Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 18 grudnia 2025 15:56
  • Data zakończenia: 18 grudnia 2025 16:18

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Którym z kluczy należy dokręcić nakrętkę kotwy przedstawionej na ilustracji?

Ilustracja do pytania
A. Nasadowym.
B. Imbusowym.
C. Oczkowym.
D. Płaskim.
Odpowiedź "klucz płaski" jest prawidłowa, ponieważ nakrętka kotwy na ilustracji ma kształt, który jest idealnie dopasowany do użycia klucza płaskiego. Klucz płaski, dzięki swojej konstrukcji, jest w stanie skutecznie obejmować łeb nakrętki z dwóch stron, co zapewnia stabilny i pewny chwyt podczas dokręcania. W praktyce, klucze płaskie wykorzystywane są w sytuacjach, gdzie dostęp do nakrętki jest ograniczony, a ich konstrukcja umożliwia łatwe stosowanie w takich warunkach. Ponadto, standardowe klucze płaskie są często używane w serwisach mechanicznych, warsztatach oraz do prac domowych związanych z montażem i serwisowaniem różnych elementów. Zgodnie z najlepszymi praktykami, przed przystąpieniem do dokręcania, warto upewnić się, że rozmiar klucza jest odpowiedni do nakrętki, co zapobiegnie uszkodzeniom zarówno narzędzia, jak i elementu łączącego. Użycie klucza płaskiego w odpowiedni sposób zapewnia również, że dokręcanie jest równomierne, co podnosi trwałość i bezpieczeństwo montażu.

Pytanie 2

Które z przedstawionych narzędzi, oprócz lutownicy, jest niezbędne przy naprawie przeciętego przewodu LY przez połączenie lutowane?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Wybór innej odpowiedzi, która nie wskazuje na szczypce do ściągania izolacji, może wynikać z nieporozumienia dotyczącego procesu lutowania i przygotowania przewodów. Kluczowym etapem w naprawie przewodów jest usunięcie izolacji, co jest niezbędne do zapewnienia dobrego kontaktu elektrycznego. Bez odpowiedniego narzędzia do ściągania izolacji nie będzie możliwe prawidłowe przygotowanie przewodów, co może prowadzić do nietrwałych połączeń. Ważne jest zrozumienie, że lutownica sama w sobie nie wystarcza do naprawy uszkodzonego przewodu. Wiele osób może mylnie zakładać, że lutowanie można przeprowadzić na przewodach z izolacją, co jest błędnym podejściem. Tego typu myślenie może prowadzić do uszkodzenia przewodów oraz nieefektywnych połączeń, które mogą stwarzać zagrożenie w przyszłości. Prawidłowa wiedza na temat narzędzi i technik stosowanych w elektryce jest kluczowa dla zapewnienia bezpieczeństwa oraz efektywności pracy. Warto pamiętać, że każdy profesjonalista powinien być świadomy znaczenia odpowiednich narzędzi w kontekście lutowania, ponieważ niewłaściwe przygotowanie może prowadzić do problemów z przewodnictwem elektrycznym oraz zwiększać ryzyko awarii.

Pytanie 3

Który rodzaj sterowania zapewnia układ silnika przedstawiony na schemacie?

Ilustracja do pytania
A. Hamowanie dynamiczne.
B. Regulację obrotów przez zmianę napięcia twornika.
C. Regulację obrotów przez bocznikowanie uzwojenia wzbudzenia.
D. Hamowanie prądnicowe.
Regulacja obrotów silnika przez zmianę napięcia twornika to jedna z najczęściej stosowanych metod w praktyce inżynieryjnej. Na schemacie widać rezystory R1, R2 i R3, które, działając na zasadzie zmiany rezystancji, wpływają na napięcie na tworniku silnika elektrycznego. Zmniejszając rezystancję, zwiększamy napięcie, co prowadzi do wzrostu prędkości obrotowej silnika, natomiast zwiększając rezystancję, napięcie maleje, co skutkuje spowolnieniem obrotów. Tego rodzaju regulacja znajduje zastosowanie w różnych aplikacjach, takich jak napędy elektryczne w przemyśle, gdzie precyzyjna kontrola prędkości jest kluczowa. Dobre praktyki w tej dziedzinie obejmują zastosowanie kontrolerów napięcia oraz odpowiednich układów zasilających, które zapewniają stabilność i bezpieczeństwo pracy silnika. Dodatkowo, warto zwrócić uwagę na wpływ zmian obciążenia na pracę silnika oraz na konieczność stosowania zabezpieczeń przed przeciążeniem, co jest zgodne z normami IEC dotyczących układów napędowych.

Pytanie 4

Wyłącznik różnicowoprądowy o oznaczeniu P304 63-30-AC posiada znamionowy prąd różnicowy wynoszący

A. 0,03 A i znamionowy prąd ciągły 63 A
B. 0,03 mA oraz napięcie znamionowe 63 V
C. 0,03 mA oraz znamionowy prąd ciągły 63 mA
D. 0,03 A oraz napięcie znamionowe 63 V
Zrozumienie parametrów technicznych wyłączników różnicowoprądowych jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych. Odpowiedzi zawierające błędne wartości prądu różnicowego, jak 0,03 mA czy 0,03 mA, są mylące, ponieważ prąd różnicowy powinien być podawany w amperach, a nie miliamperach czy mikroamperach. Prąd różnicowy na poziomie 0,03 A odpowiada wartości 30 mA, co jest standardową wartością dla wyłączników stosowanych w budynkach mieszkalnych, a nie 0,03 mA, co wskazywałoby na minimalne zdolności detekcji. Również błędna jest informacja, że wyłącznik ma znamionowe napięcie 63 V. Znamionowe napięcie dla tego typu urządzenia wynosi znacznie więcej, w typowych zastosowaniach wynosi 230 V lub 400 V w instalacjach trójfazowych. Odpowiedzi sugerujące niewłaściwe wartości znamionowego prądu ciągłego, takie jak 63 mA, są kolejnym typowym błędem. Prąd ciągły 63 A jest standardem w przemyśle i instalacjach domowych, zapewniającym wystarczającą moc do zasilania różnych urządzeń elektrycznych. Dlatego ważne jest, aby przy analizie parametrów wyłączników różnicowoprądowych posługiwać się zgodnymi z normami wartościami, aby zapewnić ich prawidłowe działanie oraz maksymalne bezpieczeństwo użytkowników.

Pytanie 5

Na której ilustracji przedstawiono kabel typu YAKY?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 2.
C. Na ilustracji 4.
D. Na ilustracji 1.
Wybór innej ilustracji niż ta, która przedstawia kabel YAKY, może wynikać z braku zrozumienia specyfikacji tego typu kabla. Kable YAKY są rozpoznawalne dzięki swojej charakterystycznej budowie, która obejmuje trzy przewody izolowane materiałem polwinitowym oraz dodatkowy oplot PVC. Na ilustracjach, które nie przedstawiają kabla YAKY, możemy dostrzec inne typy kabli, które mogą mieć różne zastosowania, lecz nie spełniają kryteriów YAKY. Na przykład, kabel z izolacją gumową lub innym rodzajem tworzywa sztucznego może wyglądać na pierwszy rzut oka podobnie, ale jego właściwości, takie jak odporność na temperaturę czy działanie chemikaliów, mogą się znacznie różnić. Często mylone są również kable o różnych przeznaczeniach, jak kable do instalacji telekomunikacyjnych czy sygnalizacyjnych, które nie nadają się do zasilania urządzeń elektrycznych w sposób bezpieczny. Konsekwencje błędnego doboru kabli mogą być poważne, prowadząc do awarii, a w skrajnych przypadkach do zagrożenia pożarowego. Kluczowe jest, aby przy wyborze kabla kierować się nie tylko jego wyglądem, ale przede wszystkim parametrami technicznymi oraz zaleceniami producentów, które są zgodne z obowiązującymi normami i standardami branżowymi.

