelerometry stanowią standardowy sposób na zapewnienie precyzyjnych pomiarów, co skutkuje efektywniejszym zarządzaniem procesami przemysłowymi oraz minimalizowaniem ryzyka uszkodzeń sprzętu.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Aby zmierzyć naprężenia normalne (ściśnięcia, rozciągnięcia), należy użyć

A. tachometru
B. tensometru
C. termometru
D. pirometru
Tensometr jest urządzeniem służącym do pomiaru naprężeń normalnych, takich jak ściskanie i rozciąganie. Działa na zasadzie pomiaru odkształceń, które następnie przelicza na wartości naprężeń zgodnie z zasadą Hooke'a. Dzięki temu, tensometry są niezwykle ważne w inżynierii mechanicznej i materiałowej, gdzie precyzyjne pomiary naprężeń są kluczowe dla oceny wytrzymałości materiałów oraz konstrukcji. Przykłady zastosowania tensometrów obejmują badania wytrzymałościowe elementów konstrukcyjnych, takich jak belki, stropy czy mosty. W standardach takich jak ISO 9513 określono metody kalibracji tensometrów, co pozwala na uzyskanie wiarygodnych wyników. Dobre praktyki w stosowaniu tensometrów obejmują również ich odpowiedni dobór do rodzaju materiału oraz warunków pomiarowych, co zapewnia rzetelność i dokładność uzyskanych wyników. Dodatkowo, stosowane są różne typy tensometrów, w tym tensometry foliowe, które umożliwiają pomiary na różnorodnych powierzchniach, co zwiększa ich wszechstronność w zastosowaniach inżynieryjnych.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Wartością tarcia wewnętrznego cieczy dla oleju smarnego jest

A. lepkość
B. utlenianie
C. smarność
D. gęstość
Lepkość jest miarą oporu, jaki ciecz stawia podczas przepływu i jest kluczowym parametrem w ocenie właściwości olejów smarowych. Wysoka lepkość oznacza, że ciecz jest bardziej gęsta i oporna na przepływ, co jest korzystne w zastosowaniach wymagających skutecznego smarowania. Przykładowo, oleje silnikowe muszą mieć odpowiednią lepkość, aby skutecznie chronić silnik przed zużyciem oraz zapewniać odpowiednie smarowanie w różnych temperaturach pracy. Standardy, takie jak SAE, określają klasyfikacje lepkości, co pozwala na wybór odpowiedniego oleju do konkretnego zastosowania. Na przykład, olej 10W-40 ma różne właściwości lepkości w niskich i wysokich temperaturach, co czyni go wszechstronnym wyborem dla wielu silników. Ponadto, lepkość wpływa na inne parametry, takie jak temperatura krzepnięcia i przewodność cieplna, co jest istotne w kontekście efektywności energetycznej urządzeń mechanicznych.

Pytanie 7

Jakie jest właściwe podłączenie dla przyłącza oznaczonego literą 'T' w zaworze hydraulicznym 4/2, które ma oznaczenia A, B, P i T?

A. Do siłownika dwustronnego działania
B. Do siłownika jednostronnego działania
C. Do zbiornika oleju hydraulicznego
D. Do zbiornika sprężonego powietrza
Odpowiedź "Do zbiornika oleju hydraulicznego" jest jak najbardziej trafna. Przyłącze oznaczone literą "T" w układzie hydrauliki siłowej faktycznie działa jako odpływ. W standardowych zaworach hydraulicznych 4/2 to właśnie tam kierowany jest olej, którego nie wykorzystujemy w danym momencie do pracy siłownika. Moim zdaniem, świetnym przykładem jest hydraulika w maszynach budowlanych - po prostu musimy odprowadzać nadmiar oleju, żeby nie było problemów z przegrzewaniem się układu. Dobrze jest też regularnie sprawdzać poziom oleju w zbiorniku, bo jak będzie zbyt niski, to może się zdarzyć, że pompa zacznie zassysać powietrze, a to już poważnie obniża efektywność całego systemu.

Pytanie 8

Żarówka świeci w układzie przedstawionym na schemacie

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Żarówka świeci w układzie przedstawionym na schemacie B, ponieważ dioda jest podłączona zgodnie z kierunkiem przepływu prądu. W tym układzie anoda diody jest podłączona do dodatniego bieguna zasilania, a katoda do bieguna ujemnego, co umożliwia przepływ prądu w kierunku przewodzenia diody. Przykładowo, w praktycznych zastosowaniach, takie jak układy oświetleniowe, kluczowe jest zapewnienie poprawnego połączenia diody w celu zapewnienia niezawodności działania. W przypadku diod LED, ich podłączenie w odwrotnym kierunku może prowadzić do uszkodzenia komponentu. Dobrą praktyką jest zawsze sprawdzanie symboli na diodzie oraz schematów połączeń, aby uniknąć problemów z przepływem prądu. Ponadto, stosując odpowiednie rezystory w szeregowych układach, można kontrolować ilość prądu wpływającego do diody, co zapobiega jej przegrzaniu i przedłuża żywotność. Wiedza o prawidłowym podłączaniu diod jest niezbędna w dziedzinie automatyki i elektroniki, gdzie zapewnienie bezpieczeństwa i funkcjonalności układów jest priorytetem.

