Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 22 stycznia 2026 07:51
  • Data zakończenia: 22 stycznia 2026 08:10

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Serwer, który pozwala na udostępnianie usług drukowania oraz plików z systemu Linux dla stacji roboczych Windows, OS X i Linux, to

A. APACHE
B. SQUID
C. POSTFIX
D. SAMBA
Wybór odpowiedzi związanych z SQUID, APACHE i POSTFIX wskazuje na niezrozumienie podstawowych funkcji tych aplikacji. SQUID jest serwerem proxy, który przede wszystkim służy do cache'owania i filtracji ruchu internetowego, a jego głównym celem jest poprawa wydajności oraz zarządzanie dostępem do zasobów internetowych. Chociaż SQUID może wspierać różne protokoły, nie posiada funkcji udostępniania serwerów plików ani drukarek do systemów Windows. APACHE to serwer HTTP, który jest używany do hostowania stron internetowych. Jego rola w sieciach odnosi się głównie do obsługi zapytań HTTP i generowania treści internetowych, co czyni go niewłaściwym wyborem, gdy mówimy o współdzieleniu zasobów w kontekście drukowania czy plików. Kolejną odpowiedzią jest POSTFIX, który jest serwerem pocztowym używanym do obsługi wiadomości email. Jego funkcje są wyraźnie ukierunkowane na przesyłanie i zarządzanie pocztą elektroniczną, co również nie ma związku z udostępnianiem plików czy drukarek. Typowym błędem myślowym jest mylenie funkcji serwerów z różnymi protokołami i zadaniami, które każde z nich pełni. Wiedza na temat ról poszczególnych aplikacji jest kluczowa dla zarządzania infrastrukturą IT w organizacjach oraz ich efektywności operacyjnej.

Pytanie 2

Wskaż podzespół niekompatybilny z płytą główną o przedstawionych w tabeli parametrach.

PodzespółParametry
Płyta główna GIGABYTE4x DDR4, 4x PCI-E 16x, RAID, HDMI, D-Port, D-SUB, 2x USB 3.1, 8x USB 2.0, S-AM3+
A. Procesor: INTEL CORE i3-4350, 3.60 GHz, x2/4, 4 MB, 54W, HD 4600, BOX, s-1150
B. Karta graficzna: Gigabyte GeForce GTX 1050 OC, 2GB, GDDR5, 128 bit, PCI-Express 3.0 x16
C. Monitor: Dell, 34”, 1x DisplayPort, 1x miniDP, 2x USB 3.0 Upstream, 4x USB 3.0 Downstream
D. Pamięć RAM: Corsair Vengeance LPX, DDR4, 2x16GB, 3000MHz, CL15 Black
Procesor INTEL CORE i3-4350 nie jest kompatybilny z płytą główną GIGABYTE o oznaczeniu S-AM3+, ponieważ posiada złącze socket LGA 1150. W kontekście budowy komputera, wybór odpowiedniego procesora jest kluczowy, gdyż każda płyta główna obsługuje określone modele procesorów, które muszą pasować do jej gniazda. Zastosowanie procesora niezgodnego ze standardem płyty głównej skutkuje brakiem możliwości jego zainstalowania i funkcjonowania. W branży IT przyjęto, że dobrą praktyką jest zawsze sprawdzanie tabeli zgodności komponentów przed zakupem. Na przykład, użycie procesora AMD na płycie głównej zaprojektowanej dla procesorów Intel jest niemożliwe bez względu na inne parametry. Dlatego zawsze należy zwracać uwagę na specyfikacje techniczne i upewnić się, że wszystkie komponenty są ze sobą kompatybilne, co zapewnia prawidłowe działanie systemu oraz optymalną wydajność.

Pytanie 3

Osoba korzystająca z lokalnej sieci musi mieć możliwość dostępu do dokumentów umieszczonych na serwerze. W tym celu powinna

A. zalogować się do domeny serwera oraz dysponować odpowiednimi uprawnieniami do plików znajdujących się na serwerze
B. należeć do grupy administratorzy na tym serwerze
C. posiadać konto użytkownika bez uprawnień administracyjnych na tym serwerze
D. połączyć komputer z tym samym przełącznikiem, do którego podłączony jest serwer
Aby użytkownik mógł korzystać z plików znajdujących się na serwerze sieciowym, musi zalogować się do domeny serwera oraz posiadać odpowiednie uprawnienia do tych plików. Logowanie do domeny jest kluczowe, ponieważ umożliwia centralne zarządzanie kontami użytkowników i ich uprawnieniami. Administracja w kontekście sieciowym często opiera się na modelu kontrolera domeny, co zapewnia wysoki poziom bezpieczeństwa i organizacji. Przykładem może być zdalny dostęp do współdzielonego folderu, gdzie użytkownicy muszą być autoryzowani przez system operacyjny serwera, aby móc otworzyć lub edytować pliki. Ponadto, użytkownicy mogą być przypisani do grup, które mają określone prawa dostępu. W praktyce, organizacje wdrażają polityki bezpieczeństwa, aby zapewnić, że tylko odpowiedni pracownicy mają dostęp do wrażliwych danych, co jest zgodne z zasadą minimalnych uprawnień. Warto również zaznaczyć, że korzystanie z takich rozwiązań pozwala na łatwiejsze zarządzanie i audytowanie dostępu do zasobów sieciowych.

Pytanie 4

Zanim zainstalujesz sterownik dla urządzenia peryferyjnego, system operacyjny Windows powinien weryfikować, czy sterownik ma ważny podpis

A. cyfrowy
B. zaufany
C. kryptograficzny
D. elektroniczny
Odpowiedź 'cyfrowy' jest poprawna, ponieważ system operacyjny Windows przed instalacją sterownika urządzenia peryferyjnego sprawdza, czy sterownik posiada cyfrowy podpis. Cyfrowy podpis to forma zabezpieczeń, która wykorzystuje kryptografię do potwierdzenia, że dane, takie jak oprogramowanie, pochodzą od zaufanego źródła i nie zostały zmodyfikowane w trakcie przesyłania. Podpis cyfrowy jest kluczowym elementem w zapewnieniu integralności i autentyczności oprogramowania. W praktyce, zastosowanie cyfrowych podpisów w sterownikach zapobiega instalacji potencjalnie złośliwego oprogramowania i chroni użytkowników przed zagrożeniami bezpieczeństwa. Warto zaznaczyć, że Microsoft wprowadził obowiązek stosowania cyfrowych podpisów dla sterowników od Windows Vista, co podkreśla znaczenie tego mechanizmu w systemach operacyjnych. Ponadto, organizacje przestrzegające standardów takich jak ISO/IEC 27001, które dotyczą zarządzania bezpieczeństwem informacji, również kładą duży nacisk na używanie takich technologii, aby chronić dane i infrastrukturę IT.