Pytanie 6

W miejsce cyfr dobierz symbole graficzne rodzaju przewodów, zachowując kolejność.

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Odpowiedź D jest poprawna, ponieważ zgodnie z zasadami podłączania przewodów w instalacjach elektrycznych, oznaczenia przewodów mają kluczowe znaczenie dla ich prawidłowego funkcjonowania. Przewód oznaczony grubą kropką reprezentuje przewód neutralny (N), podczas gdy przewody bez oznaczeń to przewody fazowe (L). W analizowanym schemacie widzimy, że do łącznika dochodzi przewód fazowy, a jego wyjście również prowadzi do przewodu fazowego. Odpowiedź D ilustruje tę sytuację, przedstawiając dwa przewody fazowe oraz jeden neutralny, co jest zgodne z normami i dobrymi praktykami branżowymi. Właściwe podłączenie przewodów jest istotne, aby zapewnić bezpieczeństwo instalacji oraz jej właściwe działanie. Przykładowo, w instalacjach oświetleniowych, prawidłowe oznaczenie i podłączenie przewodów ma kluczowe znaczenie dla uniknięcia zwarć oraz zapewnienia nieprzerwanego dostępu do energii elektrycznej.

Pytanie 7

Jak należy interpretować przedstawiony na zdjęciu wynik pomiaru rezystancji izolacji przewodu o napięciu znamionowym 300 V/300 V wykonany miernikiem MIC-2 ustawionym na zakres 500 V?

Ilustracja do pytania
A. Miernik ma rozładowaną baterię.
B. Rezystancja izolacji przewodu jest wystarczająca.
C. Miernik jest uszkodzony.
D. Zbyt mała rezystancja izolacji przewodu.
Odpowiedź, że rezystancja izolacji przewodu jest wystarczająca, jest prawidłowa, ponieważ wynik pomiaru na wyświetlaczu miernika MIC-2 wynosi '>999MΩ'. To oznacza, że miernik nie zdołał zmierzyć wartości rezystancji, ponieważ jest ona znacznie wyższa niż maksymalny zakres, co wskazuje na doskonały stan izolacji przewodu. Dla przewodów o napięciu znamionowym 300 V/300 V, zgodnie z normami bezpieczeństwa (np. PN-EN 60204-1), minimalna rezystancja izolacji powinna wynosić co najmniej 1 MΩ. Przy wartości '>999MΩ' jest to więcej niż wystarczające, co świadczy o braku potencjalnych zagrożeń dla użytkowników i sprzętu. W praktyce, w przypadku instalacji elektrycznych, regularne pomiary rezystancji izolacji są niezbędne do zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych. Odpowiednia rezystancja izolacji zmniejsza ryzyko zwarcia oraz uszkodzenia urządzeń, co jest kluczowe w kontekście ochrony przed porażeniem elektrycznym oraz poprawnego funkcjonowania instalacji.

Pytanie 8

Które z przedstawionych narzędzi przeznaczone jest do zdejmowania izolacji z żył przewodów elektrycznych?

Ilustracja do pytania
A. Narzędzie 3.
B. Narzędzie 1.
C. Narzędzie 2.
D. Narzędzie 4.
Narzedzie 1 to kluczowy instrument w pracy z przewodami elektrycznymi, zwłaszcza w kontekście przygotowania ich do połączeń. Szczypce do ściągania izolacji, których użycie zaleca się w branży elektrycznej, są zaprojektowane tak, aby umożliwić precyzyjne usunięcie izolacji z żył bez ryzyka uszkodzenia samego przewodu. Dobrej jakości szczypce posiadają mechanizm regulacji głębokości ściągania, co pozwala na dostosowanie siły do rodzaju przewodu. W praktyce, zastosowanie tych narzędzi sprawia, że prace instalacyjne są nie tylko szybsze, ale także bezpieczniejsze, co jest zgodne z normami bezpieczeństwa elektrycznego. Używając szczypiec, można łatwo przygotować przewody do podłączenia terminali, co jest niezbędne w każdym projekcie elektrycznym. Ponadto, w kontekście dobrych praktyk, zaleca się regularne sprawdzanie stanu narzędzi, aby zapewnić ich efektywność i bezpieczeństwo użytkowania.

Pytanie 9

Który symbol graficzny oznacza na planie instalacji elektrycznej sposób prowadzenia przewodów przedstawiony na zdjęciu?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Wybór innej odpowiedzi niż C może być spowodowany nieporozumieniem, jeśli chodzi o oznaczenia w instalacjach elektrycznych. Ważne jest, żeby zrozumieć, że każdy symbol na planie ma swoje konkretne znaczenie, które powinno być zgodne z normami. Wiele osób myśli, że inne symbole są podobne do tego samego sposobu prowadzenia przewodów, ale to nie zawsze prawda. Na przykład, jeśli ktoś wybierze symbol A, to może pomyśleć, że oznacza to coś analogicznego do kanału kablowego, ale w rzeczywistości chodzi o instalacje powierzchniowe i to inna sprawa. Takie błędy zdarzają się najczęściej, bo brakuje znajomości standardów rysunku technicznego i jest problem z interpretacją symboli. W projektowaniu instalacji elektrycznych granie na tych zasadach jest kluczowe, by mieć dobrą wiedzę teoretyczną i praktyczną o oznaczeniach. Często ludzie upraszczają sprawy i nie biorą pod uwagę kontekstu, w jakim instalacja jest realizowana. Zrozumienie symboli graficznych jest istotne dla bezpieczeństwa i efektywności projektowania instalacji elektrycznych.

Pytanie 10

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Identyfikuje przeciążenia
B. Rozpoznaje zwarcia
C. Zatrzymuje łuk elektryczny
D. Napina sprężynę mechanizmu
Wybór odpowiedzi dotyczącej gaszenia łuku elektrycznego jest mylny, ponieważ proces ten nie jest bezpośrednio związany z funkcją wyzwalacza elektromagnetycznego. Wyłączniki nadprądowe, przy wykrywaniu zwarcia, mogą generować łuk elektryczny, który jest następnie gaszony przez specjalne mechanizmy w urządzeniach, takich jak komory gaszenia łuku. W związku z tym, gaszenie łuku to proces, który zachodzi po detekcji zwarcia, a nie jest funkcją wyzwalacza. Ponadto, odpowiedź odnosząca się do wykrywania przeciążeń jest również nieprawidłowa, ponieważ wyzwalacz elektromagnetyczny skupia się głównie na detekcji zwarć, a przeciążenia są zwykle rozpoznawane przez funkcję wyzwalacza termicznego, który działa na zasadzie wydłużania się elementu bimetalowego pod wpływem ciepła generowanego przez przepływający prąd. Naciąganie sprężyny napędu, chociaż istotne w niektórych mechanizmach wyłączników, nie ma żadnego związku z funkcjami wyzwalacza elektromagnetycznego. W praktyce, mylenie funkcji tych komponentów prowadzi do nieporozumień w zakresie projektowania systemów zabezpieczeń elektrycznych, co może skutkować niewłaściwym doborem urządzeń oraz potencjalnym zagrożeniem dla użytkowników i sprzętu.

