Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektroradiolog
  • Kwalifikacja: MED.08 - Świadczenie usług medycznych w zakresie diagnostyki obrazowej, elektromedycznej i radioterapii
  • Data rozpoczęcia: 19 lutego 2026 06:42
  • Data zakończenia: 19 lutego 2026 06:56

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Którą metodą i w której płaszczyźnie zostało wykonane badanie stawu kolanowego zobrazowane na zdjęciach?

Ilustracja do pytania
A. MR, w płaszczyźnie czołowej.
B. MR, w płaszczyźnie strzałkowej.
C. TK, w płaszczyźnie czołowej.
D. TK, w płaszczyźnie strzałkowej.
Prawidłowo rozpoznano, że na obrazach widoczny jest staw kolanowy w badaniu MR wykonanym w płaszczyźnie czołowej. Świadczą o tym typowe cechy rezonansu magnetycznego: wysoki kontrast tkanek miękkich, bardzo dobra widoczność chrząstki, łąkotek, więzadeł oraz istoty gąbczastej kości, a także charakterystyczny wygląd warstwic obrazów i opisów w nagłówkach. W tomografii komputerowej tkanki miękkie są zdecydowanie słabiej różnicowane, natomiast kość korowa daje bardzo mocny, jasny sygnał. Tutaj wyraźnie widać, że to obraz MR – kość jest bardziej „szara”, a znakomicie podkreślone są łąkotki w obrębie szpary stawowej. Płaszczyzna czołowa (frontalna) oznacza, że obraz przecina ciało z przodu na tył – widzimy jednocześnie przyśrodkową i boczną część stawu, kłykcie kości udowej i piszczeli obok siebie, a nie „z boku” jak w płaszczyźnie strzałkowej. W praktyce klinicznej badanie MR kolana w płaszczyźnie czołowej jest standardowym elementem protokołu – obok sekwencji w płaszczyźnie strzałkowej i poprzecznej. Dzięki temu radiolog może precyzyjnie ocenić łąkotki (szczególnie rogi i trzon), chrząstkę stawową, szparę stawową, obrzęk szpiku oraz ustawienie osi kończyny. Moim zdaniem, w pracy technika bardzo ważne jest, żeby już na pierwszy rzut oka kojarzyć, jak wygląda typowy obraz MR kolana w każdej z płaszczyzn, bo to pozwala od razu wychwycić błędne pozycjonowanie pacjenta albo niewłaściwie dobrany zakres skanowania. W dobrych pracowniach dba się o to, aby zawsze uzyskać komplet projekcji (czołowa, strzałkowa, poprzeczna) w co najmniej jednej sekwencji T1- lub PD-zależnej oraz jednej T2-zależnej, często z fat-sat, właśnie po to, żeby ortopeda miał pełny obraz uszkodzeń więzadeł i łąkotek.

Pytanie 2

Ligand stosuje się

A. w rezonansie magnetycznym jako środek kontrastujący pozytywny.
B. w medycynie nuklearnej jako nośnik radiofarmaceutyku.
C. w radiologii klasycznej jako środek kontrastujący pozytywny.
D. w radiologii klasycznej jako środek kontrastujący negatywny.
Prawidłowo – ligand w tym kontekście to związek chemiczny, który wiąże się selektywnie z określonym celem biologicznym, np. receptorem, enzymem czy transporterem, i właśnie w medycynie nuklearnej pełni rolę nośnika radiofarmaceutyku. Mówiąc prościej: ligand „prowadzi za rękę” izotop promieniotwórczy dokładnie tam, gdzie chcemy zobaczyć czynność narządu albo ognisko chorobowe. Radioizotop sam z siebie nie jest wybiórczy, dopiero połączenie go z odpowiednim ligandem tworzy radiofarmaceutyk o określonej tropowości, np. do kości, mięśnia sercowego, guzów neuroendokrynnych czy receptorów dopaminergicznych. W scyntygrafii kości używa się ligandów fosfonianowych znakowanych technetem-99m, które gromadzą się w miejscach wzmożonego metabolizmu kostnego. W scyntygrafii perfuzyjnej serca mamy ligandy lipofilne, które wnikają do kardiomiocytów proporcjonalnie do przepływu krwi. W PET z kolei typowym przykładem jest 18F-FDG, gdzie ligandem jest analog glukozy, a izotopem fluor-18. Z mojego doświadczenia to właśnie zrozumienie roli liganda tłumaczy, czemu dwa różne radiofarmaceutyki z tym samym izotopem mogą mieć zupełnie inne wskazania. Dobre praktyki w medycynie nuklearnej wymagają bardzo świadomego doboru liganda do konkretnego badania: bierzemy pod uwagę farmakokinetykę, specyficzność wiązania, szybkość eliminacji, a także bezpieczeństwo dla pacjenta. W wytycznych EANM czy IAEA wyraźnie podkreśla się, że to właściwości liganda decydują o jakości obrazowania funkcjonalnego, a nie tylko sam izotop. Dlatego poprawne skojarzenie pojęcia „ligand” z nośnikiem radiofarmaceutyku w medycynie nuklearnej jest bardzo istotne i praktycznie przydatne w pracy z gammakamerą czy PET.

Pytanie 3

Rytm alfa i beta rejestruje się podczas badania

A. EEG
B. EKG
C. USG
D. HSG
Prawidłowo – rytm alfa i beta to pojęcia typowe dla elektroencefalografii, czyli badania EEG. W EEG rejestrujemy bioelektryczną aktywność mózgu za pomocą elektrod umieszczonych na skórze głowy, zwykle według międzynarodowego systemu 10–20. Rytm alfa to fale o częstotliwości ok. 8–13 Hz, najlepiej widoczne u osoby zrelaksowanej, z zamkniętymi oczami, najczęściej w okolicach potylicznych. Rytm beta ma wyższą częstotliwość, około 13–30 Hz, częściej pojawia się przy stanie czuwania, koncentracji, czasem pod wpływem leków, np. benzodiazepin. W praktyce technik EEG powinien umieć odróżnić fizjologiczne rytmy (alfa, beta, theta, delta) od zmian patologicznych, takich jak wyładowania napadowe czy fale ostre. To jest podstawa prawidłowego opisu zapisu EEG i współpracy z lekarzem. Badanie EEG wykonuje się m.in. w diagnostyce padaczki, zaburzeń świadomości, encefalopatii metabolicznych, a także w ocenie mózgowej aktywności po urazach. Z mojego doświadczenia, im lepiej rozumiesz, co oznaczają poszczególne rytmy, tym łatwiej wychwytujesz subtelne nieprawidłowości w zapisie, np. asymetrię rytmu alfa między półkulami czy nadmierną obecność rytmu beta. W standardach pracowni neurofizjologicznej podkreśla się też znaczenie aktywacji (hiperwentylacja, fotostymulacja) – wtedy zmiany w rytmach mogą się nasilać lub zmieniać, co bywa bardzo przydatne w diagnostyce napadów.

Pytanie 4

Parametr spirometryczny czynnościowa pojemność zalegająca oznaczany jest skrótem

A. TLC
B. FRC
C. TV
D. RV
W spirometrii i badaniach pojemności płuc bardzo łatwo pomylić poszczególne skróty, bo wszystkie są do siebie trochę podobne i odnoszą się do objętości powietrza w płucach. Czynnościowa pojemność zalegająca to jednak konkretny parametr – FRC (Functional Residual Capacity) – i oznacza ilość powietrza pozostającą w płucach po spokojnym, nie wymuszonym wydechu. To jest taki punkt równowagi między sprężystością płuc a klatki piersiowej. Jeśli ktoś wybiera TLC, to zwykle myli pojęcia „maksymalna” i „czynnościowa”. TLC (Total Lung Capacity) to całkowita pojemność płuc, czyli objętość powietrza przy maksymalnym, głębokim wdechu. To jest największa objętość, jaką płuca mogą osiągnąć, a nie objętość przy spokojnym oddychaniu. FRC jest znacznie mniejsze niż TLC i ma inne znaczenie kliniczne, szczególnie przy ocenie hiperinfalcji w POChP. Z kolei RV (Residual Volume) to objętość zalegająca – powietrze, które pozostaje w płucach po maksymalnym, wymuszonym wydechu. To jest już skrajna sytuacja, gdy pacjent „wyciska” z płuc tyle, ile może. FRC obejmuje RV, ale nie jest z nim tożsame, bo zawiera jeszcze objętość zapasową wydechową (ERV). Typowy błąd myślowy polega na tym, że skoro nazwa zawiera słowo „zalegająca”, to ludzie automatycznie kojarzą to z RV, a nie z FRC jako sumą dwóch składowych. TV (Tidal Volume) to natomiast objętość oddechowa – ilość powietrza w pojedynczym spokojnym wdechu i wydechu. Bardzo podstawowy parametr, używany np. przy ustawianiu respiratora, ale zupełnie inny niż pojemności funkcjonalne. W spirometrii i bodypletyzmografii ważne jest, żeby odróżniać objętości (np. TV, RV) od pojemności (np. FRC, TLC), bo ich interpretacja według standardów ERS/ATS opiera się właśnie na tych relacjach. Mylenie tych skrótów może prowadzić do błędnych wniosków o restrykcji czy obturacji, dlatego warto mieć w głowie prosty schemat: FRC – punkt wyjścia po spokojnym wydechu, TLC – maksimum po głębokim wdechu, RV – minimum po maksymalnym wydechu, TV – zwykły, spokojny oddech.

Pytanie 5

Hiperfrakcjonowanie dawki w radioterapii oznacza napromieniowywanie pacjenta

A. raz w tygodniu.
B. kilka razy dziennie.
C. pięć razy w tygodniu.
D. codziennie.
Prawidłowo – hiperfrakcjonowanie w radioterapii oznacza podawanie dawki promieniowania kilka razy dziennie, w postaci wielu małych frakcji, a nie jednej większej. Chodzi o to, że całkowita dawka napromieniania jest podzielona na mniejsze porcje, zwykle 2 (czasem nawet 3) frakcje na dobę, z odpowiednim odstępem czasowym między nimi, najczęściej minimum 6 godzin. Z punktu widzenia radiobiologii wykorzystuje się tu różnice w zdolności naprawy uszkodzeń DNA między komórkami nowotworowymi a zdrowymi. Komórki prawidłowe lepiej regenerują się między kolejnymi frakcjami, więc mniejsze, częściej podawane dawki mogą ograniczać późne powikłania w tkankach zdrowych, a jednocześnie zwiększać szansę na kontrolę guza. W praktyce klinicznej takie schematy stosuje się np. w niektórych nowotworach głowy i szyi czy w wybranych guzach pediatrycznych, gdzie istotne jest zmniejszenie ryzyka późnych uszkodzeń narządów krytycznych. Hiperfrakcjonowanie wymaga bardzo dobrej organizacji pracy ośrodka: precyzyjnego planowania leczenia, rzetelnej weryfikacji pozycjonowania pacjenta przy każdym naświetlaniu oraz ścisłego trzymania się harmonogramu frakcji w ciągu dnia. W wytycznych z zakresu radioterapii onkologicznej podkreśla się też, że ten sposób frakcjonowania powinien być stosowany głównie w ośrodkach, które mają odpowiednie doświadczenie i zaplecze kadrowo‑techniczne, bo obciążenie dla zespołu i pacjenta jest po prostu większe niż przy standardowym schemacie raz dziennie.

Pytanie 6

Które informacje należy zamieścić na strzykawce z radiofarmaceutykiem przygotowanym przez technika elektroradiologa?

