Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 19 grudnia 2025 16:57
  • Data zakończenia: 19 grudnia 2025 17:26

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaki sterownik powinien być wykorzystany do zarządzania 5 pompami napełniającymi 5 zbiorników, gdy włączanie i wyłączanie poszczególnych pomp opiera się na sygnałach z czujników binarnych, które wykrywają niski oraz wysoki poziom cieczy, a także system uruchamiany jest ręcznie przyciskiem zwiernym i wyłączany przyciskiem rozwiernym?

A. Posiadający co najmniej 8 wejść i 4 wyjścia cyfrowe
B. Posiadający co najmniej 16 wejść i 8 wyjść analogowych
C. Posiadający co najmniej 8 wejść i 4 wyjścia analogowe
D. Posiadający co najmniej 16 wejść i 8 wyjść cyfrowych
Prawidłowa odpowiedź to ta o 16 wejściach i 8 wyjściach cyfrowych. Sterownik z taką liczbą portów może bez problemu obsługiwać 5 pomp i 5 czujników, które sygnalizują niski oraz wysoki poziom cieczy. W automatyce przemysłowej, zgodnie z normą IEC 61131, ważne jest, aby mieć wystarczającą liczbę wejść i wyjść, żeby móc dobrze monitorować i sterować urządzeniami. Dzięki tym 16 wejściom można podłączyć wszystkie potrzebne czujniki i przyciski, co jest niezbędne do ręcznej obsługi np. pomp. Wyjścia cyfrowe są tutaj istotne, bo pozwalają na kontrolowanie urządzeń wykonawczych, jak pompy. Moim zdaniem to kluczowe, bo w sytuacji awaryjnej szybkie wyłączenie pompy może zapobiec przelaniu i związanym z tym szkodom. Warto też dodać, że cyfrowe sygnały zwiększają niezawodność systemu i ułatwiają integrację z innymi elementami automatyki.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Gdzie można znaleźć informacje na temat wymagań oraz częstotliwości realizacji prac konserwacyjnych dla konkretnego urządzenia mechatronicznego?

A. Na dokumencie gwarancyjnym
B. Na tabliczce identyfikacyjnej
C. W instrukcji obsługi
D. W kartach danych handlowych
Instrukcja obsługi jest kluczowym dokumentem, który zawiera szczegółowe informacje o konserwacji i użytkowaniu urządzeń mechatronicznych. Dzięki niej operatorzy oraz technicy mogą zrozumieć, jakie konkretne czynności konserwacyjne należy przeprowadzać, aby zapewnić optymalną wydajność i bezpieczeństwo urządzenia. Informacje te obejmują zarówno zalecany harmonogram konserwacji, jak i niezbędne procedury, co jest zgodne z najlepszymi praktykami w branży. W praktyce, regularne przeglądy i konserwacja zgodnie z instrukcją mogą znacznie wydłużyć żywotność urządzenia i zminimalizować ryzyko awarii, co jest kluczowe w kontekście produkcji przemysłowej. Przykładem zastosowania może być robot przemysłowy, którego instrukcja obsługi podaje harmonogram czyszczenia i smarowania, co pozwala na utrzymanie jego precyzji i niezawodności w długim okresie eksploatacji. Należy również pamiętać, że nieprzestrzeganie tych wytycznych może prowadzić do utraty gwarancji oraz zwiększonych kosztów napraw. Dlatego zawsze warto na bieżąco zapoznawać się z instrukcją obsługi.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Urządzenie przedstawione na rysunku, w projektowanym systemie mechatronicznym, będzie mogło pełnić funkcję