Pytanie 11

Określ przyczynę nadmiernego wzrostu napięcia na zaciskach odbiornika Z1 w układzie przedstawionym na schemacie, przy założeniu, że impedancje Z1, Z2 i Z3 znacznie się różnią.

Ilustracja do pytania
A. Zwarcie pomiędzy dwoma przewodami fazowymi.
B. Zwarcie na zaciskach odbiornika Z2 lub Z3.
C. Przerwa w przewodzie neutralnym.
D. Przerwa na zaciskach odbiornika Z2 lub Z3.
Zwarcia pomiędzy przewodami fazowymi czy na zaciskach odbiorników Z2 lub Z3 są powszechnie mylone z przyczynami nadmiernego wzrostu napięcia na zaciskach Z1. Zwarcie w obwodzie fazowym prowadziłoby do znaczącego wzrostu prądu w danym obwodzie, co skutkowałoby zadziałaniem zabezpieczeń, a tym samym wyłączeniem zasilania, a nie do długotrwałego wzrostu napięcia. Podobnie, zwarcie na zaciskach odbiorników Z2 czy Z3 wpłynęłoby na ich własne parametry pracy, ale nie na napięcia na zaciskach Z1. Przerwa na zaciskach odbiornika Z2 lub Z3 wprowadzałaby natomiast zjawisko wyłączenia jednego z obwodów, co również nie prowadziłoby do wzrostu napięcia na Z1, a raczej do obniżenia jego wartości. Ostatecznie, nieprawidłowe założenie dotyczące braku wpływu przewodu neutralnego na rozkład napięcia jest typowym błędem myślowym. Kluczowym zrozumieniem jest, jak współdziałają ze sobą różne komponenty układu elektrycznego. Normy takie jak PN-IEC 60364 podkreślają znaczenie solidnych połączeń neutralnych dla zachowania stabilności napięcia w całym systemie. Użytkownicy powinni być świadomi potencjalnych konsekwencji niewłaściwego podejścia do analizy układów trójfazowych, co może prowadzić do poważnych awarii i zagrożeń dla bezpieczeństwa.

Pytanie 12

W systemie sieciowym typu TT wyłączenie zasilania przeprowadzane jest przy pomocy urządzenia ochronnego różnicowoprądowego. Aby ochrona była skuteczna, konieczne jest spełnienie następującej zależności

A. RA ∙ IΔn ≥ UL
B. RA ∙ IΔn < UL
C. RA ∙ IΔn ≤ UL
D. RA ∙ IΔn > UL
Odpowiedź RA ∙ IΔn ≤ UL jest prawidłowa, ponieważ odnosi się do zasad ochrony przeciwporażeniowej w instalacjach elektrycznych typu TT. W tym typie sieci, urządzenia ochronne różnicowoprądowe (RCD) mają kluczowe znaczenie dla zapewnienia bezpieczeństwa użytkowników. Zależność RA ∙ IΔn ≤ UL oznacza, że rezystancja uziemienia (RA) pomnożona przez wartość prądu różnicowego, przy którym urządzenie zaczyna działać (IΔn), musi być mniejsza lub równa poziomowi napięcia dotykowego (UL). W praktyce oznacza to, że w momencie, gdy dojdzie do uszkodzenia izolacji, a prąd różnicowy przekroczy wartość IΔn, urządzenie RCD zadziała, odcinając zasilanie i minimalizując ryzyko porażenia prądem. Standardy, takie jak PN-EN 61008, podkreślają znaczenie prawidłowego doboru wartości IΔn oraz zapewnienia odpowiedniej rezystancji uziemienia, co jest kluczowe dla bezpieczeństwa instalacji elektrycznych. Przykładem zastosowania tej zasady może być instalacja w budynku mieszkalnym, gdzie odpowiedni dobór RCD chroni domowników przed skutkami ewentualnych awarii elektrycznych.

Pytanie 13

Którego narzędzia nie należy stosować przy wykonywaniu montażu lub demontażu elementów instalacji elektrycznych?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Wybór odpowiedzi D jest prawidłowy, ponieważ scyzoryk wielofunkcyjny nie powinien być stosowany przy montażu lub demontażu elementów instalacji elektrycznych. Narzędzia tego typu, mimo że są wszechstronne, nie zapewniają odpowiedniego poziomu bezpieczeństwa wymagającego pracy z elektrycznością. Główne ryzyko związane z używaniem scyzoryka polega na możliwości uszkodzenia izolacji przewodów, co może prowadzić do poważnych zwarć, a nawet pożarów. W praktyce, do pracy z instalacjami elektrycznymi zaleca się korzystać z narzędzi izolowanych, takich jak szczypce izolowane czy kombinerki, które są zaprojektowane z myślą o ochronie przed porażeniem prądem. Dodatkowo, w wielu krajach obowiązują normy branżowe, takie jak IEC 60900, które określają wymagania dotyczące narzędzi używanych w pracach z instalacjami elektrycznymi, promując tym samym najwyższe standardy bezpieczeństwa. Używanie właściwych narzędzi to nie tylko kwestia efektywności pracy, ale przede wszystkim bezpieczeństwa operatora i osób znajdujących się w pobliżu.

Pytanie 14

Oznaczenie YDYn 4x2,5 mm2 znajdujące się na izolacji dotyczy przewodu

A. samonośnego
B. natynkowego
C. oponowego
D. podtynkowego
Wybór innych odpowiedzi może wynikać z nieporozumień dotyczących klasyfikacji przewodów elektrycznych. Przewody natynkowe są zazwyczaj instalowane w sposób widoczny, na powierzchni ścian, co nie odpowiada charakterystyce przewodów samonośnych, które są przeznaczone do wieszania bez dodatkowego wsparcia. Z kolei przewody oponowe, które są elastyczne i strukturalnie dostosowane do ciężkich warunków, nie są przeznaczone do instalacji na zewnątrz bez dodatkowych osłon, co czyni je nieodpowiednimi do zastosowań samonośnych. Przewody podtynkowe, jak sama nazwa wskazuje, muszą być montowane w murach, co również odróżnia je od przewodów samonośnych. Kluczową różnicą jest to, że przewody samonośne muszą być przystosowane do pracy w warunkach atmosferycznych, co jest potwierdzone odpowiednimi atestami i normami. W rozumieniu tych kategorii, można zauważyć, że mylenie ich zastosowań prowadzi do praktycznych problemów w instalacjach elektrycznych, takich jak uszkodzenia mechaniczne czy niewłaściwe zasilanie urządzeń. Właściwy dobór przewodu jest kluczowy dla zapewnienia bezpieczeństwa i efektywności systemów elektrycznych.