Pytanie 5

Które urządzenie może zostać wykorzystane do rutowania ruchu sieciowego między sieciami VLAN?

A. Punkt dostępowy.
B. Przełącznik warstwy trzeciej.
C. Przełącznik warstwy drugiej obsługujący Port Based.
D. Przełącznik warstwy drugiej z tablicą adresów MAC komputerów z nim połączonych.
W tym pytaniu łatwo się pomylić, bo wszystkie wymienione urządzenia kojarzą się z siecią lokalną, ale tylko jedno z nich faktycznie realizuje routing między VLAN-ami. Częsty błąd polega na wrzucaniu do jednego worka wszystkich przełączników i zakładaniu, że skoro obsługują VLAN-y, to „na pewno jakoś to zrutują”. Niestety, tak to nie działa. Punkt dostępowy (access point) pracuje głównie w warstwie drugiej modelu OSI i jego podstawowym zadaniem jest mostkowanie ruchu między siecią bezprzewodową a przewodową. Owszem, nowocześniejsze kontrolery Wi-Fi potrafią przekierować ruch do konkretnych VLAN-ów w zależności od SSID, ale to nadal nie jest routing między VLAN-ami. AP po prostu wpuszcza ruch do odpowiedniego VLAN-u, a decyzje routingu podejmuje dalej router albo przełącznik L3. Z mojego doświadczenia sporo osób przecenia możliwości samych punktów dostępowych, bo interfejsy konfiguracyjne wyglądają „inteligentnie”, ale logika sieci dalej leży w klasycznych urządzeniach routujących. Przełącznik warstwy drugiej, nawet jeśli obsługuje VLAN-y portowe (Port Based VLAN), nadal działa na adresach MAC i ramkach Ethernet, nie na adresach IP. On potrafi odseparować ruch, stworzyć kilka domen rozgłoszeniowych i przypisać porty do różnych VLAN-ów, ale nie przeanalizuje nagłówka IP, więc nie podejmie decyzji routingu. To samo dotyczy zwykłego przełącznika L2 z tablicą adresów MAC – ta tablica służy jedynie do tego, żeby wiedzieć, na który port wysłać ramkę w obrębie tej samej sieci logicznej. Typowy tok myślenia prowadzący do złej odpowiedzi jest taki: „skoro przełącznik zna MAC-e i obsługuje VLAN-y, to pewnie umie też przekierować ruch między nimi”. W rzeczywistości routing wymaga logiki warstwy trzeciej, czyli analizy adresów IP, tablic routingu, ewentualnie protokołów routingu dynamicznego. Jeśli urządzenie nie jest wyraźnie opisane jako router lub przełącznik warstwy trzeciej, to nie zrealizuje inter-VLAN routingu. W praktycznych sieciach robi się to zawsze przez router z podinterfejsami dla każdego VLAN-u albo przez switch L3 z interfejsami SVI. To jest fundament poprawnej segmentacji sieci zgodnej ze standardami branżowymi.

Pytanie 6

Które z urządzeń sieciowych funkcjonuje w warstwie fizycznej modelu ISO/OSI, transmitując sygnał z jednego portu do wszystkich pozostałych portów?

A. Koncentrator
B. Karta sieciowa
C. Modem
D. Przełącznik
Wybierając inne urządzenia sieciowe, jak modem, przełącznik czy karta sieciowa, można się pogubić w ich rolach i działaniu w sieci. Modem, na przykład, przekształca sygnał cyfrowy na analogowy i vice versa, co jest potrzebne do łączenia naszej lokalnej sieci z Internetem. Jego zadaniem jest umożliwienie komunikacji z sieciami szerokopasmowymi, a nie przesyłanie sygnałów w lokalnej sieci według zasady 'jeden do wielu'. Przełącznik, z kolei, działa na wyższym poziomie, bo na warstwie drugiej modelu OSI i potrafi rozpoznawać adresy MAC podłączonych urządzeń. Dzięki temu potrafi kierować ruch do konkretnego portu, co poprawia efektywność sieci i zmniejsza kolizje. Karta sieciowa to element, który pozwala urządzeniu łączyć się z siecią, zmieniając dane z formy cyfrowej na analogową i na odwrót. Można błędnie myśleć, że ich funkcje są podobne do koncentratora, ale każde z tych urządzeń ma swoje specyficzne zastosowanie w sieci. Zrozumienie ich roli jest kluczowe, jak się chce dobrze zaprojektować i zarządzać siecią.

Pytanie 7

Uruchomienie polecenia msconfig w systemie Windows

A. zarządzanie zadaniami
B. sekcja ustawień
C. zarządzanie plikami
D. narzędzie konfiguracji systemu
Odpowiedzi, które wskazują na inne funkcje systemu Windows, takie jak panel sterowania, menedżer zadań czy menedżer plików, nie są związane z poleceniem msconfig. Panel sterowania skupia się na zarządzaniu ustawieniami systemowymi, takimi jak dodawanie i usuwanie programów, modyfikacja ustawień sieciowych czy konfiguracja sprzętu. Jest to narzędzie bardziej ogólne, które nie koncentruje się na aspektach związanych z rozruchem systemu. Menedżer zadań, z kolei, jest używany do monitorowania bieżących procesów, zarządzania uruchomionymi aplikacjami i kończenia nieodpowiadających programów, ale nie oferuje opcji konfiguracji startowych. Menedżer plików (Eksplorator Windows) jest narzędziem do zarządzania plikami i folderami w systemie, co również nie ma związku z zarządzaniem usługami czy programami startowymi. Typowe błędy myślowe prowadzące do tych nietrafnych odpowiedzi często wynikają z mylenia funkcji narzędzi systemowych. Użytkownicy mogą nie dostrzegać różnic między nimi, co skutkuje błędną interpretacją ich roli. Warto podkreślić, że zrozumienie specyfiki każdego z tych narzędzi jest kluczowe do efektywnego zarządzania systemem Windows i jego optymalizacji. Powodzenie w diagnostyce problemów z systemem wymaga znajomości właściwych narzędzi, ich zastosowań oraz umiejętności ich użycia.

