Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 15 grudnia 2025 11:12
  • Data zakończenia: 15 grudnia 2025 11:13

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaką czynność powinno się wykonać w trakcie oględzin urządzenia napędowego z silnikiem pierścieniowym podczas jego pracy?

A. Ocena stanu pierścieni ślizgowych
B. Sprawdzenie poziomu drgań
C. Sprawdzenie połączeń elementów urządzenia
D. Ocena stanu szczotek i szczotkotrzymaczy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie poziomu drgań jest kluczowym elementem oceny stanu technicznego urządzenia napędowego z silnikiem pierścieniowym. Drgania mogą być wskaźnikiem wielu problemów, takich jak niewyważenie wirnika, luzy w łożyskach czy nieprawidłowe ustawienie osi. Monitorowanie drgań podczas pracy urządzenia pozwala na wczesne wykrycie tych problemów i podjęcie działań naprawczych, co może znacznie wydłużyć żywotność maszyny. W praktyce, stosuje się różne metody pomiaru drgań, w tym analizatory drgań, które mogą dostarczyć szczegółowych informacji na temat amplitudy, częstotliwości oraz charakterystyki drgań. Zgodnie z normami ISO 10816, ocena drgań powinna być wykonywana regularnie, a wyniki należy porównywać z wartościami granicznymi, aby określić stan techniczny urządzenia. Dobra praktyka w branży mechanicznej zaleca prowadzenie dokumentacji pomiarów, co umożliwia śledzenie zmian w czasie i diagnozowanie potencjalnych usterek.

Pytanie 2

Wkładki topikowe, jak przedstawiona na ilustracji, przeznaczone są do zabezpieczania

Ilustracja do pytania
A. urządzeń energoelektronicznych wyłącznie przed skutkami przeciążeń.
B. urządzeń energoelektronicznych przed skutkami zwarć i przeciążeń.
C. przewodów elektrycznych przed skutkami zwarć i przeciążeń.
D. przewodów elektrycznych wyłącznie przed skutkami zwarć.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wkładki topikowe są kluczowymi elementami ochrony elektrycznej, które zapobiegają uszkodzeniom przewodów elektrycznych w wyniku przeciążeń i zwarć. Kiedy prąd przepływający przez obwód przekracza bezpieczny poziom, wkładka topikowa ulega przepaleniu, co przerywa obwód i chroni przed dalszymi szkodami. Jest to istotne w kontekście norm ochrony elektrycznej, takich jak PN-EN 60269, które określają wymagania dotyczące zabezpieczeń przed przeciążeniem i zwarciem. W praktyce wkładki topikowe są powszechnie stosowane w rozdzielniach elektrycznych oraz w instalacjach przemysłowych, gdzie odpowiednia ochrona przewodów jest niezbędna do zapewnienia bezpieczeństwa pracy oraz ochrony urządzeń. Dzięki zastosowaniu wkładek topikowych, użytkownicy mogą mieć pewność, że ich instalacje są zabezpieczone przed niebezpiecznymi sytuacjami, co jest kluczowe dla minimalizacji ryzyka pożaru i awarii sprzętu.

Pytanie 3

Korzystając z tabeli, w której zamieszczono dopuszczalne wartości obciążalności prądowej długotrwałej, dobierz przekrój przewodów jednożyłowych typu DY do wykonania trójfazowego obwodu instalacji mieszkaniowej ułożonej w rurach. Obwód ma zasilać odbiorniki energii elektrycznej o łącznej mocy znamionowej 16 kVA przy napięciu znamionowym 400 V.

Przekrój przewodu mm²Jeden lub kilka przewodów 1-żyłowych ułożonych w rurzePrzewody płaszczowe, rurowe, wtynkowePrzewody gołe
Żyła Cu, AŻyła Al., AŻyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, A
A.1,011-15-19-
B.1,515-18-24-
C.2,5201526203226
D.4,0252034274233
A. A.
B. C.
C. B.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź D jest poprawna, ponieważ została oparta na właściwych obliczeniach. Aby dobrać odpowiedni przekrój przewodów jednożyłowych typu DY, należy najpierw obliczyć prąd obciążenia obwodu trójfazowego. Moc znamionowa wynosząca 16 kVA przy napięciu 400 V prowadzi do obliczenia prądu obciążenia jako 16 kVA / (√3 * 400 V) co daje około 23.09 A. Z tabeli obciążalności prądowej wynika, że przewód o przekroju 4 mm² ma obciążalność 25 A, co przewyższa wymaganą wartość prądu. W praktyce, stosowanie odpowiednich przekrojów przewodów jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych. Przewody o niewłaściwym przekroju mogą się przegrzewać, co może prowadzić do uszkodzeń, a nawet pożaru. W zainstalowanych systemach elektrycznych zaleca się także stosowanie kabelków o zapasie mocy, co pozwala na przyszłe rozbudowy instalacji oraz może pomóc w uniknięciu potencjalnych problemów.

Pytanie 4

Grzałka jednofazowa o mocy 4 kW jest zasilana przewodem o długości 10 m i przekroju 1,5 mm2. W jaki sposób zmienią się straty mocy w przewodzie zasilającym, jeśli jego przekrój zostanie zwiększony do 2,5 mm2?

A. Wzrosną o 40%
B. Spadną o 40%
C. Wzrosną o 100%
D. Spadną o 100%

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że straty mocy w przewodzie zmniejszą się o 40%, jest prawidłowa z kilku powodów związanych z zasadami działania prądów elektrycznych i strat energii. Straty mocy w przewodach elektrycznych są związane z oporem przewodnika, który można obliczyć z wykorzystaniem wzoru: P = I²R, gdzie P to moc strat, I to natężenie prądu, a R to opór przewodu. Przy zwiększeniu przekroju przewodu z 1,5 mm2 do 2,5 mm2, opór przewodu maleje, co prowadzi do zmniejszenia strat mocy. W praktyce, stosowanie przewodów o większym przekroju jest zalecane w celu minimalizacji strat energii, co jest zgodne z normami i zasadami efektywności energetycznej. Na przykład, w instalacjach przemysłowych oraz budowlanych, dobór odpowiednich przewodów elektrycznych wpływa na bezpieczeństwo, efektywność operacyjną oraz oszczędności w kosztach energii. To podejście jest zgodne z dobrymi praktykami branżowymi, które promują zwiększenie efektywności energetycznej, a tym samym ograniczenie emisji CO2. Zmniejszenie strat mocy o 40% przy zastosowaniu przewodu o większym przekroju jest wymiernym zyskiem, który powinien być brany pod uwagę na etapie projektowania instalacji. Warto pamiętać, że zastosowanie odpowiednich przekrojów przewodów ma również wpływ na ich temperaturę roboczą, co poprawia bezpieczeństwo całego systemu.

Pytanie 5

Jak często powinny być przeprowadzane okresowe kontrole użytkowe instalacji elektrycznej w budynku jednorodzinnym, minimalnie raz w czasie?

A. 4 lata
B. 8 lat
C. 5 lat
D. 6 lat

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Okresowe badania eksploatacyjne sieci elektrycznej w domach jednorodzinnych są kluczowym elementem zapewnienia ich bezpieczeństwa i sprawności. Zgodnie z obowiązującymi normami, szczególnie z rozporządzeniem Ministra Infrastruktury oraz normami PN-IEC 60364 i PN-EN 61010, przeglądy te powinny być przeprowadzane co 5 lat. W praktyce, regularne kontrole umożliwiają wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe połączenia czy degradacja elementów systemu elektrycznego. Na przykład, w przypadku starych instalacji, działanie na granicy normy może prowadzić do przegrzewania się przewodów, co stwarza ryzyko pożaru. Dlatego ważne jest, aby użytkownicy domów jednorodzinnych byli świadomi tego obowiązku i zapewniali odpowiednie przeglądy w ustalonych interwałach. Dodatkowo, w miarę starzejących się instalacji, może być konieczne zwiększenie częstotliwości badań, co podkreśla znaczenie odpowiedzialnego zarządzania systemem elektrycznym w domu.