Pytanie 15

Miernik rezystancji włączony do układu jak na rysunku służy do

Ilustracja do pytania
A. pomiaru impedancji pętli zwarciowej.
B. sprawdzenia ciągłości przewodu miejscowego połączenia wyrównawczego.
C. pomiaru rezystancji uziemienia.
D. sprawdzenia ciągłości przewodu głównego połączenia wyrównawczego.
Wybór odpowiedzi niezgodnej z rzeczywistym przeznaczeniem miernika rezystancji może prowadzić do poważnych konsekwencji w pracy z instalacjami elektrycznymi. Pomiar impedancji pętli zwarciowej, choć istotny, dotyczy innego aspektu analizy instalacji elektrycznej. Impedancja pętli zwarciowej jest parametrem, który pozwala zrozumieć, jak instalacja zareaguje w przypadku zwarcia. Pomiar ten wykonuje się zwykle w celu oceny skuteczności zabezpieczeń, a nie do sprawdzenia ciągłości przewodów ochronnych. Także, pomiar rezystancji uziemienia, mimo że istotny dla zapewnienia ochrony przed porażeniem, odnosi się do innego elementu instalacji, a nie do samej ciągłości przewodu. Dodatkowo, sprawdzenie ciągłości przewodu miejscowego połączenia wyrównawczego także nie jest właściwe w kontekście użycia miernika w opisywanym układzie. Mierzony przewód w tym przypadku jest przewodem głównym, który odgrywa kluczową rolę w bezpiecznym funkcjonowaniu całej instalacji. Zrozumienie różnicy pomiędzy tymi rodzajami pomiarów jest kluczowe dla każdego specjalisty zajmującego się elektryką, ponieważ pomyłka w identyfikacji celu pomiaru może prowadzić do poważnych problemów z bezpieczeństwem instalacji, a także do nieprawidłowej oceny stanu technicznego systemu elektrycznego.

Pytanie 16

Jaką wartość ma znamionowa sprawność silnika jednofazowego, którego dane to: PN = 3,7 kW (moc mechaniczna na wale), UN = 230 V, IN = 21,4 A, cos φ = 0,95?

A. 0,95
B. 0,71
C. 0,79
D. 0,75
Znamionowa sprawność silnika jednofazowego wynosi 0,79, co oznacza, że 79% energii elektrycznej dostarczonej do silnika przekształca się w moc mechaniczną na wale. Obliczenie sprawności silnika można przeprowadzić na podstawie wzoru: η = P_N / (U_N * I_N * cos φ), gdzie P_N to moc mechaniczna na wale, U_N to napięcie znamionowe, I_N to prąd znamionowy, a cos φ to współczynnik mocy. Dla tego silnika mamy: η = 3,7 kW / (230 V * 21,4 A * 0,95) = 0,79. Taka sprawność jest typowa dla silników elektrycznych, które są projektowane z myślą o jak najwyższej efektywności energetycznej. W praktyce, silniki o wysokiej sprawności są szczególnie poszukiwane w przemyśle, ponieważ pozwalają na znaczne oszczędności kosztów energii, a także redukcję emisji CO2. W dobie rosnących cen energii elektrycznej i rosnącej presji na ochronę środowiska, wybór silników o wysokiej sprawności staje się kluczowy.

Pytanie 17

W strefie 0 przedstawionego na rysunku pomieszczenia z wanną można instalować

Ilustracja do pytania
A. urządzenia zasilanie prądem zmiennym do 12 V.
B. oprawy oświetleniowe o II klasie ochronności.
C. przenośne odbiorniki o II klasie ochronności.
D. elektryczne podgrzewacze wody.
W strefach 0 pomieszczeń z wanną istnieją surowe przepisy dotyczące dozwolonych instalacji elektrycznych, które mają na celu ochronę przed porażeniem prądem. Strefa ta jest szczególnie niebezpieczna ze względu na bezpośredni kontakt z wodą, co zwiększa ryzyko elektrycznego wstrząsu. Przenośne odbiorniki o II klasie ochronności, choć zaprojektowane z myślą o bezpieczeństwie, nie są odpowiednie do użycia w strefie 0, ponieważ nie zapewniają wystarczającej ochrony przed wodą. Podobnie elektryczne podgrzewacze wody, które mogą być zainstalowane w innych strefach, w strefie 0 mogą stwarzać poważne zagrożenia, ponieważ ich konstrukcja nie jest dostosowana do tak ekstremalnych warunków. Odnośnie opraw oświetleniowych o II klasie ochronności, chociaż mogą one być stosowane w strefie 1 i 2, to w strefie 0 ich użycie jest niewłaściwe. W strefie 0 należy stosować jedynie urządzenia zasilane niskim napięciem, co zapewnia najwyższy poziom bezpieczeństwa. Właściwe podejście do projektowania instalacji elektrycznych w strefach mokrych powinno opierać się na rygorystycznym przestrzeganiu norm, co ma kluczowe znaczenie w zapobieganiu wypadkom i zapewnieniu bezpieczeństwa użytkowników.

Pytanie 18

Który sposób połączenia zacisków gniazda wtyczkowego jednofazowegow instalacji mieszkaniowejpracującej w sieci TN-S jest prawidłowy?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Odpowiedź A jest prawidłowa, ponieważ zgodnie z obowiązującymi normami, w instalacjach elektrycznych jednofazowych w systemie TN-S, układ podłączenia przewodów w gniazdach wtyczkowych jest szczegółowo określony. Przewód fazowy oznaczany jako L powinien być zawsze podłączony po lewej stronie, co zapewnia odpowiednią orientację dla użytkowników. Przewód neutralny N powinien znajdować się po prawej stronie, natomiast przewód ochronny PE umieszczany jest na górze. Taki układ minimalizuje ryzyko pomylenia przewodów i zwiększa bezpieczeństwo użytkowania urządzeń elektrycznych. W przypadku zastosowania niepoprawnego połączenia istnieje ryzyko zwarcia elektrycznego lub porażenia prądem. Dobrze zaprojektowana instalacja zgodna z normami nie tylko zapewnia bezpieczeństwo, ale także ułatwia konserwację i naprawy, ponieważ technicy mają jasność co do orientacji przewodów. Zastosowanie tych standardów jest kluczowe dla zachowania wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 19

Wyłącznik różnicowoprądowy reagujący na prądy różnicowe przemienne, jednopołówkowe ze składową stałą do 6 mA i na prądy wyprostowane, oznaczony jest symbolem graficznym

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Wybór niepoprawnej odpowiedzi wskazuje na wspólne nieporozumienia dotyczące symboli wyłączników różnicowoprądowych oraz ich funkcji. Wiele osób myli specyfikacje dotyczące prądów różnicowych, co może prowadzić do wyboru niewłaściwych urządzeń do danej aplikacji. Na przykład, wyłączniki, które nie reagują na prądy jednopołówkowe lub które są zaprojektowane wyłącznie do prądów przemiennych, nie będą odpowiednie w sytuacjach, gdzie istnieje ryzyko obecności prądów stałych. Często spotyka się również przekonanie, że symbolika graficzna wyłączników różnicowoprądowych jest jednorodna, co jest mylące; każdy typ wyłącznika, w zależności od jego funkcji, ma swoje unikalne oznaczenie. Należy również zauważyć, że brak znajomości norm i standardów, takich jak IEC 61008-1, może prowadzić do nieprawidłowego doboru wyłączników, co z kolei zwiększa ryzyko awarii instalacji elektrycznej. W praktyce, dobór wyłącznika powinien być zawsze dokładnie przemyślany i dostosowany do specyficznych warunków użytkowania, aby zapewnić skuteczną ochronę. Zrozumienie różnic między typami wyłączników oraz ich właściwego oznaczania jest kluczowe dla bezpieczeństwa zarówno w domach, jak i w przemyśle.