A. Typ radiofarmaceutyku, radioaktywność, godzina przygotowania.
B. Czas okresu inkubacji, radioaktywność, inicjały technika.
C. Czas okresu inkubacji, stężenie, inicjały technika.
D. Typ radiofarmaceutyku, stężenie, godzina przygotowania.
W medycynie nuklearnej oznakowanie strzykawki z radiofarmaceutykiem nie jest kwestią kosmetyczną, tylko elementem bezpieczeństwa i jakości całego badania. Typowy błąd polega na przenoszeniu logiki z innych działów diagnostyki obrazowej albo z ogólnej farmakoterapii, gdzie bardziej zwraca się uwagę na stężenie, czas inkubacji czy inicjały osoby przygotowującej. W przypadku radiofarmaceutyków kluczowe są jednak inne parametry. Informacja o czasie okresu inkubacji ma znaczenie np. przy znakowaniu krwinek czy niektórych procedurach laboratoryjnych, ale nie jest podstawową daną, którą musi widzieć osoba podająca preparat pacjentowi. Na strzykawce znacznie ważniejsze jest to, ile aktualnie mamy aktywności promieniotwórczej, a nie jak długo coś się inkubowało. Podobnie ze stężeniem – może ono być istotne w dokumentacji roboczej lub przy obliczeniach w pracowni, ale osoba wykonująca podanie musi przede wszystkim znać aktywność w MBq przypadającą na daną objętość, a nie samo stężenie opisane w sposób ogólny. Rozróżnienie między stężeniem a radioaktywnością bywa mylone: stężenie mówi, ile substancji chemicznej jest w jednostce objętości, natomiast radioaktywność określa tempo rozpadu jąder i realną „moc” dawki promieniowania. To radioaktywność, a nie samo stężenie, ma zasadnicze znaczenie dla dawki pochłoniętej przez pacjenta i zgodności z protokołami. Inicjały technika mogą być przydatne z punktu widzenia wewnętrznej kontroli jakości czy odpowiedzialności, ale nie stanowią podstawowego elementu opisu strzykawki. Dużo ważniejsze jest, aby na etykiecie pojawiła się godzina przygotowania (lub godzina kalibracji aktywności), bo bez niej nie da się poprawnie przeliczyć rozpadu w czasie i sprawdzić, czy dawka w momencie podania jest prawidłowa. Typ radiofarmaceutyku jest z kolei absolutnie niezbędny – bez jednoznacznej nazwy preparatu łatwo o pomyłkę między różnymi związkami technetu czy innymi izotopami. Właśnie pomijanie typu preparatu i radioaktywności, a skupianie się na parametrach bardziej „farmaceutycznych” jak stężenie czy sama osoba przygotowująca, jest typowym błędem myślowym wynikającym z niedostatecznego uwzględnienia specyfiki medycyny nuklearnej. Dobre praktyki i procedury pracowni jasno podkreślają: musi być nazwa radiofarmaceutyku, aktualna aktywność oraz czas odniesienia, bo to trzy filary bezpiecznego podania i prawidłowej interpretacji badania.

Pytanie 7

Audiogram przedstawia próbę

Ilustracja do pytania
A. Fowlera.
B. Langenbecka.
C. SISI.
D. Lüschera-Zwisłockiego.
Prawidłowo – ten charakterystyczny wykres to audiogram z próby Fowlera, czyli tzw. testu wyrównywania głośności (loudness balance test). Próba Fowlera służy głównie do oceny rekrutacji słuchu, czyli nienormalnie szybkiego narastania wrażenia głośności w uchu z uszkodzeniem ślimaka. W praktyce klinicznej wykonuje się ją u pacjentów z jedno- lub obustronnym niedosłuchem odbiorczym, szczególnie gdy podejrzewamy uszkodzenie ślimakowe. Na audiogramie, takim jak na rysunku, widzimy kilka krzywych dla różnych poziomów natężenia i częstotliwości, a ich zbieganie się lub szybkie wyrównywanie głośności między uchem chorym i zdrowym wskazuje właśnie na rekrutację. Moim zdaniem warto zapamiętać, że w próbie Fowlera zawsze porównujemy odczucie głośności między dwoma uszami – jedno jest referencyjne, drugie badane. Technik audiologiczny powinien dbać o stabilne warunki akustyczne, dobre wytłumienie kabiny oraz dokładną kalibrację audiometru, bo nawet niewielkie błędy poziomu dB wpływają na interpretację rekrutacji. W dobrych praktykach zaleca się wcześniejsze wykonanie klasycznej audiometrii tonalnej, żeby znać progi słyszenia w obu uszach i na tej podstawie ustawić poziomy wyjściowe do testu Fowlera. Taki test pomaga potem odróżnić uszkodzenie ślimakowe od pozaślimakowego, co ma znaczenie np. przy kwalifikacji do aparatowania czy dalszej diagnostyki otologicznej. W skrócie: jeśli audiogram pokazuje wyrównywanie głośności przy niewielkim zwiększeniu natężenia w uchu chorym, to typowy obraz rekrutacji w próbie Fowlera.

Pytanie 8

Podczas badania EEG otwarcie oczu powoduje

A. zaniknięcie rytmu alfa.
B. spontaniczną hiperwentylację.
C. zjawisko habituacji.
D. reakcję paradoksalną.
Prawidłowo – podczas badania EEG otwarcie oczu powoduje zanik, czyli blokowanie rytmu alfa w okolicach potylicznych. U zdrowej, zrelaksowanej osoby, leżącej spokojnie z zamkniętymi oczami, dominuje właśnie rytm alfa: fale o częstotliwości około 8–13 Hz, najlepiej widoczne w odprowadzeniach potylicznych (O1, O2). Jest to taki „fizjologiczny podpis” stanu czuwania w spoczynku z zamkniętymi oczami. W momencie, kiedy badany otwiera oczy, do kory wzrokowej dociera strumień bodźców wzrokowych i aktywność bioelektryczna ulega desynchronizacji – zamiast ładnego, regularnego rytmu alfa pojawia się bardziej niskonapięciowa, szybka czynność beta lub mieszanina różnych częstotliwości. Ten efekt nazywa się blokowaniem albo wygaszeniem rytmu alfa (ang. alpha blocking). Dla technika EEG to jest bardzo praktyczna sprawa: reakcja na otwarcie oczu jest jednym z podstawowych testów jakości zapisu i stanu pacjenta. Jeśli rytm alfa się nie pojawia przy zamkniętych oczach albo nie znika po ich otwarciu, to od razu zapala się lampka ostrzegawcza – można podejrzewać np. uszkodzenie kory potylicznej, głębokie zaburzenia świadomości, działanie leków, czasem artefakty. W standardach wykonywania EEG (np. zalecenia IFCN, krajowe wytyczne pracowni EEG) zawsze podkreśla się konieczność rejestrowania fragmentów z oczami zamkniętymi i otwartymi oraz dokładnego opisywania reaktywności rytmu alfa. W praktyce klinicznej ocena tego zjawiska pomaga różnicować stany śpiączki, encefalopatie metaboliczne czy efekty działania leków sedacyjnych. Z mojego doświadczenia warto sobie to dobrze zapamiętać: oczy zamknięte – alfa się pojawia, oczy otwarte – alfa znika. To jest jeden z najbardziej klasycznych i powtarzalnych elementów zapisu EEG, który bardzo często pojawia się też na egzaminach i w zadaniach testowych.

Pytanie 9

Przy ułożeniu do zdjęcia AP czaszki płaszczyzna

A. czołowa jest prostopadła do kasety.
B. oczodołowo-uszna środkowa jest prostopadła do kasety.
C. strzałkowa jest równoległa do kasety.
D. oczodołowo-uszna dolna jest równoległa do kasety.
W pozycjonowaniu do projekcji AP czaszki bardzo łatwo się pomylić między różnymi płaszczyznami, bo ich nazwy są do siebie podobne, a w praktyce liczy się dosłownie kilka stopni różnicy. W tym pytaniu pułapka polega na tym, że część osób automatycznie myśli o płaszczyźnie czołowej i strzałkowej, bo są bardziej znane z anatomii, a w radiografii czaszki kluczowe są jednak linie oczodołowo-uszne. Płaszczyzna czołowa rzeczywiście ustawiona jest mniej więcej równolegle do kasety przy AP czaszki, ale pytanie dotyczy konkretnej płaszczyzny używanej jako punkt odniesienia do pozycjonowania. W standardach radiologicznych to właśnie linia oczodołowo-uszna środkowa (OML) jest kontrolowana względem kasety, a nie ogólna płaszczyzna czołowa. Z kolei płaszczyzna strzałkowa pośrodkowa powinna być prostopadła do kasety, a nie równoległa. Jeżeli ktoś zakłada, że powinna być równoległa, to zwykle wynika to z pomieszania z projekcją boczną czaszki, gdzie głowa faktycznie jest ustawiona bokiem i płaszczyzna strzałkowa biegnie równolegle do kasety. To typowy błąd: przenoszenie ustawień z innej projekcji. Linie oczodołowo-uszne dolna (IOML) i środkowa (OML) też często się mylą. Dolna bywa wykorzystywana w innych projekcjach (np. niektóre zdjęcia zatok, projekcje skośne), ale w klasycznej projekcji AP czaszki to OML ma być prostopadła do kasety. Ustawianie dolnej równolegle do kasety spowodowałoby, że głowa byłaby odchylona, a obraz czaszki nie byłby prawidłowo odwzorowany – pojawią się skróty, przemieszczenie struktur, gorsza ocena symetrii. Z mojego doświadczenia najlepiej zapamiętać prostą zasadę: w projekcjach AP/PA czaszki patrzymy na OML prostopadłą do kasety i na płaszczyznę strzałkową pośrodkową bez rotacji. Każde inne ustawienie tych linii prowadzi do zniekształceń i jest sprzeczne z dobrymi praktykami radiograficznymi opisanymi w podręcznikach do techniki RTG.

Pytanie 10

Na schemacie oznaczono

Ilustracja do pytania
A. 1 – załamek U; 2 – załamek P
B. 1 – załamek P; 2 – załamek T
C. 1 – załamek T; 2 – załamek P
D. 1 – załamek U; 2 – załamek T
Na schemacie prawidłowo rozpoznałeś: 1 – załamek P, 2 – załamek T. To jest klasyczny zapis pojedynczego cyklu pracy serca w EKG. Załamek P odpowiada depolaryzacji przedsionków, czyli ich pobudzeniu elektrycznemu poprzedzającemu skurcz. W zapisie zawsze występuje przed zespołem QRS, ma zwykle niewielką amplitudę i zaokrąglony kształt. Załamek T natomiast odzwierciedla repolaryzację komór, czyli „powrót” komórek mięśnia komór do stanu wyjściowego po skurczu. Pojawia się po zespole QRS i odcinku ST, jest zwykle szerszy i łagodniej zaokrąglony niż P. Z mojego doświadczenia, w praktyce technika EKG kluczowe jest szybkie rozpoznanie tych elementów, bo od nich zaczyna się każda analiza zapisu: liczenie częstości, ocena rytmu zatokowego (czy każdy QRS ma przed sobą załamek P), ocena przewodzenia przedsionkowo‑komorowego (odstęp PQ) czy wstępna ocena niedokrwienia i zaburzeń elektrolitowych (kształt i biegunowość załamka T, odcinek ST). Standardy interpretacji EKG (np. zalecenia Europejskiego Towarzystwa Kardiologicznego) kładą duży nacisk na systematyczną analizę: najpierw rytm i załamek P, potem QRS, na końcu repolaryzacja, czyli ST i T. W codziennej pracy w pracowni diagnostyki elektromedycznej prawidłowe rozpoznawanie P i T pomaga uniknąć pomylenia artefaktów z patologią, np. drżenia mięśniowego z migotaniem przedsionków, czy płaskiego T z błędem ułożenia elektrod. Moim zdaniem warto sobie utrwalić prostą zasadę: mały, pierwszy – P (przedsionki), wysoki, ostry – QRS (komory kurczą się), ostatni, szerszy – T (komory się „resetują”).

