Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 13 lutego 2026 21:18
  • Data zakończenia: 13 lutego 2026 21:35

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Które z urządzeń sieciowych jest przedstawione na grafice?

Ilustracja do pytania
A. Router
B. Access Point
C. Hub
D. Switch
Symbol graficzny, który widzisz, to router. To bardzo ważne urządzenie w sieciach komputerowych. Router działa jak pośrednik między różnymi częściami sieci i przekazuje dane w taki sposób, żeby było to jak najbardziej efektywne. Korzysta z tablic routingu, które są na bieżąco aktualizowane, więc potrafi kierować pakiety tam, gdzie powinny trafić. Co ciekawe, routery mogą łączyć różne typy sieci, na przykład lokalne sieci LAN z rozległymi WAN, czego inne urządzenia sieciowe nie potrafią. Dzisiaj routery obsługują różne protokoły, jak OSPF, RIPv2 czy BGP, co naprawdę pozwala na lepsze zarządzanie ruchem sieciowym. Mają też różne funkcje zabezpieczeń, na przykład firewalle i VPN, co znacznie poprawia bezpieczeństwo i prywatność użytkowników. W domach często pełnią dodatkowo rolę punktu dostępowego Wi-Fi, co pozwala nam bezprzewodowo połączyć się z siecią. Myślę, że bez routerów dzisiaj nie wyobrazimy sobie nowoczesnych sieci, zarówno w domach, jak i w firmach. Kiedy korzystasz z routerów zgodnie z ich przeznaczeniem, możesz nie tylko lepiej zarządzać ruchem, ale też poprawić bezpieczeństwo oraz stabilność sieci.

Pytanie 2

Zidentyfikuj najprawdopodobniejszą przyczynę pojawienia się komunikatu "CMOS checksum error press F1 to continue press DEL to setup" podczas uruchamiania systemu komputerowego?

A. Zniknięty plik konfiguracyjny.
B. Rozładowana bateria podtrzymująca ustawienia BIOS-u
C. Uszkodzona karta graficzna.
D. Wyczyszczona pamięć CMOS.
Nieprawidłowe odpowiedzi koncentrują się na innych potencjalnych przyczynach błędu CMOS, jednak nie uwzględniają one podstawowego problemu związanego z pamięcią CMOS i jej wymaganą baterią. Usunięcie pliku setup w kontekście BIOS-u jest mało prawdopodobne, ponieważ BIOS przechowuje swoje ustawienia w pamięci, a nie w plikach na dysku twardym. Tego rodzaju informacja może prowadzić do mylnego przekonania, że problem jest związany z systemem operacyjnym, a nie z samym sprzętem. Z drugiej strony, uszkodzona karta graficzna może prowadzić do innych rodzajów błędów, takich jak problemy z wyświetlaniem obrazu, ale nie jest bezpośrednio związana z komunikatem o błędzie CMOS. Wreszcie, skasowana zawartość pamięci CMOS na ogół jest wynikiem rozładowania baterii. Zrozumienie, że to bateria pełni kluczową rolę w zasilaniu pamięci CMOS, pozwala uniknąć typowych błędów myślowych. Użytkownicy często mylnie identyfikują problemy z BIOS-em jako związane z innymi komponentami, co może prowadzić do nieefektywnych napraw i niepotrzebnych kosztów. Dlatego ważne jest, aby rozpoznać, że wiele problemów z komputerami ma swoje źródło w podstawowych aspektach konserwacyjnych, jakim jest wymiana baterii CMOS.

Pytanie 3

Aktywacja opcji OCR podczas ustawiania skanera umożliwia

A. zmianę głębi ostrości
B. podwyższenie jego rozdzielczości optycznej
C. wykorzystanie szerszej palety kolorów
D. przekształcenie zeskanowanego obrazu w edytowalny dokument tekstowy
Wybranie odpowiedzi związanej z modyfikowaniem głębi ostrości, przestrzeni barw czy rozdzielczości optycznej to nie najlepszy pomysł, bo te rzeczy nie mają nic wspólnego z OCR. Głębia ostrości dotyczy tego, jak ostre są obiekty na zdjęciach, a nie ma nic wspólnego z przetwarzaniem tekstu. Podobnie przestrzeń barw to po prostu gama kolorów, a nie sposób ułatwiający rozpoznawanie tekstu. Zwiększenie rozdzielczości skanera poprawia jakość obrazu, ale bez OCR ten obraz nie stanie się edytowalnym dokumentem. Czasem ludzie mylą te funkcje skanera, co prowadzi do takich błędnych wniosków. Żeby skutecznie wykorzystać skanery, warto skupić się na funkcjach, które naprawdę pomagają, jak właśnie OCR.

Pytanie 4

Trudności w systemie operacyjnym Windows wynikające z konfliktów dotyczących zasobów sprzętowych, takich jak przydział pamięci, przerwań IRQ oraz kanałów DMA, najłatwiej zidentyfikować za pomocą narzędzia

A. przystawka Sprawdź dysk
B. edytor rejestru
C. chkdsk
D. menedżer urządzeń
Menedżer urządzeń to narzędzie systemowe w Windows, które umożliwia użytkownikom zarządzanie sprzętem zainstalowanym w komputerze. Jego główną funkcją jest monitorowanie i zarządzanie urządzeniami oraz ich sterownikami. W przypadku konfliktów zasobów sprzętowych, takich jak problemy z przydziałem pamięci, przydziałem przerwań IRQ i kanałów DMA, menedżer urządzeń oferuje graficzny interfejs, który wizualizuje stan poszczególnych urządzeń. Użytkownik może łatwo zidentyfikować urządzenia z problemami, co jest kluczowe przy rozwiązywaniu konfliktów. Przykładowo, jeśli dwa urządzenia próbują korzystać z tego samego przerwania IRQ, menedżer urządzeń wyświetli ikonę ostrzegawczą obok problematycznego urządzenia. Użytkownik może następnie podjąć działania, takie jak aktualizacja sterowników, zmiana ustawień urządzenia czy nawet odinstalowanie problematycznego sprzętu. Korzystanie z menedżera urządzeń jest zgodne z najlepszymi praktykami w zarządzaniu systemem, ponieważ pozwala na szybkie lokalizowanie i naprawianie problemów sprzętowych, co z kolei wpływa na stabilność i wydajność systemu operacyjnego.

Pytanie 5

W oznaczeniu procesora INTEL CORE i7-4790 liczba 4 wskazuje na

A. liczbę rdzeni procesora
B. specyficzną linię produkcji podzespołu
C. wskaźnik wydajności Intela
D. generację procesora
Cyfra 4 w oznaczeniu procesora INTEL CORE i7-4790 wskazuje na generację procesora. Intel stosuje system oznaczeń, w którym pierwsza cyfra po prefiksie CORE (i7 w tym przypadku) odnosi się do generacji, a to z kolei przekłada się na architekturę oraz możliwości technologiczne danej serii procesorów. Procesory z serii i7-4790 należą do czwartej generacji, znanej jako 'Haswell'. Generacja ma istotne znaczenie przy wyborze podzespołów, ponieważ nowsze generacje zazwyczaj oferują lepszą wydajność, efektywność energetyczną i wsparcie dla nowych technologii, takich jak pamięci DDR4 czy zintegrowane układy graficzne o wyższych osiągach. To oznaczenie jest kluczowe dla użytkowników i producentów sprzętu, aby mogli podejmować odpowiednie decyzje zakupowe, zwłaszcza w kontekście planowania modernizacji systemów komputerowych, które mogą wymagać specyficznych generacji procesorów dla zapewnienia zgodności z innymi komponentami. Ponadto, wybór odpowiedniej generacji może wpłynąć na długoterminową wydajność i stabilność systemu.

Pytanie 6

Aby zmagazynować 10 GB danych na pojedynczej płycie DVD, jaki typ nośnika powinien być wykorzystany?