Pytanie 8

Jak wygląda układ przewodów w złączu RJ45 zgodnie z kolejnością połączeń T568A?

Ilustracja do pytania
A. Biało-zielony Zielony Biało-pomarańczowy Niebieski Biało-niebieski Pomarańczowy Biało-brązowy Brązowy
B. Biało-brązowy Brązowy Biało-pomarańczowy Pomarańczowy Biało-zielony Niebieski Biało-niebieski Zielony
C. Biało-niebieski Niebieski Biało-brązowy Brązowy Biało-zielony Zielony Biało-pomarańczowy Pomarańczowy
D. Biało-pomarańczowy Pomarańczowy Biało-zielony Niebieski Biało-niebieski Zielony Biało-brązowy Brązowy
Sekwencja T568A dla wtyków RJ45 to jeden z tych dwóch standardów, które mamy w sieciach. Dobrze się znać na kolejności przewodów, bo to naprawdę ważne. W T568A mamy: biało-zielony, zielony, biało-pomarańczowy, niebieski, biało-niebieski, pomarańczowy, biało-brązowy i brązowy. Ta sekwencja jest istotna, bo zapewnia, że wszystko działa jak należy. Słyszałem, że w domowych sieciach czy w firmach, gdzie się stosuje różne urządzenia jak routery i switche, ten standard jest dość popularny. Jak się przestrzega takich norm, to można uzyskać lepszą jakość przesyłu danych i uniknąć zakłóceń elektromagnetycznych, co jest super ważne w sieciach Ethernet. Poznanie i używanie takich standardów jak T568A na pewno poprawia wydajność systemów teleinformatycznych, więc warto się tym zainteresować.

Pytanie 9

Jakie cechy posiadają procesory CISC?

A. wielką liczbę instrukcji
B. małą liczbę metod adresowania
C. prostą oraz szybką jednostkę zarządzającą
D. ograniczoną wymianę danych między pamięcią a procesorem
Jednostki sterujące w procesorach CISC nie są proste ani szybkie, ponieważ ich architektura wymaga obsługi złożonych rozkazów, co prowadzi do większego skomplikowania jednostek sterujących i dłuższego czasu wykonania instrukcji. Takie złożoności mogą wprowadzać opóźnienia, co jest sprzeczne z ideą szybkiego przetwarzania. W kontekście rozkazów, procesory CISC nie cechują się niewielką ich liczbą, ale wręcz przeciwnie: charakteryzują się dużą ich ilością, co sprawia, że programiści mają do dyspozycji wiele narzędzi do realizacji złożonych zadań. Ścisły związek pomiędzy pamięcią a procesorem w architekturze CISC jest również kluczowy – nie można mówić o ograniczonej komunikacji, gdyż złożony zestaw instrukcji wymaga rozbudowanej interakcji z pamięcią. Typowym błędem myślowym jest przyjęcie, że kompleksowość architektury oznacza prostotę i szybkość; w rzeczywistości złożoność architektury wpływa na wydajność i szybkość działania jednostek obliczeniowych. Wiedza na temat różnic między CISC a RISC (Reduced Instruction Set Computing) jest istotna dla zrozumienia, jak różne podejścia do projektowania procesorów wpływają na wydajność i złożoność kodu aplikacji.

Pytanie 10

Co oznacza określenie średni czas dostępu w dyskach twardych?

A. suma średniego czasu wyszukiwania oraz opóźnienia
B. suma czasu skoku pomiędzy dwoma cylindrami oraz czasu przesyłania danych z talerza do elektroniki dysku
C. czas niezbędny do ustawienia głowicy nad odpowiednim cylindrem
D. czas, w którym dane są przesyłane z talerza do elektroniki dysku
Zrozumienie pojęcia średniego czasu dostępu w dyskach twardych jest kluczowe dla oceny ich wydajności. Odpowiedzi, które sugerują, że ten czas dotyczy tylko jednego aspektu działania dysku, są mylne. Na przykład, wskazanie, że średni czas dostępu to czas przesyłania danych z talerza do elektroniki dysku, pomija istotne komponenty, takie jak wyszukiwanie danych oraz opóźnienia spowodowane ruchem mechanicznym głowic. Pominięcie średniego czasu wyszukiwania, który odpowiada za ruch głowicy do odpowiedniego cylindry podczas odczytu, prowadzi do niedokładnego obrazu działania dysku. Inna mylna koncepcja to czas potrzebny na ustawienie głowicy nad cylindrem; choć jest to istotny proces, sam w sobie nie wyczerpuje definicji średniego czasu dostępu. Kolejnym błędnym podejściem jest pojęcie sumy czasu przeskoku pomiędzy cylindrami oraz czasu przesyłania danych. Taka definicja nie uwzględnia opóźnienia rotacyjnego, które jest kluczowe dla pełnego zrozumienia wydajności dysku. W kontekście standardów branżowych, ważnym podejściem jest uwzględnienie wszystkich elementów procesu odczytu danych, aby uzyskać realistyczny obraz wydajności dysków twardych. Dlatego, aby właściwie ocenić średni czas dostępu, należy łączyć wszystkie te elementy w jedną całość.

Pytanie 11

Który adres IP jest powiązany z nazwą mnemoniczna localhost?

A. 192.168.1.255
B. 127.0.0.1
C. 192.168.1.1
D. 192.168.1.0
Adresy IP 192.168.1.0, 192.168.1.1 i 192.168.1.255 są przykładami lokalnych adresów IP, które są używane w prywatnych sieciach. Adres 192.168.1.0 jest adresem sieciowym, co oznacza, że nie może być przypisany do żadnego urządzenia w sieci. Z kolei adres 192.168.1.255 jest adresatem rozgłoszeniowym, co pozwala na wysyłanie danych do wszystkich urządzeń w danej sieci lokalnej, ale również nie może być przypisany do pojedynczego urządzenia. Adres 192.168.1.1 najczęściej jest używany jako domyślny adres bramy w wielu routerach, co sprawia, że jest to adres, który pozwala na komunikację z siecią zewnętrzną. Biorąc pod uwagę te różnice, nie powinno się mylić tych adresów z adresem 127.0.0.1, który ma zupełnie inną funkcję. Typowym błędem jest myślenie, że wszystkie adresy IP, które zaczynają się od 192.168, są adresami dla localhost, co jest nieprawidłowe. Adresy te są stosowane w lokalnych sieciach, ale nie mają zastosowania w kontekście lokalnego loopbacku, gdzie tylko 127.0.0.1 ma znaczenie. Zrozumienie różnicy między adresami sieciowymi a adresami loopback jest kluczowe dla prawidłowego projektowania i zarządzania sieciami komputerowymi.

