Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 19 grudnia 2025 06:38
  • Data zakończenia: 19 grudnia 2025 06:54

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Przeciążenie w instalacji elektrycznej polega na

A. nagłym wzroście napięcia elektrycznego w sieci powyżej wartości nominalnej.
B. wystąpieniu w instalacji fali przepięciowej spowodowanej wyładowaniem atmosferycznym.
C. bezpośrednim połączeniu dwóch faz w systemie.
D. przekroczeniu maksymalnego prądu znamionowego instalacji.
Przeciążenie instalacji elektrycznej polega na przekroczeniu prądu znamionowego, co ma istotne znaczenie dla bezpieczeństwa i funkcjonowania systemów elektrycznych. Prąd znamionowy to maksymalny prąd, jaki instalacja lub urządzenie może bezpiecznie przewodzić bez ryzyka uszkodzenia. Przekroczenie tej wartości może prowadzić do przegrzewania się przewodów, co z kolei może skutkować uszkodzeniem izolacji, a w skrajnych przypadkach nawet pożarem. Dlatego tak ważne jest, aby projektując instalację elektryczną, odpowiednio dobrać przekroje przewodów oraz zabezpieczenia, takie jak bezpieczniki czy wyłączniki różnicowoprądowe, które chronią przed skutkami przeciążenia. W praktyce, w przypadku zakupu nowych urządzeń elektrycznych, należy zwracać uwagę na ich moc i prąd znamionowy, aby uniknąć przeciążenia instalacji. Przykładowo, jeżeli w danym obwodzie zainstalowane są urządzenia, których łączna moc przekracza wartość znamionową obwodu, może to prowadzić do poważnych problemów z bezpieczeństwem elektrycznym.

Pytanie 2

Oblicz znamionowy współczynnik mocy silnika trójfazowego przy danych: Pn = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,57
B. 0,82
C. 0,99
D. 0,69
Znamionowy współczynnik mocy silnika trójfazowego można obliczyć za pomocą wzoru: cos φ = Pn / (√3 * UN * IN), gdzie Pn to moc mechaniczna, UN to napięcie nominalne, a IN to prąd nominalny. Wstawiając nasze dane: Pn = 2,2 kW = 2200 W, UN = 400 V, IN = 4,6 A, otrzymujemy: cos φ = 2200 W / (√3 * 400 V * 4,6 A). Po obliczeniach uzyskujemy, że współczynnik mocy wynosi 0,82. Praktyczne znaczenie współczynnika mocy jest kluczowe w kontekście efektywności energetycznej. Wyższy współczynnik mocy oznacza, że silnik pracuje bardziej efektywnie, co przekłada się na niższe rachunki za energię oraz mniejsze straty w instalacji elektrycznej. Zgodnie z normami IEC, silniki trójfazowe powinny dążyć do współczynnika mocy powyżej 0,85, aby zminimalizować obciążenie systemu energetycznego. Obliczenie współczynnika mocy jest więc istotne przy projektowaniu systemów, aby zapewnić ich efektywność oraz spełnić wymagania dotyczące jakości energii elektrycznej.

Pytanie 3

Który typ przewodu przedstawiono na ilustracji?

Ilustracja do pytania
A. YKY
B. YAKY
C. YALY
D. YLY
Odpowiedzi YLY, YAKY oraz YALY są niepoprawne, ponieważ każdy z tych typów przewodów ma inne właściwości i zastosowania. Przewód YLY, na przykład, charakteryzuje się izolacją z poliwęglanu, co czyni go mniej odpornym na wysoką temperaturę i nieodpowiednim do zastosowań w trudnych warunkach. Z kolei YAKY, będący przewodem aluminiowym, jest stosowany tam, gdzie niezbędne jest zredukowanie kosztów związanych z materiałem, ale nie jest zalecany w sytuacjach, gdzie wymagane są wysokie parametry przewodzenia energii elektrycznej. Przewód YALY ma podobne ograniczenia i nie nadaje się do instalacji, które muszą spełniać normy dotyczące odporności na czynniki zewnętrzne. Wybór niewłaściwego przewodu może prowadzić do awarii systemu, zagrożeń związanych z bezpieczeństwem a także nieefektywności energetycznej. Osoby zajmujące się projektowaniem systemów elektrycznych muszą być świadome różnic pomiędzy różnymi typami przewodów, aby uniknąć typowych błędów myślowych, takich jak założenie, że wszystkie przewody są uniwersalne. Wiedza ta jest kluczowa dla zapewnienia bezpieczeństwa i efektywności energetycznej w instalacjach elektrycznych.

Pytanie 4

Jakiego narzędzia należy użyć, aby zweryfikować, czy nie ma napięcia w instalacji elektrycznej 230 V, przed przystąpieniem do prac konserwacyjnych?

A. Czujnika zaniku fazy
B. Miernika parametrów instalacji
C. Omomierza cyfrowego
D. Neonowego wskaźnika napięcia
Wykorzystanie miernika parametrów instalacji do sprawdzenia obecności napięcia w instalacji elektrycznej 230 V jest podejściem nieoptymalnym. Miernik parametrów, choć potrafi analizować różne parametry instalacji, takie jak napięcie, prąd czy moc, wymaga odpowiedniej konfiguracji oraz jest stosowany głównie do pomiarów w działających instalacjach. Przed rozpoczęciem prac konserwacyjnych istotne jest szybkie i skuteczne potwierdzenie braku napięcia, a nie analiza parametrów. Omomierz cyfrowy jest narzędziem przeznaczonym do pomiaru oporu elektrycznego, co czyni go niewłaściwym do wykrywania obecności napięcia. Użycie go w tym kontekście prowadzi do błędnych wniosków oraz może stworzyć zagrożenie, gdyż nie informuje o aktualnym stanie napięcia. Czujnik zaniku fazy również nie jest odpowiednim narzędziem do weryfikacji obecności napięcia w instalacji. Jego główną funkcją jest monitorowanie i wykrywanie zaniku jednej z faz w trójfazowych instalacjach, a nie bezpośrednie kontrolowanie obecności napięcia. Używanie niewłaściwych narzędzi i technik może prowadzić do niebezpiecznych sytuacji podczas pracy z instalacjami elektrycznymi, dlatego niezwykle istotne jest posługiwanie się odpowiednimi urządzeniami, takimi jak neonowy wskaźnik napięcia, który bezpośrednio informuje o obecności energii elektrycznej. Pracownicy branży elektrycznej powinni być dobrze zorientowani w doborze narzędzi i metod, co przekłada się na ich bezpieczeństwo oraz efektywność wykonywanych zadań.

Pytanie 5

Która z podanych awarii urządzenia II klasy ochronności stanowi ryzyko porażenia prądem?

A. Zniszczenie przewodu ochronnego PE
B. Uszkodzenie izolacji przewodu zasilającego urządzenie
C. Zwarcie bezpiecznika wewnętrznego urządzenia
D. Przerwanie uzwojeń silnika umieszczonego w urządzeniu
Uszkodzenie izolacji przewodu zasilającego urządzenie stanowi poważne zagrożenie porażenia prądem elektrycznym, ponieważ w przypadku uszkodzenia izolacji, napięcie z sieci elektrycznej może dostać się na zewnętrzne elementy urządzenia, co stwarza ryzyko kontaktu z prądem przez użytkownika. Przykładem zastosowania tej wiedzy w praktyce jest konieczność regularnej inspekcji przewodów zasilających i ich izolacji, co jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 60204-1, które nakładają obowiązek zapewnienia odpowiednich środków ochrony przed porażeniem prądem. W przypadku stwierdzenia jakichkolwiek uszkodzeń, należy niezwłocznie wymienić uszkodzony przewód. Dodatkowo, stosowanie odpowiednich systemów zabezpieczeń, takich jak wyłączniki różnicowoprądowe, może znacząco obniżyć ryzyko porażenia prądem w przypadku awarii izolacji. Wiedza na temat potencjalnych zagrożeń związanych z uszkodzoną izolacją jest kluczowa dla zapewnienia bezpieczeństwa użytkowania urządzeń elektrycznych.