A. DVD-9
B. DVD-10
C. DVD-18
D. DVD-5
Wybór nośnika DVD-5, DVD-9 lub DVD-10 do zapisania 10 GB danych jest błędny, ponieważ każdy z tych formatów ma ograniczoną pojemność. DVD-5, na przykład, pomieści jedynie 4,7 GB danych, co znacznie odbiega od wymaganej ilości. Z kolei DVD-9 może przechować do 8,5 GB, co wciąż nie wystarcza na zapisanie 10 GB. DVD-10, będąc podwójną jednostronną płytą, również ma ograniczenie do około 9,4 GB, co czyni go niewystarczającym do zapisania większej ilości danych. Przy wyborze nośnika istotne jest zrozumienie technologii magazynowania i zastosowań, jakie się z nimi wiążą. Często popełnianym błędem jest zakładanie, że inne standardy DVD mogą pomieścić większe ilości danych tylko poprzez wykorzystanie dodatkowych warstw lub stron. W rzeczywistości, tylko nośniki takie jak DVD-18, które wykorzystują obie strony oraz podwójne warstwy, są w stanie skutecznie zaspokoić większe potrzeby magazynowe. Znajomość różnic pomiędzy tymi typami nośników pozwala uniknąć frustracji związanej z niewystarczającą przestrzenią na zapis danych. W związku z tym, wybór odpowiedniego nośnika powinien opierać się na analizie konkretnych wymagań dotyczących przechowywanych materiałów.

Pytanie 7

Urządzeniem, które służy do wycinania kształtów oraz grawerowania między innymi w materiałach drewnianych, szklanych i metalowych, jest ploter

A. tnący.
B. solwentowy.
C. bębnowy.
D. laserowy.
Wiele osób słysząc słowo „ploter” automatycznie kojarzy je z różnymi rodzajami urządzeń tnących czy drukujących, co jest częściowo zrozumiałe, ale prowadzi do pewnych nieścisłości. Ploter tnący rzeczywiście istnieje i jest szeroko wykorzystywany w branży reklamowej – szczególnie do wykrawania folii samoprzylepnych, naklejek czy szablonów z cienkich materiałów, jednak nie poradzi sobie z twardymi materiałami, takimi jak drewno, szkło czy metal. Działa za pomocą specjalnego noża, nie wykorzystuje energii lasera, przez co możliwości jego zastosowania są mocno ograniczone do miękkich, cienkich materiałów. Z kolei ploter bębnowy to raczej historia z czasów, kiedy dominowały wielkoformatowe drukarki atramentowe czy igłowe – tu materiał był nawijany na bęben i powoli przesuwany pod głowicą drukującą. Tego typu urządzenia praktycznie nie mają już zastosowania w precyzyjnym cięciu lub grawerowaniu twardych materiałów. Ploter solwentowy również jest często wybierany mylnie – to typ drukarki wielkoformatowej, która pozwala na nanoszenie bardzo trwałych wydruków na materiały elastyczne, głównie banery, folie czy tkaniny, używając specjalnych atramentów odpornych na warunki atmosferyczne. Solwent nie tnie, nie graweruje, tylko drukuje. Wybierając więc takie urządzenia do obróbki drewna, metalu czy szkła można się mocno rozczarować – fizycznie nie mają możliwości cięcia czy wykonywania precyzyjnego graweru w trudnych technicznie materiałach. To dość powszechny błąd – skupienie się na nazwie urządzenia, a nie na faktycznych możliwościach technologicznych. W branży technicznej, dokładne rozróżnianie i znajomość działania urządzeń jest kluczowe, bo pozwala dobrać odpowiedni sprzęt do konkretnego zadania i uniknąć kosztownych pomyłek. Najlepszą praktyką jest zawsze sprawdzenie specyfikacji i konsultacja z doświadczonymi operatorami przed zakupem czy planowaniem inwestycji w sprzęt warsztatowy lub przemysłowy.

Pytanie 8

Jakie zastosowanie ma przedstawione narzędzie?

Ilustracja do pytania
A. sprawdzenia długości badanego kabla sieciowego
B. utrzymania drukarki w czystości
C. pomiar wartości napięcia w zasilaczu
D. podgrzania i zamontowania elementu elektronicznego
Multimetr cęgowy to super narzędzie do pomiaru napięcia i prądu, a także wielu innych parametru elektrycznych w obwodach. Najlepsze jest to, że można nim mierzyć prąd bez dotykania przewodów, dzięki cęgoma, które obejmują kabel. Kiedy chcesz zmierzyć napięcie w zasilaczu, wystarczy przyłożyć końcówki do odpowiednich punktów w obwodzie i masz dokładny wynik. Multimetry cęgowe są mega popularne w elektryce i elektronice, bo są dokładne i łatwe w obsłudze. Mają też zgodność z międzynarodowymi standardami jak IEC 61010, więc można być pewnym, że są bezpieczne. Co więcej, nowoczesne multimetry mogą badać różne rzeczy, jak rezystancja czy pojemność. Dzięki temu są bardzo wszechstronnym narzędziem diagnostycznym. Możliwość zmiany zakresów pomiarowych to także duży plus, bo pozwala dostosować urządzenie do konkretnych potrzeb. Regularne kalibracje to podstawa, żeby wszystko działało jak należy, co jest istotne w środowisku pracy.

Pytanie 9

Jakie urządzenie pozwala na połączenie lokalnej sieci komputerowej z Internetem?

A. koncentrator
B. sterownik
C. router
D. przełącznik
Router jest kluczowym urządzeniem w architekturze sieci komputerowych, które pełni rolę bramy między lokalną siecią a Internetem. Dzięki funkcji routingu, router analizuje pakiety danych i decyduje o najlepszej trasie ich przesyłania, co pozwala na efektywne korzystanie z zasobów zewnętrznych, takich jak strony internetowe czy usługi w chmurze. W praktyce, routery są wykorzystywane w domowych sieciach Wi-Fi, gdzie łączą urządzenia lokalne z Internetem, a także w przedsiębiorstwach, gdzie zarządzają ruchem w bardziej złożonych architekturach sieciowych. Ponadto, współczesne routery często oferują dodatkowe funkcje, takie jak firewall, obsługa VPN czy zarządzanie pasmem, co czyni je wszechstronnymi narzędziami w kontekście bezpieczeństwa i optymalizacji przepustowości. Dobrą praktyką jest również regularne aktualizowanie oprogramowania układowego routera, co zapewnia bezpieczeństwo oraz wprowadza nowe funkcjonalności.

Pytanie 10

Do akumulatora w jednostce ALU wprowadzono liczbę dziesiętną 253. Jak wygląda jej reprezentacja binarna?

A. 11111101
B. 11111001
C. 11111011
D. 11110111
W przypadku prób konwersji liczby dziesiętnej 253 na system binarny, niektóre z wybranych odpowiedzi mogą prowadzić do nieporozumień. Aby prawidłowo zrozumieć, dlaczego 11111001, 11111011 oraz 11110111 są błędnymi reprezentacjami, warto przyjrzeć się procesowi konwersji. Liczba dziesiętna 253 w binarnym systemie liczbowym składa się z 8 bitów, gdzie każdy bit reprezentuje potęgę liczby 2, począwszy od 2^0 aż do 2^7. Liczba 253 jest równa 128 + 64 + 32 + 16 + 8 + 4 + 1, co odpowiada binarnej reprezentacji 11111101. Wybór odpowiedzi 11111001 i 11111011 może wynikać z błędów w obliczeniach, takich jak niepoprawne dodanie potęg liczby 2 lub pominięcie pewnych bitów. Na przykład, 11111001 reprezentuje liczbę 121, co jest zdecydowanie zbyt małe, podczas gdy 11111011 odpowiada liczbie 187. Z kolei 11110111 odpowiada liczbie 247. Te typowe błędy myślowe, takie jak dezinformacja dotycząca potęg liczby 2 i ich sumowanie, mogą prowadzić do wybierania niewłaściwych odpowiedzi. Dlatego ważne jest, aby zrozumieć fundamenty konwersji liczby oraz znać zasady, jakie rządzą systemem binarnym, aby uniknąć podobnych nieporozumień w przyszłości.

Pytanie 11

Jakie oznaczenie nosi wtyk powszechnie znany jako RJ45?

