Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 2 lutego 2026 00:10
  • Data zakończenia: 2 lutego 2026 00:11

Egzamin niezdany

Wynik: 1/40 punktów (2,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W jaki sposób steruje się oświetleniem w układzie, którego schemat przedstawiono na rysunku?

Łącznik 1 sterujeŁącznik 2 steruje
A.oddzielnie źródłami światła tylko w punkcie A.oddzielnie źródłami światła tylko w punkcie B.
B.oddzielnie po jednym ze źródeł światła w punktach A i B.oddzielnie po jednym ze źródeł światła w punktach A i B.
C.wszystkimi źródłami światła jednocześnie tylko w punkcie A.wszystkimi źródłami światła jednocześnie tylko w punkcie B.
D.wszystkimi źródłami światła w punktach A i B jednocześnie.wszystkimi źródłami światła w punktach A i B jednocześnie.
Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Wybór niewłaściwej odpowiedzi wskazuje na pewne nieporozumienia dotyczące sposobu, w jaki układ oświetlenia funkcjonuje. Ważne jest zrozumienie, że każdy element w schemacie, w tym łączniki i źródła światła, został zaprojektowany w celu umożliwienia prostego i jednoczesnego sterowania. Odpowiedzi A, B oraz C mogą sugerować, że układ pozwala na niezależne sterowanie każdym źródłem światła, co jest błędne. W rzeczywistości brak jakichkolwiek dodatkowych komponentów, takich jak przełączniki schodowe lub krzyżowe, uniemożliwia niezależne włączanie i wyłączanie poszczególnych żarówek. Często pojawia się mylne przekonanie, że jakakolwiek obecność wielu źródeł światła w jednym obwodzie automatycznie wskazuje na możliwość ich oddzielnego sterowania. Również, przy projektowaniu układów oświetleniowych, kluczowe jest przestrzeganie zasad dotyczących prostoty i przejrzystości działania instalacji. Niezrozumienie tych podstawowych zasad może prowadzić do nieefektywnego wykorzystania energii i frustracji użytkowników, którzy oczekują, że będą w stanie sterować oświetleniem w sposób elastyczny. Dlatego tak istotne jest, aby w analizie schematów oświetleniowych zwracać uwagę na każdy detal układu oraz zrozumieć, jakie funkcje i możliwości on oferuje.

Pytanie 2

W elektrycznych instalacjach w mieszkaniach oraz budynkach użyteczności publicznej prace konserwacyjne nie obejmują

A. wymiany gniazd zasilających
B. czyszczenia urządzeń w rozdzielniach
C. czyszczenia lamp oświetleniowych
D. montażu nowych punktów świetlnych
Wiesz, konserwacja instalacji elektrycznych to głównie dbanie o to, co już istnieje. Czyszczenie lamp czy tablic rozdzielczych jest mega ważne, bo brud może doprowadzić do różnych problemów, jak przegrzewanie się czy mniejsza efektywność. Wymiana gniazdek też jest istotna, bo często się zużywają i mogą stwarzać niebezpieczeństwo. Zrozumienie różnicy między montażem a konserwacją to kluczowa sprawa. Często zapominamy, że to różne rzeczy, które wymagają różnych umiejętności. Trzymanie się norm, jak PN-IEC 60364, to podstawa, żeby wszystko działało bezpiecznie i sprawnie. Myślę, że ważne, by nie mylić tych dwóch procesów, bo może to prowadzić do kłopotów.

Pytanie 3

Która z podanych metod realizacji instalacji elektrycznych jest przeznaczona do użycia w lokalach mieszkalnych?

A. Na drabinkach
B. W kanałach podłogowych
C. Przewodami szynowymi
D. W listwach przypodłogowych
Prowadzenie instalacji elektrycznych za pomocą przewodów szynowych, kanałów podłogowych czy drabinek jest rozwiązaniem stosowanym w innych kontekstach, które nie zawsze są zgodne z wymogami dla pomieszczeń mieszkalnych. Przewody szynowe, choć często wykorzystywane w obiektach komercyjnych i przemysłowych, nie są zalecane do stosowania w mieszkaniach, ponieważ mogą prezentować ryzyko w zakresie estetyki, a także bezpieczeństwa użytkowników. Mieszkania zazwyczaj wymagają bardziej stonowanego i zabezpieczonego podejścia do instalacji elektrycznych. Kanały podłogowe, chociaż mogą być użyteczne w niektórych sytuacjach, mają ograniczenia związane z dostępnością i konserwacją. Ponadto ich stosowanie może prowadzić do problemów z wilgocią i zanieczyszczeniami, co z kolei wpływa negatywnie na trwałość instalacji. Drabinki, z drugiej strony, są stosowane głównie w obszarach przemysłowych i wymagają dużo przestrzeni, co czyni je niepraktycznymi dla mieszkań o ograniczonym metrażu. Typowy błąd myślowy to przekonanie, że jedynie funkcjonalność instalacji ma znaczenie, podczas gdy w kontekście mieszkań kluczowe są również aspekty estetyczne i bezpieczeństwa. Należy zatem pamiętać, że prowadzenie instalacji elektrycznych w pomieszczeniach mieszkalnych powinno być starannie przemyślane, uwzględniając zarówno przepisy, jak i potrzeby użytkowników.

Pytanie 4

Którą klasę ochronności posiadają urządzenia posiadające izolację podstawową oraz izolację dodatkową o konstrukcji uniemożliwiającej powstanie uszkodzenia grożącego porażeniem w warunkach normalnego użytkowania podczas założonego czasu trwałości wyrobu?

A. Klasę III
B. Klasę I
C. Klasę 0
D. Klasę II
Prawidłowo – opis w pytaniu idealnie pasuje do urządzeń klasy II ochronności. Urządzenia tej klasy mają nie tylko izolację podstawową (czyli tę „zwykłą”, która oddziela części czynne od dostępnych metalowych elementów), ale dodatkowo jeszcze izolację dodatkową albo obudowę o podwójnej lub wzmocnionej izolacji. Chodzi o to, że przy normalnym użytkowaniu, przez cały założony czas życia urządzenia, pojedyncze uszkodzenie nie powinno doprowadzić do sytuacji grożącej porażeniem prądem. To jest klucz: bezpieczeństwo zapewnia sama konstrukcja, a nie przewód ochronny. W praktyce sprzęt klasy II nie ma zacisku PE i wtyczki z bolcem ochronnym. Rozpoznasz go po symbolu dwóch kwadratów, jeden w drugim. Typowe przykłady to większość elektronarzędzi ręcznych (wiertarki, szlifierki), wiele zasilaczy, ładowarki, oprawy oświetleniowe do mieszkań, sprzęt RTV. Moim zdaniem warto sobie wyrobić nawyk szukania tego symbolu na tabliczce znamionowej – to bardzo pomaga w ocenie, jak dany sprzęt powinien być podłączany. Normy (np. PN-EN 61140, PN-EN 60335 dla sprzętu gospodarstwa domowego) jasno definiują, że w klasie II nie przewiduje się ochrony przez samoczynne wyłączenie zasilania w oparciu o przewód PE, tylko przez środki konstrukcyjne: podwójną/wzmocnioną izolację, odpowiednie odległości izolacyjne, materiały obudowy o wysokiej wytrzymałości dielektrycznej. Dlatego takich urządzeń nie wolno „uziemiać na siłę”, np. podłączać ich obudowy do przewodu ochronnego, bo to może wręcz pogorszyć bezpieczeństwo. W instalacjach warto pamiętać, że w pomieszczeniach o podwyższonym ryzyku porażenia (łazienki, warsztaty, budowy) urządzenia klasy II są szczególnie cenione – zapewniają dodatkowy poziom bezpieczeństwa, niezależny od stanu instalacji ochronnej w budynku. To jest bardzo dobra praktyka branżowa: tam gdzie użytkownik łatwo może dotknąć obudowy, a warunki są „trudne”, wybiera się właśnie klasę II.