Pytanie 6

Jaką minimalną wartość rezystancji powinno się zmierzyć w ścianach i podłodze w izolowanym miejscu pracy z urządzeniami o napięciu 400 V, aby zabezpieczenie przed dotykiem pośrednim było efektywne?

A. 75 kΩ
B. 25 kΩ
C. 10 kΩ
D. 50 kΩ

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Najmniejsza zmierzona wartość rezystancji ścian i podłogi na izolowanym stanowisku pracy z urządzeniami o napięciu 400 V powinna wynosić 50 kΩ, aby zapewnić skuteczną ochronę przeciwporażeniową. Zgodnie z normami bezpieczeństwa elektrycznego, takimi jak PN-EN 61140, minimalna rezystancja izolacji jest kluczowym czynnikiem, który wpływa na bezpieczeństwo użytkowników. W praktyce, wyższa rezystancja izolacji oznacza mniejsze ryzyko przebicia i przemieszczenia prądu do części nieizolowanych. W przypadku pracy z urządzeniami o napięciu 400 V, wartość 50 kΩ jest często stosowana jako standardowy wskaźnik, aby zminimalizować ryzyko porażenia prądem. Wartości te stosuje się nie tylko w przemyśle, ale również w kontekście instalacji elektrycznych w budynkach. Regularne pomiary rezystancji izolacji powinny być przeprowadzane na stanowiskach pracy, aby upewnić się, że systemy ochrony są nadal skuteczne. Przykładem może być przemysł produkcyjny, gdzie urządzenia o wysokim napięciu są powszechnie używane, a każda usterka izolacji może prowadzić do poważnych wypadków, podkreślając znaczenie monitorowania rezystancji izolacji.

Pytanie 7

Na podstawie zamieszczonych w tabeli danych łożysk dobierz łożysko do silnika o średnicy wału d = 12 mm i szerokości tarczy łożyskowej B = 12 mm.

SymbolWymiary podstawowe
d [mm]D [mm]B [mm]r [mm]
6700101530,1
62003090,6
6001122880,3
630137121
A. 6200
B. 6700
C. 6301
D. 6001

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 6301 jest poprawna, ponieważ spełnia wszystkie wymagania dotyczące wymiarów łożyska do silnika o średnicy wału 12 mm oraz szerokości tarczy łożyskowej 12 mm. Łożyska 6301 mają średnicę wewnętrzną 12 mm, co jest idealne do mocowania na wale silnika, oraz standardową szerokość 12 mm, która odpowiada wymaganym parametrom. Wybór odpowiedniego łożyska jest kluczowy dla zapewnienia efektywności i trwałości pracy silnika. Stosowanie łożysk o nieodpowiednich wymiarach może prowadzić do ich przedwczesnego zużycia, zwiększonego tarcia oraz potencjalnych awarii. W praktyce, łożyska serii 6300 są powszechnie stosowane w różnych aplikacjach, w tym w silnikach elektrycznych, przekładniach oraz w układach napędowych. Ich wybór powinien opierać się na dokładnej analizie wymagań technicznych, a także na znajomości standardów branżowych, takich jak normy ISO dotyczące łożysk. Wiedza na temat doboru łożysk jest niezbędna dla inżynierów i techników, aby zapewnić optymalną wydajność i niezawodność maszyn.

Pytanie 8

Przed rozpoczęciem pomiaru rezystancji izolacji uzwojeń wirnika silnika z pierścieniem w pierwszej kolejności należy

A. odłączyć rezystory rozruchowe
B. zwierać uzwojenie stojana
C. sprawdzić ciągłość obwodu wirnika
D. wymienić szczotki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odłączenie rezystorów rozruchowych przed pomiarem rezystancji izolacji uzwojeń wirnika silnika pierścieniowego jest kluczowym krokiem, aby uniknąć uszkodzeń sprzętu oraz zapewnić dokładność pomiarów. Rezystory rozruchowe są stosowane w obwodach silników w celu kontroli prądu rozruchowego, co oznacza, że są one podłączone do układu w momencie uruchamiania silnika. Jeśli nie zostaną odłączone, mogą powstać niepożądane połączenia, które zakłócą wyniki pomiarów rezystancji izolacji oraz mogą spowodować uszkodzenie miernika. Zgodnie z normą IEC 61557-1 dotyczącą pomiarów ochronnych w instalacjach elektrycznych, należy zawsze dbać o bezpieczeństwo i dokładność pomiarów, co obliguje do odpowiedniego przygotowania układów przed ich wykonaniem. Działania takie są istotne w kontekście zapobiegania awariom, które mogą prowadzić do kosztownych napraw lub przestojów w pracy maszyn. W praktyce, przed każdym pomiarem izolacji, zaleca się także sprawdzenie stanu szczotek i wirnika, ale najpierw kluczowe jest odłączenie obwodów, które mogłyby wpłynąć na pomiar.

Pytanie 9

Który z podanych wyłączników nadprądowych powinien być użyty w obwodzie zasilającym tylko rezystancyjny grzejnik elektryczny z trzema grzałkami o mocy 3 kW każda, połączonymi w trójkąt i zasilanym z sieci 3/N/PE ~ 400/230 V 50 Hz?

A. CLS6-B16/4
B. CLS6-B16/3N
C. CLS6-B16/3
D. CLS6-C16/1N

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź CLS6-B16/3 jest poprawna, ponieważ wyłącznik nadprądowy CLS6-B16/3 został zaprojektowany do ochrony obwodów zasilających urządzenia trójfazowe, w tym grzejniki elektryczne. W przypadku grzejnika o trzech grzałkach po 3 kW każdy, całkowita moc wynosi 9 kW. Przy zasilaniu z sieci 400/230 V i przy założeniu pracy w układzie trójfazowym, obliczamy prąd obwodu. Moc w watach podzielona przez napięcie w woltach daje prąd w amperach: 9000 W / 400 V = 22,5 A. Wyłącznik CLS6-B16/3, mający nominalny prąd 16 A, nie zapewnia wystarczającej ochrony, ponieważ w przypadku przeciążenia prąd przekroczy wartość znamionową. Jednakże, z uwagi na zastosowanie trójfazowego zasilania, rzeczywisty prąd w każdej fazie nie powinien przekraczać 16 A. W praktyce, stosując wyłącznik B, mamy zapewnioną szybką reakcję na przeciążenia, co jest zgodne z normami IEC 60947-2 oraz dobrymi praktykami instalacyjnymi, które zalecają dobór wyłączników w zależności od charakterystyki obciążenia. Użycie tego wyłącznika w instalacji z grzejnikami elektrycznymi zapewnia bezpieczne użytkowanie, z zachowaniem odpowiednich marginesów bezpieczeństwa dla przewodów zasilających.

Pytanie 10

Badania instalacji odgromowej w obiekcie budowlanym ujawniły rezystancję uziomu równą 35 Ω. Aby uzyskać zalecaną rezystancję uziomu na poziomie 10 Ω, należy

A. powiększyć średnicę przewodu odgromowego
B. wydłużyć uziom szpilkowy
C. usunąć zaciski probiercze
D. zwiększyć średnicę zwodów w instalacji odgromowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wydłużenie uziomu szpilkowego jest kluczowym działaniem zmierzającym do obniżenia rezystancji uziomu do zalecanych 10 Ω. Uziom szpilkowy, umieszczony w gruncie, działa jako przewodnik, który odprowadza prąd do ziemi. Jego efektywność zależy od długości, średnicy oraz rodzaju gruntu. Zwiększenie długości uziomu pozwala na większy kontakt z różnymi warstwami gleby, co zmniejsza opór elektryczny. Zgodnie z normą PN-EN 62305, zaleca się, aby długość uziomów wynosiła co najmniej 2 m, a w przypadku odporności na wyładowania atmosferyczne długość uziomu powinna być jeszcze większa. W praktyce, jeśli standardowa szpilka ma długość 1,5 m, przedłużenie jej o kolejne 1,5 m lub zastosowanie kilku szpilek połączonych ze sobą w odpowiednich miejscach przyczynia się do znaczącego obniżenia rezystancji. Warto również pamiętać, że jakość uziomu wpływa na bezpieczeństwo instalacji odgromowej, a jego odpowiednia rezystancja jest kluczowa dla skutecznego działania całego systemu ochrony przed wyładowaniami atmosferycznymi.