Pytanie 9

Taśmociąg, który jest napędzany trójfazowym silnikiem indukcyjnym, porusza się w kierunku przeciwnym do oczekiwanego. Co może być tego przyczyną?

A. zwarciem jednej fazy z obudową.
B. przerwą w jednej z faz.
C. błędną sekwencją faz.
D. zwarciem dwóch faz.
Kolejność faz w trójfazowym silniku indukcyjnym to naprawdę istotna sprawa, bo ma duży wpływ na to, w którą stronę silnik się obraca. Te silniki działają dzięki wirującemu polu magnetycznemu, które powstaje właśnie przez różnice między fazami w przewodach. Kiedy zamieniasz miejscami fazy A, B i C, pole zmienia kierunek, no i silnik obraca się w drugą stronę. To ma znaczenie w wielu miejscach, jak na przykład przy taśmociągach w fabrykach, gdzie wszystko musi działać jak należy, żeby nie tracić czasu. Jak już coś nie gra z podłączeniem, to można szybko sprawdzić sytuację z miernikiem fazowym, który pokaże, jak to wygląda. Dlatego warto przestrzegać zasad przy podłączaniu silników, bo to ważne dla ich działania i bezpieczeństwa. Bez tego, mogą się pojawić poważne problemy.

Pytanie 10

Które sprzęgło należy zastosować do połączenia napędu z maszyną, jeżeli ich wały nie są współosiowe i mają przenosić duże obciążenia przy dużych prędkościach obrotowych?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Sprzęgło elastyczne, które wybrano jako odpowiedź A, jest kluczowym elementem w połączeniach napędowych, zwłaszcza w sytuacjach, gdy wały nie są idealnie współosiowe. Dzięki swojej konstrukcji, sprzęgło elastyczne potrafi absorbowanie przesunięć osiowych, kątowych oraz promieniowych, co jest absolutnie niezbędne w aplikacjach przemysłowych, gdzie występują duże obciążenia oraz wysokie prędkości obrotowe. Przykłady zastosowania takiego sprzęgła można znaleźć w przemyśle motoryzacyjnym, gdzie elastyczne sprzęgła pozwalają na kompensację drgań oraz niewspółosiowości wałów napędowych, co znacznie zwiększa trwałość całego układu napędowego. W kontekście dobrych praktyk, inżynierowie często polegają na sprzęgłach elastycznych, aby zminimalizować ryzyko uszkodzenia komponentów związanych z nadmiernym obciążeniem. Dodatkowo, zgodnie z normami ISO 2372, systemy napędowe powinny być projektowane z uwzględnieniem takich rozwiązań, aby zapewnić ich długowieczność oraz niezawodność w trudnych warunkach eksploatacyjnych.

Pytanie 11

Dławienie zaworów dławiąco-zwrotnych przedstawionych na schemacie ustawiono odpowiednio
1V1 – 50% i 1V2 - 100%. Określ prędkość wysuwania tłoczyska A1 przyjmując, że 0% oznacza całkowite dławienie, 100% oznacza brak dławienia.

Ilustracja do pytania
A. Dwa razy mniejsza niż wsuwania.
B. Cztery razy większa niż wsuwania.
C. Dwa razy większa niż wsuwania.
D. Równa prędkości wsuwania.
Prędkość wysuwania tłoczyska A1 wynika z różnych ustawień dławienia zaworów 1V1 i 1V2. Zawór 1V1 jest ustawiony na 50% dławienia, co oznacza, że ogranicza on przepływ oleju podczas wsuwania tłoczyska. Natomiast zawór 1V2 jest na 100%, co oznacza, że nie występuje żadne dławienie podczas wysuwania. W praktyce oznacza to, że podczas wysuwania tłoczyska dostępny jest pełny przepływ oleju, co zwiększa jego prędkość. Zastosowanie takich regulacji jest istotne w automatyzacji procesów, gdzie kontrola nad prędkościami ruchów jest kluczowa dla efektywności i bezpieczeństwa. W standardach branżowych, takich jak ISO 4413 dotyczące hydrauliki, wskazuje się na znaczenie precyzyjnego dostosowania parametrów pracy urządzeń, co wpływa na ich żywotność oraz funkcjonalność. Dlatego zrozumienie, jak dławienie wpływa na prędkości wysuwania i wsuwania, jest niezbędne dla inżynierów projektujących systemy hydrauliczne.

Pytanie 12

Watomierz jest urządzeniem do pomiaru mocy

A. pozornej
B. chwilowej
C. czynnej
D. biernej
Watomierz, jako urządzenie pomiarowe, jest kluczowym narzędziem w dziedzinie elektroenergetyki, służącym do pomiaru mocy czynnej. Moc czynna, wyrażana w watach (W), to ta część mocy, która jest rzeczywiście wykorzystywana do wykonywania pracy, na przykład zasilania urządzeń elektrycznych. Watomierze znajdują zastosowanie zarówno w przemyśle, jak i w domowych instalacjach elektrycznych, umożliwiając monitorowanie zużycia energii i optymalizację procesów. Dzięki kilku typom watomierzy, w tym analogowym i cyfrowym, możemy dokładnie określić, ile energii zostaje przekształcone w pracę użyteczną, co jest kluczowe dla oceny efektywności energetycznej systemów elektrycznych. W praktyce, pomiar mocy czynnej pozwala na oszacowanie kosztów zużycia energii oraz wykrywanie niesprawności w urządzeniach, co jest zgodne z najlepszymi praktykami w zarządzaniu energią, w tym normami ISO 50001.