Pytanie 20

Minimalny czas działania oświetlenia ewakuacyjnego powinien wynosić przynajmniej

A. 3 godziny
B. 4 godziny
C. 2 godziny
D. 1 godzinę
Chociaż krótszy czas działania oświetlenia ewakuacyjnego, jak 1 godzina, może wydawać się w porządku w niektórych sytuacjach, to jednak nie spełnia norm i nie bierze pod uwagę różnych zagrożeń, które mogą się zdarzyć w krytycznych momentach. Gdy ewakuacja zajmie więcej czasu, może być naprawdę niebezpiecznie, zwłaszcza w dużych obiektach, gdzie ludzie mogą być rozproszeni na różnych piętrach. Z kolei, wydłużenie tego czasu do 3 czy 4 godzin, mimo że brzmi lepiej, nie jest wymagane przepisami i może prowadzić do marnotrawienia zasobów i wyższych kosztów związanych z utrzymywaniem oświetlenia ewakuacyjnego. Czasami można spotkać się z błędnym myśleniem, że wystarczy jedynie zaświecić drogę ewakuacyjną. Kluczowe jest, by system oświetlenia dawał stabilne i jasne światło przez cały czas ewakuacji. To można osiągnąć tylko dzięki dobrym rozwiązaniom technicznym i regularnemu serwisowi, żeby mieć pewność, że wszystko działa. Bezpieczeństwo osób opuszczających budynek w kryzysowych sytuacjach jest absolutnie priorytetowe, a czas działania oświetlenia ewakuacyjnego jest jednym z kluczowych elementów, które to bezpieczeństwo zapewniają.

Pytanie 21

W jakim układzie sieciowym znajduje się bezpiecznik iskiernikowy podłączony pomiędzy punkt neutralny strony wtórnej transformatora, który zasila ten układ, a uziom roboczy?

A. TN-C
B. IT
C. TT
D. TN-S
Odpowiedź 'IT' jest prawidłowa, ponieważ w układzie IT, system neutralny nie jest bezpośrednio uziemiony, co oznacza, że wszystkie części przewodzące, z wyjątkiem punktu neutralnego, są uziemione. Bezpiecznik iskiernikowy, który jest włączony między punkt neutralny transformatora a uziom roboczy, działa jako mechanizm zabezpieczający przed niebezpiecznymi przepięciami i wyładowaniami elektrycznymi. W praktyce, układ IT jest często stosowany w obiektach, gdzie ciągłość zasilania jest kluczowa, takich jak szpitale czy centra danych. Zgodnie z normą IEC 60364, zaleca się stosowanie tego typu systemów w celu minimalizacji ryzyka porażenia prądem elektrycznym, co czyni je bardziej bezpiecznymi w porównaniu do układów z uziemionym punktem neutralnym. Dodatkowo, zastosowanie bezpiecznika iskiernikowego w tym kontekście zapewnia ochronę przed przepięciami, co może być kluczowe dla bezpieczeństwa sprzętu oraz ludzi.

Pytanie 22

Który z wymienionych rodzajów wkładek topikowych powinien być użyty do zabezpieczenia przed zwarciem jednofazowego silnika indukcyjnego klatkowego?

A. aL
B. gR
C. aM
D. gG
Wybór niewłaściwych typów wkładek topikowych dla zabezpieczenia jednofazowego silnika indukcyjnego klatkowego jest często wynikiem niepełnego zrozumienia ich właściwości i zastosowań. Wkładki typu gG są przeznaczone do ogólnej ochrony obwodów elektrycznych, ale nie są optymalne dla silników, ponieważ mogą nie być w stanie skutecznie zareagować na nagłe przeciążenia i zwarcia, które są typowe dla rozruchu silników. Z kolei wkładki gR, choć przeznaczone do ochrony przed przeciążeniami, nie są dostosowane do specyficznych potrzeb silników, a ich czas reakcji może prowadzić do uszkodzeń. Wkładki typu aL, które są przeznaczone do ograniczenia prądów rozruchowych, również nie zapewniają odpowiedniego zabezpieczenia przed zwarciem, co może skutkować poważnymi uszkodzeniami silnika. Istotnym błędem myślowym jest założenie, że każda wkładka topikowa będzie spełniać te same funkcje niezależnie od kontekstu zastosowania. Odpowiedni dobór wkładek, takich jak aM, uwzględniający zarówno moment rozruchowy, jak i charakterystykę obciążeń, jest kluczowy dla zapewnienia trwałości i niezawodności pracy silników elektrycznych.

Pytanie 23

Określ przyczynę nadmiernego wzrostu napięcia na zaciskach odbiornika Z1 przy założeniu, że impedancje Z1, Z2 i Z3 znacznie się różnią.

Ilustracja do pytania
A. Przerwa na zaciskach odbiornika Z2 lub Z3.
B. Zwarcie pomiędzy dwoma przewodami fazowymi.
C. Zwarcie na zaciskach odbiornika Z2 lub Z3.
D. Uszkodzenie przewodu neutralnego.
Patrząc na inne odpowiedzi, to można zauważyć, że zwarcie między dwoma przewodami fazowymi raczej by nie zadziałało tak, jak opisano. Przy zwarciu w fazie napięcie w obwodzie z reguły spada, a zasilanie się wyłącza, więc nie podnosi napięcia na odbiornikach. Jeśli chodzi o zwarcie na zaciskach odbiorników Z2 lub Z3, to wprowadzałoby dodatkowe obciążenie, co też mogłoby obniżyć napięcie, a nie podnieść. No i przerwa na zaciskach Z2 albo Z3 nie tłumaczy wyższego napięcia na Z1, bo w takim przypadku napięcie powinno raczej zniknąć niż wzrosnąć. Błędem jest mylenie skutków zwarć czy przerw z problemami neutralnym. Zrozumienie, jak różne elementy w obwodzie wpływają na napięcia, jest kluczowe, gdy próbujemy zdiagnozować problemy w instalacjach elektrycznych. Dlatego ważne, żeby dokładnie badać przyczyny problemów z napięciem i nie opierać się na nieprawidłowych założeniach o zwarciach czy przerwach.

Pytanie 24

Przyrząd przedstawiony na rysunku służy do

Ilustracja do pytania
A. sprawdzania ciągłości żył przewodów.
B. pomiaru rezystancji żył przewodów.
C. wyznaczania trasy przewodów.
D. szacowania długości przewodów.
Odpowiedź, która wskazuje na sprawdzanie ciągłości żył przewodów, jest prawidłowa z uwagi na specyfikę przyrządu przedstawionego na rysunku. Tester ciągłości obwodu, zwany również multimetrem w trybie testowania ciągłości, jest nieocenionym narzędziem w pracy elektryków oraz techników zajmujących się instalacjami elektrycznymi. Jego podstawową funkcją jest wykrywanie przerw w obwodzie, co jest kluczowe podczas diagnostyki usterek. Przykładowo, w sytuacji, gdy zasilanie nie dociera do określonego urządzenia, tester pozwala na szybkie sprawdzenie, czy przewody są w pełni sprawne. Gdy obwód jest zamknięty, tester zazwyczaj sygnalizuje to zapaleniem diody LED, co jest bardzo pomocne w identyfikacji problemów. Zgodnie z zasadami BHP oraz normami IEC 61010, stosowanie takich przyrządów w pracy pozwala zminimalizować ryzyko porażenia prądem oraz innych niebezpieczeństw związanych z niewłaściwym działaniem instalacji elektrycznych.

Pytanie 25

Podaj skuteczność świetlną źródła światła o etykiecie przedstawionej na rysunku.