Pytanie 12

Do kategorii oprogramowania określanego mianem malware (ang. malicious software) nie zalicza się oprogramowania typu

A. computer aided manufacturing
B. scumware
C. exploit
D. keylogger
Odpowiedź 'computer aided manufacturing' (CAM) jest poprawna, ponieważ odnosi się do narzędzi i oprogramowania wspierającego procesy produkcyjne w przemyśle, a nie do oprogramowania szkodliwego. CAM jest wykorzystywane do projektowania, planowania oraz optymalizacji procesów produkcyjnych, co ma na celu zwiększenie efektywności i jakości wytwarzanych produktów. Przykładem zastosowania CAM może być automatyzacja obróbki CNC, gdzie oprogramowanie steruje maszynami w sposób precyzyjny, minimalizując błędy ludzkie. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie zintegrowanych procesów produkcyjnych, co czyni CAM kluczowym elementem strategii zarządzania jakością. W przeciwieństwie do oprogramowania typu malware, które ma na celu szkodzenie systemom informatycznym, CAM przyczynia się do rozwoju i innowacji w przemysłowych zastosowaniach.

Pytanie 13

Podczas pracy wskaźnik przewodowej myszy optycznej nie reaguje na przesuwanie urządzenia po padzie, dopiero po odpowiednim ułożeniu myszy kursor zaczyna zmieniać położenie. Objawy te wskazują na uszkodzenie

A. baterii.
B. kabla.
C. ślizgaczy.
D. przycisków.
To właśnie uszkodzenie kabla najczęściej powoduje sytuację, w której przewodowa mysz optyczna zachowuje się niestabilnie – kursor zupełnie się nie rusza, dopiero po poruszeniu lub odpowiednim ustawieniu kabla mysz „ożywa”. Spotkałem się z tym nie raz, szczególnie w starszych myszach lub takich, które były intensywnie używane i kabel był narażony na zginanie, szarpanie czy nawet przytrzaśnięcia pod blatem. Przewód w takich urządzeniach jest bardzo newralgicznym punktem. Wewnątrz znajduje się kilka cienkich żyłek, które mogą się łamać albo rozlutować w środku, przez co czasem dochodzi do przerw w zasilaniu lub transmisji sygnału. Standardowo, jeśli myszka nagle przestaje reagować albo działa tylko w określonej pozycji kabla, to praktycznie zawsze świadczy to o mechanicznym uszkodzeniu przewodu. W branży IT dobrym nawykiem jest zawsze sprawdzanie kabla przy diagnostyce problemów z myszami przewodowymi, zanim zaczniemy podejrzewać coś poważniejszego lub wymieniać całe urządzenie. Jeśli tylko kabel jest uszkodzony w widocznym miejscu, czasem można go przelutować, ale w większości przypadków wymiana myszy jest prostsza. No i warto pamiętać, że odpowiednia organizacja przewodów na biurku naprawdę pomaga wydłużyć żywotność akcesoriów – to taka prosta rzecz, a często pomijana.

Pytanie 14

Udostępnienie drukarki sieciowej codziennie o tej samej porze należy ustawić we właściwościach drukarki, w zakładce

A. udostępnianie.
B. ogólne.
C. zabezpieczenia.
D. zaawansowane.
W systemie Windows każda zakładka we właściwościach drukarki ma swoje konkretne przeznaczenie i to właśnie zrozumienie logiki ich podziału pozwala szybko odnaleźć właściwą opcję. Ustawienie udostępniania drukarki tylko o określonej porze dnia nie jest ani parametrem ogólnym, ani zwykłym przełącznikiem „udostępnij / nie udostępniaj”, tylko elementem bardziej zaawansowanej konfiguracji pracy urządzenia i kolejki wydruku. Dlatego nie znajdzie się go w zakładce „Ogólne”. Tam są głównie informacje opisowe: nazwa drukarki, lokalizacja, podstawowy test wydruku, ewentualnie krótki opis. To są rzeczy widoczne dla użytkownika końcowego, a nie szczegółowe reguły działania w czasie. Podobny błąd myślowy dotyczy zakładki „Udostępnianie”. Wiele osób zakłada, że skoro chodzi o drukarkę sieciową, to wszystko co z siecią związane musi być właśnie tam. Tymczasem w „Udostępnianiu” definiuje się, czy drukarka jest w ogóle dostępna w sieci, pod jaką nazwą udziału, ewentualnie dodatkowe sterowniki dla innych systemów. To jest poziom „włącz/wyłącz” oraz podstawowe parametry sieciowe, ale bez harmonogramu godzinowego. To trochę tak, jak z udziałami sieciowymi folderów – tam też sam udział nie definiuje, w jakich godzinach wolno korzystać, tylko czy w ogóle jest dostępny i dla kogo. Zakładka „Zabezpieczenia” również bywa myląca, bo dotyczy uprawnień użytkowników. Tam konfiguruje się, kto może drukować, kto może zarządzać drukarką czy kolejką, zgodnie z mechanizmem list ACL w Windows. Jednak uprawnienia nie określają czasu – one mówią „kto” i „co może”, ale nie „kiedy”. Ograniczenia czasowe są inną klasą reguł i standardowo w Windows są przenoszone do sekcji zaawansowanych danego komponentu. Typowy błąd to mieszanie pojęcia uprawnień z harmonogramem. Harmonogram pracy drukarki, czyli dostępność w określonych godzinach, to już konfiguracja wyższego poziomu – dlatego trafia do zakładki „Zaawansowane”, razem z opcjami priorytetu drukarki, zarządzania kolejką, buforowaniem i wyborem sterownika. Z mojego doświadczenia, jeśli coś brzmi jak „ustawienie zachowania w czasie” lub „reguła działania”, to w Windows prawie zawsze ląduje w ustawieniach zaawansowanych, a nie w prostych kartach ogólnych, udostępniania czy zabezpieczeń.