Pytanie 13

Jakiego typu silnik prądu stałego powinno się użyć w systemie napędowym dla bardzo ciężkiej przepustnicy?

A. Obcowzbudny
B. Bocznikowy
C. Szeregowy
D. Bezszczotkowy
Silnik prądu stałego szeregowy jest najlepszym wyborem do obsługi bardzo ciężkiej przepustnicy ze względu na swoje właściwości charakterystyczne. Jego konstrukcja powoduje, że w momencie rozruchu generuje on znaczny moment obrotowy, co jest kluczowe przy napędzie elementów wymagających dużej siły. W silniku szeregowym uzwojenie wzbudzenia jest połączone szeregowo z uzwojeniem twornika, co sprawia, że przy niskich prędkościach obrotowych, gdy przepustnica jest obciążona, prąd w obwodzie wzbudzenia jest wysoki, co prowadzi do zwiększenia pola magnetycznego i efektywnego momentu obrotowego. Przykłady zastosowania silników szeregowych to napędy w systemach transportowych, dźwigach oraz w aplikacjach, gdzie wymagana jest znaczna moc przy niskich prędkościach. Zgodnie z normami branżowymi, wykorzystanie silników szeregowych w takich zastosowaniach jest powszechnie akceptowane i polecane z uwagi na efektywność energetyczną oraz niezawodność działania.

Pytanie 14

Przyrząd pomiarowy przedstawiony na rysunku służy w urządzeniu mechatronicznym do pomiaru

Ilustracja do pytania
A. bezwzględnej wartości ciśnienia.
B. podciśnienia i nadciśnienia.
C. tylko nadciśnienia.
D. tylko podciśnienia.
Wybierając odpowiedzi dotyczące pomiarów tylko nadciśnienia lub tylko podciśnienia, można łatwo wpaść w pułapkę mylnych założeń, które ograniczają zrozumienie funkcji manometru. Manometry w rzeczywistości są projektowane, aby mierzyć zarówno podciśnienie, jak i nadciśnienie, co czyni je wszechstronnymi narzędziami w inżynierii. Wybór opcji, które ograniczają się do jednego z tych rodzajów pomiarów, pomija podstawowe zrozumienie działania tych przyrządów. Na przykład, twierdzenie, że manometr mierzy tylko nadciśnienie, ignoruje fakt, że w wielu zastosowaniach, takich jak systemy próżniowe, konieczne jest monitorowanie podciśnienia, które jest kluczowe dla efektywnego działania procesu. Podobnie, stwierdzenie, że manometr mierzy tylko podciśnienie, jest błędne, ponieważ nie uwzględnia zastosowań, gdzie ważne jest kontrolowanie nadciśnienia, jak w instalacjach gazowych. Takie myślenie ogranicza zdolność inżyniera do właściwego projektowania i obsługi systemów mechatronicznych, w których jakiekolwiek błędy w pomiarach ciśnienia mogą prowadzić do poważnych konsekwencji, w tym awarii systemów. Zrozumienie różnorodności funkcji manometrów i ich zastosowania w różnych kontekstach jest kluczowe dla skutecznego rozwiązywania problemów w inżynierii. Właściwe użycie tych narzędzi zgodnie z dobrą praktyką zapewnia bezpieczeństwo i wydajność procesów przemysłowych.

Pytanie 15

Przedstawiony element to

Ilustracja do pytania
A. szybkozłączka pneumatyczna.
B. szybkozłączka optyczna.
C. złącze grzybkowe.
D. szybkozłączka elektryczna.
Szybkozłączka pneumatyczna to element układów pneumatycznych, który umożliwia szybkie i beznarzędziowe łączenie oraz rozłączanie węży i narzędzi pneumatycznych. Jej metalowa konstrukcja oraz obecność gwintów pozwalają na solidne i trwałe połączenie, co jest kluczowe w aplikacjach przemysłowych. Ten typ złącza jest powszechnie stosowany w różnych branżach, takich jak przemysł motoryzacyjny czy budowlany, gdzie wykorzystywane są narzędzia pneumatyczne do wykonywania prac. Zastosowanie szybkozłączek pneumatycznych przyczynia się nie tylko do zwiększenia efektywności pracy, ale także do poprawy bezpieczeństwa operacji, ponieważ umożliwiają one łatwe i szybkie odłączenie narzędzi w razie potrzeby. Dobry dobór szybko złączek w systemie pneumatycznym, zgodny z normami branżowymi, zapewnia optymalną wydajność oraz niezawodność pracy urządzeń.

Pytanie 16

Jakie narzędzie jest konieczne do wykonania gwintu zewnętrznego?