Pytanie 6

Który z przedstawionych na rysunkach elementów osprzętu należy zastosować do ułożenia dwóch przewodów DY 1,5 mm2 pod tynkiem w pomieszczeniu mieszkalnym?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Odpowiedź A jest spoko, bo jak chcesz ułożyć dwa przewody DY 1,5 mm² pod tynkiem w mieszkaniu, to musisz użyć rurki falistej o odpowiedniej średnicy. W tym przypadku rurka o średnicy 18 mm, którą masz w opcji A, jest zgodna z zasadami bezpieczeństwa i normami, które mówią, jak trzeba układać przewody elektryczne. Te przewody muszą być chronione przed uszkodzeniami, a rurki faliste świetnie się w tym sprawdzają. Z doświadczenia wiem, że takie rozwiązanie daje też większą elastyczność przy zmianach w instalacji. Zgodnie z normą PN-IEC 60364, ważne jest, żeby zapewnić wentylację i unikać przegrzewania przewodów. Dlatego rurki faliste są fajne, bo poprawiają trwałość całej instalacji. Dobrze dobrana średnica rurki jest kluczowa, żeby nie było zwarć ani innych problemów z prądem.

Pytanie 7

Ile powinna wynosić minimalna liczba żył przewodów w miejscach oznaczonych X oraz Y na przedstawionym schemacie instalacji elektrycznej, aby po jej wykonaniu zgodnie z tym schematem możliwe było jednoczesne sterowanie oświetleniem w obu punktach oświetleniowych niezależnie czterema łącznikami?

Ilustracja do pytania
A. X – 4 żyły, Y – 5 żył.
B. X – 5 żył, Y – 5 żył.
C. X – 4 żyły, Y – 4 żyły.
D. X – 5 żył, Y – 4 żyły.
Wybrana odpowiedź jest prawidłowa, ponieważ aby umożliwić jednoczesne sterowanie oświetleniem w dwóch punktach za pomocą czterech łączników, zastosowanie odpowiedniej liczby żył w przewodach jest kluczowe. W punkcie X potrzebujemy czterech żył, co pozwala na zainstalowanie łącznika krzyżowego. Taki łącznik wymaga dwóch przewodów do sterowania i dwóch do łączenia z innymi łącznikami. W punkcie Y z kolei, pięć żył jest niezbędnych, ponieważ oprócz czterech żył dla łącznika krzyżowego, potrzebujemy jeszcze jednego przewodu do zasilania samego oświetlenia. W praktyce, stosowanie łączników schodowych i krzyżowych to standard w instalacjach elektrycznych, szczególnie w dużych pomieszczeniach, gdzie wiele punktów oświetleniowych jest sterowanych z różnych miejsc. Dzięki dobrej organizacji przewodów można uniknąć problemów z nieprawidłowym działaniem systemu oświetlenia oraz zapewnić komfort użytkowania, co jest zgodne z dobrymi praktykami branżowymi.

Pytanie 8

Jakie znaczenie ma opis OMY 500 V 3x1,5 mm2 umieszczony na izolacji przewodu?

A. Sznur mieszkalny pięciożyłowy w izolacji polietylenowej
B. Sznur mieszkalny trzyżyłowy w izolacji polwinitowej
C. Przewód oponowy mieszkalny trzyżyłowy w izolacji polwinitowej
D. Przewód oponowy warsztatowy pięciożyłowy w izolacji polietylenowej
Odpowiedź wskazująca na przewód oponowy mieszkaniowy trzyżyłowy w izolacji polwinitowej jest poprawna, ponieważ oznaczenie OMY 500 V 3x1,5 mm2 wskazuje na konkretny typ przewodu, który jest powszechnie stosowany w instalacjach elektrycznych w budynkach mieszkalnych. Oznaczenie 'OMY' odnosi się do przewodów oponowych, które charakteryzują się dużą elastycznością i odpornością na uszkodzenia mechaniczne. Izolacja polwinitowa (PVC) zabezpiecza przed działaniem wilgoci i substancji chemicznych, co czyni ten przewód idealnym do stosowania w warunkach domowych, gdzie często zachodzi ryzyko narażenia na różnorodne czynniki zewnętrzne. Przewód o przekroju 3x1,5 mm2 oznacza, że ma trzy żyły o średnicy 1,5 mm2, co jest standardowym przekrojem dla obwodów oświetleniowych i gniazd wtykowych w mieszkaniach. Przykłady zastosowania obejmują instalacje w domach jednorodzinnych, w których przewody te są używane do podłączenia oświetlenia oraz zasilania urządzeń elektrycznych. Zgodność z normą PN-EN 50525-2-21 potwierdza, że przewód spełnia wymagane standardy bezpieczeństwa oraz jakości.

Pytanie 9

Przyporządkuj rodzaje trzonków świetlówek kompaktowych, w kolejności jak na rysunku.

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Odpowiedź B. jest poprawna, ponieważ zgodnie z przedstawionym rysunkiem, trzonki świetlówek kompaktowych są uporządkowane w oparciu o ich standardy montażowe. Trzonek B22d, który znajduje się w świetlówce nr 2, jest powszechnie stosowany w oświetleniu domowym, ze względu na łatwość w instalacji i szeroką dostępność. Użytkownicy często spotykają się z tym rodzajem trzonka w żarówkach przeznaczonych do lamp sufitowych oraz lamp stołowych. W praktyce, znajomość typów trzonków świetlówek jest kluczowa podczas zakupu nowych źródeł światła, ponieważ błędny wybór może prowadzić do problemów z kompatybilnością. Warto zaznaczyć, że różne trzonki mają różne zastosowania, co wpływa na efektywność i bezpieczeństwo użycia. Trzonek E14, E27 oraz GU10 również mają swoje specyficzne przeznaczenie i zastosowania, dlatego ważne jest, aby zrozumieć ich różnice oraz odpowiednio je dobierać, aby zapewnić optymalne warunki oświetleniowe w różnych przestrzeniach.

Pytanie 10

Którego przyrządu należy użyć do pomiarów rezystancji izolacji w instalacji elektrycznej?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Poprawna odpowiedź to D. Pomiar rezystancji izolacji w instalacjach elektrycznych jest kluczowy dla zapewnienia bezpieczeństwa i niezawodności infrastruktury elektroenergetycznej. Do tego celu używa się megomierza, który umożliwia pomiar wysokich rezystancji, często w zakresie od miliona omów do miliarda omów. Wysoka rezystancja izolacji jest niezbędna, aby zapobiec niepożądanym upływom prądu, które mogą prowadzić do uszkodzeń sprzętu, pożarów lub porażeń elektrycznych. Zgodnie z normą PN-EN 61557, pomiar rezystancji izolacji powinien być wykonywany regularnie, zwłaszcza w instalacjach, które są narażone na działanie wilgoci lub chemikaliów. Przykładem praktycznego zastosowania megomierza jest kontrola instalacji w budynkach przemysłowych, gdzie niezawodność systemów elektrycznych jest kluczowa dla ciągłości produkcji. Użycie megomierza w takich przypadkach pozwala szybko identyfikować potencjalne problemy z izolacją, umożliwiając szybkie działanie w celu ich naprawy.