Pytanie 5

Jakiego przyrządu należy użyć, aby zmierzyć moc bierną w obwodzie?

A. Watomierza
B. Waromierza
C. Reflektometru
D. Woltomierza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Waromierz to specjalistyczne urządzenie pomiarowe, które służy do pomiaru mocy biernej w układach elektrycznych. Moc bierna jest kluczowym pojęciem w systemach prądu przemiennego, szczególnie w kontekście obciążeń indukcyjnych i pojemnościowych. W odróżnieniu od mocy czynnej, która jest wykorzystywana do wykonania pracy, moc bierna nie przyczynia się do rzeczywistego zużycia energii, ale jest niezbędna do utrzymania pola elektromagnetycznego w takich urządzeniach jak silniki czy transformatory. Przykład zastosowania waromierza można znaleźć w analizie układów zasilania w przemyśle, gdzie istotne jest monitorowanie i optymalizacja zużycia energii. Użycie waromierza pozwala na dokładne określenie ilości mocy biernej w instalacji, co jest ważne dla poprawnej regulacji oraz zminimalizowania strat energetycznych, zgodnie z normami IEC 62053. Praktycznie, pomiary te są często wykorzystywane w celu obliczenia współczynnika mocy, który jest niezbędny dla oceny efektywności energetycznej układów elektrycznych.

Pytanie 6

Wyłącznik różnicowoprądowy oznaczony jako EFI-4 40/0,03 posiada znamionowy prąd różnicowy

A. 0,03 mA oraz znamionowy prąd ciągły 40 mA
B. 0,03 A oraz napięcie znamionowe 40 V
C. 0,03 A oraz znamionowy prąd ciągły 40 A
D. 0,03 mA oraz napięcie znamionowe 40 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy EFI-4 40/0,03 ma znamionowy prąd różnicowy wynoszący 0,03 A oraz znamionowy prąd ciągły 40 A. Oznaczenie '0,03' odnosi się do wartości prądu różnicowego, co oznacza, że urządzenie odłączy obwód elektryczny, gdy wykryje różnicę prądu wynoszącą 30 mA (0,03 A) pomiędzy przewodem fazowym a przewodem neutralnym. To działanie ma na celu ochronę przed porażeniem prądem oraz minimalizację ryzyka pożaru spowodowanego upływem prądu. Znamionowy prąd ciągły 40 A oznacza, że urządzenie jest w stanie przewodzić prąd o takim natężeniu bez ryzyka uszkodzenia. W praktyce, wyłączniki różnicowoprądowe są kluczowym elementem w systemach elektrycznych, szczególnie w instalacjach domowych i przemysłowych, gdzie ochrona ludzi i mienia przed skutkami awarii instalacji elektrycznej jest priorytetem. Stosowanie wyłączników różnicowoprądowych jest zgodne z normami PN-EN 61008-1, które określają wymagania dotyczące bezpieczeństwa i funkcjonowania tych urządzeń.

Pytanie 7

Zakres działania wyzwalaczy elektromagnetycznych w nadprądowych wyłącznikach instalacyjnych o charakterystyce B mieści się w zakresie

A. 10-20 krotności prądu znamionowego
B. 20-30 krotności prądu znamionowego
C. 5-10 krotności prądu znamionowego
D. 3-5 krotności prądu znamionowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyzwalacze elektromagnetyczne w wyłącznikach instalacyjnych nadprądowych o charakterystyce B są zaprojektowane do działania w określonym zakresie prądów zwarciowych, co zapewnia skuteczną ochronę obwodów elektrycznych. W przypadku wyłączników charakterystyki B obszar zadziałania wynosi 3-5 krotności prądu znamionowego. Oznacza to, że przy prądzie zwarciowym, który osiąga wartość od 3 do 5 razy wyższą niż nominalny prąd wyłącznika, następuje jego natychmiastowe wyłączenie. Dzięki temu, wyłączniki te skutecznie chronią przed skutkami przeciążeń i zwarć, co jest kluczowe w instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych. Przykładowo, jeśli wyłącznik ma prąd znamionowy 10 A, zadziała przy prądzie zwarciowym w zakresie 30 A do 50 A. Tego typu wyłączniki są zalecane do zastosowań, gdzie istnieje ryzyko wystąpienia krótkotrwałych, ale intensywnych prądów, jak w przypadku silników elektrycznych czy transformatorów. Dodatkowo, zgodnie z normą IEC 60898, wyłączniki te powinny być stosowane w obwodach, gdzie istotna jest ochrona przed skutkami zwarć, co czyni je jednym z podstawowych elementów systemów zabezpieczeń elektrycznych.

Pytanie 8

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. ZL-L
B. ZL-PE(RCD)
C. ZL-PE
D. ZL-N

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź ZL-PE(RCD) jest prawidłowa, ponieważ pomiar impedancji pętli zwarcia powinien uwzględniać zarówno przewód fazowy (L), jak i przewód ochronny (PE), a dodatkowo obecność wyłącznika różnicowoprądowego (RCD), który może wpływać na wynik pomiaru. W praktyce, aby uzyskać wiarygodne wyniki, konieczne jest zastosowanie funkcji, która uwzględnia te warunki. Pomiar impedancji pętli zwarcia ma kluczowe znaczenie dla zapewnienia bezpieczeństwa elektrycznego i powinien być wykonywany zgodnie z obowiązującymi normami, takimi jak PN-EN 61010 czy PN-HD 60364. Użycie funkcji ZL-PE(RCD) pozwala na dokładne określenie wartości impedancji, co jest istotne w kontekście doboru odpowiednich zabezpieczeń oraz weryfikacji poprawności instalacji. Dzięki temu można zminimalizować ryzyko porażenia prądem oraz zapewnić prawidłowe działanie systemów ochronnych, co jest szczególnie ważne w obiektach użyteczności publicznej oraz w instalacjach przemysłowych.

Pytanie 9

Rysunek przedstawia sposób zainstalowania urządzenia ochronnego różnicowoprądowego w sieci typu

Ilustracja do pytania
A. TN-C-S
B. IT
C. TT
D. TN-S

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'IT' jest prawidłowa, ponieważ rysunek ilustruje charakterystyczny sposób instalacji urządzenia ochronnego różnicowoprądowego w sieci typu IT. W systemie IT punkty neutralne źródła zasilania są izolowane od ziemi, co minimalizuje ryzyko zwarć i zwiększa bezpieczeństwo użytkowników. Zastosowanie impedancji o dużej wartości w połączeniu z punktem neutralnym pozwala na ograniczenie prądów upływowych do poziomu, który nie stwarza zagrożenia, a jednocześnie umożliwia wykrycie uszkodzeń izolacji. W praktyce, aby zapewnić ciągłość zasilania, w systemach IT częstym elementem jest urządzenie do kontrolowania stanu izolacji, co pozwala na szybką detekcję potencjalnych usterek. Dzięki tej architekturze, w przypadku uszkodzenia jednego z przewodów, drugi pozostaje na stałym poziomie napięcia względem ziemi, co zapobiega poważnym awariom. Takie rozwiązanie jest często stosowane w przemyśle oraz w obiektach wymagających wysokiego poziomu niezawodności zasilania, takich jak szpitale czy centra danych.