A. Skrobak
B. Tłocznik
C. Gwintownik
D. Narzynka
Narzynka jest narzędziem skrawającym, które służy do nacinania gwintów zewnętrznych na różnych materiałach, w tym metalach. Użycie narzynki jest szczególnie ważne w procesach obróbczych, gdzie precyzja i jakość gwintu mają kluczowe znaczenie. Narzynki są dostępne w różnych rozmiarach oraz typach, w zależności od wymaganego profilu gwintu, co umożliwia ich zastosowanie w szerokim zakresie aplikacji przemysłowych. W praktyce, narzynki są często używane w produkcji śrub oraz w przemyśle motoryzacyjnym, gdzie precyzyjne dopasowanie gwintów jest niezbędne. Dobrą praktyką jest również stosowanie smaru podczas nacinania gwintu, co minimalizuje tarcie i wydłuża żywotność narzędzia. Przestrzeganie standardów ISO dotyczących gwintów, takich jak ISO 965 dla gwintów metrycznych, gwarantuje, że wykonane gwinty będą odpowiednio dopasowane do elementów złącznych. W związku z tym, umiejętność prawidłowego użycia narzynki jest istotna dla każdego specjalisty w dziedzinie obróbki skrawaniem.

Pytanie 17

W przypadku oparzenia kwasem siarkowym, jak najszybciej należy usunąć kwas z oparzonej powierzchni dużą ilością wody, a potem zastosować kompres z

A. 1% roztworu kwasu cytrynowego
B. 3% roztworu sody oczyszczonej
C. wody destylowanej
D. 1% roztworu kwasu octowego
Zastosowanie 1% kwasu cytrynowego lub 1% kwasu octowego w celu złagodzenia skutków oparzenia kwasem siarkowym jest niewłaściwe i może prowadzić do dalszego poważnego uszkodzenia skóry. Zarówno kwas cytrynowy, jak i kwas octowy są substancjami kwasowymi, które mogą w reakcji chemicznej z kwasem siarkowym prowadzić do powstania dodatkowych produktów reakcji, co zintensyfikuje proces oparzenia. Zamiast neutralizacji, ich użycie może spowodować dalsze uszkodzenia tkanek oraz zaostrzenie objawów. W przypadku chemicznych poparzeń, kluczowe jest szybkie usunięcie czynnika drażniącego, co powinno być realizowane przede wszystkim poprzez płukanie wodą. Woda działa jako rozpuszczalnik, a jej obfite użycie może pomóc w usunięciu resztek kwasu z powierzchni skóry. Ponadto, 3% roztwór sody oczyszczonej jest neutralizatorem, który może pomóc w przywróceniu równowagi pH i zminimalizować szkodliwe skutki oparzeń. Zrozumienie tych zasad jest kluczowe dla skutecznego udzielania pierwszej pomocy w przypadku kontaktu ze szkodliwymi substancjami chemicznymi, co podkreśla znaczenie znajomości właściwych protokołów postępowania oraz dobrych praktyk w dziedzinie ochrony zdrowia i bezpieczeństwa.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Potrojenie natężenia prądu przepływającego przez rezystor o niezmiennej rezystancji spowoduje, że ilość ciepła wydzielającego się w nim wzrośnie

A. dwukrotnie
B. sześciokrotnie
C. trzykrotnie
D. dziewięciokrotnie
Odpowiedź "dziewięciokrotnie" jest poprawna, ponieważ zgodnie z prawem Joule'a, moc wydzielająca się w rezystorze jest proporcjonalna do kwadratu natężenia prądu płynącego przez ten rezystor. Prawo to można zapisać jako P = I²R, gdzie P to moc, I to natężenie prądu, a R to rezystancja. Jeśli natężenie prądu wzrasta trzykrotnie (I -> 3I), moc wydzielająca się w rezystorze staje się P' = (3I)²R = 9I²R, co oznacza, że moc wzrasta dziewięciokrotnie. W praktyce, takie zjawisko ma kluczowe znaczenie w projektowaniu obwodów elektrycznych i systemów grzewczych, gdzie kontrola wydzielanego ciepła jest istotna dla bezpieczeństwa i efektywności energetycznej. Zrozumienie tej zależności pozwala inżynierom na odpowiednie dobieranie wartości rezystancji oraz zabezpieczeń, aby uniknąć przegrzewania się elementów w obwodach elektronicznych, co może prowadzić do awarii lub uszkodzeń sprzętu. W branży elektronicznej i elektrycznej, przestrzeganie tych zasad jest niezbędne dla zapewnienia niezawodności i trwałości urządzeń.

Pytanie 20

Maksymalne napięcie na analogowym wejściu kontrolera PLC wynosi 10 V DC, a rozdzielczość tego wejścia, wynosząca około 40 mV, zapewnia zastosowanie kontrolera PLC z przetwornikiem A/C.

A. 32-bitowym
B. 64-bitowym
C. 16-bitowym
D. 8-bitowym
Odpowiedź 8-bitowa jest właściwa, ponieważ przy maksymalnym napięciu wejściowym wynoszącym 10 V oraz rozdzielczości na poziomie 40 mV można obliczyć liczbę dostępnych poziomów pomiarowych dla wejścia analogowego. Wejście 8-bitowe może reprezentować 256 wartości (2^8), co pozwala na podział napięcia 10 V na 256 poziomów. Dlatego pojedynczy krok napięcia wynosi 10 V / 256 = około 39,06 mV. Taka wartość jest bardzo bliska podanej rozdzielczości 40 mV, co czyni tę odpowiedź poprawną. W praktycznych zastosowaniach systemów automatyki, 8-bitowe przetworniki A/C są często wystarczające do monitorowania podstawowych parametrów, takich jak temperatura czy ciśnienie. Pomimo postępu technologicznego, wiele starszych systemów nadal wykorzystuje przetworniki 8-bitowe, co czyni je ważnym elementem w analizie i modernizacji istniejących instalacji. Warto również zauważyć, że zgodnie z normami branżowymi, takich jak IEC 61131, stosowanie prostych rozwiązań w kontrolerach PLC jest często preferowane ze względu na ich niezawodność i łatwość w integracji.