Pytanie 11

Na jaką wielkość prądu nominalnego silnika klatkowego trójfazowego, który napędza hydrofor w gospodarstwie domowym, powinno się ustawić zabezpieczenie termiczne?

A. 2,2·In
B. 0,8·In
C. 1,1·In
D. 1,4·In

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1,1·In jest prawidłowa, ponieważ dla silników klatkowych trójfazowych, zwłaszcza w przypadku napędu pomp hydroforowych, ustalenie odpowiedniej wartości zabezpieczenia termicznego jest kluczowe dla ich poprawnej pracy. Ustawienie termika na poziomie 1,1·In oznacza, że zabezpieczenie termiczne toleruje przeciążenie do 10% powyżej prądu znamionowego silnika, co jest zgodne z normami zawartymi w standardzie IEC 60947-4-1. W praktyce, takie ustawienie pozwala na chwilowe przeciążenia, które mogą wystąpić przy rozruchu lub w przypadku chwilowego wzrostu ciśnienia w systemie, jednocześnie chroniąc silnik przed nadmiernym przegrzaniem. Zbyt niskie ustawienie zabezpieczenia może skutkować częstymi wyłączeniami silnika, podczas gdy zbyt wysokie może nie zapewnić odpowiedniej ochrony. W związku z tym, dla silników napędzających pompy, które są obciążone zmiennymi warunkami pracy, wartość 1,1·In jest często uznawana za optymalną dla ochrony oraz efektywności operacyjnej.

Pytanie 12

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2 25/0,03 zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli określ poprawność działania tych wyłączników.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowy IΔ
mA
135
225
A. 1 – niesprawny, 2 – sprawny.
B. Oba wyłączniki niesprawne.
C. Oba wyłączniki sprawne.
D. 1 – sprawny, 2 – niesprawny.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1 – niesprawny, 2 – sprawny jest prawidłowa, ponieważ zgodnie z normami bezpieczeństwa wyłączników różnicowoprądowych, powinny one zadziałać przy określonym prądzie różnicowym. W przypadku wyłącznika EFI-2 25/0,03 wymagana wartość prądu różnicowego wynosi 30 mA. Wyłącznik nr 1 zadziałał przy prądzie 35 mA, co oznacza, że przekracza dopuszczalny poziom i nie jest w stanie skutecznie chronić przed porażeniem prądem elektrycznym. Natomiast wyłącznik nr 2 zadziałał przy prądzie 25 mA, co jest zgodne z wymaganiami i wskazuje na jego sprawność. W praktyce, poprawne działanie wyłączników różnicowoprądowych jest kluczowe dla zapewnienia bezpieczeństwa użytkowników instalacji elektrycznych, ponieważ ich zadaniem jest ochrona przed skutkami prądów uziemiających i porażeniem. Regularne testowanie tych urządzeń zgodnie z normami PN-EN 61008 jest zalecane, aby zapewnić ich niezawodność i efektywność w warunkach użytkowania.

Pytanie 13

Obwody zasilające gniazda wtyczkowe o maksymalnym prądzie 32 A powinny być chronione przez wyłącznik RCD o prądzie różnicowym nominalnym

A. 500 mA
B. 30 mA
C. 100 mA
D. 1 000 mA

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik RCD o znamionowym prądzie różnicowym 30 mA jest zalecany do ochrony osób przed porażeniem elektrycznym, szczególnie w obwodach zasilających gniazda wtyczkowe, gdzie może wystąpić kontakt z wodą lub innymi substancjami przewodzącymi. Zgodnie z normami, takimi jak PN-EN 61008-1, wyłączniki te są projektowane w celu wykrywania niewielkich różnic prądowych, które mogą wskazywać na niebezpieczne sytuacje. Przykładowo, w łazienkach, kuchniach czy miejscach narażonych na wilgoć, użycie RCD 30 mA znacząco zwiększa bezpieczeństwo użytkowników, minimalizując ryzyko porażenia prądem. Dodatkowo, warto zauważyć, że wyłączniki o wyższych wartościach prądów różnicowych, jak 100 mA czy 500 mA, są zazwyczaj stosowane w obwodach ochrony przeciwpożarowej, a nie w zastosowaniach bezpośrednio związanych z użytkownikami, co czyni 30 mA optymalnym wyborem w kontekście ochrony osób.

Pytanie 14

Zamiana przewodu OWY 2,5 mm2 na YKY 2,5 mm2 w odbiorniku ruchomym doprowadzi do

A. obniżenia obciążalności prądowej
B. zmiany wytrzymałości mechanicznej przewodu
C. podniesienia obciążalności prądowej
D. wzrostu wytrzymałości mechanicznej przewodu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi dotyczącej zmniejszenia wytrzymałości mechanicznej przewodu YKY 2,5 mm² w porównaniu do OWY 2,5 mm² jest trafny z kilku powodów. Przewody OWY, wykonane z miedzi i zwykle stosowane w instalacjach, charakteryzują się większą elastycznością i odpornością na uszkodzenia mechaniczne. W przeciwieństwie do nich, przewody YKY, chociaż mają lepsze właściwości izolacyjne i są bardziej odporne na działanie chemikaliów, są również sztywniejsze. Zmiana na przewód YKY w zastosowaniach, gdzie przewód jest narażony na ruch, może prowadzić do łatwiejszych uszkodzeń związanych z nadmiernym zginaniem czy przecieraniem. To bardzo ważne w kontekście projektowania instalacji elektrycznych, gdzie przewody często muszą być elastyczne, aby wytrzymać różne ruchy i wibracje. W praktyce, standardy takie jak PN-EN 60228 definiują różne parametry przewodów i ich zastosowań, co podkreśla znaczenie wyboru odpowiedniego typu w zależności od środowiska operacyjnego. Dlatego w kontekście zastosowania przewodów w instalacjach ruchomych, zmiana na YKY może nie być optymalnym rozwiązaniem.

Pytanie 15

Z uwagi na ryzyko uszkodzenia izolacji uzwojeń, używanie bezpieczników w obwodzie przekładnika jest zabronione?

A. napięciowego po stronie pierwotnej
B. prądowego po stronie wtórnej
C. prądowego po stronie pierwotnej
D. napięciowego po stronie wtórnej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "prądowego po stronie wtórnej" jest prawidłowa, ponieważ zastosowanie bezpieczników w obwodzie przekładnika prądowego po stronie wtórnej może prowadzić do uszkodzenia izolacji uzwojeń. Przekładniki prądowe są wykorzystywane do pomiarów prądu oraz ochrony obwodów elektrycznych, a ich konstrukcja jest zaprojektowana tak, aby zachować integralność i dokładność pomiarów. Jeśli zastosujemy bezpiecznik po stronie wtórnej, w przypadku zwarcia lub nadmiernego prądu, może dojść do przerwania obwodu, co skutkuje powstaniem wysokiego napięcia, które może uszkodzić izolację. W praktyce, aby zapewnić bezpieczeństwo i niezawodność działania systemów pomiarowych, zaleca się stosowanie odpowiednich zabezpieczeń, takich jak układy ograniczające prąd, a także monitorowanie obwodów za pomocą przyrządów pomiarowych, które mogą dostarczyć informacji o stanie przekładnika. Przykładem może być stosowanie odpowiednich przekładników do systemów zabezpieczeń, które są zgodne z normami IEC 60044, co podkreśla bezpieczeństwo i wydajność tych urządzeń w aplikacjach przemysłowych.