A. 8P8C (8 Position 8 Contact)
B. 8P4C (8 Position 4 Contact)
C. 4P8C (4 Position 8 Contact)
D. 4P4C (4 Position 4 Contact)
Oznaczenie 8P8C (8 Position 8 Contact) odnosi się do wtyków, które są powszechnie stosowane w kablach Ethernetowych, szczególnie w standardzie 1000BASE-T, który obsługuje transfer danych na poziomie 1 Gbps. Wtyki te mają osiem pinów, co pozwala na przesyłanie danych w pełnym dupleksie, a ich konstrukcja zapewnia odpowiednią jakość sygnału oraz minimalizację zakłóceń elektromagnetycznych. W praktyce, RJ45 jest niezbędny w budowie sieci lokalnych (LAN) oraz w aplikacjach związanych z komunikacją internetową. Użycie wtyków 8P8C stało się standardem w branży telekomunikacyjnej, co pozwala na szeroką kompatybilność pomiędzy różnymi urządzeniami sieciowymi, takimi jak routery, przełączniki i komputery. Warto zauważyć, że stosowanie wtyków zgodnych z tym standardem jest istotne dla zachowania efektywności przesyłu danych oraz optymalizacji pracy sieci.

Pytanie 12

Na ilustracji zaprezentowano konfigurację urządzenia, co sugeruje, że

Ilustracja do pytania
A. wszystkie porty zostały przypisane do VLAN z ID48
B. powstały trzy nowe VLAN-y: ID1, ID13, ID48
C. utworzono dwa nowe VLAN-y: ID13, ID48
D. VLAN z ID48 został skonfigurowany jako zarządzalny
Prawidłowa odpowiedź wskazuje na utworzenie dwóch nowych VLAN-ów o ID 13 i 48. W sieciach komputerowych VLAN, czyli Virtual Local Area Network, umożliwia logiczne segmentowanie sieci na mniejsze, odizolowane segmenty, co zwiększa bezpieczeństwo i efektywność zarządzania ruchem. Na przedstawionym rysunku widać, że poza domyślnym VLAN-em o ID 1 skonfigurowano dwa dodatkowe VLAN-y. VLAN 13 obejmuje porty 1 i 3 jako nieoznakowane, co oznacza, że urządzenia podłączone do tych portów komunikują się w ramach tej samej domeny rozgłoszeniowej bez konieczności tagowania ramek. VLAN 48 obejmuje porty 2 oraz 4-18 w tym samym trybie. Dobra praktyka w zarządzaniu sieciami komputerowymi obejmuje używanie VLAN-ów do separacji ruchu np. dla różnych działów firmy co minimalizuje ryzyko związane z dostępem do danych oraz zwiększa przepustowość dzięki ograniczeniu zbędnych transmisji. Dodatkowo VLAN-y mogą być używane do wdrożenia polityk bezpieczeństwa takich jak separacja sieci IoT od sieci korporacyjnej aby zapobiec potencjalnym atakom.

Pytanie 13

Jak określa się technologię stworzoną przez firmę NVIDIA, która pozwala na łączenie kart graficznych?

A. SLI
B. ATI
C. RAMDAC
D. CROSSFIRE
Odpowiedzi takie jak ATI, RAMDAC czy CROSS FIRE są związane z innymi aspektami technologii graficznych, jednak nie odpowiadają na pytanie dotyczące technologii łączenia kart graficznych opracowanej przez NVIDIA. ATI to firma, która produkuje karty graficzne, a jej produkty konkurują z rozwiązaniami NVIDIA, ale sama w sobie nie jest technologią do łączenia kart. RAMDAC odnosi się do przetwornika cyfrowo-analogowego, który tłumaczy sygnały cyfrowe na analogowe dla monitorów. Ta technologia jest kluczowa dla wyświetlania obrazu, ale nie ma nic wspólnego z łączeniem kart graficznych, co może prowadzić do błędnego zrozumienia funkcji różnych komponentów w komputerze. Z kolei CROSS FIRE to technologia opracowana przez AMD, która pełni podobną rolę do SLI, ale jest stosowana w przypadku kart graficznych tej marki. Typowe błędy myślowe wynikają z pomylenia konkurencyjnych technologii oraz nieznajomości ich zastosowań. Zrozumienie, że każda z tych koncepcji odnosi się do różnych aspektów przetwarzania grafiki, pozwala uniknąć nieporozumień i prawidłowo identyfikować rozwiązania dostosowane do indywidualnych potrzeb użytkownika.

Pytanie 14

Zainstalowanie gniazda typu keyston w serwerowej szafie jest możliwe w

A. patchpanelu FO
B. patchpanelu załadowanym
C. patchpanelu niezaładowanym
D. adapterze typu mosaic
Wybór patchpanelu załadowanego nie jest właściwy, ponieważ gniazda keyston są projektowane właśnie do instalacji w panelach, które nie zawierają jeszcze zainstalowanych komponentów. W patchpanelu załadowanym, wszystkie miejsca są już zajęte przez moduły, co uniemożliwia dodanie nowych gniazd. Oprócz tego, nieprawidłowe jest myślenie, że gniazda keyston mogą być montowane w patchpanelach FO, które są przeznaczone wyłącznie do światłowodowych połączeń. Zastosowanie gniazd keyston w takich panelach prowadziłoby do niewłaściwego użycia zasobów i mogłoby powodować problemy z kompatybilnością. Adapter typu mosaic również nie jest odpowiednim miejscem do instalacji gniazd keyston, ponieważ jest to rozwiązanie bardziej dedykowane dla określonych interfejsów, a nie dla elastyczności w zarządzaniu połączeniami. Typowe błędy myślowe, które prowadzą do tych nieprawidłowych odpowiedzi, to brak zrozumienia funkcji i przeznaczenia różnych rodzajów patchpaneli oraz pomylenie zastosowań gniazd w kontekście różnych typów połączeń sieciowych.

Pytanie 15

Jaką cechę posiada przełącznik w sieci?

A. Z odebranych ramek wydobywa adresy MAC
B. Korzysta z protokołu EIGRP
C. Z przesyłanych pakietów pobiera docelowe adresy IP
D. Działa na fragmentach danych określanych jako segmenty
Wybór odpowiedzi, która sugeruje, że przełącznik sieciowy używa protokołu EIGRP, wskazuje na nieporozumienie dotyczące roli różnych urządzeń w architekturze sieci. EIGRP (Enhanced Interior Gateway Routing Protocol) jest protokołem routingu używanym w routerach do wymiany informacji o trasach w sieciach rozległych (WAN). Przełączniki natomiast operują na warstwie drugiej modelu OSI, skupiając się głównie na adresach MAC i lokalnym przesyłaniu danych. Z kolei odpowiedź dotycząca operowania na segmentach danych myli rolę przełącznika z funkcją routera, który zajmuje się przekazywaniem pakietów na podstawie adresów IP, co jest zarezerwowane dla innej warstwy modelu OSI (warstwa trzecia). Zrozumienie tej różnicy jest kluczowe, ponieważ przełączniki nie analizują adresów IP ani nie podejmują decyzji na ich podstawie. Na końcu, wybór dotyczący odczytywania docelowych adresów IP z przesyłanych pakietów jest typowym błędem myślowym, który wynika z mylenia operacji przełączania z routowaniem. Aby skutecznie projektować i zarządzać sieciami, istotne jest, aby rozumieć, które urządzenia operują na jakich warstwach oraz jakie są ich funkcje i protokoły, z których korzystają. Ta wiedza jest kluczowa w kontekście projektowania infrastruktury sieciowej oraz zapewnienia jej prawidłowego funkcjonowania.

Pytanie 16

Do jakiego złącza, które pozwala na podłączenie monitora, jest wyposażona karta graficzna pokazana na ilustracji?