Ilustracja do pytania
A. regulatora PID.
B. regulatora przepływu.
C. dotykowego panelu operatorskiego.
D. analizatora stanów logicznych.
Urządzenie przedstawione na zdjęciu to dotykowy panel operatorski, co można rozpoznać po charakterystycznym interfejsie graficznym oraz oznaczeniu "TOUCH". Panele te pełnią kluczową rolę w systemach mechatronicznych, umożliwiając operatorom intuicyjną interakcję z maszynami i procesami. Dzięki technologii dotykowej operatorzy mogą szybko i skutecznie wprowadzać dane oraz monitorować stan pracy urządzeń. Tego typu rozwiązania są powszechnie stosowane w automatyce przemysłowej, gdzie wymagane jest efektywne zarządzanie złożonymi systemami. Przykładem zastosowania paneli dotykowych może być ich wykorzystanie w liniach produkcyjnych, gdzie umożliwiają one zarządzanie parametrami maszyn, ustawienie cykli pracy oraz nadzorowanie procesów w czasie rzeczywistym. W branży mechatronicznej stosowanie paneli operatorskich zgodnych z normą IEC 61131-3, dotyczącą programowania systemów automatyki, zapewnia wysoką interoperacyjność i efektywność w zarządzaniu systemami. Warto również podkreślić, że nowoczesne panele operatorskie często integrują funkcjonalności analityczne, co pozwala na lepsze śledzenie wydajności oraz diagnostykę awarii, co dodatkowo podnosi jakość pracy całego systemu.

Pytanie 6

Jaki czujnik powinien zostać zainstalowany na obudowie siłownika, aby monitorować położenie tłoczyska z magnesem?

A. Optyczny
B. Piezoelektryczny
C. Kontaktronowy
D. Ultradźwiękowy
Czujnik kontaktronowy jest idealnym rozwiązaniem do wykrywania położenia tłoczyska z magnesem w siłownikach. Działa na zasadzie zjawiska magnetycznego, co oznacza, że gdy magnes znajdujący się na tłoczysku zbliża się do czujnika, jego styk zamyka się, co pozwala na precyzyjne określenie pozycji. Kontaktrony charakteryzują się dużą wytrzymałością na warunki atmosferyczne i mechaniczne, co czyni je niezawodnymi w trudnych warunkach pracy. W praktyce są szeroko stosowane w automatyce przemysłowej, gdzie precyzyjne pomiary położenia są kluczowe. Dodatkowo, zgodnie z normami ISO 13849 dotyczącymi bezpieczeństwa maszyn, czujniki kontaktronowe mogą być wykorzystywane w systemach bezpieczeństwa, co zwiększa ich wszechstronność. Wybór czujnika kontaktronowego na korpusie siłownika jest zatem zgodny z najlepszymi praktykami branżowymi i zapewnia niezawodność oraz bezpieczeństwo systemów automatyki.

Pytanie 7

Który z poniższych elementów jest niezbędny do prawidłowego działania układu pneumatycznego?

A. Akumulator
B. Sprężarka
C. Transformator
D. Rezystor
Sprężarka jest kluczowym elementem w układzie pneumatycznym, ponieważ to ona wytwarza i dostarcza sprężone powietrze, które jest medium roboczym w takich systemach. Bez sprężarki nie byłoby możliwe generowanie ciśnienia potrzebnego do działania siłowników, zaworów czy innych elementów pneumatycznych. W praktyce sprężone powietrze jest używane w wielu gałęziach przemysłu, takich jak motoryzacja, produkcja czy budownictwo. Na przykład, w warsztatach samochodowych sprężone powietrze napędza narzędzia pneumatyczne, które są bardziej wydajne i trwałe niż ich elektryczne odpowiedniki. W przemyśle produkcyjnym sprężarki są używane do zasilania linii produkcyjnych, gdzie szybkość i precyzja działania urządzeń pneumatycznych mają kluczowe znaczenie. Dobrze zaprojektowany układ pneumatyczny, oparty na odpowiednio dobranej sprężarce, jest nie tylko efektywny, ale również energooszczędny, co przekłada się na niższe koszty eksploatacji. Sprężarki są zgodne z różnymi standardami i normami, które zapewniają ich bezpieczne i efektywne działanie, co jest istotne w kontekście ich szerokiego zastosowania w przemyśle.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Wskaż właściwy sposób adresacji zmiennej 32-bitowej w obszarze pamięci markerów sterownika PLC, której pierwsze osiem bitów ma adres w systemie dziesiętnym 102