Pytanie 15

Jakim materiałem eksploatacyjnym dysponuje ploter solwentowy?

A. zestaw metalowych narzędzi tnących
B. element tnący
C. farba na bazie rozpuszczalników
D. atrament w żelu
Wybór niewłaściwego materiału eksploatacyjnego w kontekście ploterów solwentowych może prowadzić do wielu problemów, w tym obniżenia jakości druku i zwiększenia kosztów. Głowica tnąca, mimo że jest istotnym elementem w procesie cięcia, nie jest materiałem eksploatacyjnym, lecz komponentem, który wykonuje fizyczne cięcie materiałów, takich jak folie lub papier. Wybór zestawu metalowych rylców również nie ma zastosowania w ploterach solwentowych, ponieważ są to narzędzia bardziej związane z innego rodzaju technologiami użytkowymi, jak np. plotery tnące. Atrament żelowy jest przeznaczony do innych typów drukarek, w szczególności tych, które wykorzystują technologię druku atramentowego opartą na wodzie. Często błędem myślowym jest mylenie różnych technologii druku oraz materiałów eksploatacyjnych, co prowadzi do nieefektywnego wykorzystania sprzętu. Warto zaznaczyć, że dobór odpowiednich materiałów eksploatacyjnych powinien opierać się na znajomości specyfikacji urządzeń oraz wymagań dotyczących jakości i trwałości wydruków. W branży druku wielkoformatowego, znajomość odpowiednich norm i praktyk jest kluczowa dla osiągnięcia pożądanych rezultatów.

Pytanie 16

Jaką liczbę komórek pamięci można bezpośrednio zaadresować w 64-bitowym procesorze z 32-bitową szyną adresową?

A. 64 do potęgi 2
B. 32 do potęgi 2
C. 2 do potęgi 32
D. 2 do potęgi 64
Odpowiedź 2 do potęgi 32 jest prawidłowa, ponieważ odnosi się do ilości adresów pamięci, które można zaadresować przy użyciu 32-bitowej szyny adresowej. Szyna adresowa określa maksymalną ilość pamięci, do której procesor może uzyskać dostęp. W przypadku 32-bitowej szyny adresowej oznacza to, że można zaadresować 2^32 różnych lokalizacji pamięci, co odpowiada 4 GB pamięci. Przykład praktyczny to komputery z systemem operacyjnym 32-bitowym, które mogą wykorzystać maksymalnie 4 GB pamięci RAM. W kontekście standardów technologicznych, takie limity są kluczowe dla projektowania systemów operacyjnych i aplikacji, które muszą być zgodne z architekturą sprzętu. Warto również zauważyć, że w systemach 64-bitowych, mimo że procesor ma większe możliwości, wciąż obowiązują ograniczenia wynikające z wykorzystanej szyny adresowej.

Pytanie 17

W jaki sposób skonfigurować zaporę Windows, aby spełniała zasady bezpieczeństwa i umożliwiała użycie polecenia ping do weryfikacji komunikacji z innymi urządzeniami w sieci?

A. Ustawić reguły dla protokołu TCP
B. Ustawić reguły dla protokołu IGMP
C. Ustawić reguły dla protokołu ICMP
D. Ustawić reguły dla protokołu IP
Odpowiedź wskazująca na skonfigurowanie reguł dotyczących protokołu ICMP (Internet Control Message Protocol) jest prawidłowa, ponieważ protokół ten jest odpowiedzialny za przesyłanie komunikatów kontrolnych w sieci, w tym dla polecenia ping. Ping wykorzystuje ICMP Echo Request oraz ICMP Echo Reply, aby sprawdzić, czy inny host jest osiągalny przez sieć. Konfigurowanie reguł zapory Windows wymaga zezwolenia na te typy komunikatów, co pozwoli na efektywne monitorowanie i diagnostykę łączności w sieci lokalnej. Przykładowo, w przypadku problemów z połączeniem, administrator może użyć polecenia ping, aby szybko zidentyfikować, czy dane urządzenie odpowiada, co jest podstawowym krokiem w rozwiązywaniu problemów. W praktyce, umożliwienie ICMP w zaporze sieciowej jest zgodne z najlepszymi praktykami w zakresie zarządzania siecią, ponieważ pozwala na skuteczną diagnostykę, a jednocześnie nie stwarza większego ryzyka dla bezpieczeństwa, o ile inne, bardziej wrażliwe porty i protokoły są odpowiednio zabezpieczone.

Pytanie 18

Najskuteczniejszym sposobem na dodanie skrótu do konkretnego programu na pulpitach wszystkich użytkowników w domenie jest

A. ściągnięcie aktualizacji Windows
B. przypisanie dysku
C. zastosowanie zasad grupy
D. wykonanie ponownej instalacji programu
Użycie zasad grupy (Group Policy) to najskuteczniejszy i najszybszy sposób do wstawienia skrótu do konkretnego programu na pulpitach wszystkich użytkowników domenowych. Dzięki zasadom grupy administratorzy mogą centralnie zarządzać ustawieniami systemów operacyjnych, aplikacji i użytkowników w obrębie całej domeny. Przykładowo, można utworzyć zasadę, która automatycznie dodaje skrót do aplikacji, takiej jak edytor tekstu, na pulpicie każdego użytkownika, co znacząco ułatwia dostęp do oprogramowania i zmniejsza czas potrzebny na jego ręczną konfigurację. W praktyce, stosowanie zasad grupy pozwala na zgodność z dobrymi praktykami zarządzania systemami informatycznymi, takimi jak standaryzacja i automatyzacja procesów, a także zapewnia łatwość w aktualizowaniu i modyfikowaniu ustawień w przyszłości. Dodatkowo, zasady grupy wspierają zarządzanie bezpieczeństwem w organizacji, umożliwiając wprowadzenie restrykcji i polityk, które są automatycznie wdrażane dla wszystkich użytkowników.

Pytanie 19

Jakiemu zapisowi w systemie heksadecymalnym odpowiada binarny zapis adresu komórki pamięci 0111 1100 1111 0110?