Pytanie 11

Do zdjęcia prawych otworów międzykręgowych kręgosłupa szyjnego pacjent stoi w skosie

A. lewym przednim.
B. lewym tylnym.
C. prawym tylnym.
D. prawym przednim.
W tym zadaniu cała trudność polega na zrozumieniu logiki projekcji skośnych kręgosłupa szyjnego, a nie tylko na zapamiętaniu skrótu. Typowy błąd polega na myleniu, po której stronie widoczne są otwory międzykręgowe w zależności od tego, czy wybieramy skos przedni czy tylny i z której strony pada promień. W odpowiedziach z określeniem „prawy tylny” oraz „prawy przedni” często kryje się intuicyjne myślenie: skoro badamy prawe otwory, to wybiorę projekcję „prawą”. Niestety w kręgosłupie szyjnym tak to nie działa. W projekcjach skośnych szyi otwory międzykręgowe najlepiej uwidaczniają się po stronie przydetektorowej, czyli tej bliżej kasety. Jeśli pacjent stoi w prawym tylnym skosie (RPO), to bliżej detektora znajduje się lewa strona szyi, a promień wchodzi od strony prawej tylnej. Efekt jest taki, że lepiej uwidocznimy LEWE otwory międzykręgowe, a nie prawe. Analogicznie, przy prawym przednim skosie (RAO) promień wchodzi od przodu po prawej stronie, ale nadal strona bliższa detektorowi będzie lewa, więc diagnostycznie wyraźniejsze będą lewe otwory. To jest bardzo typowe złudzenie: skupiamy się na tym, skąd pada promień, a nie na tym, która strona jest przy detektorze. Odpowiedź z „lewym przednim” też jest myląca, bo ktoś może założyć, że skoro lewa, to będzie widoczna prawa strona, ale przy projekcjach przednich (LAO/RAO) otwory oglądamy z innej geometrii wiązki, i standardowo do oceny szyjnych otworów międzykręgowych preferuje się projekcje tylne skośne, właśnie LPO i RPO. W praktyce klinicznej przyjęło się, że: LPO – oglądamy prawe otwory, RPO – oglądamy lewe otwory. Jeżeli wybierzemy niewłaściwy skos, obraz będzie mało przydatny diagnostycznie, a pacjent niepotrzebnie dostanie kolejną dawkę promieniowania przy powtórce badania. Dobra praktyka to zawsze myśleć: którą stronę chcę przyłożyć do detektora, a dopiero potem dobierać projekcję i kierunek wiązki, zamiast kierować się tylko intuicyjną nazwą skosu.

Pytanie 12

Na schemacie oznaczono

Ilustracja do pytania
A. odstęp PP
B. zespół QRS
C. odstęp RR
D. zespół QS
Na schemacie strzałka obejmuje odległość między wierzchołkami dwóch kolejnych załamków R, czyli właśnie odstęp RR. W zapisie EKG to podstawowy parametr służący do oceny częstości i regularności rytmu serca. Mierzymy go od szczytu jednego załamka R do szczytu następnego załamka R w tym samym odprowadzeniu. Na standardowym papierze EKG (prędkość 25 mm/s) 1 mała kratka to 0,04 s, a 1 duża kratka 0,20 s. Dzięki temu z odstępu RR można bardzo szybko wyliczyć częstość pracy serca: 300 podzielone przez liczbę dużych kratek między załamkami R daje orientacyjną wartość tętna w uderzeniach na minutę. W praktyce, w pracowni diagnostyki elektromedycznej, technik bardzo często patrzy właśnie na regularność odstępów RR, żeby odróżnić rytm zatokowy od arytmii, np. migotania przedsionków, gdzie odstępy RR są wyraźnie nieregularne. Moim zdaniem to jedna z pierwszych rzeczy, które warto sobie „wyrobić w oku” przy oglądaniu EKG – równiutkie, powtarzalne odstępy RR zwykle sugerują uporządkowany rytm. W monitorach kardiologicznych, holterach czy defibrylatorach automatycznych algorytmy komputerowe też bazują w dużej mierze na analizie kolejnych odstępów RR, żeby wykrywać tachykardię, bradykardię czy pauzy. Dobre nawyki: zawsze mierz RR na kilku cyklach, w różnych fragmentach zapisu, bo lokalne artefakty albo pojedyncze pobudzenia dodatkowe mogą łatwo zafałszować ocenę, jeśli spojrzy się tylko na jedno miejsce.

Pytanie 13

Na którym obrazie TK uwidoczniony jest artefakt spowodowany ruchami oddechowymi pacjenta?

A. Obraz 2
Ilustracja do odpowiedzi A
B. Obraz 4
Ilustracja do odpowiedzi B
C. Obraz 1
Ilustracja do odpowiedzi C
D. Obraz 3
Ilustracja do odpowiedzi D
W tym zadaniu łatwo pomylić różne typy artefaktów, bo wszystkie cztery obrazy pokazują zaburzenia jakości, ale tylko jeden z nich jest klasycznym przykładem artefaktu ruchowego związanego z oddychaniem. Artefakt oddechowy w tomografii komputerowej ma zwykle postać falistego, „pływającego” zniekształcenia konturów narządów, czasem jakby ktoś przesunął kawałek obrazu w bok lub wzdłuż osi ciała. Dotyczy to głównie badań klatki piersiowej i jamy brzusznej, bo tam ruch przepony i ściany klatki jest największy. Na obrazie 1 dokładnie to widać: narządy jamy brzusznej są pofalowane, ich granice nie są ostre, a ściana ciała wygląda jak zygzak. To efekt tego, że pacjent oddychał podczas zbierania danych i rekonstrukcja "złożyła" razem projekcje z różnych faz oddechu. Na pozostałych obrazach występują inne zjawiska. Jeden z nich pokazuje typowy szum kwantowy i ziarnistość, prawdopodobnie związane z niską dawką promieniowania albo niewłaściwymi parametrami rekonstrukcji – piksele są jak rozsypane ziarenka, ale kontury struktur są zasadniczo stabilne, nie pofalowane. To nie ma nic wspólnego z ruchem oddechowym, tylko z liczbą zarejestrowanych fotonów i filtracją rekonstrukcyjną. Inny przykład wygląda na artefakt metaliczny lub zjawisko utwardzenia wiązki: wokół struktur o bardzo wysokiej gęstości (np. metal, kość, kontrast) pojawiają się pasma, smugi, lokalne prześwietlenia albo zacienienia. To wynika z nieliniowej absorpcji promieniowania i ograniczeń algorytmów rekonstrukcji, a nie z przesuwania się narządu w czasie. Kolejny obraz może sugerować częściowy wolumen lub niewłaściwą rekonstrukcję 3D, gdzie granice są wygładzone, ale jednak zachowują prawidłowy przebieg anatomiczny – tam też nie widać charakterystycznego „rozjechania” struktur między kolejnymi rzędami pikseli. Typowym błędem jest utożsamianie każdego zniekształcenia z ruchem pacjenta. W praktyce trzeba zawsze zadać sobie pytanie: czy kontury są faliste i jakby przesunięte, czy raczej pojawia się ziarnistość, smugi, pasma albo efekt stopniowania? Artefakt oddechowy dotyczy zmian położenia narządów w czasie, więc jego ślad to właśnie deformacja geometrii, a nie tylko zmiana gęstości czy szumu. Dlatego poprawną odpowiedzią jest wyłącznie obraz 1, a wybór innych opcji oznacza pomylenie różnych mechanizmów powstawania artefaktów w TK.

Pytanie 14

Zdjęcie którego zęba górnego zlecił na skierowaniu lekarz stomatolog?

Ilustracja do pytania
A. Prawego przedtrzonowego drugiego.
B. Prawego trzonowego pierwszego.
C. Lewego przedtrzonowego drugiego.
D. Lewego trzonowego pierwszego.
W tym zadaniu kluczowe jest prawidłowe odczytanie prostego, ale podchwytliwego schematu zębowego. Na rysunku mamy krzyż – pozioma linia symbolizuje podział na łuk górny i dolny, pionowa linia – na stronę prawą i lewą pacjenta. Cyfra „6” znajduje się w górnym lewym polu tego schematu, czyli oznacza ząb w szczęce, po stronie lewej pacjenta. Typowym błędem jest patrzenie na schemat „jak w lustrze”, z perspektywy osoby opisującej, a nie pacjenta. To prowadzi do pomylenia prawej i lewej strony i wyboru odpowiedzi z prawego łuku, mimo że lekarz zlecił badanie zęba lewego. Podobnie część osób skupia się tylko na numerze zęba – „6” – i kojarzy ją z pierwszym trzonowcem, ale już nie rozróżnia, czy chodzi o ząb górny czy dolny oraz po której stronie. W efekcie powstają błędne interpretacje typu: przedtrzonowiec zamiast trzonowca albo łuk dolny zamiast górnego. W standardach stomatologicznych przyjmuje się konsekwentnie perspektywę pacjenta – lewa strona pacjenta to lewa strona schematu, niezależnie od tego, z której strony patrzy operator aparatu. W diagnostyce obrazowej jest to zresztą zasada ogólna: myślimy w kategoriach anatomicznych pacjenta, nie własnego ustawienia przy aparacie. Moim zdaniem warto wyrobić sobie nawyk: najpierw określam, czy ząb jest w szczęce czy w żuchwie (góra/dół schematu), potem dopiero prawa/lewa strona, a na końcu typ zęba – siekacz, kieł, przedtrzonowiec czy trzonowiec. Takie uporządkowanie myślenia bardzo pomaga uniknąć pomyłek, które w praktyce mogą skutkować wykonaniem zdjęcia nie tego zęba co trzeba, koniecznością powtórzenia badania i niepotrzebnym zwiększeniem dawki promieniowania.

Pytanie 15

Która sekwencja obrazowania MR wykorzystuje impulsy RF o częstotliwości rezonansowej tłuszczu do tłumienia sygnału pochodzącego z tkanki tłuszczowej?

A. MTC
B. FAT SAT
C. PCA
D. TOF
Prawidłowa odpowiedź to FAT SAT, czyli tzw. fat saturation albo fat suppression. W tej technice wykorzystuje się impulsy RF o częstotliwości dokładnie dopasowanej do rezonansu protonów w tłuszczu. Najpierw aparat MR podaje selektywny impuls nasycający dla tłuszczu, a dopiero potem właściwą sekwencję obrazowania. Protony tłuszczu zostają „wybite” ze stanu równowagi i nie zdążą się zrelaksować przed pomiarem, więc ich sygnał jest mocno osłabiony albo praktycznie znika. W efekcie na obrazach tkanka tłuszczowa staje się ciemna, a struktury o wysokiej zawartości wody (np. obrzęk, zapalenie, guzy) są lepiej widoczne. Moim zdaniem to jedna z najbardziej praktycznych sztuczek w MR, bo bardzo poprawia kontrast obrazu. W praktyce klinicznej FAT SAT jest standardem przy badaniach stawów (kolano, bark, skokowy), kręgosłupa, tkanek miękkich oraz w onkologii. Klasyczny przykład: sekwencja T2-zależna z saturacją tłuszczu – idealna do uwidaczniania płynu, obrzęku szpiku, zmian zapalnych. Podobnie w badaniach po kontraście gadolinowym używa się T1 FAT SAT, żeby wzmocnienie kontrastowe na tle wyciszonego tłuszczu było wyraźne i czytelne. Dobre praktyki mówią, żeby zawsze sprawdzać jednorodność pola B0, bo FAT SAT jest wrażliwy na niejednorodności – szczególnie w okolicach metalowych implantów czy przy dużym polu widzenia. Dlatego technicy często korygują shim, dobierają odpowiednie parametry i pilnują pozycji pacjenta. W nowoczesnych protokołach MR często łączy się FAT SAT z innymi modyfikacjami sekwencji (np. FSE, 3D, Dixon), ale zasada pozostaje ta sama: selektywne nasycenie sygnału tłuszczu przy użyciu impulsów RF o jego częstotliwości rezonansowej, żeby uzyskać lepszą diagnostykę i czytelniejszy obraz patologii.

Pytanie 16

W której technice obrazowania zostają zarejestrowane jednocześnie dwa przeciwbieżne kwanty promieniowania gamma o równej energii 511 keV?