A. ML102.
B. MB102
C. MW102.
D. MD102.
MD102 jest prawidłową odpowiedzią, ponieważ adresuje zmienną 32-bitową (marker dwubajtowy) w systemach PLC, takich jak Siemens. W nomenklaturze PLC oznaczenie MD wskazuje na standardowy sposób adresowania zmiennych, które zajmują 4 bajty pamięci, więc adres 102 odnosi się do pierwszego bajtu tej zmiennej. Zmienne 32-bitowe są często stosowane w aplikacjach wymagających precyzyjnego przechowywania danych, takich jak zliczanie, akumulacja i inne operacje arytmetyczne w procesach przemysłowych. Używanie odpowiednich oznaczeń jest istotne dla zapewnienia, że programy działają zgodnie z zamierzeniami, a także dla przyszłej konserwacji i rozwoju systemów. Przykładowo, w programowaniu PLC, gdzie istotne jest efektywne zarządzanie zasobami pamięci, prawidłowe adresowanie zmiennych 32-bitowych minimalizuje ryzyko błędów związanych z odczytem lub zapisem danych, co jest szczególnie ważne w zautomatyzowanych liniach produkcyjnych, gdzie błędy mogą prowadzić do poważnych strat. Znajomość takich konwencji jest zatem kluczowa dla każdego inżyniera automatyki.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Na schematach systemów pneumatycznych, siłowniki powinny mieć oznaczenie składające się z cyfry oraz litery

A. P
B. V
C. A
D. Z
Odpowiedź "A." jest poprawna, ponieważ w schematach układów pneumatycznych siłowniki są oznaczane symbolem literowym "A" oraz dodatkową liczbą, co jest zgodne z normami, takimi jak ISO 1219, które regulują oznaczanie elementów w schematach hydraulicznych i pneumatycznych. Oznaczenia te są istotne dla zrozumienia funkcji poszczególnych komponentów oraz ich właściwej identyfikacji w dokumentacji technicznej. Użycie liter i cyfr w taki sposób zapewnia jednoznaczność i ułatwia komunikację między inżynierami, technikami i innymi specjalistami. Przykładowo, siłownik pneumatyczny oznaczony jako A1 może wskazywać na specyfikę danego modelu oraz jego parametry, co jest kluczowe podczas projektowania układów automatyki przemysłowej. Właściwe oznaczenie komponentów wpływa na efektywność i bezpieczeństwo pracy systemów pneumatycznych oraz przyczynia się do ich dłuższej żywotności, co jest niezwykle istotne w kontekście nowoczesnej produkcji. Zatem, zrozumienie zasadności takiego oznaczenia jest fundamentem dla każdego inżyniera zajmującego się projektowaniem układów automatyki.

Pytanie 14

Jaką czynność projektową nie jest możliwe zrealizowanie w oprogramowaniu CAM?

A. Przygotowania instrukcji (G-CODE) dla maszyn typu Rapid Prototyping
B. Wykonywania symulacji obróbki obiektu w środowisku wirtualnym
C. Przygotowania dokumentacji technologicznej produktu
D. Generowania kodu dla obrabiarki CNC
Wybierając odpowiedzi, takie jak 'Opracowania instrukcji (G-CODE) dla maszyn typu Rapid Prototyping', 'Symulowania obróbki obiektu w wirtualnym środowisku' czy 'Wygenerowania kodu dla obrabiarki CNC', można łatwo wpaść w pułapkę mylnego zrozumienia funkcji oprogramowania CAM. Oprogramowanie CAM jest zaprojektowane z myślą o generowaniu kodu sterującego i symulowaniu procesów obróbczych, co jest kluczowe dla efektywności produkcji. Niewłaściwe zrozumienie roli CAM może prowadzić do przekonania, że wszystkie aspekty projektowania i wytwarzania mieszczą się w jego funkcjonalności, co jest z gruntu błędne. Oprogramowanie CAM nie zapewnia jednak żadnych funkcji związanych z tworzeniem dokumentacji technologicznej, a to właśnie takie działania są niezbędne w wielu branżach, zwłaszcza w kontekście standardów jakości i procedur produkcyjnych. Często spotyka się błędy myślowe, takie jak założenie, że wszelkiego rodzaju instrukcje operacyjne mogą być generowane w CAM bez wcześniejszego przetworzenia danych w CAD. W praktyce, każdy projekt wymaga odpowiedniej dokumentacji, która może być realizowana jedynie poprzez dedykowane oprogramowanie CAD, a następnie wdrażana w procesie produkcji przez CAM. Ignorowanie tego podziału prowadzi do nieefektywności i błędów w procesie produkcyjnym.