Pytanie 21

Która z wymienionych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Spawanie
B. Klejenie
C. Zaginanie
D. Zgrzewanie
Zgrzewanie, spawanie i zaginanie to techniki, które są powszechnie stosowane do trwałego łączenia elementów wykonanych z tworzyw sztucznych, co może prowadzić do nieporozumień związanych z ich zastosowaniem. Zgrzewanie polega na podgrzewaniu miejsc styku dwóch elementów do momentu ich stopienia, a następnie ich łączeniu. Proces ten tworzy jednorodną strukturę materiału, co sprawia, że połączenie jest trwałe i wytrzymałe na obciążenia. W przypadku spawania, szczególnie w kontekście tworzyw sztucznych, można używać różnych metod, takich jak spawanie gorącym powietrzem czy spawanie w kąpieli cieczy. Oba te procesy również skutkują trwałym połączeniem, które jest często porównywalne z właściwościami mechanicznymi materiału bazowego. Zaginanie natomiast polega na deformacji materiału pod wpływem siły, co w przypadku tworzyw może prowadzić do trwałego kształtowania, ale nie do połączenia dwóch elementów w sensie ich zespolenia. Wiele osób może mylić te techniki, myśląc, że każda z nich może być użyta w każdej sytuacji, co prowadzi do błędnych wniosków. Kluczowe jest zrozumienie, że trwałe połączenia wymagają zastosowania odpowiednich metod, które działają w oparciu o fizykę i mechanikę materiałów, a nie tylko na zasadzie chemii powierzchni. Brak znajomości różnic między tymi technikami może prowadzić do nieodpowiednich wyborów w projektach inżynieryjnych, co z kolei może skutkować osłabieniem konstrukcji i problemami w eksploatacji.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Którą literą na rysunku silnika hydraulicznego oznaczono tarczę rozdzielacza?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Odpowiedź B jest poprawna, ponieważ na rysunku silnika hydraulicznego tarcza rozdzielacza jest oznaczona literą 'B'. Tarcza rozdzielacza odgrywa kluczową rolę w prawidłowej pracy silnika hydraulicznego, ponieważ odpowiada za kierowanie przepływu cieczy roboczej do odpowiednich komór. Dzięki prawidłowemu rozdzieleniu ciśnienia, silnik może efektywnie generować moc, co jest istotne w zastosowaniach takich jak maszyny budowlane, urządzenia przemysłowe czy systemy hydrauliczne w pojazdach. W przypadku nieprawidłowego oznaczenia lub uszkodzenia tarczy rozdzielacza, może dojść do niewłaściwego rozdzielenia cieczy, co skutkuje spadkiem wydajności silnika, a nawet jego uszkodzeniem. Zgodnie z dobrymi praktykami branżowymi, regularne przeglądy i konserwacja komponentów hydraulicznych, w tym tarczy rozdzielacza, są kluczowe dla zapewnienia ich długotrwałej i niezawodnej pracy. Właściwe oznaczenia na schematach technicznych są ważne, aby zapewnić prawidłowe interpretacje i efektywne naprawy w sytuacjach awaryjnych.

Pytanie 24

Element oznaczony cyfrą 1

Ilustracja do pytania
A. ogranicza wartość natężenia prądu w układzie.
B. likwiduje zjawisko stroboskopowe.
C. skraca czas zapłonu świetlówki.
D. poprawia współczynnik mocy świetlówki.
Odpowiedź "ogranicza wartość natężenia prądu w układzie" jest prawidłowa, ponieważ element oznaczony cyfrą 1 to rezystor, który spełnia kluczową rolę w obwodach elektrycznych. Rezystor wprowadza opór, co wpływa na natężenie prądu zgodnie z prawem Ohma, które opisuje zależność między napięciem, prądem i oporem: I = U/R. W praktyce oznacza to, że przy stałym napięciu, zwiększenie wartości rezystora prowadzi do zmniejszenia natężenia prądu. Dzięki temu, stosowanie rezystorów pozwala na precyzyjne zarządzanie prądami w obwodach, co jest kluczowe w projektowaniu układów elektronicznych oraz w aplikacjach, takich jak zasilacze, układy cyfrowe czy analogowe. W branży stosuje się różne typy rezystorów, w tym stałe, zmienne, a także specjalistyczne, na przykład rezystory o dużej mocy, które muszą spełniać normy dotyczące odprowadzania ciepła. Zrozumienie funkcji rezystorów jest niezbędne do projektowania bezpiecznych i efektywnych układów elektrycznych.

Pytanie 25

Wskaż gatunek stali, z której należy wykonać niepodatne na korozję żaroodporne ramię robota przemysłowego.