A. 5DF6
B. 7BF5
C. 5AF3
D. 7CF6
Odpowiedź 7CF6 jest poprawna, ponieważ aby przekonwertować adres komórki pamięci z zapisu binarnego na heksadecymalny, trzeba podzielić binarne liczby na grupy po cztery bity. W przypadku adresu 0111 1100 1111 0110 dzielimy go na dwie grupy: 0111 1100 i 1110 110. Grupa pierwsza (0111) odpowiada heksadecymalnej cyfrze 7, a grupa druga (1100) cyfrze C. Z kolei następne grupy (1111 i 0110) odpowiadają odpowiednio F i 6. Łącząc te cyfry, otrzymujemy 7CF6. Taka konwersja jest kluczowa w programowaniu niskopoziomowym oraz w inżynierii oprogramowania, zwłaszcza w kontekście zarządzania pamięcią oraz adresowania. Użycie heksadecymalnych zapisie adresów pamięci w programowaniu pozwala na bardziej zwięzłe przedstawienie dużych wartości, co jest istotne w kontekście architektury komputerów oraz systemów operacyjnych.

Pytanie 20

W tabeli zaprezentowano parametry trzech dysków twardych w standardzie Ultra320 SCSI. Te dyski są w stanie osiągnąć maksymalny transfer wewnętrzny

Rotational Speed10,025 rpm
Capacity (Formatted)73.5GB147GB300GB
Number of Heads258
Number of Disks134
Internal Transfer RateUp to 132 MB/s
Interface Transfer RateNP/NC = 320MB/s, FC = 200MB/s
Buffer Size
Average Seek (Read/Write)4.5/5.0 ms
Track-to-Track Seek/Read/Write0.2ms/0.4ms
Maximum Seek (Read/Write)10/11 ms
Average Latency2.99 ms
Power Consumption (Idle)NP/NC = 9.5W, FC = 10.5W
Acoustic Noise3.4 bels
Shock - Operating/Non-Operating65G/225G 2ms
A. 320MB/S
B. 200MB/S
C. 132 MB/s
D. 320 GB/s
Niepoprawne odpowiedzi wynikają z niezrozumienia różnicy pomiędzy transferem wewnętrznym a interfejsowym oraz mylenia jednostek miary. 200MB/S, choć jest możliwym transferem dla niektórych dysków, odnosi się zazwyczaj do innego kontekstu lub standardu, jak np. Fibre Channel, a nie wewnętrznego transferu dysków SCSI. 320 GB/s jest fizycznie niemożliwe dla dysków twardych obecnej generacji i wynika z błędnej interpretacji jednostek miary, gdzie MB/s oznacza megabajty na sekundę, a GB/s oznacza gigabajty na sekundę. Takie pomylenie jednostek prowadzi do zawyżenia oczekiwań dotyczących wydajności sprzętu. 320MB/S to transfer interfejsowy dla Ultra320 SCSI, co oznacza maksymalną przepustowość interfejsu między dyskiem a kontrolerem, który jednak nie przekłada się na rzeczywistą szybkość odczytu lub zapisu danych z talerzy dysku, która jest ograniczona przez transfer wewnętrzny. Rozróżnienie tych parametrów jest kluczowe dla zrozumienia specyfikacji sprzętowych i właściwego doboru komponentów w systemach komputerowych, gdzie wydajność jest kluczowa dla efektywności operacyjnej. Właściwa interpretacja danych technicznych umożliwia bardziej świadome decyzje zakupowe oraz optymalizację wydajności w środowiskach komputerowych, gdzie prędkość dostępu do danych jest kluczowym czynnikiem sukcesu operacyjnego.

Pytanie 21

Każdy następny router IP na drodze pakietu

A. zwiększa wartość TTL przesyłanego pakietu o dwa
B. zmniejsza wartość TTL przesyłanego pakietu o dwa
C. zmniejsza wartość TTL przesyłanego pakietu o jeden
D. zwiększa wartość TTL przesyłanego pakietu o jeden
Odpowiedź jest poprawna, ponieważ każdy router, który przetwarza pakiet IP, zmniejsza wartość pola Time to Live (TTL) o jeden. TTL to liczba, która jest używana do określenia maksymalnego czasu życia pakietu w sieci i zapobiega jego nieskończonemu krążeniu w przypadku błędów trasowania. Kiedy pakiet osiąga router, jego TTL jest zmniejszane o jeden, a gdy wartość TTL osiągnie zero, pakiet jest odrzucany. W praktyce pozwala to na zarządzanie ruchem sieciowym oraz na identyfikację i eliminację potencjalnych pętli w sieci. Warto pamiętać, że standardy takie jak RFC 791 definiują tę funkcjonalność, a jej poprawne działanie jest kluczowe dla stabilności i wydajności sieci. Przykładem zastosowania tej zasady może być analiza trasowania pakietów w protokołach takich jak traceroute, które umożliwiają administracji sieciowej monitorowanie i diagnozowanie problemów z routowaniem.

Pytanie 22

Na diagramie blokowym procesora blok funkcjonalny oznaczony jako SIMD to

Ilustracja do pytania
A. moduł procesora wykonujący wyłącznie operacje związane z grafiką
B. zestaw 256 bitowych rejestrów, który znacznie przyspiesza obliczenia dla liczb stałopozycyjnych
C. jednostka procesora odpowiedzialna za obliczenia zmiennoprzecinkowe (koprocesor)
D. zestaw 128 bitowych rejestrów wymaganych do przeprowadzania instrukcji SSE procesora dla liczb stało- i zmiennoprzecinkowych
SIMD to fajna architektura przetwarzania równoległego, która jest teraz w większości nowoczesnych procesorów. Dzięki niej można jednocześnie robić to samo z wieloma danymi. Jak patrzymy na procesory, to zestaw tych 128-bitowych rejestrów SIMD jest mega ważny dla funkcji SSE, czyli Streaming SIMD Extensions. Te rozszerzenia pomagają w skutecznym przetwarzaniu danych stało- i zmiennoprzecinkowych. SSE używa tych rejestrów, żeby przetwarzać wiele liczb naraz w jednym cyklu zegara, co naprawdę przyspiesza operacje na dużych zbiorach danych. Na przykład w aplikacjach multimedialnych, jak edycja wideo czy rendering grafiki 3D, dzięki SIMD można równolegle obrabiać masę pikseli lub wektorów, a to daje większą wydajność. Technologia ta jest mocno związana z tym, co robią firmy takie jak Intel i AMD, bo to oni rozwijają i wdrażają te rozwiązania w swoich chipach. Z tego, co widziałem w branży, optymalizacja kodu aplikacji, by korzystała z SIMD, to dobry sposób na maksymalne wykorzystanie możliwości nowych CPU.