Ilustracja do pytania
A. 1 180,0 lm/W
B. 81,4 lm/W
C. 14,5 lm/W
D. 206,9 lm/W
Skuteczność świetlna, określana jako stosunek strumienia świetlnego (lm) do mocy elektrycznej (W), jest kluczowym parametrem oceny efektywności źródeł światła. W opisanym przypadku źródło światła wykazuje strumień świetlny wynoszący 1180 lumenów oraz moc równą 14,5 W. Obliczając skuteczność świetlną, dzielimy strumień świetlny przez moc: 1180 lm / 14,5 W, co daje 81,4 lm/W. W praktyce, wysoka skuteczność świetlna oznacza, że źródło światła dostarcza więcej światła przy mniejszym zużyciu energii, co przekłada się na niższe rachunki za energię oraz mniejszy wpływ na środowisko. Tego typu obliczenia są istotne przy projektowaniu systemów oświetleniowych, gdzie należy brać pod uwagę zarówno efektywność energetyczną jak i komfort użytkowania. Przykładem zastosowania jest wybór oświetlenia LED, które zazwyczaj charakteryzuje się wyższą skutecznością świetlną w porównaniu do tradycyjnych żarówek, co jest zgodne z normami efektywności energetycznej obowiązującymi w wielu krajach.

Pytanie 26

Który z przedstawionych na rysunkach zestawów narzędzi należy dobrać do montażu elementów mieszkaniowych instalacji elektrycznych?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Zestaw narzędzi oznaczony literą C to właściwy wybór do montażu elementów mieszkaniowych instalacji elektrycznych, ponieważ zawiera narzędzia izolowane. Narzędzia te mają specjalną powłokę, która minimalizuje ryzyko porażenia prądem, co jest kluczowe, gdy pracujemy z instalacjami elektrycznymi. Przykładowo, obcęgi i szczypce izolowane pozwalają na precyzyjne manipulowanie przewodami bez obawy o kontakt z napięciem. Standardy bezpieczeństwa, takie jak normy IEC 60900, definiują wymagania dotyczące narzędzi używanych w środowiskach elektrycznych, w tym wymagania dotyczące izolacji. Ponadto, dobór narzędzi zgodnych z tymi normami jest często wymogiem w profesjonalnych pracach elektrycznych, co zapewnia nie tylko bezpieczeństwo, ale również efektywność pracy. Zastosowanie odpowiednich narzędzi może znacząco zwiększyć komfort oraz bezpieczeństwo w trakcie realizacji zadań montażowych.

Pytanie 27

Przedstawiony na rysunku przełącznik funkcji przyrządu do pomiaru parametrów instalacji elektrycznych ustawiono na pomiar

Ilustracja do pytania
A. rezystancji izolacji.
B. ciągłości przewodów.
C. impedancji pętli zwarcia.
D. rezystancji uziemienia.
Wybierając jedną z pozostałych opcji, można natknąć się na szereg nieporozumień związanych z funkcją przełącznika oraz zasadami pomiarów elektrycznych. Impedancja pętli zwarcia to parametr istotny, jednak nie jest to pomiar, który wykonuje się przy ustawieniu oznaczonym jako "RE". Impedancja pętli zwarcia odnosi się do całkowitej impedancji w obwodzie, co jest istotne dla oceny ochrony przeciwporażeniowej, ale wymaga innego ustawienia w urządzeniu pomiarowym. Podobnie, ciągłość przewodów, oznaczająca sprawdzenie, czy nie ma przerwy w obwodzie, również nie jest tożsame z pomiarem rezystancji uziemienia. Wartość rezystancji izolacji, z kolei, dotyczy stanu izolacji przewodów i nie odnosi się do funkcji uziemiającej. Użycie nieodpowiedniej opcji może skutkować błędną oceną stanu instalacji elektrycznej, co może prowadzić do poważnych konsekwencji dla bezpieczeństwa. Rozumienie różnicy między tymi pojęciami jest kluczowe dla każdego specjalisty zajmującego się instalacjami elektrycznymi, a ich mylne zrozumienie może prowadzić do nieprawidłowych wniosków i decyzji w zakresie bezpieczeństwa elektrycznego.

Pytanie 28

Którego z przedstawionych przyrządów pomiarowych należy użyć w celu wyznaczenia tras ułożenia przewodów elektrycznych w instalacjach podtynkowych?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Odpowiedź D. jest poprawna, ponieważ detektor przewodów elektrycznych to specjalistyczne narzędzie, które umożliwia lokalizację przewodów w ścianach oraz innych elementach budowlanych. W przypadku instalacji podtynkowych, gdzie przewody są ukryte, kluczowe jest precyzyjne określenie ich położenia, aby uniknąć uszkodzeń podczas prac remontowych czy budowlanych. Detektory te działają na zasadzie wykrywania pola elektromagnetycznego emitowanego przez przewody, co pozwala na ich skuteczną lokalizację bez potrzeby przeprowadzania skomplikowanych badań. Dzięki zastosowaniu detektorów, można również zminimalizować ryzyko uszkodzenia istniejących instalacji. W branży elektrycznej stosowanie tego typu przyrządów jest zgodne z zasadami bezpieczeństwa oraz dobrymi praktykami, co podkreśla ich znaczenie w planowaniu i realizacji instalacji elektrycznych.

Pytanie 29

Którą wstawkę kalibrową należy zastosować do podstawy bezpiecznikowej przeznaczonej dla wkładki topikowej typu D o oznaczeniu literowym gG i prądzie znamionowym 25 A?

Ilustracja do pytania
A. Wstawkę 2.
B. Wstawkę 4.
C. Wstawkę 1.
D. Wstawkę 3.
Wstawka kalibrowa, którą należy zastosować do podstawy bezpiecznikowej przeznaczonej dla wkładki topikowej typu D o oznaczeniu literowym gG i prądzie znamionowym 25 A, to wstawkę 3. Wstawkę tę oznacza się jako 25/500, co wskazuje, że jest ona przeznaczona dla prądu znamionowego 25 A oraz wytrzymuje napięcie do 500 V. W praktyce, jako element zabezpieczający, wstawka kalibrowa zapobiega włożeniu wkładek o wyższych prądach znamionowych, co mogłoby prowadzić do przegrzania lub pożaru. W przypadku stosowania wkładek gG, które są odpowiednie do zabezpieczania obwodów z impulsowymi prądami zwarciowymi, ważne jest, aby zawsze dobrać właściwą wstawkę kalibrową, zgodnie z normą IEC 60269. Tylko wtedy można osiągnąć optymalną ochronę i wydajność systemu elektrycznego. Wstawkę 3 stosuje się powszechnie w instalacjach przemysłowych, gdzie wymagana jest wysoka niezawodność i ochrona przed zwarciem.

Pytanie 30

Na rysunku przedstawiono schemat do pomiaru impedancji pętli zwarciowej metodą

Ilustracja do pytania
A. spadku napięcia.
B. techniczną.
C. bezpośredniego pomiaru.
D. zastosowania dodatkowego źródła.
Wybór odpowiedzi 'techniczną' nie odnosi się do specyfiki pomiaru impedancji pętli zwarciowej. Ogólnie rzecz biorąc, termin ten może sugerować ujęcie oparte na technicznych aspektach pomiarów, jednak nie wskazuje na właściwą metodę. Odpowiedź 'bezpośredniego pomiaru' sugeruje, że pomiar impedancji można uzyskać poprzez bezpośrednie podłączenie miernika do obwodu, co nie jest właściwe w kontekście pomiaru pętli zwarciowej. W rzeczywistości, pomiar impedancji nie jest zwykle realizowany w sposób bezpośredni, ponieważ wymaga to wywołania warunków zwarcia, co wiąże się z ryzykiem dla bezpieczeństwa i wymaga zachowania szczególnych środków ostrożności. Odpowiedź 'zastosowania dodatkowego źródła' nie jest poprawna, ponieważ metoda spadku napięcia wykorzystuje istniejące napięcie w obwodzie do pomiaru, a dodatkowe źródło mogłoby wprowadzić błędy w odczycie. Typowym błędem myślowym w tym przypadku jest mylenie różnych metod pomiarowych oraz brak zrozumienia, że pomiar impedancji pętli zwarciowej wymaga specyficznych warunków, które są zgodne z normami i praktykami branżowymi. Właściwe zrozumienie metodologii pomiarowej jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych.

