Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 19 grudnia 2025 23:12
  • Data zakończenia: 19 grudnia 2025 23:23

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Na podstawie harmonogramu czynności serwisowych przedstawionych w tabeli określ, jak często należy przeprowadzać kontrolę działania zaworów bezpieczeństwa.

Harmonogram czynności serwisowych (fragment)
Lp.Czynność serwisowaOkres wykonywania
1.Sprawdzanie temperatury pracyCodziennie
2.Kontrola przewodu zasilającegoCodziennie
3.Sprawdzanie podciśnienia generowanego przez sprężarkęCo 3 miesiące
4.Kontrola obiegu oleju w sprężarceCo 3 miesiące
5.Sprawdzanie zaworówCo 6 miesięcy
6.Kontrola działania zaworów bezpieczeństwaCo 6 miesięcy
7.Kontrola ustawień zabezpieczenia przeciążeniowego w sprężarceCo 6 miesięcy
8.Sprawdzanie rurociągu, skraplacza, części chłodniczychCo rok
9.Sprawdzanie łączników i bezpiecznikówCo rok
A. Raz na pół roku.
B. Raz na dzień.
C. Raz na rok.
D. Raz na kwartał.
Kontrola działania zaworów bezpieczeństwa co 6 miesięcy jest kluczowym elementem strategii zarządzania bezpieczeństwem w każdym zakładzie przemysłowym. Zgodnie z normami branżowymi, takimi jak ISO 9001 oraz dyrektywami Unii Europejskiej, regularne inspekcje i konserwacje urządzeń zabezpieczających są niezbędne dla zapewnienia ich prawidłowego działania w sytuacjach kryzysowych. Zawory bezpieczeństwa są zaprojektowane w celu ochrony systemu przed nadmiernym ciśnieniem, a ich awaria może prowadzić do poważnych incydentów, w tym eksplozji. Przykładowo, w przemyśle petrochemicznym, podejmowanie działań prewencyjnych, takich jak systematyczna kontrola zaworów, pozwala na identyfikację potencjalnych problemów zanim dojdzie do ich wystąpienia. Ponadto, zaleca się prowadzenie dokumentacji związanej z każdym przeglądem, co ułatwia późniejsze audyty oraz pozwala na lepsze planowanie konserwacji.

Pytanie 6

Który z poniższych komponentów jest używany w układach sterowania do konwersji sygnałów analogowych na cyfrowe?

A. Zawór proporcjonalny
B. Przetwornik A/C
C. Silnik elektryczny
D. Transformator
Przetwornik analogowo-cyfrowy, znany jako A/C (ang. ADC - Analog to Digital Converter), jest kluczowym elementem w systemach mechatronicznych, ponieważ pozwala na przekształcenie sygnałów analogowych na cyfrowe. W praktyce oznacza to, że sygnały, które są ciągłe w czasie i mogą przyjmować nieskończoną liczbę wartości, są zamieniane na sygnały cyfrowe, które są dyskretne i mogą być przetwarzane przez systemy cyfrowe, takie jak mikroprocesory czy sterowniki PLC. To umożliwia efektywne zarządzanie i kontrolowanie procesów przemysłowych. Przetworniki A/C znajdują zastosowanie w wielu dziedzinach, takich jak automatyka przemysłowa, robotyka oraz systemy pomiarowe. Dzięki nim możemy precyzyjnie monitorować i reagować na zmiany w układzie, co jest niezbędne w złożonych systemach mechatronicznych. Przykładem zastosowania jest odczyt wartości czujników takich jak temperatury, ciśnienia czy wilgotności, które są następnie interpretowane przez system sterujący w celu podjęcia odpowiednich działań. Standardy branżowe wymagają, by takie przetworniki charakteryzowały się wysoką dokładnością i szybkością przetwarzania, co jest kluczowe dla zachowania jakości i precyzji działania systemów.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Które z wymienionych zdarzeń może wydarzyć się w układzie ze sterownikiem PLC, jeżeli wykonuje on przedstawiony program?