Pytanie 10

Który z podanych łączników elektrycznych jest przeznaczony do osobnego sterowania dwiema sekcjami oświetlenia w żyrandolu?

A. Krzyżowy
B. Świecznikowy
C. Dwubiegunowy
D. Schodowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Świecznikowy łącznik instalacyjny jest zaprojektowany w taki sposób, aby umożliwiać niezależne sterowanie różnymi sekcjami źródeł światła w lampach, w tym żyrandolach. Jego konstrukcja pozwala na włączenie i wyłączenie poszczególnych źródeł światła, co jest szczególnie przydatne w przypadku żyrandoli z wieloma żarówkami. Dzięki temu użytkownik może dostosować natężenie oświetlenia w pomieszczeniu w zależności od potrzeb, co zwiększa funkcjonalność i komfort użytkowania. Przykładowo, w jadalni, gdzie często zasiadamy z rodziną lub gośćmi, można włączyć tylko kilka żarówek, aby stworzyć przytulną atmosferę. Zastosowanie łącznika świecznikowego jest zgodne z ogólnymi normami instalacji elektrycznych, które zalecają elastyczność w sterowaniu oświetleniem. Dobrą praktyką w projektowaniu systemów oświetleniowych jest również uwzględnienie możliwości dalszej rozbudowy instalacji oraz zastosowanie łączników, które umożliwiają późniejszą modyfikację układów oświetleniowych.

Pytanie 11

Przeciążenie w instalacji elektrycznej polega na

A. wystąpieniu w instalacji fali przepięciowej spowodowanej wyładowaniem atmosferycznym.
B. przekroczeniu maksymalnego prądu znamionowego instalacji.
C. nagłym wzroście napięcia elektrycznego w sieci powyżej wartości nominalnej.
D. bezpośrednim połączeniu dwóch faz w systemie.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przeciążenie instalacji elektrycznej polega na przekroczeniu prądu znamionowego, co ma istotne znaczenie dla bezpieczeństwa i funkcjonowania systemów elektrycznych. Prąd znamionowy to maksymalny prąd, jaki instalacja lub urządzenie może bezpiecznie przewodzić bez ryzyka uszkodzenia. Przekroczenie tej wartości może prowadzić do przegrzewania się przewodów, co z kolei może skutkować uszkodzeniem izolacji, a w skrajnych przypadkach nawet pożarem. Dlatego tak ważne jest, aby projektując instalację elektryczną, odpowiednio dobrać przekroje przewodów oraz zabezpieczenia, takie jak bezpieczniki czy wyłączniki różnicowoprądowe, które chronią przed skutkami przeciążenia. W praktyce, w przypadku zakupu nowych urządzeń elektrycznych, należy zwracać uwagę na ich moc i prąd znamionowy, aby uniknąć przeciążenia instalacji. Przykładowo, jeżeli w danym obwodzie zainstalowane są urządzenia, których łączna moc przekracza wartość znamionową obwodu, może to prowadzić do poważnych problemów z bezpieczeństwem elektrycznym.

Pytanie 12

Jakiej klasy ogranicznik przepięć powinno się montować w instalacjach mieszkalnych?

A. Klasy C
B. Klasy D
C. Klasy B
D. Klasy A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na klasy C jako odpowiednie do instalacji ograniczników przepięć w rozdzielnicach mieszkaniowych jest prawidłowa z kilku powodów. Klasa C, według normy IEC 61643-11, jest zaprojektowana do ochrony instalacji elektrycznych przed przepięciami o średniej energii, co czyni je idealnym wyborem dla typowych warunków panujących w budynkach mieszkalnych. Ograniczniki klasy C charakteryzują się czasem reakcji na przepięcia, który jest wystarczająco krótki, by zminimalizować ryzyko uszkodzenia sprzętu AGD czy innych urządzeń elektronicznych, a jednocześnie są w stanie radzić sobie z energią przepięć generowanych przez różne źródła, takie jak wyładowania atmosferyczne czy nagłe zmiany w obciążeniu sieci. Dodatkowo, zaleca się, aby ograniczniki klasy C były instalowane równolegle z ogranicznikami klasy B w celu zapewnienia kompleksowej ochrony. Takie podejście nie tylko zwiększa bezpieczeństwo, ale także zgodność z dobrymi praktykami branżowymi i standardami ochrony przeciwprzepięciowej, co jest kluczowe w kontekście wzrastającej liczby urządzeń elektronicznych w gospodarstwach domowych.

Pytanie 13

Przed dokonaniem pomiaru rezystancji izolacji w instalacji elektrycznej najpierw należy odciąć napięcie zasilające, a potem

A. usunąć z opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, odłączyć silniki trójfazowe
B. zamontować do opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, włączyć silniki trójfazowe
C. zamontować do opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, włączyć silniki trójfazowe
D. usunąć z opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, odłączyć silniki trójfazowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobra robota z odpowiedzią! To, co napisałeś, dobrze pokazuje, jakie kroki warto podjąć przed pomiarem rezystancji izolacji w instalacji elektrycznej. Najpierw trzeba wymontować źródła światła z opraw – to naprawdę ważne, żeby nie ryzykować porażeniem prądem w trakcie pomiarów. Poza tym, wyłączenie jednofazowych odbiorników i silników trójfazowych jest konieczne, żeby nie zakłócały one wyników i nie zostały uszkodzone przez niewłaściwe napięcie. Te zasady są zgodne z przepisami, jak PN-EN 50110-1, które mówią, że trzeba wyłączyć zasilanie przed przeprowadzeniem testów izolacji. To, że stosujesz te procedury, nie tylko zwiększa bezpieczeństwo, ale też sprawia, że pomiary są dokładniejsze. A to jest bardzo istotne, żeby dobrze ocenić stan izolacji i upewnić się, że instalacja jest w dobrym stanie.

Pytanie 14

Która z wymienionych lamp należy do żarowych źródeł światła?

A. Rtęciowa.
B. Halogenowa.
C. Sodowa.
D. Indukcyjna.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to lampa halogenowa, ponieważ należy ona do grupy klasycznych źródeł żarowych. W lampie halogenowej mamy do czynienia z tym samym zjawiskiem co w zwykłej żarówce – świeci rozgrzany do wysokiej temperatury żarnik wolframowy, przez który płynie prąd elektryczny. Różnica polega na tym, że bańka jest wypełniona gazem halogenowym (np. jodem lub bromem), co powoduje tzw. cykl halogenowy. Dzięki temu wolfram, który odparowuje z żarnika, częściowo wraca z powrotem na jego powierzchnię. W praktyce oznacza to wyższą trwałość, mniejsze zaczernienie bańki i wyższą skuteczność świetlną w porównaniu ze starą żarówką tradycyjną. Z punktu widzenia elektryka i instalatora halogeny traktuje się jako typowe źródła żarowe: zasilane prądem przemiennym 230 V lub przez transformator elektroniczny 12 V, o charakterystyce praktycznie rezystancyjnej. Przy doborze osprzętu, przekrojów przewodów czy zabezpieczeń nadprądowych przyjmuje się, że obciążenie jest czysto omowe, bez istotnych prądów rozruchowych jak w świetlówkach czy oprawach wyładowczych. W oświetleniu technicznym halogeny były (i nadal czasem są) stosowane w reflektorach punktowych, w oświetleniu sceny, w lampach warsztatowych, w oświetleniu zewnętrznym przed wejściem czy nad bramą garażową, zwłaszcza tam gdzie wymagana była dobra oddawalność barw i skupiony snop światła. Moim zdaniem warto też pamiętać, że według aktualnych trendów i wymagań efektywności energetycznej halogeny są coraz częściej zastępowane przez LED-y, ale klasyfikacja fizyczna pozostaje ta sama: to dalej źródło żarowe, a nie wyładowcze ani indukcyjne.