Ilustracja do pytania
A. 1.0037
B. 1.2311
C. 1.4541
D. 1.3343
Stal 1.4541, znana również jako stal austenityczna, nierdzewna i żaroodporna, charakteryzuje się wysoką odpornością na korozję oraz stabilnością w wysokich temperaturach. Zawiera istotne ilości chromu i niklu, co wpływa na jej strukturę i właściwości. Użycie takiej stali w konstrukcji ramion robotów przemysłowych jest zgodne z najlepszymi praktykami inżynieryjnymi, szczególnie w aplikacjach, gdzie wymagane są odporność na działanie agresywnych substancji chemicznych oraz zdolność do pracy w trudnych warunkach termicznych. Przykładowo, w branży automatyzacji przemysłowej, roboty wyposażone w elementy ze stali 1.4541 mogą być stosowane w procesach spawania, pakowania, czy transportu w warunkach wysokiej wilgotności lub wysokich temperatur. Dodatkowo, stal ta spełnia normy dotyczące materiałów do kontaktu z żywnością, co czyni ją jeszcze bardziej uniwersalnym wyborem.

Pytanie 26

W układzie hydraulicznym zainstalowano zawór dławiąco-zwrotny w sposób pokazany na rysunku. Jaką reakcję wywołuje w tym układzie odkręcanie pokrętła ręcznego?

Ilustracja do pytania
A. Zwiększa prędkość powrotu tłoka.
B. Stabilizuje ciśnienie pracy.
C. Zmniejsza prędkość wysuwu tłoka.
D. Reguluje skok siłownika.
Zawór dławiąco-zwrotny jest kluczowym elementem w systemach hydraulicznych, który reguluje przepływ płynu roboczego. Odkręcanie pokrętła ręcznego powoduje zmniejszenie oporu przepływu, co z kolei prowadzi do zwiększenia prędkości powrotu tłoka. W praktyce oznacza to, że elementy napędu hydraulicznego mogą powracać do swojej pozycji wyjściowej szybciej, co przyspiesza cykl pracy maszyny. W zastosowaniach przemysłowych, takich jak prasy hydrauliczne czy maszyny do obróbki metali, szybki powrót tłoka jest istotny dla efektywności produkcji. Przykładowo, w procesie formowania na zimno, szybki powrót pozwala na skrócenie czasu cyklu, co przekłada się na wyższą wydajność oraz oszczędność energii. Warto również zauważyć, że dobór odpowiednich ustawień zaworu dławiąco-zwrotnego zgodny z zaleceniami producenta oraz standardami branżowymi, jak ISO 4414 dotyczące systemów hydraulicznych, ma kluczowe znaczenie dla bezpieczeństwa i niezawodności działania całego układu.

Pytanie 27

Jakie z wymienionych elementów powinny być stosowane, aby uniknąć wycieków płynów?

A. Płytki
B. Uszczelki
C. Zawleczki
D. Podkładki
Uszczelki są kluczowym elementem w wielu zastosowaniach, które mają na celu zapobieganie wyciekaniu płynów. Działają one na zasadzie wypełnienia przestrzeni między dwoma lub więcej elementami, co eliminuje możliwość przedostawania się cieczy. W praktyce uszczelki są stosowane w połączeniach rur, zbiornikach, pompach oraz silnikach, gdzie ich rola jest nieoceniona. Na przykład, w silnikach spalinowych uszczelki głowicy są niezbędne, aby zapobiec wyciekowi oleju oraz płynu chłodzącego, co mogłoby prowadzić do poważnych uszkodzeń. W branży produkcyjnej i przemysłowej stosuje się różne materiały do produkcji uszczelek, takie jak guma, silikon, teflon czy materiały kompozytowe, które są dostosowane do specyficznych warunków pracy. Zgodność z normami ISO oraz innymi standardami branżowymi zapewnia, że uszczelki spełniają wymagania dotyczące szczelności i odporności na różne czynniki chemiczne i termiczne. Zastosowanie uszczelek zgodnie z najlepszymi praktykami znacząco wpływa na trwałość i efektywność systemów, w których są stosowane.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Na ilustracji przedstawiono

Ilustracja do pytania
A. fotorezystor.
B. mostek prostowniczy.
C. tranzystor unipolarny.
D. transoptor szczelinowy.
Transoptor szczelinowy to element elektroniczny, który jest kluczowy w wielu zastosowaniach automatyki oraz systemów sterowania. Jego konstrukcja, która obejmuje szczelinę pomiędzy dwoma komponentami, umożliwia optyczne przekazywanie sygnału, co jest nieocenione w aplikacjach, gdzie izolacja galwaniczna jest wymagana. Na zdjęciu widoczny transoptor pozwala na detekcję obecności obiektów, co jest istotne w systemach pomiarowych i automatyzacji. Zastosowanie transoptorów szczelinowych obejmuje m.in. systemy bezpieczeństwa, gdzie mogą one wykrywać przeszkody w ruchu, oraz w interfejsach pomiędzy różnymi poziomami napięcia, co zapobiega uszkodzeniom komponentów elektronicznych. Stosowanie transoptorów szczelinowych jest zgodne z normami branżowymi, które zalecają stosowanie tego typu elementów w przypadku komunikacji między układami o różnych potencjałach elektrycznych, co minimalizuje ryzyko uszkodzeń spowodowanych przepięciami. Oprócz tego, ich zastosowanie w optoelektronice jest szerokie, co czyni je wszechstronnymi i efektywnymi komponentami w nowoczesnych systemach elektronicznych.