Pytanie 16

Jakie są zalecane minimalne okresy pomiędzy kolejnymi kontrolami instalacji elektrycznych w pomieszczeniach narażonych na pożar?

A. 1 rok dla oceny skuteczności ochrony przeciwporażeniowej i 1 rok dla badania rezystancji izolacji
B. 5 lat dla oceny skuteczności ochrony przeciwporażeniowej i 5 lat dla badania rezystancji izolacji
C. 1 rok dla oceny skuteczności ochrony przeciwporażeniowej oraz 5 lat dla badania rezystancji izolacji
D. 5 lat dla oceny skuteczności ochrony przeciwporażeniowej i 1 rok dla badania rezystancji izolacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Właściwe okresy między kolejnymi sprawdzeniami instalacji elektrycznych w pomieszczeniach zagrożonych pożarem są kluczowe dla zapewnienia bezpieczeństwa. Zgodnie z normą PN-EN 60364, skuteczność ochrony przeciwporażeniowej powinna być sprawdzana co 5 lat, ponieważ ten okres pozwala na ocenę długoterminowej funkcjonalności systemu ochrony użytkowników przed porażeniem prądem elektrycznym. Rezystancja izolacji z kolei wymaga częstszego monitorowania co 1 rok, aby szybko identyfikować ewentualne uszkodzenia, które mogą prowadzić do zwarcia, a tym samym zwiększać ryzyko pożaru. W praktyce, regularne przeglądy są nie tylko wymogiem prawnym, ale także działaniem prewencyjnym, które może uratować życie. W kontekście zastosowania, w obiektach o zwiększonym ryzyku, takich jak magazyny materiałów łatwopalnych, regularne kontrole są niezbędne, aby zapewnić odpowiednie poziomy bezpieczeństwa.

Pytanie 17

Jakie urządzenie powinno być użyte do zasilania obwodu SELV z sieci 230 V, 50 Hz?

A. Falownikiem
B. Autotransformatorem
C. Dzielnikiem napięcia
D. Transformatorem bezpieczeństwa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Transformatory bezpieczeństwa to naprawdę ważne urządzenia, które używamy do zasilania obwodów SELV, czyli tych, które są bezpieczne w użytkowaniu. Dzięki nim możemy korzystać z energii elektrycznej w miejscach, gdzie jest ryzyko kontaktu z wodą czy innymi przewodzącymi substancjami. Ich główną rolą jest izolować niskonapięciowy obwód od sieci energetycznej, co zdecydowanie zmniejsza ryzyko porażenia prądem. Dobrze to widać w praktyce — na przykład, w oświetleniu ogrodowym, łazienkach czy w systemach alarmowych. Zgodnie z normą PN-EN 61558, transformatory te muszą spełniać różne wymogi dotyczące izolacji i zabezpieczeń przed przeciążeniem. W sumie, stosowanie transformatorów bezpieczeństwa tam, gdzie liczy się bezpieczeństwo, to dobra praktyka, którą warto stosować.

Pytanie 18

Który z poniższych przewodów powinien zastąpić uszkodzony przewód OW 4×2,5 mm2, który zasila silnik indukcyjny trójfazowy do napędu maszyny w warsztacie ślusarskim?

A. H07RR-F 5G2,5
B. H07VV-U 5G2,5
C. H03V2V2-F 3G2,5
D. H03V2V2H2-F 2X2,5

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź H07RR-F 5G2,5 jest poprawna, ponieważ przewody te charakteryzują się odpowiednią konstrukcją oraz właściwościami mechanicznymi, które są niezbędne do zasilania silników indukcyjnych w warunkach warsztatowych. Przewód H07RR-F to elastyczny przewód gumowy, co oznacza, że jest odporny na zginanie i uszkodzenia mechaniczne. Dzięki temu idealnie nadaje się do pracy w miejscach o dużym ryzyku uszkodzenia, takich jak warsztaty, gdzie maszyny są często przemieszczane. Dodatkowo, przewód ten posiada pięć żył o przekroju 2,5 mm², co zapewnia odpowiednią nośność prądową oraz możliwość podłączenia do trójfazowych silników indukcyjnych. Zgodnie z normą IEC 60227, H07RR-F spełnia wszystkie wymagania dotyczące bezpieczeństwa oraz jakości, co czyni go odpowiednim wyborem w kontekście zasilania silników. W praktyce, stosując ten przewód, można zminimalizować ryzyko pożaru oraz awarii sprzętu, co jest kluczowe w każdej przestrzeni roboczej.

Pytanie 19

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między zaciskami silnikaRezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1 – W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ
A. uszkodzoną izolację w uzwojeniach U1 – U2 oraz V1 – V2
B. zwarcie międzyzwojowe w uzwojeniu W1 – W2
C. przerwę w uzwojeniu U1 – U2
D. zwarcie między uzwojeniami U1 – U2 oraz W1 – W2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na uszkodzoną izolację w uzwojeniach U1 – U2 oraz V1 – V2 jest prawidłowa ze względu na wyniki pomiarów rezystancji, które zostały przedstawione w tabeli. Wartości wynoszące 0 Ω dla izolacji są alarmującym sygnałem, wskazującym na bezpośrednie połączenie z masą, co oznacza, że nie ma odpowiedniej bariery izolacyjnej. Zgodnie z normą IEC 60034, rezystancja izolacji powinna wynosić przynajmniej kilkaset megaomów, aby zapewnić bezpieczną i niezawodną pracę silnika. Praktyka przemysłowa zaleca, aby regularnie monitorować stan izolacji silników poprzez pomiary rezystancji, co pozwala na wczesne wykrywanie potencjalnych problemów. W przypadku stwierdzenia uszkodzonej izolacji, należy podjąć natychmiastowe działania, takie jak odłączenie silnika od zasilania i dokładna inspekcja uzwojeń, aby zapobiec poważniejszym uszkodzeniom oraz zminimalizować ryzyko pożaru. Usunięcie tego typu defektów jest kluczowe dla zapewnienia bezpieczeństwa na stanowisku pracy oraz długoterminowej efektywności urządzenia.

Pytanie 20

Który przekrój przewodu jest najczęściej używany do tworzenia obwodów gniazd wtyczkowych w podtynkowych instalacjach mieszkaniowych?

A. 1,5 mm2
B. 2,5 mm2
C. 1 mm2
D. 4 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przewód o przekroju 2,5 mm2 jest standardowo stosowany w obwodach gniazd wtyczkowych w instalacjach elektroenergetycznych w budownictwie mieszkaniowym. Taki przekrój zapewnia odpowiednią przewodność elektryczną oraz bezpieczeństwo użytkowania, co jest niezwykle istotne, biorąc pod uwagę maksymalne obciążenia, które mogą wystąpić w codziennym użytkowaniu. Przykładowo, w przypadku podłączenia urządzeń elektrycznych, takich jak odkurzacze czy piekarniki, które mogą wymagać wyższego poboru prądu, przewód 2,5 mm2 spełnia normy bezpieczeństwa i nie doprowadza do przegrzewania się instalacji. Zgodnie z normami PN-IEC 60364, stosowanie przewodów o mniejszym przekroju może prowadzić do nieefektywności energetycznej i zwiększonego ryzyka pożaru. Ważne jest również, aby pamiętać o odpowiednim doborze zabezpieczeń, takich jak bezpieczniki, które powinny być dostosowane do przekroju przewodu oraz przewidywanego obciążenia.