Pytanie 15

Na której ilustracji przedstawiono symbol graficzny przewodu neutralnego?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 2.
C. Na ilustracji 4.
D. Na ilustracji 1.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol graficzny przewodu neutralnego, oznaczony jako linia z kropką na końcu, jest kluczowym elementem w instalacjach elektrycznych. Na ilustracji 1 widzimy ten symbol, co potwierdza jego zgodność z międzynarodowymi standardami, takimi jak IEC 60446, które regulują oznaczanie przewodów i kolorów w systemach elektroenergetycznych. Przewód neutralny odgrywa ważną rolę w systemie elektrycznym, odpowiedzialny za zamknięcie obwodu i zapewnienie równowagi w instalacji. W praktyce, poprawne zidentyfikowanie przewodu neutralnego jest niezwykle istotne, aby uniknąć błędów w podłączaniu urządzeń oraz zapewnić bezpieczeństwo użytkowników. Wiedza o tym, jak rozpoznać symbol przewodu neutralnego, wspiera właściwe wykonywanie instalacji elektrycznych i konserwacji, co jest zgodne z najlepszymi praktykami branżowymi. Dodatkowo, zrozumienie ról poszczególnych przewodów w obwodzie elektrycznym, takich jak przewód fazowy oraz przewód ochronny, przyczynia się do tworzenia bezpiecznych i efektywnych instalacji.

Pytanie 16

Które z przedstawionych na rysunkach narzędzi przeznaczone jest do zaciskania końcówek tulejkowych izolowanych?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Narzedzie przedstawione na rysunku C. to szczypce do zaciskania końcówek tulejkowych izolowanych, co czyni tę odpowiedź prawidłową. Te szczypce są specjalnie zaprojektowane do precyzyjnego zaciskania końcówek, co zapewnia solidne połączenie elektryczne. W praktyce, zastosowanie takich narzędzi jest kluczowe w instalacjach elektrycznych, gdzie jakość połączeń wpływa na bezpieczeństwo i niezawodność systemów. Szczypce te charakteryzują się odpowiednio wyprofilowanymi końcówkami, które umożliwiają równomierne rozłożenie siły podczas zaciskania, co zapobiega uszkodzeniu izolacji oraz samej końcówki. W standardach branżowych, takich jak IEC 60947, podkreśla się wagę stosowania właściwych narzędzi do obróbki końcówek w celu zapewnienia wysokiej jakości połączeń. Prawidłowo używane szczypce do zaciskania przyczyniają się do długotrwałej eksploatacji instalacji oraz minimalizują ryzyko awarii związanych z słabymi połączeniami elektrycznymi.

Pytanie 17

Który element instalacji elektrycznej przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik ciśnieniowy.
B. Ogranicznik przepięć.
C. Wyłącznik priorytetowy.
D. Ogranicznik mocy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest trafna! Na tym rysunku widzimy urządzenie elektryczne, które ma oznaczenia związane z mocą, takie jak Pm. Ogranicznik mocy odgrywa naprawdę ważną rolę w nowoczesnych instalacjach elektrycznych. Jego zadaniem jest pilnowanie i regulowanie, ile energii zużywamy, co pomaga uniknąć przepięć i przeciążeń. W praktyce, takie urządzenia często spotykamy w obiektach komercyjnych i przemysłowych, gdzie ryzyko przekroczenia przydzielonej mocy jest spore. Dzięki temu, osoby zarządzające instalacjami mogą lepiej kontrolować zużycie prądu, co przekłada się na niższe koszty i większe bezpieczeństwo. Co więcej, ograniczniki mocy muszą być zgodne z europejskimi normami, jak na przykład EN 61000, które mówią o jakości energii elektrycznej oraz o ochronie instalacji przed napięciami, które są za wysokie.

Pytanie 18

Kierunek rotacji wirnika silnika elektrycznego ustala się, obserwując jego wał z perspektywy

A. tabliczki znamionowej
B. wprowadzenia przewodu zasilającego
C. przewietrznika
D. czopu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kierunek obrotów wirnika silnika elektrycznego określa się patrząc na jego wał od strony czopu, ponieważ jest to standardowa praktyka w inżynierii elektrycznej. Patrzenie z tej strony pozwala na jednoznaczne ustalenie, czy wirnik obraca się w prawo czy w lewo. W przypadku urządzeń napędzanych elektrycznie, znanie kierunku obrotów wirnika jest kluczowe dla prawidłowego działania systemu, ponieważ wpływa na wydajność i bezpieczeństwo całej instalacji. Wiele urządzeń, takich jak pompy czy wentylatory, jest zaprojektowanych do działania w określonym kierunku, a ich niewłaściwe zainstalowanie może prowadzić do uszkodzeń czy zmniejszenia efektywności. Dobrym przykładem jest zastosowanie silników w aplikacjach przemysłowych, gdzie niewłaściwy kierunek obrotów może skutkować nieprawidłowym działaniem maszyn. W związku z tym, podczas instalacji i konserwacji urządzeń elektrycznych, istotne jest przypilnowanie, aby kierunek obrotów był sprawdzany w odpowiedni sposób, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 19

Którym symbolem graficznym oznacza się na planie instalacji elektrycznej sposób prowadzenia przewodów przedstawiony na zdjęciu?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to B, ponieważ symbol ten dokładnie odwzorowuje sposób prowadzenia przewodów elektrycznych przedstawiony na zdjęciu. Przewody prowadzone są podtynkowo w rurach instalacyjnych i rozdzielają się w pewnym punkcie na trzy inne przewody. W branży elektrycznej, zgodnie z normami IEC 60617, symbole graficzne mają na celu uproszczenie zrozumienia rozkładu instalacji elektrycznej, a poprawny wybór symbolu B jest kluczowy dla właściwej interpretacji schematów przez techników i inżynierów. Przewody podtynkowe w rurach są standardowym rozwiązaniem w nowoczesnych instalacjach, co zapewnia ochronę mechaniczną oraz estetykę. W praktyce, zastosowanie odpowiednich symboli na planach instalacyjnych ułatwia lokalizację potencjalnych problemów oraz ich przyszłą konserwację. Zrozumienie i poprawne stosowanie symboli jest niezbędne w codziennej pracy każdego elektryka, a ich znajomość wpływa na bezpieczeństwo i efektywność instalacji elektrycznych.

Pytanie 20

Jaka jest wymagana wartość rezystancji izolacji przewodów przy pomiarach odbiorczych instalacji elektrycznej o napięciu znamionowym badanego obwodu U ≤ 500 V? 