Ilustracja do pytania
A. DVI-D (Dual Link), HDMI, DP
B. DVI-I, HDMI, S-VIDEO
C. DVI-D (Single Link), DP, HDMI
D. DVI-A, S-VIDEO, DP
Odpowiedzi, które mówią o złączu DVI-A czy S-VIDEO, są niepoprawne. W dzisiejszych czasach te standardy są już dosyć stare i nie radzą sobie z nowoczesnymi wymaganiami co do jakości obrazu. DVI-A to złącze analogowe, co sprawia, że przesyła tylko sygnały w niskiej rozdzielczości. A S-VIDEO? To jeszcze starsza technologia, która nie dość, że przesyła wideo w kiepskiej jakości, to jeszcze nie obsługuje dźwięku. W latach 90-tych to było powszechne, ale teraz to już nie spełnia oczekiwań nowoczesnych monitorów, które wymagają cyfrowych sygnałów i wyższej rozdzielczości. DVI-I z kolei obsługuje i analogi, i cyfrowe sygnały, ale nie jest już tak popularne jak HDMI czy DP, które są bardziej wszechstronne. Warto znać te różnice, żeby dobrze wybrać kartę graficzną zgodnie z własnymi potrzebami i sprzętem, który się ma. Dzięki temu unikniesz typowych problemów, jak niekompatybilność sygnałów czy ograniczenia w rozdzielczości, co dla wielu profesjonalistów i technologicznych zapaleńców jest kluczowe.

Pytanie 17

Która z wymienionych czynności konserwacyjnych związana jest wyłącznie z drukarką laserową?

A. Usunięcie zabrudzeń z zespołu czyszczącego głowice
B. Oczyszczenie traktora
C. Czyszczenie prowadnic karetki
D. Czyszczenie luster i soczewek
Wiesz, usuwanie brudu z zespołu czyszczącego głowice to nie jest coś, co robimy przy drukarkach laserowych. Tak naprawdę to dotyczy atramentówek, bo tam głowice drukujące odpowiadają za nanoszenie atramentu na papier. Ich czyszczenie jest mega ważne, żeby jakość druku była dobra i uniknąć takich problemów jak smużenie. Czyszcenie prowadnic karetki to też nie jest coś, co tylko w laserówkach się robi — jest to standardowa procedura dla obu typów technologii. Mówiąc o czyszczeniu traktora, to zazwyczaj dotyczy ciągłego podawania papieru, a nie tylko laserów. Tak więc, w przypadku laserówek, czyszczenie luster i soczewek to kluczowe zadanie, a inne czynności to już inna bajka. Dlatego ważne jest, aby mieć świadomość, że wymagania konserwacyjne różnią się w zależności od technologii druku.

Pytanie 18

Co to jest urządzenie sieciowe most (ang. bridge)?

A. nie bada ramki pod kątem adresu MAC
B. działa w zerowej warstwie modelu OSI
C. operuje w ósmej warstwie modelu OSI
D. jest urządzeniem typu store and forward
Odpowiedzi, które sugerują, że most pracuje w ósmej warstwie modelu OSI, są nieprawidłowe, ponieważ mosty funkcjonują w drugiej warstwie tego modelu, która odpowiada za kontrolę łącza danych. Ósma warstwa modelu OSI to warstwa aplikacji, która zajmuje się interakcjami użytkowników z aplikacjami sieciowymi. Twierdzenie, że most nie analizuje ramki pod kątem adresu MAC, jest również fałszywe. Mosty są zaprojektowane do analizy adresów MAC, co jest kluczowe dla ich działania, ponieważ to właśnie na podstawie tych adresów mosty decydują, gdzie przesłać ramkę. Stwierdzenie, że most pracuje w zerowej warstwie modelu OSI, jest mylące, ponieważ nie istnieje zerowa warstwa w klasycznym modelu OSI; model ten zaczyna się od warstwy fizycznej, która jest pierwsza. W kontekście sieci komputerowych ważne jest, aby zrozumieć, że każdy typ urządzenia ma specyficzne funkcje i przypisane warstwy w modelu OSI, co ma kluczowe znaczenie dla efektywnego projektowania i zarządzania sieciami. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków często wynikają z mylenia funkcji różnych urządzeń sieciowych oraz niepełnego zrozumienia działania modelu OSI.

Pytanie 19

Oblicz całkowity koszt materiałów potrzebnych do zbudowania sieci w topologii gwiazdy dla 3 komputerów z kartami sieciowymi, używając kabli o długości 2 m. Ceny materiałów są wskazane w tabeli.

Nazwa elementuCena jednostkowa brutto
przełącznik80 zł
wtyk RJ-451 zł
przewód typu „skrętka"1 zł za 1 metr
A. 92 zł
B. 89 zł
C. 252 zł
D. 249 zł
Odpowiedź 92 zł jest prawidłowa, ponieważ dla połączenia w topologii gwiazdy trzech komputerów potrzebujemy jednego przełącznika oraz trzy przewody po 2 metry do każdego komputera. Koszt przełącznika wynosi 80 zł. Każdy metr przewodu typu skrętka kosztuje 1 zł, więc za 2 metry płacimy 2 zł, co łącznie dla trzech komputerów daje 6 zł. Dodatkowo potrzebne są wtyki RJ-45, po jednym na każdy koniec przewodu, co daje sześć wtyków po 1 zł za sztukę, czyli 6 zł. Suma wszystkich kosztów to 80 zł za przełącznik, 6 zł za przewody oraz 6 zł za wtyki, co łącznie daje 92 zł. Topologia gwiazdy jest jedną z najpopularniejszych w sieciach lokalnych, ponieważ oferuje łatwe zarządzanie i prostotę dodawania nowych urządzeń do sieci. W przypadku awarii jednego połączenia, inne komputery w sieci pozostają niezależne i działają poprawnie. Użycie przełącznika jako centralnego punktu pozwala na lepsze zarządzanie przepustowością oraz bezpieczeństwem sieci, co jest zgodne z dobrymi praktykami branżowymi związanymi z projektowaniem sieci komputerowych.

Pytanie 20

Urządzenie przedstawione na rysunku

Ilustracja do pytania
A. jest odpowiedzialne za generowanie sygnału analogowego na wyjściu, który stanowi wzmocniony sygnał wejściowy, kosztem energii pobieranej ze źródła prądu
B. umożliwia zamianę sygnału pochodzącego z okablowania miedzianego na okablowanie światłowodowe
C. jest wykorzystywane do przechwytywania oraz rejestrowania pakietów danych w sieciach komputerowych
D. pełni rolę w przesyłaniu ramki pomiędzy segmentami sieci, dobierając port, na który jest ona kierowana
Urządzenie przedstawione na rysunku to konwerter mediów, który umożliwia zamianę sygnału pochodzącego z okablowania miedzianego na okablowanie światłowodowe. Konwertery tego typu są powszechnie stosowane w sieciach komputerowych do rozszerzania zasięgu sygnałów sieciowych za pomocą światłowodów, które oferują znacznie większe odległości transmisji niż tradycyjne kable miedziane. Dzięki wykorzystaniu technologii światłowodowej możliwe jest zmniejszenie strat sygnału i zakłóceń elektromagnetycznych, co jest szczególnie ważne w miejscach o dużym zanieczyszczeniu elektromagnetycznym. Zastosowanie konwerterów mediów jest również zgodne z dobrymi praktykami projektowania nowoczesnych sieci, gdzie dostępność i niezawodność mają kluczowe znaczenie. Urządzenia te wspierają różne typy połączeń, na przykład 1000BASE-T dla Ethernetu po kablach miedzianych i moduły SFP dla sygnałów światłowodowych. Wykorzystując konwertery mediów, można efektywnie integrować różne technologie w sieciach, zapewniając ich elastyczność i skalowalność, co jest zgodne ze standardami IEEE dotyczącymi sieci lokalnych.

Pytanie 21

Jakie urządzenie peryferyjne komputera służy do wycinania, drukowania oraz frezowania?

A. Skaner
B. Drukarka
C. Wizualizer
D. Ploter
Ploter to naprawdę fajne urządzenie, które jest super przydatne w branżach, gdzie trzeba precyzyjnie ciąć, drukować albo frezować. Działa to na zasadzie tworzenia rysunków i różnych dokumentów technicznych, używając specjalnych materiałów, jak papier, folie czy kompozyty. Fajnie, że ploter radzi sobie z grafiką wektorową, co pozwala uzyskać świetną jakość detali. Można go zobaczyć w akcji, na przykład przy projektach architektonicznych, gdzie tworzy się dokładne plany, czy w reklamie, gdzie produkuje się banery i szyldy. W porównaniu do zwykłych drukarek, ploter ma znacznie więcej możliwości, zarówno jeśli chodzi o materiały, jak i techniki cięcia. Dlatego jest w zasadzie niezastąpiony w produkcji. Pamiętaj, żeby zawsze korzystać z niego zgodnie z zaleceniami, bo to zapewnia najlepszą jakość i precyzję wydruku.