Pytanie 23

Na podstawie filmu wskaż z ilu modułów składa się zainstalowana w komputerze pamięć RAM oraz jaką ma pojemność.

A. 2 modułów, każdy po 16 GB.
B. 2 modułów, każdy po 8 GB.
C. 1 modułu 32 GB.
D. 1 modułu 16 GB.
Poprawnie wskazana została konfiguracja pamięci RAM: w komputerze zamontowane są 2 moduły, każdy o pojemności 16 GB, co razem daje 32 GB RAM. Na filmie zwykle widać dwa fizyczne moduły w slotach DIMM na płycie głównej – to są takie długie wąskie kości, wsuwane w gniazda obok procesora. Liczbę modułów określamy właśnie po liczbie tych fizycznych kości, a pojemność pojedynczego modułu odczytujemy z naklejki na pamięci, z opisu w BIOS/UEFI albo z programów diagnostycznych typu CPU‑Z, HWiNFO czy Speccy. W praktyce stosowanie dwóch modułów po 16 GB jest bardzo sensowne, bo pozwala uruchomić tryb dual channel. Płyta główna wtedy może równolegle obsługiwać oba kanały pamięci, co realnie zwiększa przepustowość RAM i poprawia wydajność w grach, programach graficznych, maszynach wirtualnych czy przy pracy z dużymi plikami. Z mojego doświadczenia lepiej mieć dwie takie same kości niż jedną dużą, bo to jest po prostu zgodne z zaleceniami producentów płyt głównych i praktyką serwisową. Do tego 2×16 GB to obecnie bardzo rozsądna konfiguracja pod Windows 10/11 i typowe zastosowania profesjonalne: obróbka wideo, programowanie, CAD, wirtualizacja. Warto też pamiętać, że moduły powinny mieć te same parametry: częstotliwość (np. 3200 MHz), opóźnienia (CL) oraz najlepiej ten sam model i producenta. Taka konfiguracja minimalizuje ryzyko problemów ze stabilnością i ułatwia poprawne działanie profili XMP/DOCP. W serwisie i przy montażu zawsze zwraca się uwagę, żeby moduły były w odpowiednich slotach (zwykle naprzemiennie, np. A2 i B2), bo to bezpośrednio wpływa na tryb pracy pamięci i osiąganą wydajność.

Pytanie 24

Jak określa się technologię stworzoną przez firmę NVIDIA, która pozwala na łączenie kart graficznych?

A. CROSSFIRE
B. SLI
C. ATI
D. RAMDAC
Odpowiedzi takie jak ATI, RAMDAC czy CROSS FIRE są związane z innymi aspektami technologii graficznych, jednak nie odpowiadają na pytanie dotyczące technologii łączenia kart graficznych opracowanej przez NVIDIA. ATI to firma, która produkuje karty graficzne, a jej produkty konkurują z rozwiązaniami NVIDIA, ale sama w sobie nie jest technologią do łączenia kart. RAMDAC odnosi się do przetwornika cyfrowo-analogowego, który tłumaczy sygnały cyfrowe na analogowe dla monitorów. Ta technologia jest kluczowa dla wyświetlania obrazu, ale nie ma nic wspólnego z łączeniem kart graficznych, co może prowadzić do błędnego zrozumienia funkcji różnych komponentów w komputerze. Z kolei CROSS FIRE to technologia opracowana przez AMD, która pełni podobną rolę do SLI, ale jest stosowana w przypadku kart graficznych tej marki. Typowe błędy myślowe wynikają z pomylenia konkurencyjnych technologii oraz nieznajomości ich zastosowań. Zrozumienie, że każda z tych koncepcji odnosi się do różnych aspektów przetwarzania grafiki, pozwala uniknąć nieporozumień i prawidłowo identyfikować rozwiązania dostosowane do indywidualnych potrzeb użytkownika.

Pytanie 25

Zamontowany w notebooku trackpoint jest urządzeniem wejściowym reagującym na

A. odbicia światła w czujniku optycznym.
B. zmiany pojemności elektrycznej.
C. siłę i kierunek nacisku.
D. wzrost rezystancji między elektrodami.
Trackpoint, często nazywany też czerwoną kropką między klawiszami G, H i B w notebookach, to naprawdę ciekawe urządzenie wskazujące. Działa on na zasadzie wykrywania siły oraz kierunku nacisku, którą użytkownik wywiera za pomocą palca. Im mocniej naciśniesz i w określonym kierunku, tym szybciej poruszy się kursor – to dość sprytne i wygodne rozwiązanie, szczególnie dla osób pracujących dużo na klawiaturze. Takie rozwiązanie pozwala na sterowanie bez odrywania rąk od klawiatury, co w praktyce znacznie zwiększa ergonomię pracy, zwłaszcza w środowiskach biznesowych czy informatycznych. Z ciekawostek: trackpointy są wykorzystywane głównie w laptopach takich jak Lenovo ThinkPad – tam to jest wręcz standard, często doceniany przez programistów i administratorów IT. Inżynierowie przy projektowaniu takich rozwiązań korzystają z czujników tensometrycznych, które precyzyjnie mierzą siłę nacisku. To zupełnie inne podejście niż w przypadku touchpadów, które zazwyczaj bazują na wykrywaniu pojemności elektrycznej, czy myszek optycznych, które analizują odbicia światła. Moim zdaniem, trackpoint jest jednym z lepszych przykładów przemyślanego urządzenia wejściowego, które spełnia swoje zadanie poprzez analizę siły i kierunku nacisku, zgodnie z branżowymi standardami projektowania interfejsów użytkownika.

Pytanie 26

Do jakiego złącza, które pozwala na podłączenie monitora, jest wyposażona karta graficzna pokazana na ilustracji?