A. Tomografii komputerowej.
B. Pozytonowej tomografii emisyjnej.
C. Scyntygrafii dynamicznej.
D. Tomografii emisyjnej pojedynczego fotonu.
Prawidłowa odpowiedź to pozytonowa tomografia emisyjna (PET), bo tylko w tej technice wykorzystuje się zjawisko anihilacji pozyton–elektron i rejestruje się jednocześnie dwa przeciwbieżne fotony gamma o energii 511 keV. W PET radiofarmaceutyk emituje pozytony, które po bardzo krótkiej drodze w tkance zderzają się z elektronami. W wyniku anihilacji masa cząstek zamienia się w energię i powstają dwa kwanty promieniowania gamma lecące w prawie dokładnie przeciwnych kierunkach, każdy właśnie o energii 511 keV. Detektory PET ułożone w pierścień rejestrują te dwa fotony w tzw. koincydencji czasowej. Dzięki temu aparat wie, że zdarzenie pochodzi z jednej linii między dwoma detektorami (linia odpowiedzi – LOR), co pozwala bardzo precyzyjnie odtworzyć rozkład radioznacznika w organizmie. W praktyce klinicznej PET stosuje się głównie w onkologii, kardiologii i neurologii – np. do wykrywania przerzutów nowotworowych, oceny żywotności mięśnia sercowego albo metabolizmu glukozy w mózgu. Moim zdaniem kluczowe jest zapamiętanie, że energia 511 keV i rejestracja koincydencyjna dwóch fotonów to absolutny „podpis” PET, a nie zwykłej scyntygrafii czy SPECT. W dobrej praktyce technik zawsze zwraca uwagę na poprawne ułożenie pacjenta w pierścieniu, stabilność układu koincydencyjnego i kalibrację energii detektorów, bo każdy błąd w tych elementach psuje jakość rekonstrukcji obrazu i może prowadzić do fałszywie dodatnich lub ujemnych ognisk wychwytu.

Pytanie 17

Scyntygrafia kości „whole body” jest wskazana podczas diagnostyki

A. osteoporozy.
B. podejrzenia zmian przerzutów nowotworowych do układu kostnego.
C. wad wrodzonych.
D. podejrzenia choroby reumatycznej.
Prawidłowo wskazana sytuacja kliniczna bardzo dobrze oddaje główne zastosowanie scyntygrafii kości typu „whole body”. Jest to badanie medycyny nuklearnej, w którym dożylnie podaje się radioznacznik wiążący się z tkanką kostną, najczęściej fosfoniany znakowane technetem-99m (np. MDP, HDP), a następnie gammakamera rejestruje jego rozmieszczenie w całym układzie kostnym. Z punktu widzenia praktyki klinicznej, jednym z podstawowych wskazań jest właśnie poszukiwanie przerzutów nowotworowych do kości, np. w raku piersi, raku prostaty, raku płuca czy raku nerki. Przerzuty osteoblastyczne (pobudzające tworzenie kości) dają charakterystyczne ogniska wzmożonego gromadzenia znacznika, często wieloogniskowe, rozsiane po szkielecie. Właśnie dlatego wykonuje się badanie „whole body”, czyli obejmujące cały szkielet, a nie tylko jedną okolicę – bo przerzuty potrafią być odległe od guza pierwotnego i zupełnie bezobjawowe. W standardach onkologicznych scyntygrafia kości jest często badaniem z wyboru przy podejrzeniu zajęcia kośćca, szczególnie gdy rośnie poziom markerów nowotworowych, występują bóle kostne o niejasnej etiologii albo planowana jest duża operacja ortopedyczna i trzeba ocenić stabilność kości. Moim zdaniem ważne jest też zapamiętanie, że scyntygrafia jest bardzo czuła, ale mniej swoista – wykrywa wcześnie zmiany czynnościowe, zanim będą widoczne w RTG, dlatego świetnie nadaje się do „przesiewowego” przeglądu całego układu kostnego w poszukiwaniu przerzutów. W praktyce technika „whole body” to standardowa procedura opisana w wytycznych medycyny nuklearnej i stosowana rutynowo w dużych ośrodkach onkologicznych.

Pytanie 18

Miejscem wykonania pomiaru densytometrycznego z kości przedramienia jest

A. środek trzonu kości promieniowej strony dominującej.
B. środek trzonu kości promieniowej strony niedominującej.
C. koniec dalszy kości promieniowej strony dominującej.
D. koniec dalszy kości promieniowej strony niedominującej.
Prawidłowo wskazanym miejscem densytometrii obwodowej w obrębie przedramienia jest koniec dalszy kości promieniowej strony niedominującej. W praktyce oznacza to nadgarstek ręki, którą na co dzień mniej pracujesz – zwykle lewej u osoby praworęcznej. Ten wybór nie jest przypadkowy. Dystalna część kości promieniowej zawiera dużo kości beleczkowej (gąbczastej), która szybciej reaguje na utratę masy kostnej i zmiany metaboliczne, więc jest bardzo czułym wskaźnikiem osteopenii i osteoporozy. Z kolei użycie strony niedominującej jest standardem, bo ta ręka jest zwykle mniej obciążana mechanicznie, mniej narażona na mikrourazy i przeciążenia. Dzięki temu wynik badania jest bardziej reprezentatywny dla ogólnego stanu układu kostnego, a nie tylko dla „wyćwiczonej” ręki. W wytycznych producentów densytometrów obwodowych oraz w zaleceniach klinicznych dotyczących densytometrii przedramienia konsekwentnie podkreśla się właśnie: strona niedominująca, koniec dalszy kości promieniowej, odpowiednio ustalony dystans od wyrostka rylcowatego (zwykle kilka centymetrów, zależnie od aparatu). W pracowni wygląda to tak, że pacjent kładzie przedramię na specjalnym stoliku, nadgarstek jest stabilizowany, a technik pozycjonuje kończynę zgodnie z protokołem aparatu, żeby za każdym razem mierzyć dokładnie ten sam obszar. Moim zdaniem kluczowe jest zapamiętanie dwóch rzeczy: dystalnie (przy nadgarstku) i niedominująca strona – to jest złoty standard dla densytometrii przedramienia, szczególnie w kontekście oceny ryzyka złamań osteoporotycznych w okolicy dalszego końca kości promieniowej.

Pytanie 19

Jaki jest cel stosowania bolusa w radioterapii?

A. Ochronić narządy krytyczne.
B. "Wyciągnąć" dawkę bliżej skóry.
C. "Wyciągnąć" dawkę dalej od skóry.
D. Ochronić skórę przed poparzeniem.
Prawidłowo – bolus w radioterapii stosuje się po to, żeby „wyciągnąć” dawkę bliżej skóry, czyli podnieść dawkę w warstwach powierzchownych. Promieniowanie fotonowe ma tzw. zjawisko build‑up: maksymalna dawka nie pojawia się na samej powierzchni, tylko kilka–kilkanaście milimetrów pod skórą. To jest fajne przy klasycznych napromienianiach głębiej położonych guzów, bo naturalnie trochę oszczędza się naskórek. Ale jeśli celem leczenia jest zmiana bardzo powierzchowna, np. rak skóry, blizna pooperacyjna, zajęta skóra klatki piersiowej po mastektomii, to ta „dziura dawki” przy skórze staje się problemem. Wtedy właśnie zakłada się bolus – materiał o gęstości zbliżonej do tkanek miękkich (najczęściej 0,5–1 cm, czasem więcej), który symuluje dodatkową warstwę tkanki. Dla wiązki fotonów linak widzi bolus jak ciało pacjenta: maksimum dawki przesuwa się w głąb bolusa, a nie w głąb faktycznej skóry. Efekt praktyczny jest taki, że na powierzchni skóry pacjenta dawka rośnie, bo dla wiązki to już nie jest „początek”, tylko strefa bliżej dawki maksymalnej. Moim zdaniem kluczowe jest, żeby kojarzyć bolus nie z ochroną skóry, ale właśnie z jej dodatkowym „dobiciem” dawką. W planowaniu leczenia w TPS zawsze zaznacza się obecność bolusa (z odpowiednią grubością i materiałem), bo wpływa to na rozkład izodoz i na wyliczenie dawki w punktach kontrolnych. W dobrych praktykach klinicznych pilnuje się też, żeby bolus dobrze przylegał do skóry (bez pęcherzyków powietrza), bo każda szczelina może powodować nierównomierny rozkład dawki na powierzchni, co widać potem w rozkładach i, niestety, na odczynach skórnych.

Pytanie 20

Elementem pomocniczym w radioterapii, zapewniającym powtarzalność ułożenia w pozycji terapeutycznej, a także unieruchomienie pacjenta, jest

A. osłona.
B. bolus.
C. filtr kompensacyjny.
D. maska termoplastyczna.
Prawidłowo wskazana maska termoplastyczna to w radioterapii klasyczny przykład systemu unieruchomienia i pozycjonowania pacjenta. Jej główna rola nie jest fizyczna modyfikacja wiązki promieniowania, tylko zapewnienie powtarzalnego, stabilnego ułożenia ciała – najczęściej głowy i szyi, czasem także górnej części klatki piersiowej. Maska jest wykonywana indywidualnie: podgrzany materiał termoplastyczny formuje się na twarzy i głowie pacjenta na etapie planowania (TK planistyczna), a po ostygnięciu zachowuje dokładnie ten kształt. Dzięki temu przy każdym kolejnym frakcyjnym napromienianiu pacjent jest układany praktycznie tak samo, w granicach kilku milimetrów, co jest zgodne z wymaganiami dokładności ICRU i standardów ośrodków radioterapii. Z mojego doświadczenia, bez dobrego unieruchomienia nawet najlepszy plan leczenia na akceleratorze traci sens, bo narządy krytyczne mogą dostać wyższą dawkę niż zakładano, a objętość tarczowa będzie napromieniona nierównomiernie. W praktyce klinicznej maski termoplastyczne są obowiązkowym elementem przy nowotworach głowy i szyi, guzach mózgu, czasem przy napromienianiu oczodołu czy podstawy czaszki. Stosuje się je razem z systemami IGRT (obrazowanie przedzabiegowe – np. CBCT), żeby jeszcze dokładniej zweryfikować pozycję. Maska ogranicza też mimowolne ruchy, np. przełykanie czy lekki skręt szyi. Warto zapamiętać, że bolusy, filtry kompensacyjne czy osłony służą głównie do kształtowania rozkładu dawki w objętości, a nie do stabilizacji pacjenta. W dobrych pracowniach zawsze rozróżnia się systemy unieruchomienia (maski, materace próżniowe, podpórki) od elementów modyfikujących wiązkę.

Pytanie 21

Która przyczyna spowodowała powstanie artefaktu widocznego na zamieszczonym obrazie MR?

Ilustracja do pytania
A. Zły dobór cewki gradientowej.
B. Nieprawidłowa kalibracja aparatu.
C. Niejednorodność pola magnetycznego.
D. Wymiary obiektu przekroczyły pole widzenia.
Prawidłowo – na tym obrazie mamy klasyczny przykład artefaktu typu „cut off”, czyli sytuacji, gdy wymiary obiektu przekraczają pole widzenia (FOV – field of view). W badaniu MR, gdy FOV jest ustawione zbyt małe w stosunku do rzeczywistych rozmiarów badanego obszaru, część sygnału z tkanek leżących poza polem widzenia zostaje „przefazowana” i odwzorowuje się w niewłaściwym miejscu obrazu. Moim zdaniem to jeden z bardziej podchwytliwych artefaktów, bo wynika wyłącznie z parametrów akwizycji, a nie z awarii sprzętu. W praktyce technik powinien zawsze sprawdzić, czy dobrane FOV obejmuje całą głowę pacjenta w danej płaszczyźnie, szczególnie w sekwencjach T2-zależnych w projekcji strzałkowej i osiowej. Standardem dobrej praktyki jest kontrola tzw. prescan lub scout view i korekta FOV jeszcze przed właściwą serią. Jeśli FOV jest za małe, pojawiają się charakterystyczne „obcięcia” lub powtórzenia struktur anatomicznych przy krawędziach obrazu, widoczne nieraz jako dziwne przesunięcia lub brak fragmentów czaszki czy tkanek miękkich. W protokołach MR mózgu zwykle stosuje się FOV rzędu 220–260 mm, ale zawsze trzeba to dostosować do budowy pacjenta – u osób z dużą czaszką albo przy badaniach z maską unieruchamiającą lepiej od razu dać trochę większe FOV. W codziennej pracy ważne jest też, żeby nie próbować „ratować” jakości obrazu innymi parametrami (np. macierzą czy zoomem), jeśli pierwotnie FOV jest źle ustawione. Podsumowując: artefakt, który tu widzisz, nie wynika z uszkodzenia aparatu, tylko z czysto geometrycznego ograniczenia pola widzenia – i to właśnie tłumaczy, dlaczego poprawną odpowiedzią jest przekroczenie FOV przez badany obiekt.