Ilustracja do pytania
A. Elementy Y1 i Y2 mogą zadziałać jednocześnie przy aktywnym B2
B. Elementy Y1 i Y2 mogą zadziałać przy aktywnym S2
C. Kiedy działa element Y2 to nie działa element Y1
D. Kiedy działa element Y1 to nie działa element Y2
Wybór odpowiedzi sugerującej, że 'Kiedy działa element Y1 to nie działa element Y2' jest niepoprawny, ponieważ nie uwzględnia kluczowych zasad działania układów sterowania z PLC. W układzie, w którym obydwa elementy są współzależne, takie stwierdzenie zakłada, że Y1 może działać niezależnie od Y2 w sytuacji, gdy oba elementy są zasilane przez te same warunki. W rzeczywistości, jednak aktywacja Y1 wymaga, aby wszystkie warunki przypisane do jego działania były spełnione, co sprawia, że nie może on funkcjonować równocześnie z Y2 w kontekście, w którym Y2 zyskuje aktywację. Podobnie, stwierdzenie, że 'Elementy Y1 i Y2 mogą zadziałać przy aktywnym S2' nie jest zgodne z praktykami projektowymi, gdyż ignoruje specyfikę warunków, które muszą być spełnione dla działania poszczególnych elementów. W systemach PLC, każdy element jest zaprojektowany z myślą o konkretnych warunkach aktywacji, a błędna interpretacja tych warunków często prowadzi do nieefektywności w procesach automatyzacji. Warto zwrócić uwagę na to, że zrozumienie logiki działania poszczególnych elementów jest nie tylko kluczowe dla prawidłowego funkcjonowania systemu, lecz także dla unikania typowych błędów, takich jak mylenie relacji między elementami. Przykłady rzeczywistych aplikacji mogą pomóc w lepszym uchwyceniu tych zasad i ich praktycznego zastosowania.

Pytanie 9

Jaki rodzaj czujnika wykorzystuje się do pomiaru odległości w zastosowaniach przemysłowych?

A. Ultradźwiękowy
B. Magnetyczny
C. Temperaturowy
D. Piezoelektryczny
Czujniki magnetyczne, chociaż są szeroko stosowane w przemyśle, nie nadają się do pomiaru odległości w klasycznym sensie. Ich główną funkcją jest wykrywanie obecności metalowych obiektów w pobliżu. Działają na zasadzie zmiany pola magnetycznego w obecności metalu, co pozwala na dokładną detekcję, ale nie na precyzyjny pomiar odległości. W przypadku czujników piezoelektrycznych, ich zastosowanie jest zupełnie inne. Są one wykorzystywane do pomiaru ciśnienia, siły czy wibracji, opierając się na zjawisku piezoelektrycznym, gdzie pod wpływem mechanicznego nacisku generowane jest napięcie elektryczne. Ich zastosowanie w pomiarze odległości jest bardzo ograniczone i niepraktyczne. Czujniki temperaturowe, jak sama nazwa wskazuje, służą do monitorowania temperatury obiektów lub środowiska. Pomiar odległości nie jest ich funkcją, a ich konstrukcja i zasada działania (oparta na zmianie rezystancji, napięcia lub prądu w zależności od temperatury) nie pozwalają na takie zastosowanie. Często można spotkać błędne myślenie, że każdy czujnik można użyć do różnych celów, ale w rzeczywistości każdy typ czujnika jest optymalizowany pod kątem konkretnych zastosowań. Wybierając czujnik, zawsze warto zwrócić uwagę na jego specyfikację techniczną oraz środowisko, w którym ma być używany, aby uniknąć błędów i zapewnić odpowiednią precyzję pomiarów.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Konwersja programu napisanego w języku LD na kod maszynowy, który jest zrozumiały dla jednostki centralnej PLC, odbywa się w środowisku narzędziowym PLC przy użyciu polecenia

A. upload
B. download
C. compile
D. save as
Odpowiedź 'compile' jest trafna, bo kompilacja to istotny proces, który zamienia kod źródłowy w języku LD (Ladder Diagram) na kod maszynowy. Tylko maszyna rozumie ten kod, więc jest to kluczowe, żeby program mógł działać. W praktyce, gdy korzystamy z narzędzi PLC, komenda 'compile' uruchamia kompilator, który sprawdza, czy składnia i logika programu są właściwe, a potem generuje ten niezbędny kod maszynowy. Zrozumienie tego wszystkiego jest mega ważne dla inżynierów automatyki, bo pozwala im optymalizować programy i znajdywać błędy zanim jeszcze wrzucą kod do PLC. W branży automatyki mamy też standardy jak IEC 61131-3, które mówią o językach programowania PLC, a kompilacja to kluczowy element, żeby wdrożenia były jakościowo na dobrym poziomie. Przykładowo, przed uruchomieniem programu, inżynierowie często sprawdzają wyniki kompilacji, by przekonać się, że wszystko działa jak trzeba i nie ma błędów, co mogłoby wpłynąć na bezpieczeństwo lub działanie systemu.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Przyczyny szarpania oraz niestabilności w działaniu hydraulicznych systemów napędowych mogą obejmować