Pytanie 22

W biurze należy zamontować 5 podwójnych gniazd abonenckich. Średnia odległość od lokalnego punktu dystrybucyjnego do gniazda abonenckiego wynosi 10m. Jaki będzie przybliżony koszt zakupu kabla UTP kategorii 5e do utworzenia sieci lokalnej, jeśli cena brutto za 1m kabla UTP kategorii 5e wynosi 1,60 zł?

A. 320,00 zł
B. 800,00 zł
C. 160,00 zł
D. 80,00 zł
Poprawną odpowiedzią jest 160,00 zł, ponieważ w obliczeniach należy uwzględnić zarówno liczbę gniazd abonenckich, jak i średnią odległość od lokalnego punktu dystrybucyjnego. W tym przypadku mamy 5 podwójnych gniazd, co oznacza 10 pojedynczych gniazd. Przy średniej odległości 10 m od punktu dystrybucyjnego, całkowita długość kabla wynosi 10 m x 10 = 100 m. Zakładając, że cena metra kabla UTP kategorii 5e wynosi 1,60 zł, całkowity koszt zakupu kabla wyniesie 100 m x 1,60 zł/m = 160,00 zł. Kabel UTP kategorii 5e jest powszechnie stosowany w lokalnych sieciach komputerowych, a jego wykorzystanie przy instalacjach biurowych jest zgodne z normami branżowymi, co zapewnia odpowiednią jakość i wydajność przesyłania danych. Przykłady praktycznych zastosowań obejmują biura, szkoły oraz wszelkie miejsca, gdzie wymagane jest niezawodne połączenie sieciowe.

Pytanie 23

Zidentyfikuj urządzenie przedstawione na ilustracji

Ilustracja do pytania
A. jest przeznaczone do przechwytywania oraz rejestrowania pakietów danych w sieciach komputerowych
B. jest odpowiedzialne za generowanie sygnału analogowego na wyjściu, który jest wzmocnionym sygnałem wejściowym, kosztem energii pobieranej z zasilania
C. umożliwia konwersję sygnału z okablowania miedzianego na okablowanie optyczne
D. odpowiada za transmisję ramki pomiędzy segmentami sieci z wyborem portu, do którego jest przesyłana
Urządzenie przedstawione na rysunku to konwerter mediów, który umożliwia zamianę sygnału pochodzącego z okablowania miedzianego na okablowanie światłowodowe. Konwertery mediów są kluczowe w nowoczesnych sieciach komputerowych, gdzie konieczne jest łączenie różnych typów mediów transmisyjnych. Przykładowo, jeśli posiadamy infrastrukturę opartą na kablu miedzianym (Ethernet) i chcemy połączyć segmenty sieci na dużą odległość, możemy użyć światłowodu, który zapewnia mniejsze tłumienie i większą odporność na zakłócenia elektromagnetyczne. Urządzenie to pozwala na konwersję sygnałów z miedzianego interfejsu na światłowodowy, często wspierając różne standardy jak 1000Base-T dla miedzi i 1000Base-SX/LX dla światłowodów. Konwertery mogą być wyposażone w gniazda SFP, co umożliwia łatwą wymianę modułów optycznych dostosowanych do wymagań sieci. Dobór odpowiedniego konwertera bazuje na wymaganiach dotyczących prędkości transmisji, odległości przesyłu i rodzaju używanego kabla. Dzięki temu, konwertery mediów pozwalają na elastyczne zarządzanie infrastrukturą sieciową, co jest zgodne z najlepszymi praktykami projektowania sieci, które rekomendują adaptacyjność i skalowalność.

Pytanie 24

Jakie stwierdzenie o routerach jest poprawne?

A. Działają w warstwie łącza danych
B. Działają w warstwie transportu
C. Podejmują decyzje o przesyłaniu danych na podstawie adresów MAC
D. Podejmują decyzje o przesyłaniu danych na podstawie adresów IP
Ruter to urządzenie sieciowe, które działa w warstwie trzeciej modelu OSI, czyli w warstwie sieci. Podejmuje decyzje o przesyłaniu danych na podstawie adresów IP, co pozwala na efektywne kierowanie pakietów między różnymi sieciami. Dzięki analizie adresów IP, ruter może określić najlepszą trasę dla przesyłanych danych, co jest kluczowe w złożonych sieciach, takich jak Internet. Przykład zastosowania to sytuacja, w której użytkownik wysyła e-mail do osoby w innej lokalizacji; ruter analizuje adres IP nadawcy i odbiorcy, a następnie decyduje, przez które węzły sieci przeprowadzić pakiety, aby dotarły do celu. Również w kontekście protokołów routingowych, takich jak RIP, OSPF czy BGP, ruter wykorzystuje informacje o adresach IP, aby zbudować tablicę routingu, co jest zgodne z dobrą praktyką w projektowaniu sieci. Zrozumienie tej funkcji routera jest kluczowe dla efektywnej konfiguracji i zarządzania sieciami komputerowymi.

Pytanie 25

Na podstawie filmu wskaż z ilu modułów składa się zainstalowana w komputerze pamięć RAM oraz jaką ma pojemność.

A. 2 modułów, każdy po 16 GB.
B. 2 modułów, każdy po 8 GB.
C. 1 modułu 32 GB.
D. 1 modułu 16 GB.
W tym zadaniu kluczowe są dwie rzeczy: liczba fizycznych modułów pamięci RAM oraz pojemność pojedynczej kości. Na filmie można zwykle wyraźnie zobaczyć, ile modułów jest wpiętych w sloty DIMM na płycie głównej. Każdy taki moduł to oddzielna kość RAM, więc jeśli widzimy dwie identyczne kości obok siebie, oznacza to dwa moduły. Typowym błędem jest patrzenie tylko na łączną pojemność podawaną przez system, np. „32 GB”, i automatyczne założenie, że jest to jeden moduł 32 GB. W praktyce w komputerach stacjonarnych i w większości laptopów bardzo często stosuje się konfiguracje wielomodułowe, właśnie po to, żeby wykorzystać tryb dual channel lub nawet quad channel. To jest jedna z podstawowych dobrych praktyk przy montażu pamięci – zamiast jednej dużej kości, używa się dwóch mniejszych o tej samej pojemności, częstotliwości i opóźnieniach. Dzięki temu kontroler pamięci w procesorze może pracować na dwóch kanałach, co znacząco zwiększa przepustowość i zmniejsza wąskie gardła przy pracy procesora. Odpowiedzi zakładające pojedynczy moduł 16 GB lub 32 GB ignorują ten aspekt i nie zgadzają się z tym, co widać fizycznie na płycie głównej. Kolejna typowa pułapka polega na myleniu pojemności całkowitej z pojemnością modułu. Jeśli system raportuje 32 GB RAM, to może to być 1×32 GB, 2×16 GB, a nawet 4×8 GB – sam wynik z systemu nie wystarcza, trzeba jeszcze zweryfikować liczbę zainstalowanych kości. Właśnie dlatego w zadaniu pojawia się odniesienie do filmu: chodzi o wizualne rozpoznanie liczby modułów. Dobrą praktyką w serwisie i diagnostyce jest zawsze sprawdzenie zarówno parametrów logicznych (w BIOS/UEFI, w systemie, w narzędziach diagnostycznych), jak i fizycznej konfiguracji na płycie. Pomija się też czasem fakt, że producenci płyt głównych w dokumentacji wprost rekomendują konfiguracje 2×8 GB, 2×16 GB zamiast pojedynczej kości, z uwagi na wydajność i stabilność. Błędne odpowiedzi wynikają więc zwykle z szybkiego zgadywania pojemności, bez przeanalizowania, jak pamięć jest faktycznie zamontowana i jak działają kanały pamięci w nowoczesnych platformach.