Pytanie 11

Zdjęcie przedstawia

Ilustracja do pytania
A. płytkę zaciskową.
B. drabinkę kablową.
C. szynę łączeniową.
D. listwę montażową.
Szyna łączeniowa to kluczowy element w instalacjach elektrycznych, służący do łączenia przewodów neutralnych w rozdzielnicach. Odpowiedź jest poprawna, ponieważ zdjęcie przedstawia właśnie ten element. Szyny łączeniowe są wykorzystywane w celu zapewnienia efektywności i bezpieczeństwa instalacji, umożliwiając łatwe połączenie wielu przewodów w jednym punkcie. Dzięki nim, instalacje są bardziej uporządkowane, co pozwala na łatwiejszą konserwację i zarządzanie okablowaniem. W praktyce, szyny łączeniowe są projektowane zgodnie z normami IEC oraz PN-EN, co zapewnia ich wysoką jakość i bezpieczeństwo. Zastosowanie szyn łączeniowych jest szczególnie istotne w rozdzielnicach, gdzie konieczne jest zminimalizowanie ryzyka zwarcia i zapewnienie niezawodności działania systemu. Warto również zaznaczyć, że różne typy szyn mogą być dostosowane do specyficznych potrzeb instalacji, co czyni je niezwykle wszechstronnym rozwiązaniem.

Pytanie 12

Jaką funkcję w wyłączniku nadprądowym pełni element wskazany na rysunku czerwoną strzałką?

Ilustracja do pytania
A. Komory łukowej.
B. Wyzwalacza przeciążeniowego.
C. Wyzwalacza zwarciowego.
D. Styku ruchomego.
Element wskazany na rysunku czerwoną strzałką to wyzwalacz zwarciowy, który odgrywa kluczową rolę w działaniu wyłącznika nadprądowego. Jego podstawowym zadaniem jest szybkie reagowanie na sytuacje zwarciowe, co jest niezbędne dla zapewnienia bezpieczeństwa instalacji elektrycznej. W momencie wystąpienia zwarcia, następuje gwałtowny wzrost prądu, który wyzwalacz wykrywa i natychmiast przerywa obwód elektryczny. To działanie zapobiega uszkodzeniom przewodów oraz innych elementów instalacji, a także minimalizuje ryzyko pożaru. W praktyce, zastosowanie wyzwalacza zwarciowego jest normą w instalacjach elektrycznych, a jego obecność jest zgodna z normami takimi jak PN-EN 60947-2, które regulują kwestie bezpieczeństwa urządzeń elektrycznych. Dzięki zastosowaniu wyzwalaczy zwarciowych, użytkownicy mogą mieć pewność, że ich instalacja będzie chroniona przed niebezpiecznymi skutkami awarii. Dodatkowo, w wielu systemach automatyki budynkowej wyzwalacze te mogą być integrowane z systemami monitoringu, co zwiększa poziom ochrony.

Pytanie 13

Którym narzędziem należy wkręcać śrubę przedstawioną na rysunku?

Ilustracja do pytania
A. Kluczem imbusowym.
B. Wkrętakiem z nacięciem Phillips.
C. Kluczem nasadowym.
D. Wkrętakiem z nacięciem Torx.
Klucz imbusowy, nazywany również kluczem sześciokątnym, jest idealnym narzędziem do wkręcania śrub z sześciokątnym wewnętrznym nacięciem, co można zauważyć na przedstawionym na rysunku elemencie. Użycie klucza imbusowego pozwala na efektywne przeniesienie momentu obrotowego, co jest istotne w wielu aplikacjach, zarówno w mechanice, jak i w elektronice. Klucze imbusowe są dostępne w różnych rozmiarach, co umożliwia dopasowanie ich do różnych średnic śrub. Ważne jest również, aby stosować klucz imbusowy w odpowiednim rozmiarze, ponieważ nieodpowiedni klucz może uszkodzić nacięcie śruby, co utrudnia jej dalsze wkręcanie lub wykręcanie. W standardach branżowych klucz imbusowy jest często stosowany w konstrukcjach meblowych oraz w przemyśle motoryzacyjnym, gdzie wymagana jest wysoka precyzja i niezawodność. Dobrze dobrany klucz imbusowy ułatwia konserwację i montaż, a także zmniejsza ryzyko uszkodzenia śrub i komponentów.

Pytanie 14

Które urządzenie oznacza się na schematach przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Bezpiecznik.
B. Rozłącznik.
C. Odłącznik.
D. Wyłącznik.
Odpowiedź 'Wyłącznik' jest prawidłowa, ponieważ symbol przedstawiony na schemacie doskonale ilustruje funkcję wyłącznika w obwodach elektrycznych. Wyłącznik to kluczowe urządzenie, które pozwala na manualne lub automatyczne rozłączanie obwodu, co ma istotne znaczenie dla bezpieczeństwa instalacji oraz jej obsługi. Zastosowanie wyłączników pozwala na szybką reakcję w sytuacjach awaryjnych, takich jak zwarcia czy przeciążenia, co zabezpiecza przed uszkodzeniem urządzeń i instalacji. Wyłączniki są powszechnie stosowane w różnych aplikacjach, od domowych po przemysłowe, gdzie kontrola nad przepływem prądu jest kluczowa. Przykładem są wyłączniki nadprądowe, które automatycznie odcinają zasilanie w przypadku przekroczenia dopuszczalnego prądu, zgodnie z normami PN-EN 60898. Dobrą praktyką jest również regularne testowanie i konserwacja wyłączników, co wpływa na ich niezawodność oraz bezpieczeństwo użytkowników.

Pytanie 15

Fragment dokumentacji technicznej określonej jako schemat zasadniczy (ideowy) znajduje się na rysunku

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Schemat zasadniczy (ideowy) ma kluczowe znaczenie w dokumentacji technicznej, gdyż umożliwia zrozumienie podstawowych funkcji i połączeń w danym urządzeniu lub systemie. Wybór rysunku C jako poprawnej odpowiedzi jest uzasadniony tym, że przedstawia on istotne komponenty oraz ich interakcje w sposób, który sprzyja szybkiej analizie i diagnozowaniu ewentualnych problemów. Tego typu schematy są powszechnie stosowane w inżynierii elektrycznej, automatyce oraz w wielu gałęziach przemysłu, gdzie potrzeba uproszczenia złożonych układów do poziomu zrozumiałego dla inżynierów i techników. Na przykład, w projektach związanych z budową systemów zasilania, schemat zasadniczy pozwala na szybkie określenie, jakie elementy są niezbędne do działania i jakie są ich wzajemne relacje. Zgodnie z obowiązującymi standardami, takie schematy powinny być jasne i czytelne, aby ułatwić pracę zespołów serwisowych. Dodatkowo, stosowanie schematów zasadniczych zgodnych z normami IEC 61082 pozwala na zapewnienie wysokiej jakości dokumentacji technicznej, co przekłada się na efektywność w codziennych zadaniach inżynieryjnych.