Pytanie 22

Zgodnie ze standardami do wykonania zdjęcia bocznego czaszki, należy zastosować kasetę o wymiarze

A. 18 × 24 cm i ułożyć podłużnie.
B. 24 × 30 cm i ułożyć podłużnie.
C. 18 × 24 cm i ułożyć poprzecznie.
D. 24 × 30 cm i ułożyć poprzecznie.
Prawidłowo – w projekcji bocznej czaszki standardowo stosuje się kasetę 24 × 30 cm ułożoną poprzecznie. Wynika to z bardzo prostego, ale ważnego powodu: trzeba objąć cały obrys czaszki w projekcji bocznej, razem z kością potyliczną, czołową i częściowo twarzoczaszką, a jednocześnie zachować odpowiedni margines bezpieczeństwa, żeby nic nie „uciekło” poza pole obrazowania. Format 24 × 30 cm daje po prostu wygodny zapas pola na długość czaszki i na ewentualne lekkie błędy w pozycjonowaniu pacjenta. Ułożenie poprzeczne (czyli dłuższy bok w osi przednio–tylnej stołu lub statywu) lepiej dopasowuje się do kształtu głowy w pozycji bocznej. Dzięki temu nie trzeba kombinować z odległością ognisko–film ani z przesadnym zbliżaniem głowy do krawędzi kasety. W praktyce technik ma wtedy większy komfort ustawienia pacjenta, łatwiej jest też zachować prostopadłość promienia centralnego do płaszczyzny strzałkowej i uniknąć obcięcia kości potylicznej. W większości pracowni radiologicznych przyjmuje się właśnie taki standard: czaszka boczna – kaseta 24 × 30 cm, układ poprzeczny, głowa możliwie blisko kasety, linia między otworem słuchowym a kątem oczodołu w poziomie. Moim zdaniem, jak się to raz zapamięta i powiąże z anatomią (długość czaszki w projekcji bocznej), to potem praktycznie nie ma pomyłek przy doborze formatu. Dodatkowo ten format dobrze współgra z typową odległością ognisko–detektor (około 100–115 cm) i pozwala uzyskać czytelne, diagnostyczne odwzorowanie struktur kostnych podstawy czaszki, siodła tureckiego, piramid kości skroniowych i zatok, bez zbędnego powiększenia geometrycznego.

Pytanie 23

Droga przewodnictwa powietrznego fali akustycznej przebiega przez

A. ucho zewnętrzne, ucho środkowe i kości czaszki.
B. ucho wewnętrzne i kości czaszki.
C. ucho środkowe, ucho wewnętrzne i kości czaszki.
D. ucho zewnętrzne, ucho środkowe i ucho wewnętrzne.
Prawidłowo wskazana droga przewodnictwa powietrznego to: ucho zewnętrzne, ucho środkowe i ucho wewnętrzne. Właśnie tak fizjologicznie przebiega fala akustyczna, kiedy słyszymy dźwięk w typowy, „naturalny” sposób. Najpierw fala dźwiękowa wchodzi przez małżowinę uszną i przewód słuchowy zewnętrzny – to jest ucho zewnętrzne. Małżowina działa trochę jak lejek akustyczny, zbiera i kieruje fale do przewodu, a jego kształt wpływa na wzmocnienie niektórych częstotliwości, co ma znaczenie np. w rozpoznawaniu kierunku, skąd dochodzi dźwięk. Następnie fala uderza w błonę bębenkową. To już granica ucha zewnętrznego i środkowego. Błona bębenkowa zaczyna drgać i przekazuje te drgania na kosteczki słuchowe w uchu środkowym: młoteczek, kowadełko i strzemiączko. Ten układ kosteczek działa jak mechaniczny transformator impedancji – dzięki temu energia fali powietrznej może być efektywnie przekazana do środowiska płynowego w uchu wewnętrznym. Z mojego doświadczenia to właśnie to miejsce jest często pomijane w myśleniu: nie doceniamy roli wzmacniania i dopasowania impedancji. Na końcu strzemiączko porusza okienkiem owalnym, które przenosi drgania do ślimaka w uchu wewnętrznym wypełnionego płynem. Tam dochodzi do przetworzenia energii mechanicznej fali na impulsy nerwowe w komórkach rzęsatych narządu Cortiego. W badaniach audiometrycznych zawsze rozróżnia się przewodnictwo powietrzne i kostne właśnie po to, żeby ocenić, czy zaburzenie dotyczy ucha zewnętrznego/środkowego (niedosłuch przewodzeniowy), czy wewnętrznego i nerwu (niedosłuch odbiorczy). Standardem jest, że przy badaniu przewodnictwa powietrznego sygnał podajemy przez słuchawki na małżowinę uszną, a więc wykorzystujemy całą tę drogę: ucho zewnętrzne → ucho środkowe → ucho wewnętrzne. To jest podstawowa, książkowa definicja przewodnictwa powietrznego i warto ją mieć w głowie, bo przewija się w praktycznie każdym opisie audiogramu.

Pytanie 24

Który typ głowicy ultrasonograficznej przedstawiono na ilustracji?

Ilustracja do pytania
A. Liniową.
B. Endokawitarną.
C. Konweksową.
D. Sektorową.
Na ilustracji pokazano klasyczną głowicę liniową, co widać po jej prostym, wydłużonym, prostokątnym froncie roboczym. Powierzchnia kontaktu z ciałem jest płaska, a krawędź aktywna ma kształt linii – stąd właśnie nazwa „liniowa”. W takiej głowicy elementy piezoelektryczne są ułożone w jednej linii, a wiązka ultradźwiękowa jest wysyłana równolegle, co daje obraz o przekroju prostokątnym, z równą szerokością od powierzchni skóry aż w głąb. Moim zdaniem to jedna z najbardziej charakterystycznych sond i warto ją rozpoznawać „na pierwszy rzut oka”. W praktyce klinicznej głowice liniowe wykorzystuje się głównie do badań struktur położonych płytko: tarczycy, naczyń (USG dopplerowskie tętnic szyjnych, żył kończyn dolnych), narządu ruchu (ścięgna, mięśnie, stawy), piersi, moszny czy badania tkanek podskórnych. Zwykle pracują na wyższych częstotliwościach, np. 7–15 MHz, co zapewnia bardzo dobrą rozdzielczość przestrzenną kosztem mniejszej głębokości penetracji. To zgodne z dobrymi praktykami – do tkanek powierzchownych wybieramy wysoką częstotliwość i właśnie sondę liniową. W wielu zaleceniach, np. w standardach badań naczyniowych, wyraźnie podkreśla się, że do oceny tętnic szyjnych i żył kończyn należy stosować głowice liniowe wysokoczęstotliwościowe, bo tylko one dają wystarczająco szczegółowy obraz ściany naczynia i zmian miażdżycowych. Z mojego doświadczenia w pracowniach USG to jest taka „sonda pierwszego wyboru” przy każdym badaniu, gdzie interesuje nas drobny detal anatomiczny tuż pod skórą, np. nerwy obwodowe, drobne guzy podskórne czy kontrole po zabiegach chirurgicznych. Rozpoznanie jej kształtu jest więc podstawową, ale bardzo praktyczną umiejętnością w diagnostyce ultrasonograficznej.

Pytanie 25

Na radiogramie uwidoczniono

Ilustracja do pytania
A. zwichnięcie stawu ramiennego w projekcji barkowo-pachowej.
B. prawidłowy obraz stawu ramiennego w projekcji przednio-tylnej.
C. prawidłowy obraz stawu ramiennego w projekcji barkowo-pachowej.
D. zwichnięcie stawu ramiennego w projekcji przednio-tylnej.
Na przedstawionym radiogramie widoczny jest prawidłowy obraz stawu ramiennego w projekcji przednio-tylnej (AP). Główka kości ramiennej jest prawidłowo dosymetryzowana w panewce łopatki: jej środek pokrywa się mniej więcej z środkiem panewki, nie ma cech przemieszczenia ku przodowi ani ku tyłowi. Kontur kostny jest ciągły, bez przerwania linii korowej, co przemawia przeciwko złamaniu. Przestrzeń stawowa ma równomierną szerokość, bez wyraźnego zwężenia czy poszerzenia, które mogłoby sugerować podwichnięcie. Typowym punktem orientacyjnym w projekcji AP jest tzw. łuk przedni (arch of Shenton dla barku) – gładka, półkolista linia biegnąca od brzegu panewki po kontur głowy kości ramiennej; tutaj ta linia jest zachowana. Dodatkowo widoczne jest prawidłowe ustawienie obojczyka względem wyrostka barkowego łopatki, bez cech zwichnięcia stawu barkowo-obojczykowego. W praktyce klinicznej taka projekcja jest pierwszym, podstawowym zdjęciem wykonywanym przy urazach barku, bólach stawu ramiennego czy podejrzeniu zmian zwyrodnieniowych. Standardowe zalecenia (np. według European Society of Musculoskeletal Radiology) mówią, że do pełnej oceny stawu ramiennego warto łączyć tę projekcję z osiągową (barkowo-pachową) lub projekcją Y łopatki, ale poprawne rozpoznanie podstawowego ustawienia w AP jest kluczowe. Moim zdaniem warto sobie wyrobić nawyk patrzenia najpierw na relację głowa–panewka, potem na ciągłość brzegów kostnych i dopiero na resztę szczegółów – to bardzo pomaga w szybkim wychwytywaniu zwichnięć w codziennej pracy.

Pytanie 26

Który program wtórnej rekonstrukcji obrazów TK pozwala na odwzorowanie wnętrza jelita grubego, tchawicy i oskrzeli?

A. Prezentacja trójwymiarowa 3D.
B. Rekonstrukcja wielopłaszczyznowa MPR.
C. Projekcja maksymalnej intensywności MIP.
D. Wirtualna endoskopia VE.
W tym pytaniu łatwo pomylić różne typy rekonstrukcji TK, bo wszystkie w jakimś sensie „przetwarzają” obraz, ale tylko jedna z nich naprawdę symuluje endoskop – to wirtualna endoskopia. Klasyczna prezentacja trójwymiarowa 3D polega głównie na tworzeniu modeli powierzchniowych lub objętościowych narządów, kości, naczyń. Świetnie nadaje się do oceny złamań, planowania zabiegów ortopedycznych czy rekonstrukcji naczyń po podaniu kontrastu, ale nie daje wrażenia poruszania się wewnątrz światła jelita czy drzewa oskrzelowego. To raczej oglądanie narządu „z zewnątrz” lub w formie bryły, nie jak w endoskopii. Rekonstrukcja wielopłaszczyznowa MPR (multiplanar reconstruction) umożliwia oglądanie obrazów w różnych płaszczyznach: czołowej, strzałkowej, skośnej. Jest to absolutna podstawa w TK – bez MPR trudno sobie dzisiaj wyobrazić dobrą ocenę kręgosłupa, zatok, naczyń czy płuc. Jednak nawet jeśli ustawimy płaszczyznę dokładnie w osi jelita czy tchawicy, nadal oglądamy przekroje, a nie widok jak z kamery wewnątrz narządu. To jest typowy błąd myślowy: skoro można „iść” płaszczyzną wzdłuż narządu, to niektórzy utożsamiają to z endoskopią, ale technicznie i funkcjonalnie to zupełnie coś innego. Projekcja maksymalnej intensywności MIP z kolei wybiera z danego wolumenu te piksele/voxele o najwyższej gęstości i rzutuje je na obraz dwuwymiarowy. Idealnie sprawdza się w angiografii TK do uwidaczniania naczyń wypełnionych kontrastem, czasem w ocenie zmian zwapnieniowych czy guzków płucnych. MIP podkreśla struktury o wysokiej gęstości, ale całkowicie gubi informację o wnętrzu światła jelita czy detale śluzówki w oskrzelach. Z mojego doświadczenia wynika, że mylenie MIP i 3D z VE bierze się z tego, że wszystkie te narzędzia są dostępne na jednej stacji roboczej i wyglądają „efektownie trójwymiarowo”. Jednak tylko wirtualna endoskopia oferuje interaktywną nawigację wewnątrz światła narządu, z możliwością ustawienia punktu widzenia tak, jakbyśmy patrzyli przez endoskop. Standardy dobrej praktyki w TK mówią jasno: do oceny wnętrza jelita grubego, tchawicy i oskrzeli w trybie endoskopowym używa się właśnie VE, zawsze jako uzupełnienie analiz MPR i innych rekonstrukcji, a nie ich zamiennik.