Pytanie 26

Po podłączeniu działającej klawiatury do któregokolwiek z portów USB nie ma możliwości wyboru awaryjnego trybu uruchamiania systemu Windows. Jednakże, klawiatura funkcjonuje prawidłowo po uruchomieniu systemu w standardowym trybie. Co to sugeruje?

A. niepoprawne ustawienia BIOS-u
B. uszkodzony zasilacz
C. uszkodzony kontroler klawiatury
D. uszkodzone porty USB
Niepoprawne ustawienia BIOS-u mogą być przyczyną problemów z rozpoznawaniem urządzeń peryferyjnych, takich jak klawiatura, w trybie awaryjnym systemu Windows. Ustawienia BIOS-u odpowiadają za inicjalizację sprzętu przed załadowaniem systemu operacyjnego. Jeśli opcje dotyczące USB lub klawiatury są nieprawidłowo skonfigurowane, to system nie będzie w stanie zidentyfikować klawiatury w trybie awaryjnym. Przykładowo, opcja związana z włączeniem wsparcia dla USB może być wyłączona, co skutkuje brakiem możliwości używania klawiatury w trakcie uruchamiania. W praktyce, aby rozwiązać ten problem, użytkownik powinien wejść do BIOS-u (zazwyczaj przy pomocy klawisza DEL, F2 lub F10 tuż po włączeniu komputera) i sprawdzić, czy ustawienia dotyczące USB są aktywne. W zależności od płyty głównej, może być również konieczne włączenie opcji „Legacy USB Support”, która umożliwia wykrycie starszych urządzeń USB. Dbanie o poprawne ustawienia BIOS-u jest kluczowe, aby zapewnić prawidłowe działanie systemu operacyjnego w różnych trybach.

Pytanie 27

Znak przedstawiony na ilustracji, zgodny z normą Energy Star, wskazuje na urządzenie

Ilustracja do pytania
A. energooszczędne
B. będące laureatem konkursu Energy Star
C. wykonane przez firmę Energy Star Co
D. o zwiększonym poborze energii
Interpretacja znaku Energy Star jako oznaczenia urządzeń o podwyższonym poborze mocy jest błędna, ponieważ jego główną ideą jest promowanie efektywności energetycznej. Znak ten nie ma na celu wyróżniania urządzeń o wysokim zużyciu energii, lecz przeciwnie - tych, które zużywają jej mniej. Uznanie, że Energy Star oznacza zwycięstwo w jakimkolwiek plebiscycie, jest również niepoprawne. Energy Star to formalny program certyfikacyjny, a nie konkurs, w którym urządzenia konkurują o uznanie. Z kolei myślenie, że oznaczenie to wskazuje na konkretnego producenta, jak EnergyStar Co., jest błędne, ponieważ Energy Star nie jest firmą, ale programem certyfikacyjnym. Tego typu błędy mogą wynikać z braku zrozumienia roli i funkcji certyfikatów branżowych oraz ich znaczenia w kontekście zrównoważonego rozwoju. Ważne jest, aby zrozumieć cel i zasady działania takich programów, które są istotne w kontekście globalnych wysiłków na rzecz redukcji zużycia energii i ochrony środowiska. Poprawne rozpoznanie certyfikatu Energy Star jako wskaźnika energooszczędności pozwala na lepsze i bardziej świadome decyzje zakupowe, co przynosi korzyści zarówno konsumentom, jak i środowisku.

Pytanie 28

Diody LED RGB funkcjonują jako źródło światła w różnych modelach skanerów

A. kodów kreskowych
B. bębnowych
C. płaskich CIS
D. płaskich CCD
Wybór innej odpowiedzi, takiej jak skanery płaskie CCD, bębnowe lub kody kreskowe, nie oddaje istoty zastosowania diod elektroluminescencyjnych RGB w kontekście technologii skanowania. Skanery CCD (Charge-Coupled Device) również wykorzystują źródła światła, jednak ich struktura różni się od CIS. W skanerach CCD światło jest często generowane przez zewnętrzne źródła, co wpływa na ich rozmiar i wymagania dotyczące zasilania. W związku z tym, chociaż skanery CCD mogą oferować wysoką jakość obrazu, nie są one zoptymalizowane pod kątem kompaktnych rozwiązań ani niskiego poboru energii, jakie oferują skanery CIS. Z kolei skanery bębnowe, które są używane w bardziej specjalistycznych aplikacjach, takich jak wysokiej jakości skanowanie grafik czy zdjęć, również nie stosują diod RGB w celu osiągnięcia świetlnej jakości skanowania. Dodatkowo, kody kreskowe to nie technologia skanowania obrazu, lecz sposób przechowywania i odczytu danych, który w ogóle nie odnosi się do kwestii kolorów czy diod elektroluminescencyjnych. Typowe błędy myślowe związane z tymi odpowiedziami obejmują mylenie technologii skanowania z technologią kodowania danych oraz niepoprawne przypisanie funkcji źródeł światła do różnych typów skanerów. Zrozumienie różnic pomiędzy tymi technologiami, a także ich zastosowanie w praktyce, jest kluczowe dla poprawnego rozpoznawania ich funkcji w praktycznych aplikacjach.

Pytanie 29

Aby podłączyć kabel w module Keystone, jakie narzędzie należy zastosować?

A. narzędzie ręczne do zaciskania
B. bit imbusowy
C. wkrętak typu Torx
D. narzędzie uderzeniowe
Narzędzie uderzeniowe to kluczowy element w procesie podłączania kabli w module Keystone, gdyż umożliwia precyzyjne i skuteczne zaszycie przewodów w gniazdach bez uszkadzania ich. Jego działanie polega na zastosowaniu mechanizmu uderzeniowego, który wprowadza druty do odpowiednich styków w module, zapewniając solidne połączenie. Tego typu narzędzia są szczególnie cenione w branży, ponieważ minimalizują ryzyko błędów oraz przyspieszają proces instalacji. W praktyce, zastosowanie narzędzia uderzeniowego jest zgodne z normami instalacyjnymi, takimi jak TIA/EIA-568, które definiują standardy dla okablowania strukturalnego. Dobrą praktyką jest także regularne sprawdzanie narzędzi przed użyciem, aby zagwarantować ich prawidłowe działanie oraz uniknąć niepotrzebnych problemów podczas pracy. Właściwe zaszycie kabli w module Keystone przyczynia się do wydajności i niezawodności sieci, co jest kluczowe w dzisiejszym środowisku technologicznym.

Pytanie 30

Jakie złącze powinna mieć karta graficzna, aby mogła być bezpośrednio podłączona do telewizora LCD, który ma tylko analogowe złącze do komputera?

A. DVI-D
B. DP
C. HDMI
D. DE-15F
Wybór jakiegokolwiek innego złącza niż DE-15F w kontekście podłączenia telewizora LCD wyłącznie z analogowym złączem do komputera prowadzi do nieporozumień dotyczących sygnałów i kompatybilności. Złącze DVI-D, mimo że jest popularnym standardem w nowoczesnych kartach graficznych, obsługuje jedynie sygnał cyfrowy, co oznacza, że nie może być użyte do bezpośredniego połączenia z telewizorem analogowym. Brak odpowiednich adapterów sprawia, że przy braku konwersji sygnału użytkownik nie uzyska obrazu na telewizorze. Podobnie, HDMI jest złączem, które również przesyła sygnał cyfrowy, co czyni go niekompatybilnym z telewizorami, które nie posiadają złącza HDMI. Co więcej, złącze DisplayPort (DP) jest dedykowane głównie dla nowoczesnych monitorów i kart graficznych, co w praktyce oznacza, że nie ma możliwości podłączenia go bezpośrednio do starego telewizora LCD. Wybór DVI-D, HDMI lub DP może wydawać się kuszący ze względu na ich zaawansowaną technologię i wyższą jakość obrazu, lecz w rzeczywistości są one nieprzydatne w kontekście podłączania urządzeń, które nie obsługują sygnału cyfrowego. Zrozumienie różnic pomiędzy analogowymi i cyfrowymi sygnałami jest kluczowe w wyborze odpowiednich złącz, a w przypadku telewizora LCD z analogowym złączem, DE-15F jest jedynym racjonalnym wyborem.