A. ≥ 1 MΩ
B. < 1 MΩ
C. ≥ 0,5 MΩ
D. < 0,5 MΩ

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawnie – przy pomiarach odbiorczych instalacji o napięciu znamionowym U ≤ 500 V wymagana minimalna rezystancja izolacji przewodów to co najmniej 1 MΩ. Wynika to z wymagań norm, głównie z PN‑HD 60364 (dawniej PN‑IEC 60364), które określają minimalne wartości rezystancji izolacji dla obwodów niskiego napięcia. Chodzi o to, żeby prąd upływu przez izolację był bardzo mały i nie stwarzał zagrożenia porażeniowego ani ryzyka pożaru. Im większa rezystancja izolacji, tym lepiej, ale 1 MΩ jest takim progiem, poniżej którego instalacja przy odbiorze jest już traktowana jako niespełniająca wymagań. W praktyce pomiar wykonuje się miernikiem rezystancji izolacji (tzw. megomomierzem), zwykle napięciem probierczym 500 V DC dla obwodów do 500 V AC. Pomiar robi się między żyłą fazową a ochronną (PE), między fazą a neutralnym (N), a także między żyłami fazowymi, w zależności od układu instalacji. W dobrze wykonanej, nowej instalacji wartości są zazwyczaj dużo wyższe niż 1 MΩ – często dziesiątki, a nawet setki megaomów. Moim zdaniem to jest ważny sygnał: jeśli nowa instalacja ma tylko okolice 1 MΩ, to coś już jest podejrzane i warto się przyjrzeć jakości przewodów, złączom, wilgoci w puszkach, itp. Minimalna wartość 1 MΩ to tak naprawdę absolutne minimum dopuszczalne, a nie „wynik docelowy”. W eksploatacji okresowe pomiary rezystancji izolacji pozwalają wykryć starzenie się izolacji, zawilgocenie kabli, uszkodzenia mechaniczne i błędy montażowe. W praktyce, przy odbiorze nowej instalacji w budynku mieszkalnym lub małym obiekcie usługowym, jeśli miernik pokazuje poniżej 1 MΩ, instalator powinien szukać przyczyny, a nie próbować to „przepchnąć” na siłę do protokołu.

Pytanie 21

Określ przyczynę nadmiernego wzrostu napięcia na zaciskach odbiornika Z1 w układzie przedstawionym na schemacie, przy założeniu, że impedancje Z1, Z2 i Z3 znacznie się różnią.

Ilustracja do pytania
A. Przerwa na zaciskach odbiornika Z2 lub Z3.
B. Zwarcie pomiędzy dwoma przewodami fazowymi.
C. Przerwa w przewodzie neutralnym.
D. Zwarcie na zaciskach odbiornika Z2 lub Z3.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przerwa w przewodzie neutralnym w układzie trójfazowym może prowadzić do poważnych problemów z równowagą napięć. W sytuacji, gdy odbiorniki Z2 i Z3 mają różne impedancje, przerwa ta skutkuje przesunięciem punktu neutralnego, co z kolei prowadzi do nadmiernego wzrostu napięcia na zaciskach Z1. Dla praktyków, kluczowe jest zrozumienie, jak różnice w impedancjach mogą wpływać na rozkład napięcia w sieci. W sytuacjach awaryjnych, takich jak uszkodzenie przewodu neutralnego, należy natychmiast przeprowadzić ocenę układu i zastosować odpowiednie procedury, aby zapobiec uszkodzeniom urządzeń i zapewnić bezpieczeństwo użytkowników. Zgodnie z obowiązującymi normami, jak PN-IEC 60364, zaleca się regularne przeglądy instalacji elektrycznych oraz zachowanie szczególnej ostrożności przy wykonywaniu prac konserwacyjnych w systemach trójfazowych, aby zminimalizować ryzyko powstania takich awarii.

Pytanie 22

Błędne podłączenie przewodu PE zamiast N na wejściu i wyjściu wyłącznika różnicowoprądowego spowoduje

A. niemożność załączenia wyłącznika pod obciążeniem
B. działanie wyłącznika przy znacznie mniejszych prądach upływu niż znamionowy
C. prawidłowe działanie wyłącznika
D. brak możliwości zadziałania załączonego wyłącznika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomyłkowe podłączenie przewodu PE (ochronnego) zamiast N (neutralnego) na wejściu i wyjściu wyłącznika różnicowoprądowego rzeczywiście skutkuje niemożnością załączenia urządzenia pod obciążeniem. Wyłączniki różnicowoprądowe są zaprojektowane tak, aby wykrywać różnice prądów między przewodem fazowym a neutralnym. Jeśli przewód PE zostanie użyty zamiast N, to nie będzie możliwe prawidłowe pomiarowanie tych różnic, co uniemożliwi zadziałanie mechanizmu wyłączającego. Z punktu widzenia praktycznego, w takich przypadkach, użytkownik nie będzie mógł korzystać z instalacji, co podkreśla krytyczną rolę poprawnego podłączenia przewodów w systemach elektrycznych. W ramach dobrych praktyk, zawsze należy stosować oznaczenia przewodów zgodne z normami, aby zminimalizować ryzyko takich pomyłek. W Polsce stosuje się normy PN-IEC 60446 dotyczące oznaczania przewodów, które pomagają w poprawnym podłączeniu instalacji elektrycznej.

Pytanie 23

W instalacji elektrycznej, której schemat przedstawiono na rysunku błędnie podłączono

Ilustracja do pytania
A. przewód ochronny.
B. łącznik.
C. żyrandol.
D. przewody zasilające.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór łącznika jako błędnie podłączonego elementu jest poprawny, ponieważ łącznik powinien być zawsze podłączony w obwodzie fazowym (L) w celu prawidłowej kontroli zasilania. W sytuacji, gdy łącznik przerywa obwód neutralny (N), mamy do czynienia z poważnym zagrożeniem dla bezpieczeństwa użytkowników. Zgodnie z normami PN-IEC 60364, instalacje elektryczne powinny być projektowane oraz wykonywane w sposób zapewniający ich bezpieczeństwo, co obejmuje również właściwe podłączenie łączników. Praktyka poprawnego stosowania łączników w instalacjach elektrycznych polega na tym, że przy włączonym obwodzie fazowym, możliwe jest odcięcie zasilania i tym samym zapewnienie bezpieczeństwa podczas konserwacji urządzeń. Dobrą praktyką jest również stosowanie łączników, które posiadają oznaczenia wskazujące ich położenie w obwodzie, co ułatwia identyfikację w razie awarii. Podczas projektowania instalacji, należy także uwzględnić odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, aby minimalizować ryzyko porażenia prądem. Dlatego poprawne podłączenie łącznika jest kluczowe dla ogólnego bezpieczeństwa instalacji elektrycznej.

Pytanie 24

Jaką minimalną wartość prądu powinno mieć wykonanie pomiaru ciągłości elektrycznej przewodów ochronnych w głównych i dodatkowych połączeniach wyrównawczych oraz przewodów czynnych w przypadku obwodów odbiorczych typu pierścieniowego?

A. 100 mA
B. 150 mA
C. 500 mA
D. 200 mA

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar ciągłości elektrycznej przewodów ochronnych jest kluczowym aspektem zapewnienia bezpieczeństwa instalacji elektrycznych. W przypadku połączeń wyrównawczych oraz pierścieniowych obwodów odbiorczych, zastosowanie prądu o wartości co najmniej 200 mA jest zgodne z normami oraz dobrymi praktykami branżowymi. Użycie takiej wartości prądu pozwala na dokładne sprawdzenie ciągłości przewodów ochronnych, co jest niezbędne do zapewnienia właściwego działania systemu ochrony przeciwporażeniowej. W praktyce oznacza to, że w przypadku wykrycia jakiejkolwiek przerwy w przewodach ochronnych, prąd o tej wartości będzie w stanie wywołać odpowiednią reakcję w zabezpieczeniach, takich jak wyłączniki różnicowoprądowe. Taki pomiar powinien być przeprowadzany regularnie w ramach przeglądów okresowych instalacji elektrycznych, aby zminimalizować ryzyko uszkodzeń i zagrożeń dla użytkowników. Warto również podkreślić, że zgodnie z normą PN-EN 61557-4, pomiary te powinny być wykonywane przez wykwalifikowany personel z użyciem odpowiedniego sprzętu pomiarowego.