Pytanie 16

Na schematach instalacji elektrycznych symbolem przedstawionym na ilustracji oznacza się przewód prowadzony

Ilustracja do pytania
A. pod tynkiem.
B. nad sufitem podwieszanym.
C. w tynku.
D. w korytku instalacyjnym.
Odpowiedź "w tynku" jest poprawna, ponieważ symbol przedstawiony na ilustracji jest standardowym oznaczeniem przewodu prowadzonego w tynku. W instalacjach elektrycznych przewody często prowadzi się w ścianach, aby zapewnić estetykę i ochronę przed uszkodzeniami mechanicznymi. Zgodnie z normą PN-IEC 60364, przewody układane w tynku muszą być odpowiednio zabezpieczone, aby zminimalizować ryzyko uszkodzeń. W praktyce, implementacja takiego rozwiązania wymaga staranności w wykonaniu bruzd, gdzie przewody powinny być umieszczane w odpowiednich korytkach lub rurkach osłonowych, co zapobiega ich bezpośredniemu kontaktowi z tynkiem, a tym samym przedłuża ich żywotność. Przykładem mogą być instalacje oświetleniowe, w których przewody są prowadzone w tynku, co pozwala na ich łatwe ukrycie i dostępność podczas ewentualnych napraw. Dodatkowo, stosowanie przewodów w tynku jest zgodne z przyjętymi praktykami branżowymi, co podkreśla istotność znajomości symboliki elektrycznej w projektowaniu instalacji.

Pytanie 17

Zmierzono różnicowy prąd zadziałania wyłączników różnicowoprądowych w instalacji elektrycznej. Jaki wniosek można wyciągnąć z pomiarów przedstawionych w tabeli?

Nr wyłącznikaOznaczenieRóżnicowy prąd zadziałania
IP 304 40-30-AC25 mA
IIP 304 40-100-AC70 mA
IIIP 302 25-30-AC12 mA
A. Żaden wyłącznik nie nadaje się do dalszej eksploatacji.
B. Wyłącznik nr II nie nadaje się do dalszej eksploatacji.
C. Wszystkie wyłączniki nadają się do dalszej eksploatacji.
D. Wyłącznik nr III nie nadaje się do dalszej eksploatacji.
Wyłącznik różnicowoprądowy, zwany także wyłącznikiem RCD, jest kluczowym elementem ochrony w instalacjach elektrycznych. Jego podstawowym zadaniem jest wykrywanie prądów różnicowych, które mogą wskazywać na nieprawidłowości w obwodzie, takie jak zwarcia doziemne. Zgodnie z normą PN-EN 61008-1, wyłącznik powinien zadziałać przy prądzie różnicowym wynoszącym 50% jego wartości nominalnej, co dla wyłącznika nr III wynosi 15 mA (50% z 30 mA). Zmierzona wartość zadziałania tego wyłącznika wynosząca 12 mA jest poniżej wspomnianego progu, co oznacza, że nie zadziałał on w sytuacji, gdy powinien. W praktyce, użycie wyłącznika, który nie spełnia tych norm, stwarza zagrożenie dla użytkowników, ponieważ nie zapewnia on odpowiedniej ochrony przed porażeniem prądem elektrycznym. Dlatego wyłącznik nr III nie nadaje się do dalszej eksploatacji i powinien być wymieniony na nowy, aby zagwarantować bezpieczeństwo instalacji elektrycznej.

Pytanie 18

Określ przyczynę nadmiernego wzrostu napięcia na zaciskach odbiornika Z1 w układzie przedstawionym na schemacie, przy założeniu, że impedancje Z1, Z2 i Z3 znacznie się różnią.

Ilustracja do pytania
A. Zwarcie na zaciskach odbiornika Z2 lub Z3.
B. Zwarcie pomiędzy dwoma przewodami fazowymi.
C. Przerwa w przewodzie neutralnym.
D. Przerwa na zaciskach odbiornika Z2 lub Z3.
Przerwa w przewodzie neutralnym w układzie trójfazowym może prowadzić do poważnych problemów z równowagą napięć. W sytuacji, gdy odbiorniki Z2 i Z3 mają różne impedancje, przerwa ta skutkuje przesunięciem punktu neutralnego, co z kolei prowadzi do nadmiernego wzrostu napięcia na zaciskach Z1. Dla praktyków, kluczowe jest zrozumienie, jak różnice w impedancjach mogą wpływać na rozkład napięcia w sieci. W sytuacjach awaryjnych, takich jak uszkodzenie przewodu neutralnego, należy natychmiast przeprowadzić ocenę układu i zastosować odpowiednie procedury, aby zapobiec uszkodzeniom urządzeń i zapewnić bezpieczeństwo użytkowników. Zgodnie z obowiązującymi normami, jak PN-IEC 60364, zaleca się regularne przeglądy instalacji elektrycznych oraz zachowanie szczególnej ostrożności przy wykonywaniu prac konserwacyjnych w systemach trójfazowych, aby zminimalizować ryzyko powstania takich awarii.

Pytanie 19

Gniazdo trójfazowe pokazane na rysunku może zasilić odbiornik z sieci

Ilustracja do pytania
A. TT i TN-S
B. IT i TN-S
C. TT i TN-C
D. TN-S i TN-C
Zgadza się, chodzi o TN-S i TN-C! To gniazdo trójfazowe, które widzimy na rysunku, działa w tych systemach. W TN-S przewód neutralny (N) i przewód ochronny (PE) są oddzielone, co jest fajne, bo zmniejsza ryzyko problemów z pętlą masy i ogólnie poprawia bezpieczeństwo. Współczesne instalacje elektryczne często korzystają z tego rozwiązania, bo daje dobre zasilanie. Z kolei TN-C łączy oba przewody w jeden, czyli PEN, i jest też stosowane, szczególnie w starszych budynkach. Ważne, żeby znać oba systemy, bo wybór zależy od konkretnego miejsca i wymagań przepisów. W praktyce, inżynierowie muszą mieć to na uwadze, żeby wszystko było bezpieczne i działało jak należy.

Pytanie 20

Który z symboli oznacza możliwość bezpośredniego montażu oprawy oświetleniowej wyłącznie na podłożu niepalnym?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Symbol B. oznacza oprawę oświetleniową, która może być montowana na powierzchniach normalnie palnych, co w kontekście zadania jest mylące. Odpowiedź właściwa to symbol D., który jednoznacznie wskazuje możliwość montażu jedynie na podłożu niepalnym. Prawo budowlane oraz normy dotyczące bezpieczeństwa pożarowego jasno określają, że oprawy oświetleniowe muszą być instalowane zgodnie z klasyfikacją materiałów budowlanych, co ma na celu minimalizację ryzyka pożaru. Montaż na podłożach niepalnych gwarantuje, że w przypadku awarii lub uszkodzenia oprawy, nie dojdzie do zapłonu materiałów palnych, co może prowadzić do poważnych incydentów. W praktyce, stosowanie opraw oświetleniowych na powierzchniach palnych jest przeciwwskazane, zwłaszcza w miejscach o dużym ryzyku pożaru, takich jak magazyny czy zakłady przemysłowe. Normy PN-EN 60598-1 oraz PN-EN 60598-2-1 definiują odpowiednie wymogi dotyczące bezpieczeństwa instalacji oświetleniowych, co czyni wybór symbolu D. kluczowym dla zapewnienia bezpieczeństwa.