Pytanie 21

W którym z poniższych miejsc podczas pracy z urządzeniami elektrycznymi nie wolno stosować izolacji stanowiska jako zabezpieczenia przed dotykiem pośrednim?

A. Pracownia szkolna
B. Plac budowy
C. Warsztat sprzętu RTV
D. Laboratorium

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Plac budowy to miejsce, gdzie występują szczególne warunki pracy, które wymagają szczegółowych zasad bezpieczeństwa. Izolowanie stanowiska jako ochrona przed dotykiem pośrednim, choć teoretycznie może być stosowane, w praktyce nie jest wystarczające ze względu na dynamiczny charakter tego środowiska. Na placu budowy często występują zagrożenia związane z wilgocią, zmiennymi warunkami atmosferycznymi oraz możliwością uszkodzenia izolacji przez inne urządzenia lub materiały budowlane. Dlatego w takich miejscach kluczowe jest stosowanie bardziej zaawansowanych systemów ochronnych, takich jak urządzenia różnicowoprądowe oraz odpowiednie uziemienie, które zapewniają znacznie większą ochronę przed porażeniem prądem elektrycznym. Dodatkowo, zgodnie z normami PN-IEC 60364, na placach budowy należy stosować zabezpieczenia, które są dostosowane do specyfiki tego typu pracy, co podkreśla istotność stosowania wielowarstwowych metod ochrony, a nie tylko polegania na izolacji.

Pytanie 22

W instalacji trójfazowej prąd obciążenia w przewodach fazowych IB wynosi 21 A, natomiast obciążalność długotrwała tych przewodów Idd to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do zabezpieczenia tej instalacji?

A. B25
B. B10
C. B16
D. B20

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik nadprądowy B25 jest odpowiedni do zabezpieczenia instalacji trójfazowej, gdzie prąd obciążenia przewodów fazowych wynosi 21 A, a obciążalność długotrwała tych przewodów to 30 A. Zgodnie z normami, wyłącznik nadprądowy powinien mieć wartość znamionową, która pozwala na przepuszczenie prądu obciążenia, ale jednocześnie dostateczną, aby skutecznie zareagować w przypadku przeciążenia. W tym przypadku, z wyłączników B20, B16 i B10, żaden z nich nie spełnia wymogu, gdyż ich nominalne wartości są zbyt niskie w odniesieniu do obciążenia 21 A. Wybór B25 oznacza, że wyłącznik nadprądowy nie włączy się w normalnych warunkach pracy, ale zadziała w przypadku wyższych wartości prądu. W praktyce, zastosowanie wyłączników o zbyt niskich wartościach nominalnych prowadzi do ich częstego wyzwalania, co może być uciążliwe i powodować przerwy w dostawie energii. Zgodnie z dobrą praktyką, zawsze należy wybierać wyłączniki, które mają większą wartość niż maksymalne przewidziane obciążenie, ale nie więcej niż ich długotrwała obciążalność.

Pytanie 23

W skład badań eksploatacyjnych silnika klatkowego wchodzi pomiar

A. natężenia pola magnetycznego rozproszenia
B. rezystancji uzwojeń wirnika
C. rezystancji uzwojeń stojana
D. stratności magnetycznej blach stojana

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji uzwojeń stojana jest kluczowym elementem badań eksploatacyjnych silnika klatkowego, ponieważ pozwala na ocenę stanu technicznego silnika oraz jego efektywności. Wysoka rezystancja może wskazywać na uszkodzenia uzwojeń, które mogą prowadzić do przegrzewania i obniżenia sprawności energetycznej silnika. Przykładem zastosowania tej wiedzy jest regularna konserwacja silników w przemyśle, gdzie monitorowanie rezystancji uzwojeń pozwala na wczesne wykrycie potencjalnych awarii. Zgodnie z normą IEC 60034, regularne pomiary rezystancji oraz analiza ich trendów mogą być wykorzystane do planowania działań prewencyjnych, co znacząco wydłuża żywotność maszyny i zwiększa bezpieczeństwo pracy. Dodatkowo, wiedza na temat rezystancji uzwojeń stoi w związku z szerszym zagadnieniem strat w silnikach elektrycznych, co jest kluczowe dla optymalizacji zużycia energii w zakładach przemysłowych.

Pytanie 24

Określ rodzaj i miejsce usterki zestyku pomocniczego stycznika, jeżeli w przedstawionym układzie podczas pracy silnika zasilanego przez stycznik K1 naciśnięcie przycisku sterującego PZ2 powoduje zadziałanie bezpieczników obwodu głównego.

Ilustracja do pytania
A. Przerwa w zestyku rozwiernym ST1
B. Zwarcie zestyku rozwiernego ST2
C. Przerwa w zestyku rozwiernym ST2
D. Zwarcie zestyku rozwiernego ST1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwarcie zestyku rozwiernego ST1 jest poprawną odpowiedzią, ponieważ naciśnięcie przycisku PZ2 powinno normalnie powodować rozłączenie stycznika K1, co skutkowałoby zasileniem silnika. W przypadku, gdy zadziałają bezpieczniki obwodu głównego, wskazuje to na nieprawidłowy stan obwodu, czyli zwarcie. Zestyki styczników są zaprojektowane z myślą o bezpieczeństwie i efektywności, a ich właściwe działanie jest kluczowe w systemach automatyki. W przypadku zwarcia, prąd przepływa bezpośrednio przez zestyki zamiast być przerywany, co prowadzi do przeciążenia i w rezultacie zadziałania zabezpieczeń. W praktyce, takie sytuacje mogą prowadzić do poważnych uszkodzeń urządzeń, dlatego ważne jest regularne sprawdzanie stanu zestyku oraz konserwacja układów sterowania. Zastosowanie standardów bezpieczeństwa, takich jak IEC 60204-1, podkreśla znaczenie prawidłowego funkcjonowania układów sterujących, aby minimalizować ryzyko awarii i zapewnić bezpieczne warunki pracy.

Pytanie 25

Na podstawie zamieszczonych w tabeli danych łożysk dobierz łożysko do silnika o średnicy wału d = 12 mm, średnicy wewnętrznej tarczy łożyskowej D = 28 mm i szerokości tarczy łożyskowej B = 8 mm.

SymbolWymiary podstawowe
d [mm]D [mm]B [mm]r [mm]
6700101530,1
62003090,6
6001122880,3
630137121
A. 6700
B. 6001
C. 6200
D. 6301

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 6001 jest poprawna, ponieważ jej wymiary są zgodne z wymaganiami określonymi w pytaniu. Średnica wewnętrzna łożyska 6001 wynosi 12 mm, co odpowiada średnicy wału, a średnica zewnętrzna wynosi 28 mm oraz szerokość 8 mm. W praktyce, wybór odpowiedniego łożyska jest kluczowy dla zapewnienia prawidłowego działania silnika oraz jego długowieczności. Użycie odpowiednich łożysk minimalizuje tarcie, co z kolei przekłada się na mniejsze straty energii i wysoką efektywność pracy. Dodatkowo, łożyska są projektowane z myślą o określonych zastosowaniach, dlatego znajomość ich parametrów jest niezbędna. W branży mechanicznej, standardy takie jak ISO 355, które dotyczą wymiarów i tolerancji łożysk tocznych, powinny być stosowane w celu zapewnienia jakości i niezawodności komponentów. W przypadku łożysk, warto również zwrócić uwagę na ich zastosowanie w różnych środowiskach pracy, co może wpływać na wybór materiałów i rodzaju uszczelnienia, co z kolei wpływa na ich trwałość oraz efektywność eksploatacyjną.

Pytanie 26

Który z wymienionych środków ochrony w przypadku uszkodzenia można stosować jedynie w sytuacji, gdy instalacja jest nadzorowana przez wykwalifikowane osoby?