Pytanie 25

Który element elektroniczny oznacza się przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Tranzystor bipolarny.
B. Termistor.
C. Tranzystor polowy.
D. Tyrystor.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Na symbolu widzisz klasyczny symbol tranzystora bipolarnego złączowego (BJT). Charakterystyczne są trzy elektrody: baza (pionowa linia po lewej), emiter (wyprowadzenie z ukośną strzałką) i kolektor (drugie ukośne wyprowadzenie, bez strzałki). Strzałka zawsze znajduje się przy emiterze i pokazuje kierunek przepływu prądu konwencjonalnego w złączu baza–emiter. W tranzystorze NPN strzałka jest skierowana na zewnątrz, w PNP – do środka. Na rysunku jest właśnie ten typowy układ linii, który w normach PN-EN/IEC przyjmowany jest jako symbol tranzystora bipolarnego. Tranzystor bipolarny pracuje w oparciu o przewodnictwo nośników większościowych i mniejszościowych, a sterowanie odbywa się prądem bazy. W praktyce w układach instalacyjnych, automatyce budynkowej czy sterowaniu urządzeniami spotyka się go np. w stopniach sterujących przekaźnikami, w prostych wzmacniaczach sygnałów z czujników, w obwodach załączania diod LED sygnalizacyjnych, czasem w prostych zasilaczach impulsowych niskiej mocy. Moim zdaniem warto zapamiętać układ graficzny: pionowa baza i dwa skośne ramiona przypominające literę „Y”, z czego jedno ma strzałkę – to zawsze będzie tranzystor bipolarny. Tyrystor ma symbol bardziej zbliżony do diody z dodatkową elektrodą bramki, tranzystor polowy ma bramkę oddzieloną szczeliną od kanału, a termistor w ogóle nie ma strzałek, tylko rezystor z literką NTC/PTC. W dokumentacji technicznej, schematach serwisowych i projektach według dobrych praktyk branżowych zawsze stosuje się właśnie takie oznaczenie, więc rozpoznanie go jest podstawą do dalszej analizy działania całego układu.

Pytanie 26

Jakie rury instalacyjne powinny być używane do kładzenia przewodów na łatwopalnym podłożu?

A. Tylko z PVC
B. Metalowe lub gumowe
C. Tylko metalowe
D. Z PVC lub gumowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kiedy stosujemy metalowe rury do układania przewodów na podłożu palnym, to tak naprawdę działamy zgodnie z normami bezpieczeństwa, które mówią, że musimy chronić instalacje elektryczne przed ryzykiem pożaru. Metalowe rury, na przykład stalowe, są odporne na wysokie temperatury i są niepalne, co czyni je super opcją w miejscach, gdzie mogą mieć kontakt z materiałami palnymi. Dodatkowo te rury lepiej chronią przewody przed mechanicznymi uszkodzeniami, co jest bardzo ważne, gdy instalacje eksploatowane są w trudnych warunkach. Wiele budynków przemysłowych i publicznych korzysta z metalowych rur, bo to nie tylko podnosi bezpieczeństwo, ale także spełnia różne przepisy budowlane i normy, jak PN-IEC 60364 dla instalacji elektrycznych. Co więcej, w razie awarii metalowe rury mogą być łatwiejsze do naprawy niż te z plastiku.

Pytanie 27

Którego z wymienionych narzędzi należy użyć do połączenia przewodów przy użyciu złączki przedstawionej na rysunku?

Ilustracja do pytania
A. Szczypiec uniwersalnych.
B. Lutownicy.
C. Wkrętaka.
D. Praski hydraulicznej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Użycie praski hydraulicznej do połączenia przewodów za pomocą złączki tulejowej jest najlepszym rozwiązaniem, ponieważ praska hydrauliczna zapewnia odpowiednią siłę, co jest kluczowe dla uzyskania trwałego i bezpiecznego połączenia elektrycznego. Zaciskanie złączki tulejowej przy użyciu tego narzędzia pozwala na równomierne rozłożenie nacisku, co jest niezwykle istotne, aby uniknąć uszkodzenia przewodów. W praktyce, praski hydrauliczne są szeroko stosowane w branży elektrycznej i telekomunikacyjnej, zgodnie z normami, takimi jak PN-EN 60947-1. Używając praski, można również osiągnąć doskonałe połączenia, które są odporne na wibracje i zmiany temperatury, co jest kluczowe w instalacjach przemysłowych czy budowlanych. Dzięki tym właściwościom, praska hydrauliczna gwarantuje wysoką jakość połączeń, co ma bezpośredni wpływ na bezpieczeństwo i niezawodność systemów elektrycznych.

Pytanie 28

W jakiej sytuacji instalacja elektryczna w biurze wymaga przeprowadzenia naprawy?

A. W trakcie realizacji prac konserwacyjnych w pomieszczeniu, np. malowanie ścian
B. Podczas zmiany tradycyjnych żarówek na energooszczędne
C. Kiedy pomiar natężenia oświetlenia w miejscu pracy jest mniejszy od wymaganego
D. Gdy wartości jej parametrów są poza granicami określonymi w instrukcji eksploatacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Instalacja elektryczna w pomieszczeniu biurowym musi być poddawana naprawie, gdy jej parametry nie mieszczą się w granicach określonych w instrukcji eksploatacji. Oznacza to, że wartości takie jak napięcie, natężenie czy rezystancja muszą odpowiadać standardom określonym przez producenta lub normy branżowe, takie jak PN-IEC 60364, które regulują kwestie bezpieczeństwa i funkcjonalności instalacji elektrycznych. Przykładem może być sytuacja, gdy pomiary przeprowadzone w biurze wskazują na zbyt niskie napięcie, co może prowadzić do niewłaściwego działania urządzeń biurowych. W takim przypadku konieczne jest zidentyfikowanie źródła problemu, co może obejmować wymianę uszkodzonych przewodów, integrację dodatkowych obwodów czy zastosowanie stabilizatorów napięcia. Ignorowanie takich sytuacji może skutkować nie tylko uszkodzeniem sprzętu, ale również stwarzać poważne zagrożenie dla bezpieczeństwa osób przebywających w danym pomieszczeniu.

Pytanie 29

Jakim elementem powinno się zabezpieczyć nakrętkę przed jej odkręceniem?

A. Tuleją redukcyjną
B. Podkładką sprężystą
C. Podkładką dystansową
D. Tuleją kołnierzową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podkładka sprężysta jest kluczowym elementem w procesie zabezpieczania nakrętek przed odkręceniem, ponieważ jej konstrukcja została zaprojektowana w celu generowania siły, która przeciwdziała luzom mechanicznym. W praktyce, podkładki te wykorzystują swoją elastyczność, aby wypełnić mikrouszkodzenia na powierzchniach stykowych oraz dostarczyć dodatkowy opór przeciwko luźnieniu się połączenia w wyniku drgań, uderzeń czy zmian temperatury. Przykłady zastosowania obejmują szeroki zakres branż, od motoryzacji po budownictwo, gdzie mechanizmy narażone są na dynamiczne obciążenia. Zgodnie z normami ISO 7089 i ISO 7090, stosowanie podkładek sprężystych jest zalecane w połączeniach wymagających dużej niezawodności i trwałości, co czyni je istotnym elementem w projektowaniu konstrukcji. Dodatkowo, ich dostępność w różnych materiałach (np. stal nierdzewna, mosiądz) pozwala na dopasowanie do specyficznych warunków pracy, co zwiększa efektywność zabezpieczeń.