Pytanie 21

Na którym rysunku przedstawiono przewód SMYp przeznaczony do podłączenia taśmy LED?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Przewód oznaczony jako 'D' jest właściwym wyborem, ponieważ jest to przewód typu SMYp, który charakteryzuje się budową płaską oraz wielodrutową strukturą. Takie przewody są typowo wykorzystywane w instalacjach oświetleniowych, szczególnie w przypadku podłączania taśm LED. Dzięki swojej elastyczności, przewody SMYp doskonale nadają się do prowadzenia w trudno dostępnych miejscach oraz w przestrzeniach ograniczonych, co jest często spotykane w zastosowaniach LED. Dodatkowo, przewody te są zgodne z normami IEC oraz PN-EN, co zapewnia ich bezpieczeństwo oraz niezawodność w eksploatacji. Użycie przewodów tego typu pozwala na minimalizację strat energii oraz zapewnia wysoką wydajność świetlną. W praktyce, instalując taśmy LED, należy zwrócić szczególną uwagę na odpowiednią grubość przewodu oraz jego właściwości izolacyjne, aby uniknąć przegrzewania oraz uszkodzeń. Zastosowanie przewodu SMYp w tych przypadkach jest najlepszym rozwiązaniem, które zwiększa trwałość oraz efektywność całej instalacji oświetleniowej.

Pytanie 22

Jakie źródło światła przedstawiono na rysunku?

Ilustracja do pytania
A. Żarówkę halogenową.
B. Lampę metalohalogenkową.
C. Świetlówkę kompaktową.
D. Lampę indukcyjną.
Świetlówka kompaktowa, przedstawiona na zdjęciu, charakteryzuje się unikalnym kształtem, który opiera się na zwiniętej rurze zawierającej gaz fluorescencyjny, co pozwala na efektywne generowanie światła. W przeciwieństwie do tradycyjnych żarówek, świetlówki kompaktowe oferują znacznie wyższą efektywność energetyczną, co przekłada się na dłuższy czas życia oraz niższe zużycie energii. Używane są powszechnie w domach oraz biurach jako odpowiednik standardowych żarówek, zwłaszcza w sytuacjach, gdy zależy nam na oszczędności energii. Dodatkowo, świetlówki kompaktowe są często stosowane w ogrodach i na zewnątrz budynków, ponieważ oferują wysoką jakość światła przy niskim poborze mocy. Warto również zauważyć, że ich ograniczona emisja ciepła sprawia, że są bezpieczniejsze w użytkowaniu, zwłaszcza w zamkniętych przestrzeniach. Zgodnie z normami energetycznymi, ich zastosowanie przyczynia się do zmniejszenia emisji dwutlenku węgla, co jest zgodne z globalnymi dążeniami do ochrony środowiska.

Pytanie 23

Podczas inspekcji świeżo zainstalowanej sieci elektrycznej nie ma konieczności weryfikacji

A. doboru zabezpieczeń i urządzeń
B. wartości natężenia oświetlenia w miejscach pracy
C. układu tablic informacyjnych i ostrzegawczych
D. doboru oraz oznaczenia przewodów
Odpowiedź dotycząca wartości natężenia oświetlenia na stanowiskach pracy jest prawidłowa, ponieważ podczas oględzin nowo wykonanej instalacji elektrycznej, kluczowe jest sprawdzenie elementów, które bezpośrednio wpływają na bezpieczeństwo oraz funkcjonalność instalacji. Wartości natężenia oświetlenia są kontrolowane w kontekście ergonomii i komfortu pracy, ale ich pomiar nie jest wymagany w ramach odbioru samej instalacji elektrycznej. Zgodnie z normą PN-EN 12464-1, która określa wymagania dotyczące oświetlenia miejsc pracy, wartości natężenia powinny być dostosowane do rodzaju wykonywanej pracy, jednak ich pomiar jest bardziej związany z późniejszym użytkowaniem przestrzeni niż z samą instalacją elektryczną. Ważne jest, aby w trakcie odbioru zwracać szczególną uwagę na dobór i oznaczenie przewodów, zabezpieczeń oraz aparatury, które mają kluczowe znaczenie dla prawidłowego funkcjonowania instalacji i zapewnienia bezpieczeństwa użytkowników, co potwierdzają standardy branżowe i przepisy prawa budowlanego.

Pytanie 24

Jaką z wymienionych czynności kontrolnych należy przeprowadzić po zainstalowaniu trójfazowego silnika elektrycznego?

A. Mierzenie prędkości obrotowej
B. Sprawdzenie kierunku obrotów wału silnika
C. Weryfikacja symetrii napięcia zasilającego
D. Mierzenie temperatury stojana
Sprawdzenie kierunku obrotów wału silnika elektrycznego jest kluczowym krokiem po jego montażu, ponieważ niewłaściwy kierunek obrotów może prowadzić do uszkodzenia silnika oraz urządzeń, z którymi jest połączony. W praktyce, wiele aplikacji wymaga, aby silnik obracał się w określonym kierunku, co jest szczególnie ważne w systemach napędowych, takich jak pompy, wentylatory czy maszyny robocze. Warto również pamiętać, że w przypadku silników trójfazowych zmiana kierunku obrotów jest możliwa poprzez zamianę miejscami dwóch dowolnych przewodów zasilających. Zgodnie z normami branżowymi, przed uruchomieniem silnika należy zawsze sprawdzić jego kierunek obrotów, aby zagwarantować prawidłowe działanie i uniknąć potencjalnych awarii. Dodatkowo, sprawdzenie kierunku obrotów może być dokumentowane w protokole uruchomieniowym, co jest zgodne z najlepszymi praktykami w zakresie zarządzania jakością oraz bezpieczeństwem w pracy. Warto także wspomnieć, że w przypadku silników używanych w automatyce przemysłowej, kierunek obrotów jest często monitowany przez systemy kontrolne, które mogą automatycznie reagować na nieprawidłowości.

Pytanie 25

Jakie działania oraz w jakiej sekwencji powinny zostać przeprowadzone przy wymianie uszkodzonego fragmentu przewodu w instalacji umieszczonej w rurach peszla?

A. Pomiar rezystancji przewodu, odłączenie napięcia, wymiana uszkodzonego przewodu, włączenie zasilania, sprawdzenie działania instalacji
B. Odłączenie zasilania, otwarcie puszek instalacyjnych, odkręcenie końców uszkodzonego przewodu, wymiana uszkodzonego odcinka przewodu, połączenie wymienionego przewodu w puszkach, zamknięcie puszek, włączenie zasilania, sprawdzenie poprawności działania instalacji
C. Odłączenie napięcia, rozkuwanie tynku, poprowadzenie nowej rury peszla z przewodami, uzupełnienie tynku, włączenie napięcia
D. Odłączenie zasilania, rozkuwanie tynku w miejscu uszkodzenia, wymiana rury peszla z przewodami, włączenie napięcia, sprawdzenie funkcjonowania instalacji
Wymiana uszkodzonego odcinka przewodu w instalacji elektrycznej to poważna sprawa, więc trzeba to robić według ustalonej procedury, żeby wszystko działało jak należy i było bezpiecznie. Na początek odłączamy napięcie, bo to kluczowe, żeby nie dostać porażenia. Potem otwieramy puszki instalacyjne, żeby dostać się do przewodów. Kolejno odkręcamy końcówki uszkodzonego przewodu, a następnie zakładamy nowy. Ważne, żeby dobrze połączyć ten nowy przewód z innymi, które są w puszkach, żeby obwód działał bez problemu. Na koniec zamykamy puszki, żeby chronić przewody przed uszkodzeniami. Po wszystkim, włączamy napięcie i robimy test, żeby sprawdzić, czy wszystko działa. Taka procedura to co najmniej standard w branży, a jak wiadomo, bezpieczeństwo i efektywność to podstawa.