Pytanie 27

Objawem późnego odczynu popromiennego po teleradioterapii jest

A. rumień i swędzenie skóry.
B. zwłóknienie skóry.
C. wymioty i biegunka.
D. brak apetytu.
Prawidłowo wskazane zwłóknienie skóry jest klasycznym przykładem późnego odczynu popromiennego po teleradioterapii. W radioterapii rozróżniamy odczyny wczesne (ostre) i późne. Wczesne pojawiają się zwykle w trakcie napromieniania lub do ok. 3 miesięcy po zakończeniu leczenia i dotyczą głównie szybko dzielących się tkanek, natomiast późne rozwijają się po wielu miesiącach, a nawet latach, i obejmują tkanki wolniej proliferujące, jak tkanka łączna, naczynia czy narządy miąższowe. Zwłóknienie skóry to przewlekły, nieodwracalny proces, w którym dochodzi do nadmiernego odkładania włókien kolagenowych, pogrubienia i stwardnienia skóry, czasem z przykurczami i ograniczeniem ruchomości. W praktyce klinicznej można to zaobserwować np. u pacjentek po teleradioterapii piersi, gdzie skóra w polu napromieniania staje się twardsza, mniej elastyczna, czasem bliznowato pofałdowana. Z mojego doświadczenia to właśnie te późne odczyny najbardziej wpływają na jakość życia, bo są trwałe i trudne do leczenia. Dlatego w planowaniu radioterapii tak duży nacisk kładzie się na przestrzeganie dawek tolerancji tkanek zdrowych (tzw. QUANTEC, dawki narządów krytycznych) oraz na równomierność rozkładu dawki. Stosuje się zaawansowane techniki jak IMRT czy VMAT, żeby ograniczyć wysokie dawki w skórze i tkankach podskórnych. Ważna jest też dobra pielęgnacja skóry już w trakcie leczenia, edukacja pacjenta, unikanie dodatkowych urazów mechanicznych i termicznych. Późne zwłóknienie nie cofnie się, ale wczesne rozpoznanie i rehabilitacja (fizjoterapia, masaże limfatyczne, odpowiednie maści) może zmniejszyć dolegliwości. Moim zdaniem warto zapamiętać prostą zasadę: wszystko co jest utrwalone, stwardniałe, bliznowate po latach od radioterapii, traktujemy jako późny odczyn popromienny, a zwłóknienie skóry jest typowym przykładem, który często pojawia się w testach i w realnej praktyce.

Pytanie 28

Przedstawiony obraz radiologiczny został zarejestrowany podczas badania jelita

Ilustracja do pytania
A. cienkiego po doodbytniczym podaniu środka kontrastującego.
B. cienkiego po doustnym podaniu środka kontrastującego.
C. grubego po doustnym podaniu środka kontrastującego.
D. grubego po doodbytniczym podaniu środka kontrastującego.
Na obrazie widać klasyczną wlewkę doodbytniczą jelita grubego (tzw. badanie kontrastowe jelita grubego z barytem). Środek cieniujący został podany od strony odbytnicy, dlatego kontrast bardzo dokładnie wypełnia światło okrężnicy, odwzorowując jej zarys, haustracje i przebieg. Jelito grube ma charakterystyczny obraz: szerokie światło, wyraźne haustry układające się w takie jakby segmenty, brak typowych dla jelita cienkiego fałdów okrężnych przechodzących przez całe światło. Na zdjęciu widoczny jest zarys okrężnicy wstępującej, poprzecznej, zstępującej i esicy, co jednoznacznie przemawia za jelitem grubym. Po doodbytniczym podaniu kontrastu uzyskujemy tzw. badanie wlewu kontrastowego, które w standardowej praktyce radiologicznej stosuje się głównie do oceny zmian strukturalnych jelita grubego: zwężeń, uchyłków, guzów, nieprawidłowego poszerzenia, zaburzeń zarysów fałdów śluzówki. W technikach zgodnych z dobrymi praktykami (np. zalecenia towarzystw radiologicznych) pacjent jest odpowiednio przygotowany – oczyszczenie jelita, często dieta płynna dzień wcześniej – tak żeby kontrast równomiernie wypełniał światło i nie było artefaktów z zalegających mas kałowych. Moim zdaniem to jedno z badań, na których bardzo dobrze widać różnicę między jelitem cienkim a grubym, co przydaje się potem przy interpretacji tomografii czy badań z podwójnym kontrastem. Warto zapamiętać: jelito grube + baryt podany od dołu = wlew doodbytniczy, taki jak na tym zdjęciu.

Pytanie 29

„Ognisko zimne” w obrazie scyntygraficznym określa się jako

A. obszar gromadzący znacznik jak reszta miąższu.
B. obszar niegromadzący radioznacznika.
C. zmianę najczęściej o charakterze łagodnym.
D. zmianę o większej aktywności hormonalnej.
Pojęcie „ogniska zimnego” w scyntygrafii oznacza dokładnie obszar, który nie gromadzi radioznacznika, albo gromadzi go istotnie mniej niż otaczający, prawidłowy miąższ. Na obrazie z gammakamery taki obszar wygląda jak ubytek zliczeń, „dziura” w obrazie, miejsce ciemniejsze lub wręcz bez sygnału, podczas gdy reszta narządu świeci prawidłowo. Z mojego doświadczenia to jedno z podstawowych pojęć w medycynie nuklearnej, a mimo to często myli się je z terminami z USG czy TK. W praktyce klinicznej zimne ognisko może oznaczać np. torbiel, zwapnienie, martwicę, guz pozbawiony czynnego miąższu, a w tarczycy także nowotwór złośliwy – dlatego w standardach postępowania (np. w diagnostyce guzków tarczycy) podkreśla się, że guzek zimny wymaga dalszej oceny, często biopsji cienkoigłowej. Sam wygląd „zimny” nie oznacza automatycznie, że zmiana jest łagodna albo złośliwa, tylko że w tym miejscu nie ma prawidłowo funkcjonującej tkanki wychwytującej radiofarmaceutyk. W dobrych praktykach opisu badań scyntygraficznych zawsze porównuje się dystrybucję radioznacznika w obrębie całego narządu, oceniając czy ognisko jest izo-, hiper- czy hipouptake, czyli odpowiednio: prawidłowe, „gorące” lub właśnie „zimne”. Ważne jest też korelowanie obrazu scyntygraficznego z innymi metodami obrazowania (USG, TK, MR) oraz z objawami klinicznymi pacjenta. Dzięki temu technik czy lekarz medycyny nuklearnej może właściwie zinterpretować, czy zimne ognisko to np. torbiel, stary zawał narządowy, obszar pooperacyjny czy potencjalnie istotna zmiana onkologiczna. Moim zdaniem warto zapamiętać to w prosty sposób: zimne ognisko = brak wychwytu = „dziura” w obrazie, która zawsze wymaga chwili zastanowienia i zwykle dalszej diagnostyki.

Pytanie 30

W badaniu EKG elektrodę przedsercową V4 należy umocować

A. w 4-tej przestrzeni międzyżebrowej przy prawym brzegu mostka.
B. w 5-tej przestrzeni międzyżebrowej w linii środkowo-obojczykowej lewej.
C. w 4-tej przestrzeni międzyżebrowej przy lewym brzegu mostka.
D. w 5-tej przestrzeni międzyżebrowej w linii pachowo-przedniej lewej.
Prawidłowe umieszczenie elektrody V4 to 5-ta przestrzeń międzyżebrowa w linii środkowo-obojczykowej lewej. Tak właśnie opisują to standardy 12‑odprowadzeniowego EKG (np. wytyczne ESC/ACC i typowe procedury szpitalne). V4 jest odprowadzeniem przedsercowym, które ma „patrzeć” mniej więcej na przednią ścianę lewej komory, w okolicy koniuszka serca. Żeby to osiągnąć, trzeba połączyć dwie rzeczy: właściwą przestrzeń międzyżebrową oraz odpowiednią linię pionową na klatce piersiowej. 5-ta przestrzeń międzyżebrowa znajduje się zwykle nieco poniżej brodawki sutkowej (ale nie wolno kierować się tylko brodawką, bo u różnych osób jest w innym miejscu), a linia środkowo-obojczykowa to pionowa linia poprowadzona przez środek obojczyka. W praktyce najpierw lokalizuje się mostek, liczy przestrzenie międzyżebrowe od góry (od drugiej, przy kącie mostka) i schodzi do piątej. Dopiero potem odmierza się linię środkowo-obojczykową i tam przykleja V4. Moim zdaniem warto wyrobić sobie nawyk: najpierw V1 i V2 przy mostku, potem V4 w tym dokładnym punkcie, a dopiero później V3 pomiędzy V2 i V4, oraz V5 i V6 bardziej bocznie. Dobre pozycjonowanie V4 ma duże znaczenie w rozpoznawaniu zawału przedniej i bocznej ściany serca, przerostu lewej komory czy zmian w repolaryzacji. Błędne położenie potrafi całkowicie zniekształcić zapis – na przykład zaniżyć amplitudę załamków R albo stworzyć fałszywy obraz niedokrwienia. W praktyce klinicznej technik EKG jest oceniany m.in. po tym, jak dokładnie potrafi znaleźć te punkty anatomiczne, więc ta wiedza jest mocno praktyczna, nie tylko „testowa”.

Pytanie 31

W leczeniu izotopowym tarczycy podaje się

A. doustnie emiter promieniowania β
B. doustnie emiter promieniowania α
C. dożylnie emiter promieniowania β
D. dożylnie emiter promieniowania α
Prawidłowo: w leczeniu izotopowym nadczynności tarczycy stosuje się doustnie preparaty zawierające jod promieniotwórczy, najczęściej jod-131, który jest emiterem promieniowania β. Tarczyca fizjologicznie wychwytuje jod z krwi, więc po połknięciu kapsułki lub płynu radiojod trafia do gruczołu tak jak zwykły jod, a następnie emituje promieniowanie beta bezpośrednio w tkance. Dzięki temu mamy efekt tzw. terapii celowanej: dawka promieniowania jest skoncentrowana głównie w tarczycy, a narządy sąsiednie dostają relatywnie małą dawkę. To jest bardzo zgodne z zasadą ALARA i ze standardami medycyny nuklearnej. Promieniowanie β (elektrony) ma stosunkowo mały zasięg w tkankach – rzędu kilku milimetrów. To oznacza, że niszczy głównie komórki tarczycy gromadzące jod, bez głębokiego uszkadzania dalszych struktur. W praktyce klinicznej używa się specjalnie przygotowanych radiofarmaceutyków, zwykle w postaci kapsułek, które pacjent połyka jednorazowo pod kontrolą personelu medycyny nuklearnej. Nie ma tutaj żadnej iniekcji dożylnej, bo nie ma takiej potrzeby – fizjologia tarczycy sama „dowiezie” radiojod tam, gdzie trzeba. W procedurach opisanych w wytycznych (np. EANM, Polskie Towarzystwo Medycyny Nuklearnej) podkreśla się, że podanie doustne jest standardem, a dawka jest dobierana indywidualnie w zależności od masy tarczycy, stopnia nadczynności, czasem także wieku pacjenta. Moim zdaniem warto zapamiętać taki prosty schemat: leczenie nadczynności tarczycy = doustny jod-131 = emiter β. W praktyce technika jest dość prosta organizacyjnie, ale wymaga ścisłego przestrzegania zasad ochrony radiologicznej, np. odizolowania pacjenta przez pewien czas, ograniczenia kontaktu z dziećmi i kobietami w ciąży oraz dokładnej dokumentacji podanej aktywności. To jest typowy, klasyczny przykład terapeutycznego zastosowania medycyny nuklearnej, odróżniający ją od radioterapii zewnętrznej.