Pytanie 31

Aby podłączyć drukarkę igłową o wskazanych parametrach do komputera, trzeba umieścić kabel dołączony do drukarki w porcie

ProducentOKI
Ilość igieł24
Wspierane systemy operacyjneWindows 7, Windows Server 2008
Szybkość druku [znaki/s]576
Maksymalna ilość warstw wydruku6
InterfejsIEEE 1284
Pamięć128 KB
Poziom hałasu [dB]57
A. Centronics
B. FireWire
C. USB
D. Ethernet
Odpowiedzi USB, Ethernet i FireWire to raczej nie są odpowiednie typy połączeń dla drukarek igłowych. USB stało się standardem dla nowych urządzeń peryferyjnych, bo jest uniwersalne i łatwe w użyciu, ale drukarki igłowe wolą korzystać z Centronics, bo to pasuje do ich budowy i zastosowań. USB jest szybkie, co jest ważne dla skanerów czy nowoczesnych drukarek laserowych, ale niekoniecznie dla igłowych, które potrzebują niezawodności w trudnych warunkach. Ethernet to głównie do sieci, żeby podłączać zdalnie drukarki, ale do lokalnych połączeń z igłowymi to zbędne. FireWire używano w urządzeniach, które musiały szybko przesyłać dużo danych, jak kamery wideo, a drukarki igłowe nie potrzebują aż takiego transferu, dlatego to nie dla nich. Wybór niewłaściwych interfejsów może wynikać z braku wiedzy o tym, czego te drukarki naprawdę potrzebują, a one wciąż korzystają z Centronics, bo to działa dobrze w zadaniach jak drukowanie faktur czy innych dokumentów. Rozumienie tych interfejsów może pomóc lepiej dopasować sprzęt do ich potrzeb.

Pytanie 32

Do pomiaru wartości mocy pobieranej przez zestaw komputerowy służy

A. watomierz.
B. dozymetr.
C. anemometr.
D. omomierz.
Właściwie, watomierz to przyrząd przeznaczony właśnie do pomiaru mocy pobieranej przez urządzenia elektryczne, w tym zestawy komputerowe. Sam kiedyś sprawdzałem, ile dokładnie prądu pożera mój komputer podczas grania i watomierz był wtedy niezastąpiony – nie tylko pokazuje chwilowe zużycie energii, ale często zapisuje też całkowite zużycie w dłuższym czasie. Takie narzędzia są obowiązkowym elementem wyposażenia każdego serwisanta czy instalatora, szczególnie gdy chodzi o sprawdzanie, czy zasilacz pracuje zgodnie ze swoją specyfikacją. W branży IT i automatyce zaleca się regularne pomiary mocy, żeby ocenić, czy infrastruktura nie jest przeciążana i czy nie dochodzi do niepotrzebnych strat energii. To też świetna metoda na wykrycie 'pożeraczy prądu' w biurze albo domu, a osobiście uważam, że każdy powinien choć raz sprawdzić, ile realnie kosztuje go działanie komputera przez cały miesiąc. Watomierze bywają proste, w formie gniazdek, a czasem bardziej zaawansowane, podłączane w rozdzielniach. W praktyce, bez watomierza, nie da się rzetelnie ocenić poboru mocy przez zestaw komputerowy – inne przyrządy po prostu się do tego nie nadają.

Pytanie 33

Która z wymienionych technologii pamięci RAM wykorzystuje oba zbocza sygnału zegarowego do przesyłania danych?

A. SIMM
B. DDR
C. SDR
D. SIPP
Odpowiedzi, które nie wskazują na pamięć DDR, bazują na zrozumieniu standardów pamięci RAM, ale nie uwzględniają kluczowej różnicy w sposobie przesyłania danych. SIMM (Single In-line Memory Module) i SIPP (Single In-line Pin Package) są starszymi technologiami, które nie obsługują podwójnej wydajności przesyłu danych. SIMM wykorzystuje pojedyncze zbocze sygnału zegarowego, co ogranicza jego efektywność w porównaniu do nowszych rozwiązań. Z kolei SIPP to technologia, która w praktyce nie jest już stosowana w nowoczesnych systemach komputerowych, ponieważ została zastąpiona przez bardziej wydajne rozwiązania jak DIMM. SDR (Single Data Rate) również nie wykorzystuje podwójnego przesyłania danych, co czyni ją mniej efektywną od DDR. SDR przesyła dane tylko na wznoszących zboczu sygnału zegarowego, co ogranicza jego przepustowość. To błędne założenie, że wszystkie standardy pamięci RAM mogą oferować podobne osiągi, prowadzi do nieefektywnego doboru komponentów w systemach komputerowych. Dlatego w kontekście wydajności i przyszłości zastosowań technologii pamięci, DDR stanowi zdecydowanie lepszy wybór.

Pytanie 34

Sygnał kontrolny generowany przez procesor, umożliwiający zapis do urządzeń wejściowych i wyjściowych, został na diagramie oznaczony numerem

Ilustracja do pytania
A. 1
B. 4
C. 2
D. 3
Wybór błędnej odpowiedzi co do sygnału sterującego zapisem do urządzeń wejścia-wyjścia często wynika z niepełnego zrozumienia roli poszczególnych sygnałów w architekturze mikroprocesora. Sygnały MEMR i MEMW oznaczają operacje odczytu i zapisu do pamięci, co jest mylące dla wielu uczących się, którzy mogą błędnie przypuszczać, że są one związane z urządzeniami wejścia-wyjścia. MEMR jest używany do odczytu danych z pamięci, natomiast MEMW do zapisu danych do pamięci. Sygnały te są integralną częścią komunikacji z pamięcią RAM i ROM, ale nie z urządzeniami wejścia-wyjścia. I/OR i I/OW to sygnały dedykowane dla operacji z urządzeniami I/O. I/OR oznacza odczyt z urządzeń I/O, podczas gdy I/OW oznacza zapis. Mylenie sygnałów związanych z pamięcią i I/O jest powszechnym błędem, zwłaszcza u początkujących projektantów systemów. Aby uniknąć takich pomyłek, ważne jest dogłębne zrozumienie funkcji i zastosowania każdego sygnału oraz kontekstu, w jakim są używane. W systemach komputerowych sygnały są wykorzystywane w złożonych sekwencjach operacji, a prawidłowe ich przypisanie jest kluczowe dla stabilnej i wydajnej pracy całego systemu. Inżynierowie muszą być świadomi standardowych praktyk i protokołów komunikacyjnych używanych w systemach mikroprocesorowych, by skutecznie projektować i diagnozować złożone systemy komputerowe. Dobra znajomość tych zasad pozwala na unikanie kosztownych błędów w projektowaniu sprzętu i oprogramowania, co jest kluczowe w nowoczesnym inżynierii komputerowej.

Pytanie 35

Ilustracja pokazuje panel ustawień bezprzewodowego urządzenia dostępowego, który umożliwia

Ilustracja do pytania
A. określenie maski podsieci
B. ustawienie nazwy hosta
C. konfigurację serwera DHCP
D. przypisanie adresów MAC do kart sieciowych
Konfiguracja serwera DHCP na panelu konfiguracyjnym bezprzewodowego urządzenia dostępowego jest kluczowym krokiem w zarządzaniu siecią. DHCP, czyli Dynamic Host Configuration Protocol, automatycznie przydziela adresy IP urządzeniom w sieci, co upraszcza procesy administracyjne i zmniejsza ryzyko konfliktów adresów IP. W panelu konfiguracyjnym można ustawić początkowy adres IP, co pozwala na zdefiniowanie zakresu adresów, które będą przydzielane klientom. Można też określić maksymalną liczbę użytkowników DHCP, co zapewnia kontrolę nad zasobami sieciowymi. Ustawienia te są kluczowe w sieciach zarówno domowych, jak i korporacyjnych, gdzie automatyzacja przydzielania adresów IP oszczędza czas administratorów. Dobre praktyki zalecają również ustawienie czasu dzierżawy, co wpływa na to, jak długo dany adres IP pozostaje przypisany do urządzenia. Praktyczne zastosowanie tego polega na unikaniu ręcznego przydzielania adresów IP, co w przypadku dużych sieci jest czasochłonne i podatne na błędy. Serwery DHCP są integralnym elementem nowoczesnych sieci, a ich konfiguracja według najlepszych praktyk zwiększa efektywność i niezawodność połączeń sieciowych