Pytanie 15

Jakim akronimem opisuje się systemy wspomagania komputerowego w procesie produkcji?

A. CNC
B. CAD
C. CAM
D. CAE
Odpowiedź CAM oznacza Computer Aided Manufacturing, co w tłumaczeniu na polski oznacza systemy komputerowego wspomagania wytwarzania. Systemy te są kluczowe w nowoczesnym przemyśle, ponieważ umożliwiają automatyzację procesów produkcyjnych, co zwiększa efektywność, precyzję oraz redukuje koszty produkcji. Przykładowo, w przemyśle motoryzacyjnym, systemy CAM są używane do sterowania maszynami CNC (Computer Numerical Control), które wykonują złożone operacje obróbcze na metalowych komponentach. Dzięki CAM inżynierowie mogą tworzyć skomplikowane modele w oprogramowaniu CAD (Computer Aided Design) i następnie bezpośrednio przesyłać je do maszyn produkcyjnych. To podejście nie tylko zwiększa dokładność, ale również umożliwia szybszą adaptację do zmieniających się potrzeb rynku, co jest zgodne z najlepszymi praktykami w zakresie Lean Manufacturing i Industry 4.0.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

W jaki sposób, w zależności od wartości napięcia międzyfazowego sieci U i częstotliwości f, należy skojarzyć uzwojenie silnika przed podłączeniem go do sieci trójfazowej?

Ilustracja do pytania
A. Jeżeli U = 400 V, f= 50 Hz w Y, jeżeli U =460 V, f=60 Hz w Δ
B. Jeżeli U = 230 V, f= 50 Hz w A, jeżeli U = 265 V, f=60 Hz w Y
C. Jeżeli U = 400 V, f= 50 Hz w A, jeżeli U =460 V, f=60 Hz w Y
D. Jeżeli U = 400 V, f= 50 Hz w Y, jeżeli U =265 V, f=60 Hz w A
Poprawna odpowiedź wskazuje, że dla napięcia międzyfazowego wynoszącego 400 V i częstotliwości 50 Hz uzwojenia silnika powinny być połączone w konfiguracji gwiazdy (Y). W przypadku, gdy napięcie wynosi 265 V przy częstotliwości 60 Hz, uzwojenia powinny być połączone w trójkąt (A). Taki wybór połączeń wynika z zasad doboru uzwojeń silników asynchronicznych do warunków zasilania. Połączenie w gwiazdę obniża napięcie na uzwojeniach do wartości 230 V przy zasilaniu 400 V, co jest korzystne w przypadku silników o mniejszych mocach. Warto zatem przy każdej instalacji zwrócić uwagę na tabliczkę znamionową silnika, aby odpowiednio dostosować parametry zasilania, co przełoży się na efektywność i bezpieczeństwo pracy urządzenia. Przykłady zastosowania tej wiedzy znajdują się w praktykach przemysłowych, gdzie dobór odpowiednich połączeń uzwojeń wpływa na wydajność procesów produkcyjnych oraz trwałość maszyn. Dodatkowo, zgodnie z normą PN-EN 60034-1, należy zawsze przestrzegać wskazówek producenta dotyczących podłączenia silnika do sieci zasilającej.