Pytanie 31

Na podstawie tabeli dobierz dopuszczalny prąd znamionowy zabezpieczenia nadprądowego w instalacji jednofazowej dla przewodu YDY 3x1,5 mm2 przy sposobie ułożenia A2?

Ilustracja do pytania
A. 16 A
B. 13 A
C. 20 A
D. 25 A
Poprawna odpowiedź to 16 A, co wynika z analizy tabeli dopuszczalnych prądów znamionowych dla przewodów YDY 3x1,5 mm². Przy sposobie ułożenia A2, który dotyczy przewodów układanych w sposób otwarty na ścianach lub w powietrzu, maksymalny dopuszczalny prąd dla tego przekroju wynosi 16 A. Stosowanie odpowiednich zabezpieczeń nadprądowych jest kluczowe dla prawidłowego funkcjonowania instalacji elektrycznych, ponieważ chroni przewody przed przegrzewaniem i potencjalnym uszkodzeniem. W praktyce, dobór odpowiedniego zabezpieczenia wpływa na bezpieczeństwo instalacji oraz minimalizację ryzyka pożaru. Na przykład, w przypadku podłączenia obwodów o dużych obciążeniach, zastosowanie zabezpieczeń o zbyt wysokim prądzie znamionowym może prowadzić do niewłaściwej pracy instalacji i zagrożeń. Warto zawsze odnosić się do obowiązujących norm, takich jak PN-IEC 60364, które określają zasady projektowania i wykonania instalacji elektrycznych.

Pytanie 32

Który symbol graficzny na schemacie ideowym projektowanej instalacji elektrycznej oznacza sposób prowadzenia przewodów w tynku?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Poprawna odpowiedź to B, ponieważ w polskich normach dotyczących schematów instalacji elektrycznych, sposób prowadzenia przewodów w tynku jest zazwyczaj reprezentowany przez symbol składający się z dwóch równoległych linii. Jedna z tych linii jest ciągła, co wskazuje na przewód zamontowany w tynku, a druga jest przerywana, sugerując ewentualne miejsce, w którym przewód jest ukryty lub prowadzenie w trudnych warunkach. Tego rodzaju symbol nie tylko ułatwia zrozumienie schematu instalacji, ale również przyczynia się do zachowania bezpieczeństwa oraz efektywności w projektowaniu i wykonywaniu instalacji elektrycznych. Przykładowo, w praktyce, stosowanie się do tego symbolu pozwala instalatorom na dokładne zaplanowanie trasy przewodów w ścianach budynków, co ma kluczowe znaczenie dla estetyki oraz funkcjonalności instalacji. Ponadto, stosowanie jednolitych symboli zgodnych z normami branżowymi, jak PN-EN 60617, zapewnia, że wszyscy uczestnicy procesu budowlanego mają wspólne zrozumienie projektu, co minimalizuje ryzyko błędów w realizacji.

Pytanie 33

Który układ połączeń watomierza jest zgodny ze schematem pomiarowym pokazanym na rysunku?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Wybór innej opcji niż C wynika z nieporozumienia dotyczącego zasad prawidłowego pomiaru mocy czynnej przy użyciu watomierza. W wielu przypadkach, osoby uczące się mylnie zakładają, że cewka prądowa powinna być połączona równolegle z obciążeniem, co jest błędne. Równoległe połączenie cewki prądowej wprowadzałoby do pomiaru dodatkowe zmiany, prowadząc do błędnych wyników. Cewka prądowa ma za zadanie mierzyć prąd płynący przez obciążenie, a jej poprawne połączenie szeregowe zapewnia, że cały prąd, który jest mierzony przez watomierz, jest tym, który rzeczywiście przepływa przez obciążenie. Ponadto, błędne połączenie cewki napięciowej również wprowadzałoby istotne zniekształcenia w pomiarze, ponieważ nie mierzyłaby ona napięcia na obciążeniu, co jest kluczowe dla obliczenia mocy czynnej. W praktyce, każdy z tych błędów może prowadzić do nieprawidłowych obliczeń i nieefektywnego zarządzania energią elektryczną. Zrozumienie podstawowych zasad związanych z pomiarem mocy czynnej oraz zastosowanie ich w praktyce jest kluczowe dla uzyskania dokładnych wyników oraz zapewnienia odpowiedniego zarządzania systemami elektrycznymi.

Pytanie 34

Co oznacza przeciążenie instalacji elektrycznej?

A. Bezpośrednim połączeniu ze sobą dwóch faz w instalacji
B. Nagłym wzroście napięcia elektrycznego w sieci, który przekracza wartość znamionową
C. Przekroczeniu wartości prądu znamionowego danej instalacji
D. Pojawieniu się w instalacji fali przepięciowej spowodowanej wyładowaniem atmosferycznym
Przeciążenie instalacji elektrycznej to nic innego jak przekroczenie prądu, który jest dla niej bezpieczny. Kiedy podłącza się za dużo urządzeń do jednego obwodu, przewody mogą się strasznie nagrzewać, co nie jest dobre. Standardy jak PN-HD 60364-5-52 mówią, że trzeba to wszystko dobrze zaplanować i wymierzyć, żeby zapewnić bezpieczeństwo użytkownikom i żeby instalacja długo działała. Jak się projektuje instalacje elektryczne, to warto pomyśleć o przewidywanych obciążeniach i zastosować odpowiednie zabezpieczenia, na przykład wyłączniki nadprądowe. Znajomość tych rzeczy jest istotna, nie tylko przy projektowaniu, ale też kiedy trzeba naprawiać coś, co już działa, bo może to pomóc w diagnozowaniu różnych problemów.

Pytanie 35

Jakiego urządzenia należy użyć, aby zweryfikować ciągłość przewodu podczas instalacji?

A. Megaomomierza
B. Watomierza
C. Omomierza
D. Amperomierza
Omomierz jest instrumentem pomiarowym, który służy do określania oporu elektrycznego w obwodach. Użycie omomierza do sprawdzenia ciągłości przewodów instalacyjnych jest standardową praktyką w branży elektrycznej. Narzędzie to pozwala na ocenę, czy przewody są poprawnie podłączone i czy nie ma w nich przerw, co jest kluczowe dla bezpieczeństwa i efektywności instalacji. Przykładowo, podczas montażu instalacji elektrycznej w budynkach mieszkalnych, omomierz może być użyty do testowania połączeń między różnymi elementami systemu, co zapewnia, że żadne przerwy w przewodzeniu nie zakłócą działania urządzeń. Dobrą praktyką jest również pomiar oporu izolacji, co może zapobiec potencjalnym awariom i zagrożeniom pożarowym. Warto pamiętać, że w przypadku wyniku wskazującego na wysoką wartość oporu, może to oznaczać problem z przewodem, który należy rozwiązać przed zakończeniem instalacji.