A. Izolowanie stanowiska
B. Bardzo niskie napięcie PELV
C. Izolacja wzmocniona
D. Bardzo niskie napięcie SELV

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Izolowanie stanowiska jest środkiem ochrony, który ma zastosowanie w sytuacjach, gdy instalacja elektryczna znajduje się pod nadzorem osób wykwalifikowanych. Oznacza to, że tylko kompetentne i przeszkolone osoby, które są w stanie ocenić ryzyko i podjąć odpowiednie środki ostrożności, mogą stosować ten rodzaj ochrony. Izolowanie stanowiska polega na odseparowaniu obszaru pracy od miejsca, w którym mogą występować zagrożenia związane z prądem elektrycznym, co pozwala na bezpieczne wykonywanie prac konserwacyjnych lub naprawczych. Przykładem zastosowania izolowania stanowiska jest praca w pobliżu urządzeń wysokiego napięcia, gdzie odpowiednia ocena ryzyka i nadzór techniczny są kluczowe dla zapewnienia bezpieczeństwa. Dobrą praktyką jest zawsze posiadanie procedur bezpieczeństwa oraz odpowiednich środków zabezpieczających, takich jak oznaczenia stref niebezpiecznych i stosowanie sprzętu ochrony osobistej. To podejście jest zgodne z normami BHP oraz regulacjami krajowymi, które nakładają obowiązek na pracodawców zapewnienia bezpiecznych warunków pracy na stanowiskach, gdzie może występować ryzyko porażenia prądem.

Pytanie 27

Jaki przekrój przewodu należy dobrać do zasilania odbiornika jednofazowego o danych Sn = 4,6 kVA i Un = 230 V, stosując kryterium obciążalności prądowej na podstawie danych przedstawionych w tabeli?

Obciążalność
mm21,01,52,54,06,0
A1519243242
A. 6,0 mm2
B. 1,5 mm2
C. 2,5 mm2
D. 4,0 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór przekroju przewodu 2,5 mm2 jest uzasadniony, ponieważ przekrój ten zapewnia odpowiednią obciążalność prądową dla odbiornika jednofazowego o mocy 4,6 kVA i napięciu 230 V. Obliczony prąd obciążenia wynosi około 20 A, co mieści się w granicach obciążalności prądowej przewodu 2,5 mm2, wynoszącej 24 A. Zastosowanie przewodu o właściwej średnicy jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznej i minimalizowania strat energetycznych. W praktyce, dobór odpowiedniego przekroju przewodu powinien być zawsze oparty na rzeczywistych warunkach eksploatacji, takich jak długość przewodu, temperatura otoczenia oraz sposób układania (np. w rurach, na otwartej przestrzeni). Przy projektowaniu instalacji elektrycznych warto również uwzględnić normy PN-IEC, które określają wymagania dotyczące obciążalności przewodów oraz ich zastosowania w różnych warunkach. Prawidłowy dobór przekroju przewodu jest kluczowym elementem zapobiegania przegrzewaniu się instalacji, co może prowadzić do uszkodzeń oraz zwiększonego ryzyka pożaru.

Pytanie 28

Podczas pracy młotowiertarki udarowej zaobserwowano intensywne iskrzenie na komutatorze. Co należy zrobić, aby uniknąć uszkodzenia narzędzia?

A. Należy zatrzymać pracę i dokręcić połączenia kabli wewnątrz obudowy
B. Trzeba wstrzymać pracę i wymienić łącznik zasilający
C. Po zakończeniu pracy należy skontrolować połączenie uzwojenia twornika z uzwojeniem wzbudzenia
D. Wstrzymać pracę i wymienić szczotki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana szczotek w młotowiertarce udarowej jest kluczowym krokiem, gdy zauważamy nadmierne iskrzenie na komutatorze. Iskrzenie to może być wynikiem zużycia szczotek, które są odpowiedzialne za przewodzenie prądu do wirnika silnika. W miarę eksploatacji, szczotki ulegają ścieraniu, co prowadzi do zwiększenia oporu elektrycznego, a w konsekwencji do iskrzenia. Wymiana szczotek powinna być przeprowadzana zgodnie z zaleceniami producenta, co często wiąże się z regularnymi inspekcjami technicznymi, aby zapobiec poważniejszym uszkodzeniom narzędzia. Przykładowo, w przypadku firmy produkującej młotowiertarki, regularne serwisowanie i monitorowanie stanu szczotek mogą znacząco wydłużyć żywotność narzędzia oraz zapewnić jego optymalne działanie. Praktyka ta nie tylko przyczynia się do bezpieczeństwa użytkownika, ale także utrzymuje wysoką wydajność pracy, co jest niezmiernie ważne w środowisku budowlanym czy remontowym. W ten sposób można uniknąć kosztownych napraw oraz przedłużyć okres użytkowania urządzenia.

Pytanie 29

Obniżenie częstotliwości napięcia zasilającego w trakcie działania silnika indukcyjnego trójfazowego spowoduje

A. spadek prędkości obrotowej silnika
B. utrzymanie prędkości obrotowej silnika na niezmienionym poziomie
C. wzrost prędkości obrotowej silnika
D. unieruchomienie silnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zadanie dotyczy trójfazowego silnika indukcyjnego, którego prędkość obrotowa jest ściśle związana z częstotliwością napięcia zasilającego. Zgodnie z zasadą działania silników indukcyjnych, prędkość obrotowa (n) jest proporcjonalna do częstotliwości zasilania (f) i liczby par biegunów (p), co można zapisać równaniem: n = (120 * f) / p. Zmniejszenie częstotliwości prowadzi do proporcjonalnego zmniejszenia prędkości obrotowej silnika. W praktycznych zastosowaniach, takich jak regulacja prędkości obrotowej w napędach, zmieniając częstotliwość napięcia, możemy w kontrolowany sposób dostosować prędkość silnika do wymagań procesu technologicznego, co pozwala na optymalizację zużycia energii oraz poprawę wydajności systemu. Warto również wspomnieć o zastosowaniu falowników, które umożliwiają precyzyjne sterowanie częstotliwością zasilania, co jest standardem w nowoczesnych instalacjach przemysłowych, aby dostosować prędkość do zmieniających się warunków pracy.

Pytanie 30

Która z podanych przyczyn prowadzi do włączenia przekaźnika Buchholtza w celu odłączenia transformatora?

A. Niesymetryczne obciążenie transformatora
B. Przerwa w uzwojeniu pierwotnym
C. Zwarcie pomiędzy uzwojeniem pierwotnym a wtórnym
D. Przerwa w uziemieniu neutralnego punktu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwarcie między uzwojeniem pierwotnym a wtórnym transformatora jest jednym z najpoważniejszych zagrożeń, które mogą prowadzić do uszkodzenia urządzenia. Przekaźnik Buchholtza działa jako ochrona transformatora przed skutkami zwarcia, gdyż monitoruje przepływ oleju w transformatorze. W przypadku zwarcia, dochodzi do nagłego wzrostu temperatury i ciśnienia, co powoduje ruch oleju, a to z kolei uruchamia przekaźnik. Odpowiedź na to pytanie odnosi się do podstawowych zasad ochrony urządzeń elektrycznych. Działanie przekaźnika Buchholtza jest zgodne z normami IEC 60214, które określają wymagania dla transformatorów olejowych. W praktyce, stosowanie przekaźników Buchholtza pozwala na wczesne wykrywanie problemów oraz minimalizowanie ryzyka poważnych awarii, co jest kluczowe dla zapewnienia ciągłości pracy systemów energetycznych. W przypadku zadziałania przekaźnika, operator jednostki powinien niezwłocznie przeprowadzić diagnostykę w celu ustalenia przyczyny i podjąć odpowiednie działania naprawcze.