Pytanie 26

Aby zmierzyć częstotliwość, należy użyć

A. waromierza
B. fazomierza
C. częstościomierza
D. watomierza
Częstościomierz jest urządzeniem służącym do pomiaru częstotliwości sygnałów elektrycznych, co czyni go najodpowiedniejszym narzędziem do tego celu. Jego działanie polega na zliczaniu liczby cykli sygnału w jednostce czasu, co pozwala na precyzyjne określenie częstotliwości, wyrażonej w hercach (Hz). Częstościomierze są powszechnie wykorzystywane w elektronice, telekomunikacji oraz w badaniach laboratoryjnych. Na przykład, przy pomiarze częstotliwości oscylatorów w układach radiowych, częstościomierz umożliwia dokładne dostrajanie urządzeń do pożądanej częstotliwości pracy. W kontekście standardów branżowych, częstościomierze powinny spełniać normy kalibracji, co zapewnia ich wiarygodność i dokładność w pomiarach. Warto również zauważyć, że nowoczesne częstościomierze oferują dodatkowe funkcje, takie jak analiza harmonik czy pomiar fazy, co zwiększa ich użyteczność w zaawansowanych aplikacjach.

Pytanie 27

Aparat pokazany na zdjęciu chroni instalację elektryczną mieszkania przed

Ilustracja do pytania
A. przepięciem.
B. upływem prądu.
C. zwarciem.
D. przeciążeniem.
Wyłącznik różnicowoprądowy (RCD) jest kluczowym elementem ochrony instalacji elektrycznej, szczególnie w kontekście bezpieczeństwa ludzi. Jego główną funkcją jest monitorowanie prądu płynącego przez przewody fazowe i neutralne. W przypadku wykrycia różnicy, która wskazuje na upływ prądu do ziemi, wyłącznik natychmiast odłącza zasilanie, co chroni przed porażeniem prądem elektrycznym. Przykładem praktycznego zastosowania RCD jest instalacja w łazienkach, gdzie ryzyko kontaktu z wodą zwiększa zagrożenie porażeniem. Zgodnie z normą PN-EN 61008-1, wyłączniki różnicowoprądowe powinny być stosowane w obwodach zasilających urządzenia elektryczne w pomieszczeniach narażonych na wilgoć. Regularne testowanie RCD za pomocą przycisku testowego zapewnia ich poprawne działanie, co jest kluczowe dla bezpieczeństwa użytkowników. Takie podejście do bezpieczeństwa elektrycznego jest zgodne z najlepszymi praktykami w branży, a stosowanie RCD to nie tylko wymóg prawny, ale również etyczny obowiązek każdego elektryka.

Pytanie 28

Zamieszczony na rysunku zrzut ekranu przyrządu pomiarowego przedstawia wyniki pomiaru

Ilustracja do pytania
A. rezystancji izolacji przewodu w sieci jednofazowej.
B. impedancji pętli zwarcia w sieci jednofazowej.
C. impedancji pętli zwarcia w sieci trójfazowej.
D. rezystancji izolacji przewodu w sieci trójfazowej.
Poprawna odpowiedź wskazuje na pomiar rezystancji izolacji przewodu w sieci jednofazowej, co jest kluczowym aspektem zapewnienia bezpieczeństwa w instalacjach elektrycznych. Na zrzucie ekranu widoczne są wartości rezystancji izolacji między przewodami, co pozwala na ocenę stanu izolacji. Wartości te wyrażane są w megaomach (MΩ), co jest standardem dla pomiarów izolacji, gdzie zaleca się, aby minimalna rezystancja izolacji wynosiła co najmniej 1 MΩ. Regularne pomiary rezystancji izolacji są zgodne z normą PN-EN 61557-2, która określa metody i wymagania dla takich badań. W praktyce, pomiar ten jest kluczowy dla identyfikacji ewentualnych defektów izolacji, które mogą prowadzić do porażenia prądem, a także do uszkodzeń urządzeń elektrycznych. Z tego powodu, zrozumienie i umiejętność interpretacji wyników pomiaru rezystancji izolacji jest niezbędne dla każdego technika elektryka.

Pytanie 29

W układzie zasilania jakiej lampy oświetleniowej wykorzystuje się tyrystorowy system zapłonowy?

A. Żarowej
B. Rtęciowej
C. Halogenowej
D. Sodowej
Wybór żarowej, rtęciowej lub halogenowej lampy oświetleniowej jako zastosowania tyrystorowego układu zapłonowego opiera się na nieporozumieniach dotyczących charakterystyki tych źródeł światła. Lampy żarowe działają na zasadzie bezpośredniego przepływu prądu przez żarnik, co sprawia, że nie wymagają skomplikowanych układów zapłonowych. W przypadku lamp rtęciowych, ich zapłon oparty jest na innych zasadach, w tym na użyciu zapłonników gazowych, które nie są zgodne z zastosowaniem tyrystorów. Te lampy również potrzebują czasami większej mocy podczas zapłonu, co może prowadzić do niewłaściwego działania tyrystorów. Lampy halogenowe z kolei stosują nieco odmienną technologię, wykorzystując cykle odparowania, co również eliminuje potrzebę stosowania układów tyrystorowych. Typowym błędem myślowym w tym kontekście jest zakładanie, że wszystkie lampy wymagają podobnych układów zapłonowych, co prowadzi do mylnych wniosków. Ważne jest zrozumienie, że dobór odpowiednich komponentów do systemów oświetleniowych musi być oparty na ich specyficznych wymaganiach technicznych, co podkreśla konieczność dogłębnej analizy charakterystyk różnych typów lamp oraz ich zastosowań w praktyce.

Pytanie 30

Jaki zakres pomiarowy oraz rodzaj napięcia trzeba ustawić na woltomierzu, aby zmierzyć napięcie zasilające obwód gniazd wtyczkowych w budynku mieszkalnym?

A. 200 V AC
B. 500 V AC
C. 200 V DC
D. 500 V DC
Odpowiedź 500 V AC jest prawidłowa, ponieważ w budynkach mieszkalnych napięcie zasilające gniazdka wtyczkowe wynosi zazwyczaj 230 V w systemie prądu przemiennego (AC). Ustawienie woltomierza na zakres 500 V AC umożliwia pomiar napięcia z dużym marginesem bezpieczeństwa, co jest zgodne z dobrymi praktykami pomiarowymi. Użycie takiego zakresu zapewnia dokładne i bezpieczne pomiary bez ryzyka uszkodzenia urządzenia. Warto zauważyć, że pomiar napięcia AC jest istotny, gdyż instalacje elektryczne w budynkach mieszkalnych są projektowane na prąd przemienny, a nie stały (DC). W praktyce, przed rozpoczęciem pomiarów, zawsze należy upewnić się, że woltomierz jest odpowiednio skalibrowany i spełnia normy bezpieczeństwa, takie jak IEC 61010, które dotyczą sprzętu pomiarowego w obszarze niskiego napięcia.

Pytanie 31

W dokumentacji dotyczącej instalacji elektrycznej w wielopiętrowym budynku mieszkalnym wskazano, że konieczne jest użycie ochronników przeciwprzepięciowych klasy C. Gdzie powinny one zostać zamontowane?