Pytanie 30

Po przeprowadzeniu napraw w szafie sterowniczej numerycznej obrabiarki, pracownik doznał porażenia prądem. Jest nieprzytomny, lecz oddycha. W pierwszej kolejności, po odłączeniu go od źródła prądu, powinno się wykonać następujące kroki:

A. ustawić poszkodowanego na boku, zapewnić mu świeże powietrze i rozpocząć sztuczne oddychanie
B. ułożyć poszkodowanego na noszach w wygodnej pozycji i przetransportować go do lekarza w celu oceny stanu zdrowia
C. wezwać pomoc medyczną, położyć poszkodowanego na plecach i rozpocząć sztuczne oddychanie
D. ustawić poszkodowanego w stabilnej pozycji bocznej i wezwać pomoc medyczną
Odpowiedź, w której porażony zostaje ułożony w pozycji bocznej ustalonej, jest prawidłowa, ponieważ zapewnia to drożność dróg oddechowych i minimalizuje ryzyko aspiracji. Pozycja ta jest kluczowa w przypadku osób nieprzytomnych, które oddychają, ponieważ pozwala na swobodne wydostawanie się ewentualnych wydzielin, a jednocześnie chroni przed zadławieniem. Wzywając pomoc lekarską, dbamy o to, aby profesjonalna interwencja mogła zostać podjęta jak najszybciej, co jest szczególnie ważne w przypadku porażenia prądem, które może prowadzić do poważnych uszkodzeń wewnętrznych. W praktyce, osoby pracujące w środowisku przemysłowym powinny być przeszkolone w zakresie udzielania pierwszej pomocy, co jest zgodne z normą ISO 45001 dotyczącą zarządzania bezpieczeństwem i zdrowiem w pracy. Przykładowo, jeśli pracownik ulegnie porażeniu, niezwłocznie należy ocenić jego stan, a po umieszczeniu go w odpowiedniej pozycji, regularnie kontrolować jego oddech i reakcje, co jest kluczowe do oceny jego stanu przed przybyciem służb medycznych.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Który rodzaj obróbki ręcznej przedstawiono na rysunkach?

Ilustracja do pytania
A. Przecinanie.
B. Ścinanie.
C. Piłowanie.
D. Wiercenie.
Odpowiedź "Ścinanie" jest poprawna, ponieważ na rysunkach przedstawiono proces, który dokładnie odpowiada tej technice obróbczej. Ścinanie polega na usuwaniu materiału z powierzchni za pomocą narzędzi tnących, takich jak dłuta, przecinaki lub noże, które są używane w różnych zastosowaniach inżynieryjnych i rzemieślniczych. W procesie tym narzędzie tnące jest ustawiane pod kątem do obrabianego materiału, co pozwala na precyzyjne usunięcie nadmiaru materiału. To podejście jest kluczowe w wielu branżach, w tym w obróbce metali, stolarstwie i rzeźbieniu. Na przykład, w stolarstwie ścinanie jest używane do formowania krawędzi mebli, a w metaloplastyce do precyzyjnego kształtowania detali. Dobrą praktyką jest również stosowanie narzędzi o odpowiedniej ostrości oraz zapewnienie stabilności materiału, co minimalizuje ryzyko błędów podczas obróbki. Wiedza o procesach ścinania jest istotna, ponieważ pozwala na uzyskanie wysokiej jakości wykończenia oraz oszczędności materiałowych.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jaką wartość znamionową ma natężenie prądu wzbudzenia silnika prądu stałego, którego dane techniczne zamieszczono w ramce?

- MotorNr 20026 976
230 V2,2 A
0,3 WS1cos φ
2000 min-1– Hz
ERR.230 V0,45 A
I. KLFIP23
VDE 0530
A. 2,20 A
B. 2,65 A
C. 0,45 A
D. 1,75 A
Wybór innej wartości natężenia prądu wzbudzenia niż 0,45 A może prowadzić do kilku nieporozumień i błędnych założeń technicznych. Na przykład, odpowiadając 1,75 A, można myśleć, że jest to wartość, która zapewni silnikowi lepszą wydajność. W rzeczywistości, zbyt wysoki prąd wzbudzenia może skutkować przegrzewaniem się uzwojeń oraz obniżeniem sprawności silnika. Podobnie, odpowiedź 2,20 A, chociaż również wydaje się logiczna, nie ma pokrycia w danych technicznych i może prowadzić do poważnych problemów eksploatacyjnych. Taka sytuacja może wystąpić, gdy osoba odpowiadająca na pytanie nie zwraca uwagi na konkretne wartości przedstawione w dokumentacji technicznej. Ponadto, wybierając 2,65 A, można fałszywie założyć, że duża wartość prądu wzbudzenia zawsze przynosi lepsze rezultaty. Jest to typowy błąd myślowy, który może prowadzić do nieefektywnego wykorzystania zasobów energetycznych i zwiększenia kosztów eksploatacji. Kluczowe jest, aby zawsze odnosić się do oficjalnych danych technicznych i stosować się do standardów branżowych, takich jak normy IEC, które precyzują, jakie wartości prądu wzbudzenia są odpowiednie dla różnych zastosowań, aby uniknąć nieprawidłowych obliczeń i potencjalnych uszkodzeń sprzętu.