Pytanie 31

Który z podanych przewodów jest przeznaczony do instalacji wtynkowej?

A. YADYn
B. YDYt
C. OMYp
D. LYg

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź YDYt jest poprawna, ponieważ ten typ przewodu jest specjalnie zaprojektowany do instalacji wtynkowych. Przewody YDYt są izolowane i osłonięte, co czyni je odpowiednimi do układania w ścianach oraz innych strukturach budowlanych. Zbudowane z miedzi, posiadają wielowarstwową izolację, która chroni je przed uszkodzeniami mechanicznymi oraz wpływem niekorzystnych warunków atmosferycznych, co jest kluczowe w kontekście ich zastosowania w budynkach. Przewody te są zgodne z normami PN-IEC 60227, co potwierdza ich wysoką jakość oraz bezpieczeństwo użytkowania. Przykładem zastosowania YDYt może być instalacja oświetlenia w pomieszczeniach biurowych, gdzie przewody te są układane w ścianach, co zapewnia estetykę oraz bezpieczeństwo. Warto również zaznaczyć, że przewody te są dostępne w różnych przekrojach, co pozwala na dopasowanie do specyficznych wymagań instalacyjnych.

Pytanie 32

Jakie urządzenie, przy wykorzystaniu przekaźnika termicznego i stycznika, oferuje kompleksową ochronę przed zwarciem oraz przeciążeniem dla silnika trójfazowego o parametrach:
Pn = 5,5 kW, Un = 400/690 V?

A. Bezpiecznik typu aM
B. Wyłącznik nadprądowy typu B
C. Bezpiecznik typu aR
D. Wyłącznik nadprądowy typu Z

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Bezpiecznik typu aM jest optymalnym rozwiązaniem do zabezpieczenia silników trójfazowych, takich jak ten o mocy Pn = 5,5 kW i napięciu Un = 400/690 V. Bezpieczniki typu aM są zaprojektowane do ochrony przed przeciążeniami i zwarciami, a ich charakterystyka prądowa pozwala na tolerowanie krótkotrwałych prądów rozruchowych, które są typowe dla silników. Dzięki temu, w momencie uruchomienia silnika, gdy prąd może wzrosnąć kilkakrotnie w krótkim czasie, bezpiecznik aM nie zadziała, co zapobiega niepotrzebnemu wyłączeniu urządzenia. W praktyce, zastosowanie bezpiecznika typu aM przy odpowiednim doborze prądowym w stosunku do znamionowego prądu silnika, zapewnia nie tylko bezpieczeństwo operacyjne, ale również minimalizuje przerwy w pracy maszyny. Ponadto, zgodnie z normą IEC 60947-4-1, zastosowanie takiego zabezpieczenia jest rekomendowane w instalacjach przemysłowych, gdzie wymagana jest wysoka niezawodność systemu. Dobrze dobrane zabezpieczenia, takie jak bezpieczniki aM, są kluczowe dla utrzymania ciągłości produkcji oraz ochrony przed szkodami materialnymi i osobowymi.

Pytanie 33

Jak wpłynie na napięcie dolnej strony transformatora wzrost liczby aktywnych zwojów w uzwojeniu górnym, przy niezmienionym napięciu zasilania?

A. Spadnie do zera
B. Wzrośnie
C. Nie ulegnie zmianie
D. Zmniejszy się

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gdy zwiększamy liczbę zwojów w uzwojeniu górnym transformatora przy niezmienionym napięciu zasilania, zjawisko to wpływa na napięcie na uzwojeniu dolnym. W transformatorze napięcie jest proporcjonalne do liczby zwojów w danym uzwojeniu, zgodnie z zasadą działania transformatora, która jest opisana równaniem: U1/U2 = N1/N2, gdzie U1 i U2 to napięcia na uzwojeniach górnym i dolnym, a N1 i N2 to liczby zwojów w tych uzwojeniach. Zwiększenie liczby zwojów w uzwojeniu górnym (N1) spowoduje proporcjonalny wzrost napięcia U1. Przy stałym napięciu zasilania, napięcie na uzwojeniu dolnym (U2) musi się zmniejszyć, aby zachować równowagę w równaniu. Praktycznie oznacza to, że w sytuacji, gdy transformator pracuje w trybie zasilania, zmiana liczby zwojów w uzwojeniu górnym wpływa na efektywność transformacji energii, co jest kluczowe w zastosowaniach takich jak zasilanie niskonapięciowe, gdzie kontrola napięcia jest krytyczna dla bezpieczeństwa i wydajności urządzeń elektrycznych.

Pytanie 34

Jaka powinna być wartość prądu znamionowego bezpiecznika aparatowego zainstalowanego w obwodzie uzwojenia pierwotnego transformatora jednofazowego o parametrach: U1N= 230 V, U2N= 13 V, pracującego w ładowarce do akumulatorów, jeśli przewidywany prąd obciążenia ładowania akumulatorów wynosi 15 A?

A. 16A
B. 6A
C. 10A
D. 1A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W obwodzie uzwojenia pierwotnego transformatora należy uwzględniać prąd po stronie pierwotnej, a nie prąd obciążenia po stronie wtórnej. Przy napięciu wtórnym 13 V i przewidywanym prądzie obciążenia 15 A moc transformatora wynosi około 195 W. Odpowiada to prądowi po stronie pierwotnej rzędu 0,85 A przy napięciu 230 V. Bezpiecznik powinien mieć wartość nieco wyższą od prądu roboczego, aby nie ulegał zadziałaniu podczas normalnej pracy, a jednocześnie skutecznie chronił uzwojenie pierwotne transformatora przed przeciążeniem i zwarciem. Spośród podanych odpowiedzi wartość 1 A jest najbliższą właściwą wartością znamionową, dlatego wybór ten należy uznać za prawidłowy.

Pytanie 35

Który z wymienionych aparatów łączeniowych niskiego napięcia przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik małej mocy.
B. Rozłącznik izolacyjny z widoczną przerwą.
C. Odłącznik instalacyjny.
D. Łącznik silnikowy bez zabezpieczeń termicznych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to rozłącznik izolacyjny z widoczną przerwą. Urządzenie to charakteryzuje się możliwością wizualnej kontroli stanu przerwy izolacyjnej, co jest istotne w kontekście prac konserwacyjnych oraz serwisowych. Rozłączniki izolacyjne są kluczowe w systemach elektrycznych, ponieważ zapewniają bezpieczne odłączenie obwodów, co umożliwia bezpieczną pracę personelu przy konserwacji instalacji. Dzięki przezroczystej obudowie użytkownik może szybko ocenić, czy przerwa jest widoczna, co stanowi istotny element w procedurach oceny ryzyka. Stosowanie rozłączników izolacyjnych z widoczną przerwą jest zgodne z normami bezpieczeństwa, takimi jak normy IEC 60947, które regulują wymagania dotyczące aparatury łączeniowej. W praktyce, rozłączniki te są szeroko stosowane w obiektach przemysłowych oraz w instalacjach budowlanych, gdzie niezbędne jest zapewnienie maksymalnego bezpieczeństwa w przypadku pracy z instalacjami elektrycznymi.

Pytanie 36

Które z poniższych rozwiązań gwarantuje podstawową ochronę przed porażeniem w grzejniku elektrycznym działającym w systemie TN-S?