Pytanie 32

Na podstawie zapisu badania audiometrycznego rozpoznano u pacjenta uszkodzenie słuchu

Ilustracja do pytania
A. przewodzeniowe ucha lewego.
B. odbiorcze ucha lewego.
C. odbiorcze ucha prawego.
D. przewodzeniowe ucha prawego.
Rozpoznanie „przewodzeniowe uszkodzenie słuchu ucha prawego” idealnie pasuje do przedstawionego audiogramu. Na wykresie widać, że progi przewodnictwa kostnego dla ucha prawego (linia przerywana) mieszczą się w normie, w okolicy 0–10 dB HL w całym badanym zakresie częstotliwości, natomiast progi przewodnictwa powietrznego (linia ciągła z kropkami) są wyraźnie podwyższone – około 30–40 dB HL. Taka sytuacja, czyli prawidłowe przewodnictwo kostne przy pogorszonym przewodnictwie powietrznym, tworzy tzw. lukę powietrzno–kostną (air–bone gap). W audiometrii przyjmuje się, że luka ≥ 15 dB, obecna w kilku częstotliwościach, jest typowa dla niedosłuchu przewodzeniowego. Z mojego doświadczenia to właśnie ta luka jest najbardziej charakterystycznym, podręcznikowym objawem. W uchu lewym natomiast zarówno przewodnictwo powietrzne, jak i kostne są w granicach normy, więc nie ma podstaw, by mówić o niedosłuchu. W praktyce technika medycznego interpretacja takiego badania ma konkretne konsekwencje. Niedosłuch przewodzeniowy sugeruje problem w uchu zewnętrznym lub środkowym: zalegająca woskowina, płyn w jamie bębenkowej, perforacja błony bębenkowej, otoskleroza, dysfunkcja kosteczek słuchowych itp. W dobrych standardach postępowania po takim wyniku zaleca się dokładne badanie otoskopowe, ewentualnie tympanometrię oraz konsultację laryngologiczną. Często po usunięciu przeszkody przewodzeniowej (np. woskowiny, wysięku) progi słuchu wracają do normy, co widać potem w kontrolnym audiogramie. Warto też pamiętać o prawidłowym maskowaniu ucha przeciwnego podczas badania przewodnictwa kostnego, żeby wynik rzeczywiście dotyczył badanego ucha. W tym zapisie nie ma cech niedosłuchu odbiorczego (brak podwyższonych progów kostnych), ani mieszanych, więc klasyfikacja jest dość jednoznaczna i zgodna z zasadami diagnostyki audiometrycznej. Moim zdaniem to jedno z tych badań, gdzie schemat interpretacji jest bardzo klarowny: kostne dobre – powietrzne złe – myślimy przewodzeniowo, zawsze po stronie, gdzie jest luka.

Pytanie 33

W jakiej projekcji i pod jakim kątem padania promienia centralnego został wykonany radiogram obojczyka?

Ilustracja do pytania
A. W projekcji AP i prostopadłym kącie padania promienia centralnego.
B. W projekcji AP i skośnym doogonowo kącie padania promienia centralnego.
C. W projekcji PA i prostopadłym kącie padania promienia centralnego.
D. W projekcji AP i skośnym dołgłowowo kącie padania promienia centralnego.
W radiografii obojczyka kluczowe jest zrozumienie, po co w ogóle stosuje się różne kąty padania promienia centralnego. Intuicyjnie wiele osób zakłada, że wystarczy zwykła projekcja AP lub PA z promieniem prostopadłym, bo przecież kość leży stosunkowo płytko. To jednak typowy błąd myślowy – przy padaniu prostopadłym obojczyk nakłada się na żebra, łopatkę i górną część klatki piersiowej, przez co drobne szczeliny złamań mogą być zupełnie niewidoczne albo mocno zamaskowane. Odpowiedź z projekcją AP i promieniem prostopadłym opisuje właśnie taki zbyt „podstawowy” wariant. On ma swoje miejsce, jako zdjęcie przeglądowe, ale nie odpowiada obrazowi, na którym obojczyk jest wyraźnie wyciągnięty ponad tło żeber. Podobnie projekcja PA z prostopadłym promieniem centralnym jest w rutynowej praktyce zdecydowanie rzadziej stosowana do obojczyka. Ułożenie pacjenta tyłem do lampy i przodem do detektora przy obojczyku nie daje żadnej istotnej przewagi diagnostycznej, a często jest mniej wygodne przy urazach barku. Dlatego większość zaleceń i podręczników technik obrazowania promuje raczej układ AP niż PA. Problematyczne jest też założenie, że wystarczy dowolny skośny kąt – stąd myląca odpowiedź ze skośnym doogonowym nachyleniem promienia. Kąt doogonowy powoduje „opuszczenie” obojczyka w cień żeber, czyli dokładnie odwrotny efekt niż chcemy uzyskać. Z mojego doświadczenia to częsty błąd: ktoś pamięta, że ma być kąt skośny, ale myli kierunek – do głowy zamiast do ogona. Tymczasem celem jest uniesienie cienia obojczyka, a to uzyskujemy tylko przy nachyleniu dołgłowowym w projekcji AP. Dobre zrozumienie geometrii wiązki i nakładania się struktur anatomicznych jest tutaj ważniejsze niż samo „wkuwanie” nazwy projekcji, bo potem łatwiej samodzielnie dobrać kąt do konkretnego pacjenta i sytuacji klinicznej.

Pytanie 34

Zarejestrowane na elektrokardiogramie miarowe fale f w kształcie „zębów piły” poprzedzielane prawidłowymi zespołami QRS są charakterystyczne dla

A. wielokształtnego częstoskurczu przedsionkowego.
B. napadowego częstoskurczu nadkomorowego.
C. migotania komór.
D. trzepotania przedsionków.
Charakterystyczne „zęby piły” – czyli miarowe fale f widoczne w odprowadzeniach EKG, szczególnie dolnych (II, III, aVF) – to praktycznie książkowy obraz trzepotania przedsionków. W tym zaburzeniu przedsionki pobudzane są bardzo szybko, zazwyczaj z częstotliwością około 250–350/min, ale w sposób stosunkowo regularny. Na zapisie nie widzimy klasycznych załamków P, tylko właśnie ciąg powtarzających się, jednakowych fal f, które układają się jak grzebień albo piła. Zespoły QRS są zwykle wąskie i prawidłowe, bo przewodzenie przez układ His–Purkinjego jest zachowane, a zaburzenie dotyczy głównie przedsionków. Moim zdaniem to jedno z tych zaburzeń rytmu, które warto „mieć w głowie obrazem”, bo raz zapamiętane, później łatwo rozpoznać w praktyce. W codziennej pracy technika EKG, ratownika czy pielęgniarki anestezjologicznej, zauważenie takich fal f może być kluczowe do szybkiego powiadomienia lekarza i wdrożenia dalszej diagnostyki lub leczenia, np. farmakologicznej kontroli częstości (beta-blokery, blokery kanału wapniowego) albo kardiowersji elektrycznej według aktualnych wytycznych ESC. W trzepotaniu przedsionków przewodzenie na komory bywa np. 2:1, 3:1, 4:1, co daje częstość komór rzędu 150/min przy przewodzeniu 2:1. Na monitorze może wyglądać to jak zwykła tachykardia nadkomorowa, ale dopiero dokładne przyjrzenie się linii izoelektrycznej między zespołami QRS ujawnia falę „piły”. Dobrą praktyką jest wtedy sprawdzenie kilku odprowadzeń, zmiana czułości zapisu i prędkości przesuwu papieru, żeby te fale były lepiej widoczne. Warto też pamiętać, że trzepotanie przedsionków często współistnieje z chorobą wieńcową, nadciśnieniem czy wadami zastawkowymi, więc sam zapis EKG jest tylko elementem większej układanki diagnostycznej.

Pytanie 35

W celu maksymalnego ograniczenia dawki promieniowania badanie rentgenowskie u dzieci należy wykonać

A. bez kratki przeciwrozproszeniowej i przy zmniejszonej filtracji.
B. z kratką przeciwrozproszeniową i przy zwiększonej filtracji.
C. bez kratki przeciwrozproszeniowej i przy zwiększonej filtracji.
D. z kratką przeciwrozproszeniową i przy zmniejszonej filtracji.
Prawidłowa odpowiedź dobrze odzwierciedla podstawową zasadę ochrony radiologicznej u dzieci: dawka ma być jak najmniejsza, ale przy zachowaniu akceptowalnej jakości obrazu. U pacjentów pediatrycznych zazwyczaj rezygnuje się z kratki przeciwrozproszeniowej, ponieważ dziecko ma małą grubość anatomiczną, więc udział promieniowania rozproszonego jest mniejszy niż u dorosłych. Kratka poprawia co prawda kontrast obrazu, ale „pożera” sporą część promieniowania pierwotnego, przez co aparat musi podać wyższą dawkę (większe mAs), żeby na detektorze było wystarczająco dużo fotonów. U dziecka to jest kompletnie nieopłacalne – zysk w jakości jest niewielki, a dawka rośnie zauważalnie. Dlatego w dobrych praktykach pediatrycznej radiologii klasycznej kratki używa się wyjątkowo rzadko i tylko przy naprawdę grubych obszarach, np. u starszych dzieci z otyłością. Drugim elementem jest zwiększona filtracja wiązki. Dodatkowa filtracja (np. filtracja własna + filtracja dodatkowa z aluminium lub miedzi) usuwa z wiązki niskoenergetyczne fotony, które u dziecka praktycznie nie biorą udziału w tworzeniu obrazu, tylko są pochłaniane w tkankach i zwiększają dawkę powierzchniową skóry. Po „utwardzeniu” wiązki rośnie średnia energia promieniowania, dzięki czemu więcej fotonów przechodzi przez ciało i efektywnie dociera do detektora. W praktyce na aparatach pediatrycznych stosuje się dedykowane programy z podwyższoną filtracją i odpowiednio dobranym kV, zgodnie z zasadą ALARA oraz rekomendacjami kampanii typu Image Gently. Moim zdaniem warto zapamiętać prostą regułę: u dzieci bez kratki, z twardą, dobrze przefiltrowaną wiązką, plus ścisła kolimacja i ewentualne osłony – to jest standard bezpiecznego badania RTG.