Pytanie 30

Na którym rysunku przedstawiono żarówkę z trzonkiem GU10?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Żarówka z trzonkiem GU10 jest popularnym rozwiązaniem w oświetleniu, szczególnie w zastosowaniach domowych i komercyjnych. Trzonek GU10 ma charakterystyczne bolce, które umożliwiają łatwe i szybkie mocowanie żarówki w oprawie. W przypadku żarówki oznaczonej jako B na zdjęciu, widoczny jest podwójny bolec, co jednoznacznie wskazuje na typ GU10. Tego rodzaju żarówki są często stosowane w reflektorach sufitowych oraz oświetleniu akcentującym, co czyni je idealnym wyborem do różnych aranżacji wnętrz. Warto również zauważyć, że żarówki GU10 dostępne są w różnych wersjach, zarówno LED, jak i halogenowych, co daje większą elastyczność w doborze źródła światła odpowiedniego do danej przestrzeni. W kontekście dobrych praktyk, należy zawsze upewnić się, że dobieramy właściwe źródło światła do odpowiedniej oprawy, aby zapewnić optymalne warunki oświetleniowe oraz minimalizować ryzyko uszkodzenia sprzętu.

Pytanie 31

Fragment dokumentacji technicznej określonej jako schemat zasadniczy (ideowy) znajduje się na rysunku

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Schemat zasadniczy (ideowy) ma kluczowe znaczenie w dokumentacji technicznej, gdyż umożliwia zrozumienie podstawowych funkcji i połączeń w danym urządzeniu lub systemie. Wybór rysunku C jako poprawnej odpowiedzi jest uzasadniony tym, że przedstawia on istotne komponenty oraz ich interakcje w sposób, który sprzyja szybkiej analizie i diagnozowaniu ewentualnych problemów. Tego typu schematy są powszechnie stosowane w inżynierii elektrycznej, automatyce oraz w wielu gałęziach przemysłu, gdzie potrzeba uproszczenia złożonych układów do poziomu zrozumiałego dla inżynierów i techników. Na przykład, w projektach związanych z budową systemów zasilania, schemat zasadniczy pozwala na szybkie określenie, jakie elementy są niezbędne do działania i jakie są ich wzajemne relacje. Zgodnie z obowiązującymi standardami, takie schematy powinny być jasne i czytelne, aby ułatwić pracę zespołów serwisowych. Dodatkowo, stosowanie schematów zasadniczych zgodnych z normami IEC 61082 pozwala na zapewnienie wysokiej jakości dokumentacji technicznej, co przekłada się na efektywność w codziennych zadaniach inżynieryjnych.

Pytanie 32

Narzędzie przedstawione na ilustracji przeznaczone jest

Ilustracja do pytania
A. do zaciskania końcówek oczkowych.
B. do zaciskania końcówek tulejkowych.
C. do ściągania izolacji z żył przewodów.
D. do docinania przewodów.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ narzędzie przedstawione na ilustracji to szczypce do ściągania izolacji, które są specjalistycznym narzędziem używanym w elektryce do precyzyjnego usuwania izolacji z przewodów elektrycznych. Dzięki charakterystycznemu kształtowi ostrzy oraz zastosowanemu mechanizmowi regulacji, te szczypce umożliwiają bezpieczne usuwanie izolacji bez ryzyka uszkodzenia samej żyły przewodowej. W praktyce, umiejętność prawidłowego użycia tego narzędzia jest kluczowa w instalacjach elektrycznych, gdzie niezbędne jest zachowanie integralności przewodów. Standardy branżowe, takie jak IEC 60079 lub ANSI/NFPA 70E, podkreślają znaczenie stosowania odpowiednich narzędzi do zapewnienia bezpieczeństwa i efektywności pracy. W związku z tym, znajomość i umiejętność korzystania z narzędzi do ściągania izolacji przyczynia się do jakości i bezpieczeństwa wykonania instalacji elektrycznych.

Pytanie 33

Który licznik należy zamontować w instalacji elektrycznej, aby umożliwić przedpłatowy system rozliczania energii elektrycznej?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Licznik przedpłatowy, taki jak przedstawiony w odpowiedzi B, jest specjalistycznym urządzeniem zaprojektowanym do umożliwienia użytkownikom płacenia za energię elektryczną przed jej zużyciem. Jest to szczególnie korzystne w kontekście budżetowania wydatków na energię, ponieważ użytkownik może kontrolować swoje wydatki na bieżąco. W liczniku tym znajduje się klawiatura numeryczna oraz wyświetlacz, co umożliwia wprowadzenie kodów doładowujących, które można nabyć w sklepach lub przez internet. Taki system zachęca do oszczędzania energii, gdyż użytkownicy są bardziej świadomi swojego zużycia. Instalacje elektryczne z licznikami przedpłatowymi są zgodne z normami branżowymi, takimi jak IEC 62053, które określają wymagania dla liczników energii elektrycznej. Wiele nowoczesnych liczników przedpłatowych oferuje również funkcje zdalnego monitorowania, co ułatwia zarządzanie zużyciem energii w czasie rzeczywistym.

Pytanie 34

Jakie urządzenia elektryczne są częścią instalacji przyłączeniowej obiektu budowlanego?

A. Zabezpieczenia przedlicznikowe oraz licznik energii elektrycznej
B. Wyłącznik różnicowoprądowy oraz ograniczniki przepięć
C. Zabezpieczenia nadprądowe poszczególnych obwodów
D. Transformator słupowy z rozłącznikiem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zabezpieczenia przedlicznikowe i licznik energii to naprawdę ważne elementy, które wchodzą w skład przyłącza budynku. Te zabezpieczenia, jak wyłączniki nadprądowe i różnicowoprądowe, mają za zadanie chronić zarówno instalację, jak i nas samych przed przeciążeniem czy porażeniem prądem. Licznik energii z kolei pozwala nam śledzić, ile energii zużywamy, co jest potrzebne przy rozliczeniach z dostawcą prądu. Jeśli dobrze dobierzemy te zabezpieczenia, to zgodnie z normami PN-IEC 60364, będziemy w lepszej sytuacji. W razie awarii, zabezpieczenia powinny odciąć zasilanie, co chroni sprzęt i nas, ludzi, w budynku. Wszystko sprowadza się do tego, żeby dobrze zamontować i dobrać te elementy, bo to klucz do bezpieczeństwa i sprawności energetycznej budynku. Dlatego ważne, żeby wartości prądowe były dopasowane tak, by instalacja działała optymalnie i uniknęła nagłych przerw w dostawie energii.