A. zbyt wysoką lepkość oleju
B. zapowietrzenie czynnika roboczego
C. wyciek w systemie hydraulicznym
D. zbyt niską lepkość oleju
Zapowietrzenie czynnika roboczego jest kluczowym problemem, który wpływa na prawidłowe działanie układów hydraulicznych. Powstawanie pęcherzyków powietrza w oleju hydraulicznym prowadzi do zmniejszenia efektywności przepływu, co w konsekwencji może skutkować szarpaniem i destabilizacją ruchu napędów. W praktyce, aby zapobiec zapowietrzeniu, należy regularnie kontrolować ciśnienie w układzie oraz stosować odpowiednie uszczelnienia, aby uniknąć wnikania powietrza. Dobrym rozwiązaniem jest także stosowanie filtrów, które eliminują zanieczyszczenia i pęcherzyki powietrza. Zgodnie z normami branżowymi, takim jak ISO 4406, zaleca się regularne badania jakości oleju hydraulicznego, co pozwala na wczesne wykrywanie problemów i ich eliminację. Przykładem zastosowania tej wiedzy jest przeprowadzanie rutynowych przeglądów maszyn przemysłowych, gdzie dbałość o jakość oleju wpływa na wydajność całego systemu hydraulicznego.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jaki jest podstawowy cel stosowania programowalnych sterowników logicznych (PLC) w systemach mechatronicznych?

A. Zwiększenie masy urządzeń
B. Poprawa estetyki urządzeń
C. Zmniejszenie zużycia energii
D. Automatyzacja procesów przemysłowych
Programowalne sterowniki logiczne, znane jako PLC, są kluczowym elementem automatyki przemysłowej. Ich głównym zadaniem jest automatyzacja procesów przemysłowych. PLC są wykorzystywane do sterowania różnymi urządzeniami w zakładach produkcyjnych, co pozwala na zredukowanie potrzeby manualnej interwencji człowieka, zwiększenie wydajności oraz precyzji operacji. Automatyzacja przy użyciu PLC prowadzi do zwiększenia produktywności, zmniejszenia kosztów operacyjnych i minimalizacji błędów ludzkich. Współczesne PLC są bardzo elastyczne i można je programować, aby spełniały specyficzne wymagania różnych procesów produkcyjnych. W systemach mechatronicznych, PLC łączy różne komponenty w jeden spójny system, co jest niezbędne w nowoczesnych liniach produkcyjnych. Dzięki temu możliwe jest nie tylko optymalizacja procesów, ale również monitorowanie i diagnostyka systemów w czasie rzeczywistym, co znacznie poprawia jakość i efektywność produkcji.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Szczelność systemu pneumatycznego weryfikuje się poprzez pomiar

A. spadku ciśnienia w systemie w ustalonym czasie
B. ilości powietrza potrzebnego do utrzymania stałego poziomu ciśnienia
C. zmiany maksymalnej siły wytwarzanej przez siłownik
D. zmiany maksymalnej prędkości siłownika
Wybór odpowiedzi związanej z ilością powietrza zużywanego na utrzymanie ciśnienia może być mylny, gdyż nie odnosi się bezpośrednio do pomiaru szczelności układu pneumatycznego. Chociaż zużycie powietrza może wskazywać na ogólną efektywność systemu, nie jest to miara nieszczelności. W praktyce, nawet w obecności nieszczelności, układ może nadal utrzymywać ciśnienie, jeśli kompresor działa wystarczająco wydajnie, a to prowadzi do błędnych wniosków na temat stanu układu. Podobnie, spadek maksymalnej siły generowanej przez siłownik nie jest bezpośrednim wskaźnikiem szczelności, ponieważ może być wynikiem różnych czynników, takich jak obciążenie czy zmiany w parametrach roboczych siłownika. Z kolei spadek maksymalnej prędkości siłownika również nie wskazuje na nieszczelność, lecz może być efektem zbyt małego ciśnienia zasilania lub zbyt długiego cyklu pracy. Kluczowe jest zrozumienie, że właściwym podejściem do oceny szczelności układu pneumatycznego jest monitorowanie i analiza zmian ciśnienia w czasie, a nie opieranie się na pośrednich wskaźnikach, które mogą prowadzić do nieprawidłowych wniosków. Dlatego, przy ocenie stanu technicznego układu, należy stosować odpowiednie metody i narzędzia diagnostyczne zgodne z normami branżowymi, które zapewniają dokładność i wiarygodność pomiarów.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Czujnik rozpoznaje elementy z tworzywa sztucznego