Pytanie 36

Promieniowanie rentgenowskie powstaje w wyniku hamowania

A. elektronów na anodzie lampy rentgenowskiej.
B. kwantów energii na anodzie lampy rentgenowskiej.
C. kwantów energii na katodzie lampy rentgenowskiej.
D. elektronów na katodzie lampy rentgenowskiej.
Prawidłowo – promieniowanie rentgenowskie w klasycznej lampie diagnostycznej powstaje głównie w wyniku gwałtownego hamowania elektronów na anodzie. W lampie RTG elektrony są emitowane z rozżarzonej katody (emisja termoelektronowa), a następnie przyspieszane silnym napięciem wysokim, rzędu kilkudziesięciu do nawet 120 kV, w kierunku anody. Lecą więc z dużą energią kinetyczną. Kiedy uderzają w ognisko anody (zwykle z wolframu lub stopu wolframu), są bardzo gwałtownie hamowane w polu elektrycznym jąder atomów materiału tarczy. Właśnie to hamowanie, czyli zmiana pędu i kierunku ruchu elektronu w polu jądra, powoduje emisję promieniowania hamowania – tzw. bremsstrahlung, które stanowi podstawową składową widma promieniowania w diagnostyce obrazowej. Dodatkowo część fotonów powstaje jako promieniowanie charakterystyczne, gdy elektron wybija elektron z powłoki wewnętrznej atomu wolframu i następuje przeskok z wyższej powłoki – ale to wciąż efekt zderzenia elektronu z anodą, nie z katodą. W praktyce klinicznej dobra znajomość tego mechanizmu tłumaczy, dlaczego zmiana napięcia kV wpływa na energię (twardość) wiązki, a zmiana natężenia mA – na ilość wytwarzanych fotonów. Z mojego doświadczenia w pracowniach RTG osoby, które rozumieją, że źródłem promieniowania jest właśnie interakcja szybkich elektronów z materiałem anody, lepiej ogarniają takie tematy jak filtracja wiązki, warstwa półchłonna czy dobór ogniska. Ma to znaczenie nie tylko dla jakości obrazu (kontrast, kontrastowość, szumy), ale też dla ochrony radiologicznej – bo wiemy, skąd bierze się promieniowanie rozproszone i jak parametry pracy lampy przekładają się na dawkę dla pacjenta i personelu. W standardach pracy (np. wytyczne ICRP, EUREF i krajowe rekomendacje) cały czas podkreśla się zależność: energia elektronów przy anodzie → widmo i intensywność promieniowania X.

Pytanie 37

Który obraz MR mózgu został wykonany w sekwencji DWI?

A. Obraz 2
Ilustracja do odpowiedzi A
B. Obraz 1
Ilustracja do odpowiedzi B
C. Obraz 4
Ilustracja do odpowiedzi C
D. Obraz 3
Ilustracja do odpowiedzi D
Wybór innego obrazu niż Obraz 2 wynika zwykle z mylenia charakterystycznych cech sekwencji DWI z typowym wyglądem sekwencji T1-, T2- czy FLAIR-zależnych. W klasycznych sekwencjach anatomicznych patrzymy głównie na różnice w czasie relaksacji T1 i T2 oraz na zawartość płynu, natomiast w DWI kluczowa jest dyfuzja cząsteczek wody w tkankach. To zupełnie inny kontrast fizyczny. Obraz 1 prezentuje typowy obraz T1-zależny po kontraście: istotne jest dobre odwzorowanie struktur anatomicznych, jasne zarysy zakrętów, wyraźne wzmocnienie naczyń i opon, a płyn mózgowo-rdzeniowy jest ciemny. Wiele osób bierze taki obraz za „bardziej zaawansowany” i przez to kojarzy go z DWI, ale to błąd – DWI rzadko daje tak czytelny, kontrastowy obraz anatomiczny. Obraz 3 ma cechy sekwencji FLAIR: płyn mózgowo-rdzeniowy jest wygaszony (ciemny), istota biała i szara mają odwrócone kontrasty względem T1, a zmiany naczyniopochodne i demielinizacyjne są jasne w istocie białej. To bardzo użyteczna sekwencja w diagnostyce SM czy przewlekłych zmian naczyniowych, ale nie pokazuje wprost ograniczenia dyfuzji. Obraz 4 odpowiada sekwencji T2-zależnej: płyn jest bardzo jasny, istota biała ciemniejsza od szarej, a granice komór są dobrze podkreślone. T2 jest świetna do oceny obrzęku, guzów, zmian zapalnych, ale świeży udar może być tu jeszcze mało widoczny albo niespecyficzny. W DWI najważniejsze jest właśnie to, że zmiany z ograniczoną dyfuzją są bardzo jasne na tle relatywnie ciemnego mózgowia, a sam obraz bywa ziarnisty, z artefaktami EPI. Typowym błędem jest kierowanie się wyłącznie „ładnością” obrazu lub jasnością płynu w komorach zamiast świadomie rozpoznawać typ kontrastu i fizykę sekwencji. Dobra praktyka w pracowni MR to zawsze łączenie wyglądu obrazu z opisem parametrów na konsoli (b-wartości, EPI, DWI/ADC), żeby nie mylić DWI z T2 czy FLAIR, które też potrafią pokazywać jasne ogniska, ale z zupełnie innych przyczyn fizycznych.

Pytanie 38

W ułożeniu do rentgenografii AP stawu kolanowego promień główny pada

A. prostopadle na wierzchołek rzepki.
B. pod kątem 30° na podstawę rzepki.
C. prostopadle na podstawę rzepki.
D. pod kątem 30° na wierzchołek rzepki.
W obrazowaniu stawu kolanowego w projekcji AP kluczowe jest prawidłowe pozycjonowanie pacjenta i właściwy kierunek promienia głównego. Błędy w tym zakresie prowadzą do zniekształceń obrazu: zmiany wielkości, nałożenia struktur, pozornego zwężenia lub poszerzenia szpary stawowej. Częsty błąd myślowy polega na tym, że ktoś próbuje „celować” w podstawę rzepki, bo wydaje się ona bardziej masywna i wyraźna palpacyjnie. Jednak przy standardowej projekcji AP nie jest to punkt referencyjny. Podstawa rzepki leży wyżej, bliżej trzonu kości udowej, więc jeśli ustawimy centralny promień na ten obszar, może dojść do niewłaściwego przejścia wiązki przez szparę stawową i nierównomiernego odwzorowania kłykci. W efekcie obraz może sugerować patologię, której w rzeczywistości nie ma, albo odwrotnie – maskować drobne zmiany zwyrodnieniowe. Druga grupa pomyłek dotyczy stosowania kąta 30°. Taka wyraźna angulacja promienia w klasycznej projekcji AP stawu kolanowego nie jest standardem. W praktyce radiologicznej stosuje się niewielkie angulacje, rzędu kilku stopni, i to raczej w specyficznych projekcjach lub przy wyrównywaniu deformacji osi kończyny, a nie rutynowo. Ustawienie promienia pod kątem 30° na wierzchołek lub podstawę rzepki spowoduje znaczną zmianę rzutowania struktur: rzepka przemieści się optycznie, szpara stawowa zostanie zniekształcona, może dojść do nałożenia się fragmentów kłykci kości udowej i piszczeli. Z mojego doświadczenia wynika, że takie odpowiedzi biorą się z mieszania różnych projekcji: AP kolana, osiowych projekcji rzepki czy specjalnych projekcji stawu rzepkowo‑udowego, gdzie faktycznie stosuje się większe kąty. Dlatego w typowej projekcji AP stawu kolanowego trzymamy się prostej zasady: promień prostopadły do kasety, skierowany na wierzchołek rzepki, bez dużej angulacji i bez przesuwania punktu celowania na podstawę rzepki. To daje najbardziej wiarygodny, powtarzalny obraz zgodny z zaleceniami opisanymi w podręcznikach radiologii i wytycznych dobrej praktyki.

Pytanie 39

Na rentgenogramie przedstawione jest złamanie Saltera-Harrisa typu

Ilustracja do pytania
A. III nasady dalszej kości piszczelowej.
B. V czwartej kości śródręcza.
C. I ześlizgnięcie bliższej nasady kości udowej lewej.
D. II odcinka bliższego kości piszczelowej.
W tym zadaniu łatwo dać się złapać na samym brzmieniu odpowiedzi i skupić na lokalizacji zamiast na typie uszkodzenia według Saltera-Harrisa. Podstawą jest zrozumienie, jak wygląda radiologicznie każdy z typów tej klasyfikacji. W Salter-Harris I linia uszkodzenia przechodzi wyłącznie przez chrząstkę wzrostową, bez zajęcia przynasady i nasady, co w bliższej kości udowej daje obraz ześlizgnięcia nasady względem przynasady, a nie typowego „pęknięcia” kości. To właśnie widzimy na tym zdjęciu. Odpowiedzi, które sugerują typ II, III czy V, odwołują się do zupełnie innych mechanizmów i obrazów radiologicznych. Typ II oznacza złamanie przechodzące przez chrząstkę wzrostową i przynasadę, z charakterystycznym „trójkątem Thurston-Hollanda”. W okolicy bliższej kości piszczelowej spodziewalibyśmy się więc wyraźnego odłamu przynasadowego, klinowatego fragmentu kostnego przylegającego do fizy. Na załączonym obrazie nie ma ani odłamu przynasady, ani typowego obrazu złamania kości piszczelowej – widać natomiast staw biodrowy i kość udową. Typ III to uszkodzenie przechodzące przez chrząstkę wzrostową i nasadę, wchodzące do powierzchni stawowej. Klasyczny przykład to złamania nasady dalszej kości piszczelowej w okolicy stawu skokowego, gdzie linia złamania jest dobrze widoczna i dochodzi do powierzchni stawowej. Na naszym RTG nie ma ani stawu skokowego, ani wyraźnej szczeliny złamania w nasadzie – zamiast tego widzimy przemieszczenie głowy kości udowej względem szyjki. Typ V to z kolei zmiażdżenie chrząstki wzrostowej bez wyraźnej linii złamania, radiologicznie często bardzo subtelne lub wręcz niewidoczne w ostrej fazie. Dotyczy przeważnie obszarów narażonych na kompresję, jak np. kości śródręcza, ale obraz jest zupełnie inny niż pokazane tu ześlizgnięcie. Typowym błędem jest patrzenie tylko na numer typu Salter-Harris i dopasowywanie go do dowolnej kości z odpowiedzi, zamiast najpierw zidentyfikować na zdjęciu, jaki staw i jaka kość są w ogóle widoczne. Dobra praktyka w diagnostyce obrazowej to zawsze: najpierw rozpoznanie anatomii i projekcji, potem ocena typu uszkodzenia według przyjętych klasyfikacji. Jeśli pomylimy lokalizację (biodro vs kolano vs ręka), to cała dalsza interpretacja automatycznie idzie w złym kierunku.

Pytanie 40

Jaki rozmiar kasety należy zastosować, wykonując standardowe zdjęcie stawu kolanowego w projekcji bocznej?

A. 35×43 cm
B. 9×13 cm
C. 35×35 cm
D. 18×24 cm
Prawidłowo – do standardowego zdjęcia stawu kolanowego w projekcji bocznej stosuje się kasetę o rozmiarze 18×24 cm. Ten format jest uznawany za klasyczny dla badań pojedynczych stawów kończyn u dorosłych, zwłaszcza kolana, skokowego czy łokcia. Rozmiar 18×24 cm pozwala objąć cały staw kolanowy w projekcji bocznej: nasadę dalszą kości udowej, bliższą kości piszczelowej, rzepkę oraz okoliczne tkanki miękkie, a jednocześnie nie jest zbyt duży, więc ogranicza niepotrzebne naświetlanie tkanek poza obszarem zainteresowania. Z mojego doświadczenia to jest taki „złoty standard” – łatwo się pozycjonuje pacjenta, kolano dobrze wypełnia pole kasety, a kolimator można ustawić bardzo precyzyjnie. Przy prawidłowym ułożeniu w projekcji bocznej, z lekkim zgięciem stawu (zwykle ok. 20–30°), na obrazie w formacie 18×24 cm mamy czytelne odwzorowanie przestrzeni stawowej, powierzchni stawowych oraz ewentualnych wysięków, zwapnień czy zmian pourazowych. W praktyce technik dobiera kasetę tak, żeby: po pierwsze – nie obcinać struktur anatomicznych istotnych diagnostycznie, po drugie – nie naświetlać pół stołu. Dlatego do kończyn stosuje się mniejsze formaty, a duże kasety zostawia się na klatkę piersiową czy miednicę. W nowoczesnych pracowniach DR czy CR wciąż zachowuje się te same zasady – nawet jeśli fizycznej kasety już nie ma, to pole ekspozycji i kolimację planuje się w odniesieniu do tradycyjnych formatów, właśnie takich jak 18×24 cm dla kolana. To ułatwia trzymanie się standardów opisanych w podręcznikach z techniki radiologicznej i w protokołach pracownianych.