Pytanie 36

Na rysunku przedstawiono stosowaną w instalacjach elektrycznych złączkę

Ilustracja do pytania
A. śrubową.
B. skrętną.
C. samozaciskową.
D. gwintową.
Złączka skrętna, przedstawiona na rysunku, jest jednym z najczęściej stosowanych elementów w instalacjach elektrycznych, szczególnie w celu łączenia przewodów. Jej główną zaletą jest prostota użycia, ponieważ do jej montażu nie są wymagane żadne narzędzia, co znacząco przyspiesza proces instalacji. Skręcenie przewodów w złączce skrętnej umożliwia stabilne i trwałe połączenie, które jest w stanie wytrzymać znaczne obciążenia elektryczne. Dodatkowo, zastosowanie metalowego sprężynującego elementu, który dysponuje odpowiednim naciskiem, zapewnia doskonały kontakt elektryczny oraz minimalizuje ryzyko przegrzania się połączenia. W praktyce złączki skrętne znajdują zastosowanie nie tylko w instalacjach domowych, ale także w przemyśle, gdzie niezawodność połączeń jest kluczowa. Standardy branżowe, takie jak IEC 60947-1, podkreślają znaczenie stosowania odpowiednich złączek w zależności od zastosowania i wymagań technicznych, co czyni złączkę skrętną rozwiązaniem, które spełnia te normy.

Pytanie 37

Na podstawie opisu określ, jaką puszkę instalacyjną przedstawiono na rysunku.

Ilustracja do pytania
A. Natynkową hermetyczną.
B. Do montażu gniazd i wyłączników.
C. Przeciwogniową.
D. Podtynkową hermetyczną.
Wybór innych opcji jest związany z pewnymi nieporozumieniami dotyczącymi klasyfikacji puszek instalacyjnych oraz ich zastosowania. Przede wszystkim, puszki przeciwogniowe są projektowane z myślą o ochronie przed ogniem i nie spełniają wymogów hermetyczności, które są kluczowe w kontekście opisanego produktu. Puszki natynkowe hermetyczne, które są prawidłową odpowiedzią, różnią się od typowych puszek podtynkowych, które są instalowane w ścianach i nie są dostosowane do pracy w warunkach narażających na działanie wody i ciał stałych. Wybierając opcję "Do montażu gniazd i wyłączników", można zrozumieć, że nie wszystkie puszki spełniają tę funkcję, a w kontekście danego opisu, nie jest to wystarczająco precyzyjne. Typowe błędy myślowe, które prowadzą do takich wyborów, to brak zrozumienia różnic w konstrukcji i przeznaczeniu różnych typów puszek. Kluczowe jest, aby pamiętać, że dobór odpowiedniego elementu instalacyjnego powinien uwzględniać nie tylko jego funkcję, ale także warunki środowiskowe, w jakich będzie pracować. Używanie puszek, które nie spełniają standardów IP może prowadzić do poważnych problemów, takich jak zwarcia czy uszkodzenia urządzeń elektrycznych, co w rezultacie stanowi zagrożenie dla bezpieczeństwa użytkowników.

Pytanie 38

Na podstawie zamieszczonych wyników pomiarów rezystancji w przewodzie elektrycznym przedstawionym na ilustracji można stwierdzić, że żyły

Ilustracja do pytania
A. N i PE są zwarte oraz L3 jest przerwana.
B. N i L3 są zwarte oraz PE jest przerwana.
C. L1 i L2 są przerwane.
D. L1 i L2 są zwarte.
Poprawna odpowiedź wskazuje, że żyły N i PE są zwarte oraz L3 jest przerwana. Wyniki pomiarów rezystancji potwierdzają, że między żyłami N i PE nie ma oporu, co oznacza, że są one ze sobą połączone. Przykładowo, w instalacjach elektrycznych, żyła neutralna (N) oraz żyła ochronna (PE) powinny być połączone w punkcie zerowym, co jest zgodne z normami bezpieczeństwa. W przypadku, gdy rezystancja między L3.1 a L3.2 wynosi ∞, mamy do czynienia z przerwaniem w tej żyle, co może prowadzić do niebezpiecznych sytuacji, takich jak wzrost napięcia na żyłach fazowych. Istotne jest, aby przy każdorazowej kontroli instalacji elektrycznych stosować takie pomiary, aby zidentyfikować wszelkie nieprawidłowości. Praktyki te są zgodne z normami PN-IEC 60364, które określają wymagania dotyczące bezpieczeństwa instalacji elektrycznych. Zrozumienie tych zależności jest kluczowe dla zapewnienia bezpieczeństwa oraz długotrwałej eksploatacji instalacji elektrycznych.

Pytanie 39

Przygotowując się do wymiany uszkodzonego gniazda trójfazowego w systemie elektrycznym, po odłączeniu napięcia w obwodzie tego gniazda, należy przede wszystkim

A. oznaczyć miejsce pracy
B. zabezpieczyć obwód przed niezamierzonym włączeniem napięcia
C. poinformować dostawcę energii o zamiarze przeprowadzenia naprawy
D. rozłożyć dywanik elektroizolacyjny w obszarze roboczym
Zabezpieczenie obwodu przed przypadkowym załączeniem napięcia jest kluczowym krokiem w procesie wymiany gniazda trójfazowego, co wynika z podstawowych zasad bezpieczeństwa w pracy z instalacjami elektrycznymi. Po wyłączeniu napięcia, warto zastosować wyłącznik rozłączający lub blokadę, aby uniemożliwić przypadkowe włączenie zasilania. Dobrym przykładem praktycznym jest użycie blokady w systemach, w których dostęp do urządzeń jest wspólny, co minimalizuje ryzyko niebezpiecznych sytuacji. Dodatkowo, zgodnie z normami PN-IEC 60364, należy stosować odpowiednie procedury bezpieczeństwa, w tym oznaczenie obszaru pracy oraz zapewnienie, że osoba pracująca ma odpowiednie kwalifikacje. Takie działania nie tylko chronią pracowników, ale również klientów i innych osób znajdujących się w pobliżu. Warto również pamiętać o stosowaniu odpowiednich środków ochrony osobistej, takich jak rękawice izolacyjne oraz okulary ochronne, aby dodatkowo zminimalizować ryzyko wystąpienia wypadków.

Pytanie 40

Ile maksymalnie jednofazowych gniazd wtykowych o napięciu 230 V można zainstalować w pomieszczeniach mieszkalnych zasilanych z jednego obwodu?

A. 13 szt.
B. 6 szt.
C. 3 szt.
D. 10 szt.
Maksymalna zalecana liczba jednofazowych gniazd wtykowych o napięciu 230 V w pomieszczeniach mieszkalnych, zasilanych z jednego obwodu, wynosi 10 sztuk. Jest to zgodne z polskimi normami budowlanymi oraz standardami ochrony przeciwpożarowej. W praktyce oznacza to, że na jednym obwodzie elektrycznym możemy bezpiecznie podłączyć do 10 gniazd, co umożliwia równomierne rozłożenie obciążenia elektrycznego. Przy projektowaniu instalacji elektrycznej konieczne jest uwzględnienie nie tylko liczby gniazd, ale także ich przewidywanego obciążenia. W sytuacji, kiedy przez gniazda będą podłączane urządzenia o dużym poborze mocy, jak np. odkurzacze czy grzejniki, warto ograniczyć liczbę gniazd na obwodzie do mniejszej wartości, aby uniknąć przeciążenia. Dla obwodów o większej liczbie gniazd wtykowych można zastosować dodatkowe zabezpieczenia, takie jak wyłączniki różnicowoprądowe, co zapewnia dodatkową ochronę użytkowników. Dobra praktyka obejmuje również regularne sprawdzanie stanu technicznego instalacji oraz wymianę zużytych komponentów, co zwiększa bezpieczeństwo użytkowania.