A. indukcyjny
B. magnetyczny
C. piezoelektryczny
D. pojemnościowy
Czujnik pojemnościowy jest idealnym narzędziem do wykrywania elementów wykonanych z tworzyw sztucznych ze względu na sposób, w jaki działa. Zasada działania czujnika pojemnościowego opiera się na pomiarze zmian pojemności kondensatora, który składa się z dwóch elektrod oddzielonych dielektrykiem. Kiedy tworzywo sztuczne znajduje się między elektrodami, jego obecność wpływa na wartość pojemności, co jest wykrywane przez czujnik. Przykładem zastosowania czujników pojemnościowych są systemy automatyzacji przemysłowej, gdzie monitorują one obecność i poziom różnych materiałów w procesach produkcyjnych. W praktyce, czujniki te są wykorzystywane na przykład w liniach produkcyjnych do detekcji plastikowych pojemników lub elementów, co pozwala na automatyczne sortowanie i kontrolę jakości. Standardy takie jak IEC 60947-5-2 definiują wymagania dotyczące czujników wykrywających różne materiały, co potwierdza ich znaczenie w branży. Warto również zauważyć, że czujniki pojemnościowe są bardziej uniwersalne w porównaniu do innych typów czujników, co czyni je niezastąpionym narzędziem w nowoczesnej automatyce.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Zespół odpowiedzialny za obsługę systemu mechtronicznego zauważył nagły spadek efektywności sprężarki tłokowej oraz to, że w czasie jej pracy powietrze wydostaje się z cylindra przez filtr ssawny do atmosfery. Jakie jest prawdopodobne źródło nieprawidłowego działania tego urządzenia?

A. Nieprawidłowy kierunek obrotów silnika
B. Awaria zaworu zwrotnego ssącego
C. Niewłaściwie ustawiony wyłącznik ciśnieniowy
D. Wytarcie jednego z pierścieni uszczelniających tłok
Uszkodzenie zaworu zwrotnego ssącego jest kluczowym czynnikiem wpływającym na wydajność sprężarki tłokowej. Zawór ten odpowiada za prawidłowy kierunek przepływu powietrza do cylindra, a jego uszkodzenie może skutkować wydmuchiwanie powietrza z cylindra zamiast jego zasysania. W praktyce, w przypadku uszkodzenia zaworu, sprężarka nie jest w stanie osiągnąć zadanego ciśnienia, co prowadzi do spadku wydajności. Przykładowo, w przemyśle, gdzie sprężarki tłokowe są wykorzystywane do zasilania narzędzi pneumatycznych, brak odpowiedniego ciśnienia może spowodować opóźnienia w produkcji oraz zwiększenie kosztów operacyjnych. Zgodnie z dobrą praktyką, regularna konserwacja i kontrola stanu zaworów zwrotnych, a także ich wymiana co określony czas, są niezbędne dla zapewnienia długotrwałego i efektywnego działania systemów pneumatycznych. Tego typu podejścia są zgodne z normami bezpieczeństwa i efektywności energetycznej, jakie powinny być przestrzegane w zakładach przemysłowych.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jaką z podanych zależności logicznych należy uwzględnić w programie kontrolnym, aby można było każdorazowo sygnalizować aktywność tylko jednego z trzech czujników podłączonych do kolejnych wejść sterownika?