Pytanie 19

W przypadku PLC, odwołanie do zmiennej 32-bitowej powinno być zapisane w formacie rozpoczynającym się literą

A. b.
B. D.
C. B.
D. W.
Odpowiedzi "B", "b" oraz "W" są niepoprawne z różnych powodów, które wynikają z nieporozumienia dotyczącego typów zmiennych w systemach PLC. Oznaczenie "B" zazwyczaj odnosi się do zmiennej bitowej, co jest zdecydowanie innym typem danych, który zajmuje tylko 1 bit. Używanie zmiennej bitowej w kontekście 32-bitowego przetwarzania danych jest błędne i prowadzi do poważnych ograniczeń w zakresie przechowywania oraz operacji na danych. Oznaczenie "b" również wskazuje na typ bitowy, co potwierdza, że odpowiedź ta jest nieprawidłowa. Z kolei "W" wskazuje na typ słowa, co w kontekście standardowych definicji w PLC oznacza 16-bitową zmienną. Wybierając te odpowiedzi, można łatwo przeoczyć fundamentalne różnice między różnymi typami zmiennych i ich zastosowaniem w programowaniu. Kluczowe jest zrozumienie, że w automatyce przemysłowej precyzyjne rozróżnienie typów zmiennych pozwala na efektywne planowanie i implementację systemów sterowania. Dlatego ważne jest, aby przed wyborem odpowiedzi dokładnie analizować, jakie typy danych są stosowane w danym kontekście oraz jakie mają właściwości i ograniczenia.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Zauważono, że silnik indukcyjny pracuje z nadmiernym hałasem, a źródło dźwięku znajduje się w łożysku tocznym. Jak można rozwiązać ten problem?

A. Smarując łożysko olejem
B. Zamieniając osłony łożyska
C. Uzupełniając smar w łożysku
D. Wymieniając łożysko
Głośna praca silnika indukcyjnego, wynikająca z nieprawidłowości w łożysku tocznym, wskazuje na jego zniszczenie lub zużycie mechaniczne. Wymiana łożyska to jedyne skuteczne rozwiązanie, które zapewni długotrwałe działanie silnika. W przypadku łożysk tocznych, ich efektywność zależy od odpowiedniego smarowania oraz stanu mechanicznego. Regularna konserwacja i wymiana łożysk są zgodne z normami branżowymi, które zalecają okresowe przeglądy urządzeń elektrycznych. Wymiana uszkodzonego łożyska na nowe pozwala na przywrócenie optymalnej pracy silnika oraz minimalizuje ryzyko dodatkowych uszkodzeń. Warto również zwrócić uwagę na dobór właściwego typu łożyska, które powinno odpowiadać specyfikacji producenta silnika. Praktyka pokazuje, że zaniedbanie wymiany łożyska może prowadzić do poważnych awarii mechanicznych, co wiąże się z kosztami napraw oraz przestojami produkcyjnymi. Dlatego kluczowe jest podejście proaktywne w zakresie konserwacji łożysk.

Pytanie 24

Konserwacja układu stycznikowo-przekaźnikowego nie obejmuje

A. oceny zużycia styków
B. dokonywania regulacji
C. sprawdzania dokręcenia śrub zacisków
D. usuwania kurzu
Regulacje to nie to samo co konserwacja układu stycznikowo-przekaźnikowego. Konserwacja skupia się na tym, żeby sprzęt działał dobrze i był w dobrym stanie. Do tego potrzebne są takie rzeczy jak sprawdzenie dokręcenia śrub czy czyszczenie, co jest super ważne dla stabilnych połączeń elektrycznych. Regularne czyszczenie sprzętu z kurzu jest też kluczowe, bo zapobiega przegrzewaniu się i uszkodzeniom. Musimy też pilnować, co się dzieje ze stykami, bo jak są zużyte, to mogą nas na przykład zaskoczyć jakimś zwarciem, a to już grozi bezpieczeństwu. Dobrze jest też znać normy, na przykład PN-EN 60204-1, które mówią, że trzeba regularnie przeglądać i dbać o nasze urządzenia elektryczne, żeby zapewnić ich niezawodność i bezpieczeństwo w pracy.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Którego z przetworników temperatury należy użyć w układzie mechatronicznym, jeżeli:
- elementem sensorycznym w układzie jest czujnik Pt 100,
- przetwornik będzie zasilany z zasilacza wewnętrznego sterownika PLC (24 V DC),
- wyjście przetwornika podłączone będzie do wejścia analogowego 4 do 20 mA sterownika,
- układ pomiarowy będzie zamontowany na zewnątrz hali produkcyjnej?