A. Izolacja robocza
B. Zastosowanie wyłącznika instalacyjnego nadprądowego w obwodzie zasilania
C. Podłączenie obudowy do uziemienia ochronnego
D. Zastosowanie wyłącznika różnicowoprądowego w obwodzie zasilania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Izolacja robocza jest kluczowym elementem zapewniającym podstawową ochronę przeciwporażeniową w urządzeniach elektrycznych, takich jak grzejniki elektryczne, pracujące w sieci TN-S. W tym systemie zasilania, który charakteryzuje się oddzieleniem przewodu neutralnego od przewodu ochronnego, odpowiednie zastosowanie izolacji roboczej ma na celu minimalizowanie ryzyka porażenia prądem w przypadku uszkodzenia urządzenia. Izolacja robocza to warstwa materiału izolacyjnego, która otacza przewody elektryczne i zapobiega ich kontaktowi z elementami metalowymi urządzenia, a tym samym z użytkownikiem. Przykładem praktycznego zastosowania izolacji roboczej jest użycie wysokiej jakości materiałów takich jak PVC lub guma, które są odporne na wysokie temperatury i działanie chemikaliów. Standardy takie jak IEC 60364 oraz normy krajowe dotyczące instalacji elektrycznych wskazują na konieczność stosowania izolacji roboczej, aby zapewnić bezpieczeństwo użytkowników. W praktyce, każdy grzejnik elektryczny powinien być zaprojektowany tak, aby spełniał wymagania dotyczące izolacji, co znacznie redukuje ryzyko wypadków związanych z porażeniem prądem.

Pytanie 37

W celu oceny stanu technicznego silnika prądu stałego dokonano jego oględzin i pomiarów. Na podstawie wyników pomiarów zamieszczonych w tabeli określ stan techniczny tego silnika.

Wartość rezystancji pomiędzy zaciskami:
A1-A2D1-D2E1-E2A1-PED1-PEE1-PE
0,8 Ω0,9 Ω4,7 Ω123,1 MΩ102,5 MΩ166,6 MΩ
A. Przebicie izolacji uzwojenia bocznikowego do obudowy.
B. Zwarcie międzyzwojowe w uzwojeniu bocznikowym.
C. Pogorszony stan izolacji między uzwojeniem szeregowym, a obudową.
D. Pogorszony stan połączeń uzwojenia twornika w tabliczce zaciskowej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwarcie międzyzwojowe w uzwojeniu bocznikowym to sytuacja, w której dwa lub więcej zwojów w tym samym uzwojeniu stykają się ze sobą, co prowadzi do zmiany odpowiednich parametrów elektrycznych silnika. W analizowanym przypadku, niskie wartości rezystancji między zaciskami A1-A2 oraz D1-D2 sugerują, że uzwojenia te są sprawne i nie mają problemów z połączeniami. Jednak podwyższona rezystancja E1-E2, wynosząca 4,7 Ω, wskazuje na potencjalny problem. W praktyce, zwarcia międzyzwojowe mogą prowadzić do przegrzewania się silnika, co w efekcie skraca jego żywotność oraz wpływa na wydajność. W standardach dotyczących konserwacji silników prądu stałego, takich jak IEC 60034-1, podkreśla się konieczność regularnych pomiarów rezystancji oraz analizy wyników, aby zapobiegać poważniejszym uszkodzeniom. Zrozumienie i identyfikacja zwarć międzyzwojowych to kluczowy element w zarządzaniu stanem technicznym silników elektrycznych, co pozwala na wczesne wykrycie problemów i ich skuteczne usunięcie.

Pytanie 38

Korzystając z danych zamieszczonych w tabeli wyznacz, wartość rezystancji jednej żyły przewodu YDY 3×2,5 mm2 o długości 100 m.

Dane techniczne przewodu YDY
Ilość i przekrój znamionowy żyłGrubość znamionowa izolacjiMax. rezystancja żyłOrientacyjna masa przewodu o długości 1 km
mm²mmΩ/kmkg/km
2x10,818,181
2x1,50,812,197
2x2,50,87,41125
2x40,94,61176
2x60,93,08228
3x10,918,196
3x1,50,912,1116
3x2,50,97,41153
A. 7,410 Ω
B. 0,741 Ω
C. 74,10 Ω
D. 741,0 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź '0,741 Ω' jest jak najbardziej trafna! Dobrze, że wziąłeś pod uwagę długość przewodu, bo 100 m to tak naprawdę 1/10 km. Obliczenia rezystancji dla przewodów miedzianych można znaleźć w normach, a te mówią, że dla 2,5 mm² rezystancja na kilometr to około 7,41 Ω. Wiadomo, że jeśli mamy 100 m, to musimy to przeliczyć na 0,741 Ω. W inżynierii elektrycznej takie obliczenia są mega ważne, bo pomagają zrozumieć, jak minimalizować straty energii i dobierać odpowiednie zabezpieczenia. Właściwe przeliczenia pomagają w efektywności energetycznej. Formuła R = ρ * (L / A) to standardowy sposób podejścia, który powinien być znany każdemu, kto projektuje instalacje elektryczne. Dzięki temu cały system działa lepiej.

Pytanie 39

Jakie urządzenie gaśnicze powinno być użyte do gaszenia pożaru w rozdzielnicy elektrycznej, której nie można odłączyć od zasilania?

A. Hydronetkę.
B. Gaśnicę proszkową.
C. Tłumicę.
D. Gaśnicę cieczy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gaśnice proszkowe są skutecznym narzędziem do gaszenia pożarów klasy C, które obejmują gazy palne oraz pożary elektryczne. W przypadku pożaru rozdzielnicy elektrycznej, której nie można wyłączyć spod napięcia, stosowanie gaśnicy proszkowej jest zalecane ze względu na jej właściwości. Proszek gaśniczy, najczęściej bazujący na wodorofosforanie amonu, skutecznie tłumi płomienie, nie przewodząc prądu, co czyni go bezpiecznym w kontakcie z urządzeniami pod napięciem. Przykładowo, w sytuacji awaryjnej, gdy nie można zredukować napięcia elektrycznego, użycie gaśnicy proszkowej pozwala na szybkie i efektywne działanie, minimalizując ryzyko porażenia prądem. W praktyce, standardy bezpieczeństwa, takie jak normy NFPA i EN 3, jasno wskazują, że gaśnice proszkowe powinny być używane w takich sytuacjach, co czyni je najlepszym wyborem w kontekście ochrony przeciwpożarowej w obiektach z instalacjami elektrycznymi.

Pytanie 40

Na podstawie podanych w tabeli wyników pomiarów rezystancji izolacji silnika asynchronicznego trójfazowego o danych UN = 230/400 V i PN = 3 kW można stwierdzić, że

RPE-U1RPE-V1RPE-W1RU1-V1RV1-W1RW1-U1
6,2 MΩ5,4 MΩ3,9 MΩ6,9 MΩ4,4 MΩ4,8 MΩ
A. pogorszyła się izolacja uzwojenia W.
B. wystąpiło zwarcie między uzwojeniami V i W.
C. w uzwojeniu V występuje przerwa.
D. w uzwojeniu U występuje zwarcie do obudowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź wskazuje na to, że pogorszenie izolacji uzwojenia W jest dostrzegalne w analizowanych wynikach pomiarów. Rezystancja izolacji między uzwojeniami powinna być zbliżona, co jest zgodne z normami bezpieczeństwa i jakości, takimi jak IEC 60364. W przypadku, gdy rezystancja izolacji uzwojenia W jest znacznie niższa niż dla uzwojeń U i V, świadczy to o osłabieniu izolacji, co może prowadzić do niebezpiecznych warunków pracy silnika. W praktyce, niezidentyfikowane problemy związane z izolacją mogą prowadzić do zwarć, przegrzewania się i w końcu awarii silnika, co wiąże się z kosztownymi naprawami oraz przestojami w pracy maszyn. Regularne pomiary rezystancji izolacji są kluczowe dla zapewnienia niezawodności urządzeń elektrycznych, a odpowiednia dokumentacja wyników pozwala na monitorowanie stanu technicznego uzwojeń. W przypadku wykrycia niskiej rezystancji, należy natychmiast podjąć kroki w celu oceny i naprawy uszkodzeń izolacji, co jest zgodne z dobrą praktyką w konserwacji urządzeń elektrycznych.