A. Równowartość
B. Koniunkcję
C. Alternatywę
D. Alternatywę wykluczającą
Zrozumienie logiki, która rządzi działaniem sensorów, jest kluczowe dla projektowania efektywnych systemów sterowniczych, jednak niektóre koncepcje mogą wydawać się mylące. Koniunkcja, jako logiczna operacja, wskazuje na sytuację, w której wszystkie warunki muszą być spełnione jednocześnie. W kontekście sensorów, oznaczałoby to, że wszystkie sensory muszą być aktywne, co jest sprzeczne z wymaganiem, by zasygnalizować tylko jeden z sensorów. Takie podejście prowadzi do sytuacji, w której nie jesteśmy w stanie zidentyfikować, który sensor powinien zasygnalizować zadziałanie, co jest sprzeczne z podstawowym założeniem tego pytania. Równowartość z kolei, która jest stosowana do porównywania dwóch wyrażeń, również nie jest odpowiednia w naszym przypadku, ponieważ nie możemy porównywać statusu sensorów w sposób, który pozwoli na ich jednoznaczne rozróżnienie. Wprowadzenie alternatywy w tej sytuacji może wydawać się kuszące, jednak prowadzi to do możliwości aktywacji wielu sensorów w tym samym czasie, co jest niepożądane. Tego typu błędy myślowe wynikają z niepełnego zrozumienia zasad logiki boolowskiej oraz ich praktycznych zastosowań w systemach automatyki. Kluczowe jest zatem, aby w projektowaniu systemów sterowniczych priorytetowo traktować alternatywę wykluczającą, która skutecznie eliminuje ryzyko jednoczesnego aktywowania więcej niż jednego sensora.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Które z wymienionych komend spowoduje przeniesienie programu z PLC do pamięci komputera?

A. Upload
B. Erase Memory
C. Download
D. Write
Odpowiedź "Upload" jest prawidłowa, ponieważ termin ten odnosi się do procesu przesyłania danych z urządzenia, takiego jak sterownik PLC, do systemu komputerowego. W kontekście programowania i automatyzacji, uploadowanie programu z PLC do komputera jest kluczowym krokiem w procesie zarządzania i monitorowania systemów automatyki. Dzięki temu inżynierowie mogą łatwo zaktualizować, analizować i archiwizować programy sterujące. Praktycznym zastosowaniem uploadu jest możliwość przechowywania kopii zapasowych programów, co jest zgodne z najlepszymi praktykami w zakresie zarządzania danymi, zapewniając bezpieczeństwo i łatwy dostęp do wersji roboczych. Warto zauważyć, że w procesach przemysłowych uploadowanie danych do komputera umożliwia także diagnostykę i optymalizację istniejących programów oraz szybsze wprowadzanie zmian, co znacznie zwiększa efektywność operacyjną. Standardy, takie jak IEC 61131-3, podkreślają znaczenie łatwego dostępu do programów i ich modyfikacji, co czyni upload kluczowym procesem w pracy z PLC.

Pytanie 28

Które z poniższych działań jest częścią procesu programowania sterowników PLC?

A. Tworzenie i testowanie logiki sterowania
B. Kalibracja czujników ciśnienia
C. Smarowanie ruchomych części mechanicznych
D. Wymiana filtrów powietrza
Programowanie sterowników PLC to kluczowy etap w procesie automatyzacji systemów mechatronicznych. Tworzenie i testowanie logiki sterowania to fundamentalne działania w tym procesie. Logika sterowania polega na definiowaniu sekwencji działań, które sterownik musi wykonać, aby osiągnąć zamierzony efekt. Na przykład, w aplikacjach przemysłowych PLC kontrolują pracę maszyn, zarządzając sygnałami wejściowymi i wyjściowymi. Tworzenie logiki sterowania wymaga zrozumienia procesu, który ma być automatyzowany, oraz umiejętności programowania w językach takich jak Ladder Diagram, Function Block Diagram czy Structured Text. Testowanie jest równie ważne, ponieważ pomaga wykryć błędy i upewnić się, że system działa zgodnie z oczekiwaniami. Często stosuje się symulacje, aby przetestować program przed jego wdrożeniem na rzeczywistym sprzęcie, co minimalizuje ryzyko awarii. Praktyczne zastosowanie tej wiedzy obejmuje szeroką gamę branż od produkcji, przez motoryzację, aż po systemy HVAC. Dobre praktyki w programowaniu PLC obejmują również dokumentowanie kodu, co ułatwia przyszłe modyfikacje i konserwację.

Pytanie 29

Jaki typ systemu wizualizacji procesów przemysłowych powinien być użyty do ustawiania parametrów produkcji, gdy nie ma dostępnego miejsca na komputer?