Pytanie 35

Na którym rysunku przedstawiono prawidłowy sposób wykorzystania zacisku śrubowego?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rysunek A przedstawia prawidłowy sposób wykorzystania zacisku śrubowego, co jest kluczowe dla zapewnienia stabilności i bezpieczeństwa połączenia. W tej konfiguracji śruba jest odpowiednio dokręcona do elementu, co pozwala na zminimalizowanie luzów oraz zwiększa trwałość połączenia. Zaciski śrubowe są powszechnie stosowane w przemyśle i rzemiośle do łączenia różnych elementów, takich jak deski w meblarstwie czy elementy metalowe w konstrukcjach. Przy prawidłowym użyciu, zaciski te mogą wytrzymać znaczne obciążenia, co czyni je niezastąpionymi w wielu zastosowaniach. Ważne jest również, aby podczas dokręcania śruby zachować odpowiedni moment obrotowy, aby nie uszkodzić materiału. Dobre praktyki obejmują również regularne sprawdzanie stanu zacisków oraz ich ponowne dokręcanie w miarę potrzeb, co zapewnia długotrwałe i niezawodne użytkowanie.

Pytanie 36

Łącznik przedstawiony na zdjęciu jest oznaczony na schematach symbolem graficznym

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Łącznik przedstawiony na zdjęciu jest rzeczywiście dwuklawiszowy, co odpowiada symbolowi graficznemu oznaczonemu literą C. W branży elektrycznej, klawisze w łącznikach są kluczowe dla funkcjonalności systemów oświetleniowych, a ich odpowiednie oznaczenie jest istotne dla poprawnego montażu oraz użytkowania. Symbol graficzny C, który posiada dwa rozgałęzienia, jest standardem stosowanym w schematach instalacji elektrycznych, co ułatwia identyfikację urządzeń w projekcie. W praktyce, zastosowanie dwuklawiszowego łącznika pozwala na jednoczesne sterowanie różnymi obwodami świetlnymi z jednego miejsca, co zwiększa komfort użytkowania przestrzeni. Warto również zauważyć, że zgodność z normami instalacyjnymi, takimi jak PN-IEC 60669, wspiera bezpieczeństwo i efektywność energetyczną. Dlatego znajomość symboli graficznych, takich jak w tym przypadku, jest niezbędna dla projektantów i techników zajmujących się instalacjami elektrycznymi.

Pytanie 37

Oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym należy do klasy oświetlenia

Ilustracja do pytania
A. pośredniego.
B. bezpośredniego.
C. przeważnie pośredniego.
D. przeważnie bezpośredniego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oprawa oświetleniowa oznaczona tym symbolem graficznym należy do kategorii przeważnie pośredniego oświetlenia, co oznacza, że głównym celem jej konstrukcji jest kierowanie światła w dół, jednocześnie rozpraszając je w innych kierunkach. Tego typu oświetlenie jest powszechnie stosowane w przestrzeniach, gdzie kluczowe jest stworzenie komfortowej atmosfery przy jednoczesnym zapewnieniu odpowiedniego doświetlenia. Przykładem może być oświetlenie w biurach, gdzie oprawy te mogą być używane do oświetlenia stanowisk pracy, oferując wygodę dla oczu poprzez unikanie olśnień. Zgodnie z normami oświetleniowymi, takimi jak PN-EN 12464-1, odpowiednia klasa oświetlenia powinna być dostosowana do określonych warunków pracy oraz zalecanego poziomu natężenia światła. Oprócz tego, przeważnie pośrednie oświetlenie jest często stosowane w przestrzeniach publicznych, takich jak galerie handlowe czy hotele, gdzie istotne jest stworzenie przyjemnego i zachęcającego otoczenia.

Pytanie 38

Kiedy należy dokonać przeglądu instalacji elektrycznej w obiekcie przemysłowym?

A. Po każdej naprawie maszyn
B. Tylko przed uruchomieniem nowych maszyn
C. Co pięć lat
D. Co najmniej raz na rok

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przegląd instalacji elektrycznej w obiektach przemysłowych powinien być dokonywany co najmniej raz na rok. Częstotliwość ta jest zgodna z normami i przepisami dotyczącymi bezpieczeństwa w przemyśle, które wymagają regularnych przeglądów w celu zapewnienia bezpiecznego i efektywnego działania instalacji. Przykładowo, roczne przeglądy pozwalają na wczesne wykrycie potencjalnych uszkodzeń, które mogą prowadzić do awarii lub zagrożeń dla bezpieczeństwa pracowników. Dodatkowo, regularne przeglądy umożliwiają identyfikację zużycia podzespołów i przewodów, co jest kluczowe w kontekście ich konserwacji i wymiany. W praktyce, podczas takiego przeglądu sprawdza się m.in. stan izolacji przewodów, działanie zabezpieczeń oraz poprawność połączeń, co ma na celu zminimalizowanie ryzyka porażenia prądem czy pożaru. Ponadto, zgodnie z dobrymi praktykami branżowymi, przeglądy roczne są uznawane za minimalny standard dla utrzymania optymalnego stanu technicznego instalacji w intensywnie eksploatowanych środowiskach przemysłowych.

Pytanie 39

Co oznacza oznaczenie IP00 widoczne na obudowie urządzenia elektrycznego?

A. Brak klasy ochronności przed porażeniem.
B. Najwyższy poziom ochrony.
C. Brak ochrony przed wilgocią i pyłem.
D. Wykorzystanie separacji ochronnej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Napis IP00 na obudowie urządzenia elektrycznego oznacza brak ochrony przed wilgocią i kurzem. Klasyfikacja IP (Ingress Protection) jest standardem opracowanym przez Międzynarodową Organizację Normalizacyjną (IEC), który określa poziomy ochrony oferowane przez obudowy urządzeń elektrycznych. W przypadku IP00, brak jakiejkolwiek cyfry oznacza, że urządzenie nie jest chronione ani przed wnikaniem ciał stałych, ani przed wilgocią. W praktyce oznacza to, że takie urządzenia powinny być używane w suchych, czystych i kontrolowanych warunkach, przez co minimalizuje się ryzyko uszkodzenia komponentów w wyniku nadmiernego zapylenia lub kontaktu z wodą. Przykładem zastosowania urządzeń oznaczonych jako IP00 mogą być niektóre elementy wewnętrzne systemów elektronicznych, które są odpowiednio zabezpieczone w zamkniętych obudowach i nie są narażone na działanie czynników zewnętrznych.

Pytanie 40

Na której ilustracji przedstawiono pomiar rezystancji izolacji między przewodami czynnymi w układzie TN-C?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 4.
C. Na ilustracji 3.
D. Na ilustracji 2.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ilustracja 1 przedstawia prawidłowy sposób pomiaru rezystancji izolacji między przewodami czynnymi w układzie TN-C, co jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych. W przypadku tego układu przewód PEN pełni funkcję zarówno przewodu ochronnego, jak i neutralnego. Miernik został podłączony między przewody L1, L2, L3 a przewód PEN, co jest zgodne z normami, które zalecają sprawdzanie izolacji w taki sposób, aby uniknąć potencjalnych zagrożeń związanych z porażeniem prądem elektrycznym. W praktyce, pomiar rezystancji izolacji powinien być przeprowadzany regularnie, szczególnie w instalacjach starszego typu, aby wykryć ewentualne uszkodzenia izolacji, które mogą prowadzić do niebezpiecznych sytuacji. Standardy takie jak PN-IEC 60364-6 oraz PN-EN 61557-2 wyraźnie definiują metody przeprowadzania takich pomiarów, a ich przestrzeganie jest niezbędne dla zapewnienia bezpieczeństwa użytkowników oraz sprawności systemu. Wykonywanie pomiarów izolacji na etapie odbioru oraz w trakcie eksploatacji jest najlepszą praktyką, która pozwala na wczesne wykrycie problemów i ich usunięcie, co z kolei przekłada się na dłuższą żywotność instalacji.