A. w rozdzielnicach mieszkaniowych
B. na linii zasilającej budynek
C. w puszkach instalacyjnych gniazd odbiorczych
D. w złączu budynku
Wybór innych lokalizacji dla instalacji ochronników przeciwprzepięciowych klasy C, takich jak linie zasilające budynek, puszki instalacyjne gniazd odbiorczych czy złącza budynku, nie jest odpowiedni z kilku powodów. Linie zasilające są głównie odpowiedzialne za przesył energii, ale nie stanowią one miejsca, gdzie można efektywnie zainstalować ochronniki, które powinny być zlokalizowane tam, gdzie dochodzi do centralnej dystrybucji zasilania. Instalacja ochronników w puszkach instalacyjnych gniazd odbiorczych również nie przynosi oczekiwanych korzyści, ponieważ w przypadku wystąpienia przepięcia, ochrona jest niekompletna i może nie objąć urządzeń podłączonych do innych obwodów. Złącze budynku, mimo że jest istotnym punktem przyłączeniowym, nie zapewnia pełnej ochrony dla wszystkich obwodów zasilających w budynku. Takie podejście prowadzi do fragmentarycznej ochrony, co może skutkować poważnymi uszkodzeniami sprzętu elektronicznego i instalacji elektrycznej. Kluczowym błędem myślowym jest przekonanie, że ochrona może być stosowana w dowolnym miejscu bez uwzględnienia kontekstu, w jakim działają ochronniki przeciwprzepięciowe. Według norm i najlepszych praktyk, ochrona przed przepięciami powinna być centralizowana w odpowiednich punktach, takich jak rozdzielnice, w celu zapewnienia pełnej ochrony całej instalacji elektrycznej.

Pytanie 32

Który element wyposażenia rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Regulator temperatury.
B. Czujnik kolejności faz.
C. Przekaźnik czasowy.
D. Lampkę sygnalizacyjną trójfazową.
Lampka sygnalizacyjna trójfazowa, przedstawiona na ilustracji, to urządzenie, które odgrywa kluczową rolę w monitorowaniu stanu zasilania w instalacjach elektrycznych. Model SL-RGB 3in1 firmy Kanlux jest zaprojektowany do wskazywania obecności napięcia w trzech fazach, co jest istotne w kontekście instalacji przemysłowych oraz obiektów użyteczności publicznej. Lampki sygnalizacyjne trójfazowe są niezbędne w systemach energetycznych, ponieważ informują operatorów o prawidłowym funkcjonowaniu zasilania, co może zapobiec awariom i uszkodzeniom sprzętu. Umożliwiają one szybkie wykrycie problemów w zasilaniu, takich jak brak fazy czy asymetria napięcia. W praktyce, lampki te często są używane w połączeniu z innymi urządzeniami zabezpieczającymi, takimi jak wyłączniki różnicowoprądowe, co pozwala na zbudowanie kompleksowego systemu monitorowania i ochrony instalacji elektrycznych. Dodatkowo, zgodność z normami, takimi jak PN-EN 60204-1, zapewnia, że urządzenia te są bezpieczne i efektywne w użytkowaniu.

Pytanie 33

Jaki łącznik oznacza się na schematach przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Grupowy.
B. Jednobiegunowy.
C. Szeregowy.
D. Dwubiegunowy.
Wybrana odpowiedź to łącznik dwubiegunowy, co jest poprawne. Na schematach elektrycznych symbol ten towarzyszy elementom, które umożliwiają przewodzenie prądu w dwóch obiegach. Dwie kreski wychodzące z okręgu wskazują, że łącznik ten ma zdolność do kontrolowania przepływu energii elektrycznej w obydwu kierunkach. W praktyce, łączniki dwubiegunowe są wykorzystywane w instalacjach elektrycznych, gdzie ważne jest zarządzanie obciążeniem, na przykład w domowych systemach oświetleniowych, które wymagają wyłączenia lub włączenia obwodu z różnych miejsc. Stosowanie takich łączników pozwala na lepsze zarządzanie energią, a także zwiększa bezpieczeństwo instalacji, minimalizując ryzyko zwarć w obwodach. W standardach, takich jak PN-IEC 60669-1, określono zasady dotyczące stosowania łączników dwubiegunowych, co podkreśla ich znaczenie w nowoczesnych instalacjach elektrycznych.

Pytanie 34

Który z podanych łączników elektrycznych jest przeznaczony do osobnego sterowania dwiema sekcjami oświetlenia w żyrandolu?

A. Dwubiegunowy
B. Krzyżowy
C. Świecznikowy
D. Schodowy
Świecznikowy łącznik instalacyjny jest zaprojektowany w taki sposób, aby umożliwiać niezależne sterowanie różnymi sekcjami źródeł światła w lampach, w tym żyrandolach. Jego konstrukcja pozwala na włączenie i wyłączenie poszczególnych źródeł światła, co jest szczególnie przydatne w przypadku żyrandoli z wieloma żarówkami. Dzięki temu użytkownik może dostosować natężenie oświetlenia w pomieszczeniu w zależności od potrzeb, co zwiększa funkcjonalność i komfort użytkowania. Przykładowo, w jadalni, gdzie często zasiadamy z rodziną lub gośćmi, można włączyć tylko kilka żarówek, aby stworzyć przytulną atmosferę. Zastosowanie łącznika świecznikowego jest zgodne z ogólnymi normami instalacji elektrycznych, które zalecają elastyczność w sterowaniu oświetleniem. Dobrą praktyką w projektowaniu systemów oświetleniowych jest również uwzględnienie możliwości dalszej rozbudowy instalacji oraz zastosowanie łączników, które umożliwiają późniejszą modyfikację układów oświetleniowych.

Pytanie 35

Złącze wtykowe przedstawione na rysunku przeznaczone jest do zastosowań w obszarach zagrożonych

Ilustracja do pytania
A. wybuchem pyłu.
B. wyziewami żrącymi.
C. wzrostem temperatury.
D. nadmierną wilgotnością.
Wybór odpowiedzi dotyczący wzrostu temperatury, wyziewów żrących czy nadmiernej wilgotności wskazuje na nieporozumienie dotyczące zastosowania technologii o oznaczeniu "Ex". Złącza wtykowe z tym oznaczeniem nie są projektowane do ochrony przed skutkami wzrostu temperatury, co może dotyczyć innego rodzaju zabezpieczeń, takich jak elementy chłodzące lub izolacje termiczne. Wyziewy żrące, np. kwasy czy inne substancje chemiczne, mogą w rzeczywistości wymagać złączy odpornych na korozję, co jest innym aspektem niż ochronne właściwości oznaczenia Ex. Nadmierna wilgotność to zjawisko, które również nie odnosi się do zagrożeń wybuchowych, lecz może prowadzić do problemów z korozją, co wymaga użycia złączy odpornych na działanie wilgoci. Kluczowym błędem w myśleniu jest utożsamienie złączy Ex z innymi zagrożeniami, które nie są związane z atmosferami wybuchowymi. W kontekście norm i regulacji, należy zrozumieć, że złącza Ex są certyfikowane wyłącznie dla specyficznych warunków pracy, co nie obejmuje pozostałych wymienionych zagrożeń, dlatego ich wybór powinien być ściśle powiązany z rzeczywistymi warunkami panującymi w danym środowisku pracy.