A. Specjalistyczne środowisko wizualizacyjne ISO/OSI.
B. System SCADA.
C. Aplikacja oparta na architekturze NET Framework.
D. Panel operatorski HMI.
Panel operatorski HMI (Human-Machine Interface) jest kluczowym elementem w nowoczesnych systemach automatyki przemysłowej, umożliwiającym operatorom interakcję z maszynami i procesami produkcyjnymi. Jego podstawową funkcją jest wprowadzanie i monitorowanie parametrów pracy maszyn bezpośrednio na urządzeniu, co jest niezwykle istotne w sytuacjach, gdy przestrzeń robocza jest ograniczona. W odróżnieniu od rozbudowanych systemów SCADA, które wymagają stacji komputerowej do nadzoru i sterowania, panele HMI mają kompaktową budowę, co umożliwia ich łatwe umiejscowienie w obiektach produkcyjnych. Przykładami zastosowania paneli HMI mogą być linie montażowe, gdzie operatorzy mogą szybko reagować na zmiany w procesie, wprowadzać korekty oraz monitorować stany awaryjne. W kontekście standardów branżowych, panele HMI wspierają interoperacyjność z różnymi protokołami komunikacyjnymi, co jest zgodne z dobrymi praktykami inżynieryjnymi w automatyce przemysłowej. Dodatkowo, panele te często posiadają funkcje diagnostyczne, co zwiększa efektywność utrzymania ruchu.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Którą z wymienionych metod obróbki skrawaniem wykonuje się narzędziem przedstawionym na rysunku?

Ilustracja do pytania
A. Gwintowanie.
B. Przeciąganie.
C. Toczenie.
D. Struganie.
Odpowiedź „gwintowanie” jest prawidłowa, ponieważ narzędzie przedstawione na rysunku to gwintownik, który jest specjalistycznym narzędziem przeznaczonym do tworzenia gwintów wewnętrznych w otworach. Gwintowanie jest istotnym procesem w obróbce skrawaniem, pozwalającym na uzyskanie precyzyjnych połączeń śrubowych. W praktyce, gwintowniki stosuje się w szerokim zakresie aplikacji, od produkcji elementów mechanicznych po tworzenie mocowań w konstrukcjach metalowych. Zgodnie z normami ISO, gwintowanie powinno być realizowane z uwzględnieniem właściwego doboru narzędzi oraz parametrów obróbczych, aby zapewnić wymagane tolerancje oraz jakość gwintów. Dobrze wykonane gwinty pozwalają na bezpieczne i stabilne połączenia w różnorodnych zastosowaniach, co jest kluczowe w branżach takich jak automotive czy lotnictwo.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Na podstawie tabeli z dokumentacji techniczno-ruchowej przekładni napędu wskaż wszystkie czynności konserwacyjne, które należy przeprowadzić po upływie 4 lat i 3 miesięcy od przyjęcia jednostki napędowej do eksploatacji.

Lp.CzynnośćOdstępy czasu
1Sprawdzenie odgłosów z kół zębatych, łożyskco 1 miesiąc
2Sprawdzenie temperatury obudowy (maksymalna 90°C)
3Wizualne sprawdzenie uszczelnień
4Usunięcie kurzu, pyłu z powierzchni napędu
5Oczyszczenie korka odpowietrzającego i jego bezpośredniego otoczeniaco 3 miesiące
6Sprawdzenie śrub montażowych korpusu napęduco 6 miesięcy
7Sprawdzenie amortyzatorów gumowychco 48 miesięcy
8Wizualne sprawdzenie uszczelnień wału i ewentualnie wymiana
A. 1, 2, 3, 4, 5
B. 1, 2, 3, 4, 5, 8
C. 5, 8
D. 1, 2, 3, 4, 5, 6, 7
Odpowiedź 1, 2, 3, 4, 5 jest poprawna, ponieważ obejmuje wszystkie kluczowe czynności konserwacyjne wymagane po upływie 4 lat i 3 miesięcy eksploatacji jednostki napędowej. Regularna konserwacja jest niezbędna dla zapewnienia niezawodności systemów napędowych, a jej celem jest zapobieganie awariom i wydłużenie żywotności urządzeń. Przykładowo, czynności takie jak wymiana oleju, kontrola stanu uszczelek oraz sprawdzenie poziomu płynów eksploatacyjnych wpływają na efektywność pracy przekładni oraz minimalizują ryzyko uszkodzeń. Dobre praktyki branżowe sugerują, że takie przeglądy powinny być dokumentowane w systemie zarządzania utrzymaniem ruchu, co pozwala na śledzenie historii konserwacji i planowanie przyszłych działań. Biorąc pod uwagę znaczenie regularnej konserwacji, odpowiedzi 1, 2, 3, 4, 5 są zgodne z normami ISO 9001 dotyczącymi zarządzania jakością, które kładą nacisk na systematyczne podejście do utrzymania i poprawy efektywności operacyjnej.