Pytanie 37

Efektor zainstalowany na końcu ramienia robota przede wszystkim pełni funkcję

A. ochrony ramienia robota przed kolizjami z operatorem
B. chwytania obiektu z odpowiednią siłą
C. chronienia ramienia robota przed przeciążeniem
D. przemieszczania obiektu w przestrzeni
Efektor, umieszczony na końcu ramienia robota, odgrywa kluczową rolę w jego funkcjonowaniu, zwłaszcza w kontekście automatyzacji procesów produkcyjnych. Jego głównym zadaniem jest chwytanie elementów z odpowiednią siłą, co jest istotne w wielu zastosowaniach przemysłowych, takich jak montaż, pakowanie czy transport materiałów. Efektory mogą mieć różne formy – od prostych chwytaków pneumatycznych, po zaawansowane systemy z czujnikami siły, które umożliwiają precyzyjne dostosowanie siły chwytu do rodzaju i wagi chwytanego obiektu. Dzięki tym technologiom możliwe jest minimalizowanie uszkodzeń delikatnych komponentów oraz zwiększenie efektywności produkcji. Dobre praktyki w zakresie projektowania efektorów obejmują uwzględnienie materiałów, które zapewniają odpowiednią przyczepność i trwałość, a także zastosowanie systemów kontroli, które pozwalają na monitorowanie siły chwytu w czasie rzeczywistym, co może być zgodne z normami ISO 10218 dotyczącymi robotów przemysłowych.

Pytanie 38

Tyrystor, w którym anoda ma dodatni potencjał, a katoda i bramka mają potencjał ujemny, znajduje się w stanie

A. przewodzenia
B. nasycenia
C. zaporowym
D. blokowania
Odpowiedzi, które podałeś, jak nasycenie, przewodzenie czy zaporowy, dotyczą różnych stanów pracy tyrystora, ale w tej sytuacji są niepoprawne. Stan nasycenia występuje, gdy tyrystor działa jako przełącznik i przewodzi prąd, ale tu mamy inaczej, bo anoda jest dodatnia, a katoda z bramką ujemna. Więc nie ma mowy o nasyceniu. Podobnie stan przewodzenia jest błędny, bo potrzebny jest impuls na bramkę, a tego nie ma w tym przypadku. Stan zaporowy też jest źle interpretowany, bo odnosi się do takiej sytuacji, gdzie tyrystor nie jest w pełni zablokowany, a w opisywanej sytuacji tak nie jest. Ważne, żeby zrozumieć, jak tyrystory kontrolują przepływ prądu, bo mylenie tych stanów może prowadzić do problemów w obwodach. Dobrze jest pamiętać, że zrozumienie tych spraw jest kluczowe, jeśli chodzi o projektowanie i stosowanie tyrystorów, żeby wszystko działało sprawnie i bezpiecznie.

Pytanie 39

Zespół tokarki pociągowej zwany konikiem, jest przedstawiony na rysunku

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Odpowiedź D jest prawidłowa, ponieważ konik tokarski to kluczowy element tokarki pociągowej, który odgrywa istotną rolę w procesie obróbki skrawaniem. Jego podstawowym zadaniem jest podpieranie obrabianego przedmiotu, co ma na celu zwiększenie stabilności i dokładności obróbki. W praktyce, konik jest szczególnie ważny podczas pracy z długimi elementami, które mogą mieć tendencję do wyginania się pod wpływem sił skrawania. Użycie konika pozwala na utrzymanie odpowiedniej pozycji obrabianego przedmiotu, co redukuje ryzyko błędów i poprawia jakość wykończenia. W kontekście standardów przemysłowych, zastosowanie konika zgodnie z zaleceniami producenta gwarantuje bezpieczeństwo pracy oraz efektywność produkcji. Warto również zauważyć, że konik tokarski może być regulowany, co umożliwia dostosowanie go do różnych długości i średnic obrabianych elementów, co jest niezbędne w elastycznej produkcji.

Pytanie 40

Woltomierz, podłączony do prądniczki tachometrycznej o stałej 10 V/1000 obr/min, pokazuje napięcie 7,5 V. Jaką prędkość obrotową mierzymy?

A. 7 obr/min
B. 7500 obr/min
C. 75 obr/min
D. 750 obr/min
Odpowiedź 750 obr/min jest poprawna, ponieważ woltomierz wskazuje napięcie 7,5 V, a prądniczka tachometryczna ma stałą 10 V przypadającą na 1000 obr/min. Aby obliczyć prędkość obrotową, stosujemy proporcję: jeśli 10 V odpowiada 1000 obr/min, to 7,5 V odpowiada x obr/min. Wykonując obliczenia, otrzymujemy: x = (7,5 V * 1000 obr/min) / 10 V = 750 obr/min. Praktyczne zastosowanie takiej analizy można znaleźć w automatyce i inżynierii, gdzie prędkości obrotowe silników są kluczowe dla precyzyjnego sterowania procesami. W branży motoryzacyjnej, na przykład, prędkości obrotowe silników są monitorowane za pomocą tachometrów, które mogą być oparte na prądnicach tachometrycznych. Zrozumienie tych zasad jest istotne zarówno dla projektantów, jak i techników, aby zapewnić efektywność i bezpieczeństwo systemów napędowych.