Pytanie 36

Aktywacja opcji OCR w procesie ustawiania skanera umożliwia

A. uzyskanie szerszej gamy kolorów
B. podniesienie jego rozdzielczości optycznej
C. zmianę głębi ostrości
D. przekształcenie zeskanowanego obrazu w edytowalny dokument tekstowy
Modyfikowanie głębi ostrości, zwiększanie rozdzielczości optycznej oraz korzystanie z większej przestrzeni barw to funkcje skanera, które nie mają bezpośredniego związku z technologią OCR. Głębia ostrości odnosi się do zakresu odległości, w którym obiekty są ostre w obrazie. Modyfikacja tego parametru dotyczy głównie aparatów fotograficznych i nie wpływa na zdolność skanera do rozpoznawania tekstu. Rozdzielczość optyczna skanera, określająca ilość szczegółów, które skaner potrafi uchwycić, jest istotna w kontekście jakości obrazu, ale sama w sobie nie przekształca obrazu w tekst. Wyższa rozdzielczość może poprawić jakość skanów, co jest korzystne, zwłaszcza w przypadku dokumentów z małym drukiem, ale nie zapewnia konwersji na format edytowalny. Przestrzeń barw odnosi się do zakresu kolorów, które mogą być przedstawiane lub reprodukowane przez urządzenie, co również nie ma wpływu na funkcję OCR. Często popełnianym błędem jest mylenie funkcji skanera z innymi parametrami technicznymi, które nie dotyczą bezpośrednio procesu rozpoznawania tekstu. W rzeczywistości, aby skutecznie korzystać z OCR, kluczowe jest zwrócenie uwagi na jakość skanowanego obrazu, co może wymagać odpowiedniej konfiguracji rozdzielczości, ale nie zmienia to faktu, że OCR jest odrębną funkcjonalnością skoncentrowaną na przetwarzaniu tekstu.

Pytanie 37

Dysk twardy IDE wewnętrzny jest zasilany przez połączenie typu

A. PCIe
B. ATX
C. Molex
D. SATA
Złącze SATA jest nowocześniejszym standardem stosowanym w dyskach twardych i napędach optycznych, ale nie jest odpowiednie dla dysków IDE. SATA, który wprowadził bardziej elastyczną architekturę i szybsze transfery danych, wykorzystuje inne złącza zasilające oraz interfejs komunikacyjny. Złącze PCIe jest stosowane głównie do urządzeń takich jak karty graficzne i nie jest zaprojektowane do zasilania dysków twardych, a jego funkcjonalność nie obejmuje połączeń z urządzeniami IDE. Z kolei złącze ATX odnosi się do standardu zasilaczy komputerowych, które mogą zawierać różne wyjścia, jednak ATX nie jest specyficznym złączem do zasilania dysków twardych. Zrozumienie różnic między tymi złączami jest kluczowe, ponieważ każdy standard zasilania ma swoje unikalne zastosowanie i parametry. Często pojawiają się nieporozumienia, gdy użytkownicy mylą złącza stosowane w komputerach, co prowadzi do błędów w konfiguracji sprzętowej. Nieodpowiednie zasilanie dysku twardego może skutkować nieprawidłowym działaniem, uszkodzeniem sprzętu lub utratą danych, dlatego ważne jest, aby dobierać odpowiednie komponenty zgodnie z ich specyfikacjami.

Pytanie 38

Aby podłączyć 6 komputerów do sieci przy użyciu światłowodu, potrzebny jest kabel z co najmniej taką ilością włókien:

A. 6
B. 3
C. 24
D. 12
Niektóre podejścia do podłączania komputerów do sieci światłowodowej opierają się na błędnym założeniu, że każdy komputer potrzebuje jedynie jednego włókna. Użytkownicy mogą mylnie zakładać, że przy konfiguracji sieci wystarczy pojedyncze włókno dla każdego urządzenia, co prowadzi do nieprawidłowych wniosków. Odpowiedzi takie jak 6 lub 3 włókna bazują na mylnym przekonaniu, że każda maszyna może działać w trybie półduplex, gdzie transmisja i odbiór odbywają się na tym samym włóknie, co w rzeczywistości ogranicza wydajność sieci oraz może prowadzić do kolizji sygnałów. Z kolei wybór 24 włókien również może być uznany za nadmiarowy w wielu przypadkach, co zwiększa koszty bez istotnej potrzeby. W standardowych projektach sieciowych, takich jak lokalne sieci LAN, najlepszą praktyką jest zastosowanie pełnodupleksowych połączeń, co wymaga co najmniej 12 włókien – dwóch na każdy komputer, co poprawia wydajność i zapewnia lepszą jakość sygnału. Zatem kluczowym błędem jest niewłaściwe rozumienie wymaganej liczby włókien w kontekście pełnej funkcjonalności i przyszłych potrzeb rozbudowy.

Pytanie 39

Aby zapewnić łączność urządzenia mobilnego z komputerem za pośrednictwem interfejsu Bluetooth, konieczne jest

A. wykonać parowanie urządzeń
B. zestawić połączenie między urządzeniami kablem krosowym
C. stworzyć sieć WAN dla tych urządzeń
D. ustawić urządzenie mobilne przez przeglądarkę
Wykonanie parowania urządzeń jest kluczowym krokiem w nawiązywaniu połączenia Bluetooth pomiędzy urządzeniem mobilnym a komputerem. Proces ten polega na wymianie danych zabezpieczających, takich jak kody PIN lub hasła, które są niezbędne do autoryzacji połączenia. Parowanie zapewnia, że tylko zaufane urządzenia mogą wymieniać dane, co jest zgodne z najlepszymi praktykami bezpieczeństwa. Po zakończeniu parowania, urządzenia będą mogły automatycznie się łączyć bez potrzeby ponownego wprowadzania danych. Przykładem zastosowania może być sytuacja, w której użytkownik chce przesłać pliki z telefonu na komputer. Po parowaniu, takie operacje stają się znacznie łatwiejsze, a użytkownik oszczędza czas. Ponadto, Bluetooth ma różne profile, takie jak A2DP do przesyłania dźwięku czy SPP do przesyłania danych, co pozwala na różnorodne zastosowania w zależności od potrzeb użytkownika.

Pytanie 40

W ramach zalecanych działań konserwacyjnych użytkownicy dysków SSD powinni unikać wykonywania

A. czyszczenia wnętrza jednostki centralnej z kurzu
B. systematycznego sprawdzania dysku programem antywirusowym
C. systematycznych kopii zapasowych danych
D. defragmentacji dysku
Defragmentacja dysku jest procesem, który ma na celu uporządkowanie fragmentów danych na tradycyjnych dyskach HDD, aby poprawić ich wydajność. Dyski SSD działają jednak na zupełnie innej zasadzie. W odróżnieniu od HDD, które wykorzystują ruchome części do odczytu i zapisu danych, SSD korzystają z pamięci flash, co oznacza, że dostęp do danych jest bardzo szybki, niezależnie od ich fizycznego rozmieszczenia na nośniku. Proces defragmentacji, który w przypadku HDD może przyspieszyć dostęp do danych, w przypadku SSD nie tylko nie przynosi korzyści, ale może również prowadzić do przedwczesnego zużycia komórek pamięci. Ponieważ SSD mają ograniczoną liczbę cykli zapisu i kasowania, narażanie ich na dodatkowe operacje zapisu, jakimi są działania defragmentacyjne, jest niewskazane. Zamiast tego, użytkownicy SSD powinni skupić się na regularnym aktualizowaniu oprogramowania systemowego oraz korzystaniu z technologii TRIM, które pozwala na lepsze zarządzanie przestrzenią pamięci. Dobre praktyki zarządzania dyskami SSD obejmują również monitorowanie ich stanu za pomocą odpowiednich narzędzi diagnostycznych, co pozwala na wczesne wykrycie potencjalnych problemów.