Pytanie 36

Na którym rysunku przedstawiono schemat połączeń umożliwiający pomiar energii elektrycznej pobranej przez użytkownika?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Błędne odpowiedzi mogą być wynikiem nieporozumień co do tego, jak działają liczniki energii i ich podłączenie w obwodach elektrycznych. Schematy A, B i D mogą mieć błędy w połączeniu przewodów fazowych i neutralnych, co prowadzi do złego pomiaru energii. Często myli się, że licznik może być podłączony równolegle do obciążenia, a to wcale nie działa, bo licznik wtedy nie zmierzy przepływu prądu. Właściwy pomiar wymaga szeregowego połączenia, żeby licznik był w torze prądowym. Dodatkowo, jeśli źle rozumie się rolę przewodów, można mieć problem z ich zidentyfikowaniem, co może być niebezpieczne. Warto zwrócić uwagę na normy i przepisy dotyczące instalacji elektrycznych, bo pokazują, jak ważne jest bezpieczeństwo i poprawność podłączeń. Zrozumienie zasad działania systemów pomiarowych oraz ich prawidłowego podłączenia jest kluczowe, żeby zapewnić bezpieczeństwo i efektywność energetyczną w codziennym użytkowaniu energii.

Pytanie 37

Przyrząd przedstawiony na rysunku służy do

Ilustracja do pytania
A. szacowania długości przewodów.
B. sprawdzania ciągłości żył przewodów.
C. pomiaru rezystancji żył przewodów.
D. wyznaczania trasy przewodów.
Odpowiedź, która wskazuje na sprawdzanie ciągłości żył przewodów, jest prawidłowa z uwagi na specyfikę przyrządu przedstawionego na rysunku. Tester ciągłości obwodu, zwany również multimetrem w trybie testowania ciągłości, jest nieocenionym narzędziem w pracy elektryków oraz techników zajmujących się instalacjami elektrycznymi. Jego podstawową funkcją jest wykrywanie przerw w obwodzie, co jest kluczowe podczas diagnostyki usterek. Przykładowo, w sytuacji, gdy zasilanie nie dociera do określonego urządzenia, tester pozwala na szybkie sprawdzenie, czy przewody są w pełni sprawne. Gdy obwód jest zamknięty, tester zazwyczaj sygnalizuje to zapaleniem diody LED, co jest bardzo pomocne w identyfikacji problemów. Zgodnie z zasadami BHP oraz normami IEC 61010, stosowanie takich przyrządów w pracy pozwala zminimalizować ryzyko porażenia prądem oraz innych niebezpieczeństw związanych z niewłaściwym działaniem instalacji elektrycznych.

Pytanie 38

Na podstawie wyników pomiarów rezystancji w przewodzie elektrycznym przedstawionym na ilustracji można stwierdzić, że żyły

Pomiar pomiędzy końcami żyłRezystancja w Ω
L1.1 – L1.20
L2.1 – L2.20
L3.1 – L3.2
N.1 – N.20
PE.1 – PE.20
L1.1 – L2.1
L1.1 – L3.1
L1.1 – N.1
L1.1 – PE.1
N.1 – PE.10
N.1 – L2.1
N.1 – L3.1
Ilustracja do pytania
A. N i L3 są zwarte oraz PE jest przerwana.
B. L1 i L2 są zwarte.
C. L1 i L2 są przerwane.
D. N i PE są zwarte oraz L3 jest przerwana.
Prawidłowa odpowiedź wskazuje, że żyły N i PE są zwarte oraz L3 jest przerwana. W tym przypadku rezystancja między żyłami N i PE wynosząca 0 Ω oznacza, że są one ze sobą połączone, co jest zgodne z normami bezpieczeństwa. Z kolei wystąpienie nieskończonej rezystancji między końcami żyły L3 wskazuje na jej przerwanie. Ważne jest, aby pamiętać, że w instalacjach elektrycznych żyła neutralna (N) i żyła ochronna (PE) muszą być prawidłowo połączone, aby zapewnić skuteczne uziemienie i minimalizować ryzyko porażenia prądem. Takie połączenia są kluczowe w kontekście ochrony osób i mienia, co jest regulowane przez normy IEC 60364. W praktyce, technicy elektrycy powinni regularnie przeprowadzać pomiary rezystancji, aby upewnić się, że instalacje elektryczne są w dobrym stanie i spełniają wymagania bezpieczeństwa.

Pytanie 39

Na którym rysunku przedstawiono przewód kabelkowy do układania w tynku?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Odpowiedź A jest prawidłowa, ponieważ przedstawia przewód kabelkowy przeznaczony do układania w tynku. Tego typu przewód charakteryzuje się płaską konstrukcją oraz izolacją z PVC, co zapewnia odpowiednią ochronę przed wilgocią i uszkodzeniami mechanicznymi. W praktyce, przewody te są wykorzystywane w instalacjach elektrycznych w ścianach, gdzie ich umiejscowienie w tynku jest standardową praktyką, zapewniającą estetykę i bezpieczeństwo. Przewód z trzema żyłami, jak ten przedstawiony na rysunku A, zazwyczaj obejmuje fazę, zero oraz żyłę ochronną, co jest zgodne z normami PN-IEC 60364, które regulują zasady instalacji elektrycznych. Znajomość tych norm jest kluczowa dla profesjonalistów w dziedzinie elektryki, ponieważ gwarantuje, że instalacje będą funkcjonalne i spełnią wymagania bezpieczeństwa. Dobre praktyki branżowe zalecają również, aby przewody były układane w sposób, który minimalizuje narażenie na uszkodzenia, co czyni przewody kabelkowe idealnym rozwiązaniem do tego zastosowania.

Pytanie 40

Rysunek przedstawia sposób zainstalowania urządzenia ochronnego różnicowoprądowego w sieci typu

Ilustracja do pytania
A. IT
B. TT
C. TN-C-S
D. TN-S
Wybór odpowiedzi spośród pozostałych typów sieci może prowadzić do nieporozumień związanych z zasadami ich działania. Sieci TN-S charakteryzują się tym, że przewód neutralny i przewód ochronny są oddzielone, co jest zupełnie inną koncepcją niż izolacja stosowana w sieciach IT. Użytkownicy mogą błędnie myśleć, że w sieci TN-S urządzenia różnicowoprądowe są tak samo efektywne jak w IT, jednak w przypadku awarii izolacji, prąd upływowy w sieci TN-S może spowodować poważniejsze konsekwencje. Podobnie sieci TN-C-S, które łączą funkcję przewodów neutralnych i ochronnych, są bardziej narażone na zjawiska związane z prądami upływowymi, co stawia pod znakiem zapytania ich bezpieczeństwo. Z kolei w sieciach TT, gdzie przewód neutralny i ochronny są oddzielne, istnieje większe ryzyko wystąpienia różnicy potencjałów między ziemią a neutralnym przewodem, co może prowadzić do niebezpiecznych sytuacji. Błędem jest zakładanie, że wszystkie te systemy zapewniają taki sam poziom ochrony jak sieci IT; każdy typ ma swoje unikalne właściwości i zastosowania, które powinny być starannie rozważane w kontekście wymagań bezpieczeństwa. W przypadku sieci IT, kluczowe jest zrozumienie ich struktury oraz właściwego zastosowania, aby uniknąć niebezpieczeństw związanych z awariami. Warto również zaznaczyć, że w sieciach TN i TT instalacje różnicowoprądowe są często mniej skuteczne w detekcji uszkodzeń, co może prowadzić do większych zagrożeń dla użytkowników i urządzeń.