Typ czujnika
parametr
7NG3211-PNC007NG3211-PT1007NG3211-PKL007NG3211-PN100
WejścieCzujniki
rezystancyjne
półprzewodnikowe
Czujniki
rezystancyjne
TermoparyCzujniki
rezystancyjne
Wyjście0 ÷ 20 mA0 ÷ 20 mA4 ÷ 20 mA4 ÷ 20 mA
Zasilanie8,5 ÷ 36 V DC8,5 ÷ 30 V DC8,5 ÷ 30 V DC8,5 ÷ 36 V DC
Stopień
ochrony
IP 40IP 40IP 40IP 40
Temperatura
otoczenia
0 ÷ 40°C0 ÷ 40°C-40 ÷ 80°C-40 ÷ 80°C
A. 7NG3211-PT100
B. 7NG3211-PKL00
C. 7NG3211-PN100
D. 7NG3211-PNC00
Wybranie złego przetwornika z dostępnych opcji może wynikać z tego, że nie do końca rozumiesz specyfikacje techniczne. Na przykład, przetwornik 7NG3211-PKL00 nie nadaje się, bo nie współpracuje z czujnikami Pt 100. To oznacza, że nie odczyta dobrze wartości rezystancyjnych tych czujników. Z kolei 7NG3211-PT100 oczywiście może współpracować z Pt 100, ale może nie mieć napięcia 24 V DC, co jest kluczowe, zwłaszcza w systemach PLC. Dodatkowo, są pewne wątpliwości co do jego montażu w trudnych warunkach zewnętrznych, co jest istotne, bo takie elementy mogą być narażone na zmiany w pogodzie, co wpływa na pomiary. W automatyce przemysłowej ważne jest, żeby znać zgodność sprzętu i wybierać odpowiednie komponenty, bo to ma wielki wpływ na to jak system działa. Ignorowanie tego może prowadzić do problemów z integracją i błędnych odczytów, co na pewno nie pomaga w procesach technologicznych. Dlatego warto dokładnie analizować specyfikacje przed podjęciem decyzji.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Ile poziomów kwantyzacji oraz jaka jest rozdzielczość napięciowa przetwornika A/C w urządzeniu mechatronicznym o zakresie pomiarowym 0÷10 V i rozdzielczości 10 bitów?

A. 256 poziomów kwantyzacji i rozdzielczość napięciowa 39,06 mV
B. 1024 poziomy kwantyzacji i rozdzielczość napięciowa 9,76 mV
C. 512 poziomów kwantyzacji i rozdzielczość napięciowa 19,53 mV
D. 2048 poziomów kwantyzacji i rozdzielczość napięciowa 4,88 mV
Przetwornik A/C o rozdzielczości 10 bitów jest w stanie wygenerować maksymalnie 1024 poziomy kwantyzacji. W przypadku skali pomiarowej 0÷10 V, napięcie to musi być podzielone na 1024 poziomy. Aby obliczyć rozdzielczość napięciową, można skorzystać ze wzoru: Rozdzielczość = Zakres napięcia / Liczba poziomów kwantyzacji. W tym przypadku: 10 V / 1024 = 0,00976 V, co odpowiada 9,76 mV. Takie parametry są kluczowe w aplikacjach mechatronicznych, gdzie precyzyjne pomiary napięcia są niezbędne, na przykład w systemach automatyki czy robotyce. Dzięki odpowiedniej rozdzielczości można dokładniej monitorować i regulować procesy, co jest zgodne z najlepszymi praktykami branżowymi w zakresie projektowania systemów pomiarowych i kontrolnych. Wzrost liczby poziomów kwantyzacji pozwala na uzyskanie dokładniejszych i bardziej stabilnych pomiarów, co jest istotne dla efektywności działania nowoczesnych urządzeń mechatronicznych.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.