Pytanie 39

Celem smarowania pastą silikonową elementu montowanego na radiatorze jest

A. poprawa wyglądu urządzenia elektronicznego.
B. uzyskanie mniejszej rezystancji cieplnej na połączeniu elementu i radiatora.
C. zwiększenie siły nacisku elementu na radiator.
D. zmniejszenie przewodności cieplnej radiatora.
Wybór odpowiedzi, która sugeruje zwiększenie siły dociskającej element do radiatora, jest mylny. Siła dociskająca jest istotna, ale nie jest to główny cel stosowania pasty silikonowej. W praktyce, aby efektywnie przewodzić ciepło, nie wystarczy jedynie silnie docisnąć element do radiatora, gdyż kluczowym czynnikiem jest jakość kontaktu termicznego, który można poprawić poprzez odpowiednie smarowanie. Dodatkowo, wskazanie na poprawę estetyki wykonania urządzenia elektronicznego jako celu smarowania jest nieuzasadnione w kontekście funkcji pasty. Chociaż estetyka jest ważna, w przypadku smarowania to nie wygląd, ale efektywność przewodzenia ciepła ma kluczowe znaczenie dla wydajności urządzenia. Ostatnią nieprawidłową koncepcją jest sugerowanie, że smarowanie ma na celu zmniejszenie przewodności cieplnej radiatora. Tego rodzaju myślenie jest sprzeczne z podstawową zasadą termodynamiki; radiator powinien zawsze mieć wysoką przewodność cieplną, aby skutecznie odprowadzać ciepło z elementów generujących ciepło. Obserwując te błędne założenia, warto zrozumieć, jak ważne jest prawidłowe podejście do smarowania, które ma na celu optymalizację transferu ciepła, a nie jedynie poprawę wizualną czy sztuczne zwiększanie siły docisku.

Pytanie 40

Dane techniczne zamieszczone w tabeli dotyczą

Rodzaj cieczy hydraulicznejolej mineralny
Zakres temperatury pracy-25°C do +80°C
Standardowa filtracja cieczy hydraulicznej90 μm
Zakres lepkości cieczy hydraulicznej16 mm²/s do 200 mm²/s
Poziom głośności65 dB (A)
Napięcie zasilania silnika230 V 50 Hz, 3x400 V 50 Hz
Napięcie zasilania rozdzielaczy24 V DC, 230 V 50 Hz
Pojemność nominalna zbiornika7 dm³20 dm³
A. rozdzielacza pneumatycznego.
B. zasilacza hydraulicznego.
C. sprężarki powietrza.
D. rozdzielacza hydraulicznego.
Zasilacz hydrauliczny jest kluczowym elementem systemów hydraulicznych, który odpowiada za dostarczanie odpowiedniego ciśnienia i przepływu cieczy roboczej, co jest niezbędne do prawidłowego działania maszyn hydraulicznych. W tabeli zamieszczono dane dotyczące cieczy hydraulicznej, co jest charakterystyczne dla zasilaczy hydraulicznych, które operują na oleju mineralnym. Przykładowo, w różnych aplikacjach przemysłowych - takich jak prasy hydrauliczne czy systemy podnoszenia - zasilacze hydrauliczne muszą spełniać określone normy jakościowe, w tym normy dotyczące filtrowania cieczy hydraulicznej, aby zapewnić ich niezawodność oraz wydajność. Zastosowanie standardów, takich jak ISO 4406, pozwala na monitorowanie stopnia zanieczyszczenia oleju, co jest kluczowe dla utrzymania optymalnej pracy zasilacza. Dodatkowo, zasilacze hydrauliczne powinny być zaprojektowane z uwzględnieniem zakresów temperatur pracy, co wpływa na ich efektywność i żywotność. Właściwe parametry techniczne, takie jak pojemność zbiornika, również odgrywają istotną rolę w zapewnieniu ciągłości operacji w zastosowaniach przemysłowych.