Ilustracja do pytania
A. DVI-D (Single Link), DP, HDMI
B. DVI-I, HDMI, S-VIDEO
C. DVI-A, S-VIDEO, DP
D. DVI-D (Dual Link), HDMI, DP
Odpowiedzi, które mówią o złączu DVI-A czy S-VIDEO, są niepoprawne. W dzisiejszych czasach te standardy są już dosyć stare i nie radzą sobie z nowoczesnymi wymaganiami co do jakości obrazu. DVI-A to złącze analogowe, co sprawia, że przesyła tylko sygnały w niskiej rozdzielczości. A S-VIDEO? To jeszcze starsza technologia, która nie dość, że przesyła wideo w kiepskiej jakości, to jeszcze nie obsługuje dźwięku. W latach 90-tych to było powszechne, ale teraz to już nie spełnia oczekiwań nowoczesnych monitorów, które wymagają cyfrowych sygnałów i wyższej rozdzielczości. DVI-I z kolei obsługuje i analogi, i cyfrowe sygnały, ale nie jest już tak popularne jak HDMI czy DP, które są bardziej wszechstronne. Warto znać te różnice, żeby dobrze wybrać kartę graficzną zgodnie z własnymi potrzebami i sprzętem, który się ma. Dzięki temu unikniesz typowych problemów, jak niekompatybilność sygnałów czy ograniczenia w rozdzielczości, co dla wielu profesjonalistów i technologicznych zapaleńców jest kluczowe.

Pytanie 27

Podaj właściwe przyporządkowanie usługi z warstwy aplikacji oraz standardowego numeru portu, na którym ta usługa działa?

A. DHCP - 161
B. SMTP - 80
C. DNS - 53
D. IMAP - 8080
Odpowiedzi wskazujące na inne usługi są nieprawidłowe z kilku powodów. Przykładowo, SMTP, czyli Simple Mail Transfer Protocol, służy do przesyłania wiadomości e-mail i standardowo działa na porcie 25, a nie 80. Port 80 jest zarezerwowany dla HTTP, co oznacza, że jest używany do przesyłania danych stron internetowych. W przypadku DHCP, to Dynamic Host Configuration Protocol, jego standardowy port to 67 dla serwera i 68 dla klienta, a nie 161, który jest zarezerwowany dla SNMP (Simple Network Management Protocol). IMAP, czyli Internet Message Access Protocol, używa portu 143 lub 993 w przypadku zabezpieczonej komunikacji SSL/TLS. Wybierając błędne odpowiedzi, można doświadczyć typowych pułapek myślowych, takich jak mylenie portów przypisanych do różnych protokołów lub nieznajomość standardów RFC, które dokładnie definiują te ustawienia. Zrozumienie, które porty są przypisane do konkretnych protokołów, jest kluczowe dla prawidłowej konfiguracji sieci oraz bezpieczeństwa, a mylenie tych wartości prowadzi do problemów z komunikacją w sieci oraz zwiększa ryzyko wystąpienia luk bezpieczeństwa.

Pytanie 28

Usługa umożliwiająca przechowywanie danych na zewnętrznym serwerze, do którego dostęp możliwy jest przez Internet to

A. PSTN
B. VPN
C. żadna z powyższych
D. Cloud
Cloud, czyli chmura obliczeniowa, to usługa przechowywania danych oraz zasobów na zewnętrznych serwerach, które są dostępne przez Internet. Dzięki temu użytkownicy nie muszą inwestować w drogi sprzęt ani konfigurować lokalnych serwerów, co znacznie obniża koszty infrastruktury IT. W praktyce, usługi chmurowe oferują elastyczność oraz skalowalność, co oznacza, że użytkownicy mogą szybko dostosowywać swoje zasoby do zmieniających się potrzeb. Przykłady popularnych rozwiązań chmurowych to Amazon Web Services (AWS), Microsoft Azure czy Google Cloud Platform, które stosują standardy takie jak ISO/IEC 27001 dla zarządzania bezpieczeństwem informacji. Chmura obliczeniowa wspiera także zdalną współpracę, umożliwiając zespołom pracę zdalną oraz dostęp do zasobów z dowolnego miejsca na świecie. Warto także zwrócić uwagę na modele chmurowe, takie jak IaaS (Infrastructure as a Service), PaaS (Platform as a Service) i SaaS (Software as a Service), które oferują różne poziomy zarządzania i kontroli nad zasobami.

Pytanie 29

Jakiego numeru kodu należy użyć w komendzie do zmiany uprawnień folderu w systemie Linux, aby właściciel miał dostęp do zapisu i odczytu, grupa miała prawo do odczytu i wykonania, a pozostali użytkownicy mogli jedynie odczytywać zawartość?

A. 751
B. 765
C. 654
D. 123
Wybierając inne kombinacje, takie jak 751, 765 czy 123, popełniamy fundamentalny błąd w zrozumieniu struktury uprawnień w systemie Linux. Na przykład, odpowiedź 751 przyznaje właścicielowi pełne uprawnienia (7), grupie dostęp jedynie do wykonania (5) oraz pozwala innym użytkownikom na wykonanie (1), co w praktyce może prowadzić do nieautoryzowanego dostępu przez użytkowników spoza grupy. To podejście zagraża bezpieczeństwu danych. Odpowiedź 765 zwiększa uprawnienia grupy do zapisu (6), co jest niewłaściwe w kontekście podanego pytania, gdzie grupa powinna mieć jedynie odczyt i wykonanie. Z kolei odpowiedź 123 przyznaje uprawnienia tylko do wykonania dla wszystkich kategorii użytkowników, co jest ekstremalnie restrykcyjne i niepraktyczne, ponieważ nie pozwala na odczyt ani zapis, co z pewnością uniemożliwi większość standardowych operacji na plikach. Typowe błędy myślowe w tym przypadku wynikają z braku zrozumienia hierarchii uprawnień oraz ich praktycznego zastosowania w codziennej pracy z systemem. Rozumienie, jak prawidłowo przydzielać uprawnienia, jest kluczowe dla zapewnienia zarówno użyteczności, jak i bezpieczeństwa systemu operacyjnego.

Pytanie 30

Programem służącym do archiwizacji danych w systemie Linux jest

A. compress
B. lzma
C. tar
D. gzip
Odpowiedź tar jest jak najbardziej trafiona. No bo właśnie tar to klasyczny program w systemach Linux i generalnie Unixowych, który służy do archiwizacji, czyli łączenia wielu plików i katalogów w jeden plik archiwum, zwykle z rozszerzeniem .tar. Co ważne, samo tar nie kompresuje danych – on tylko je „spakowuje” w jedną całość, żeby łatwiej było je przenosić albo kopiować. Często spotyka się kombinacje, gdzie najpierw tworzysz archiwum tar, a potem je kompresujesz narzędziem takim jak gzip czy bzip2, stąd popularne rozszerzenia .tar.gz albo .tar.bz2. W praktyce, gdy masz do zarchiwizowania katalog z projektami albo chcesz zrobić backup konfiguracji, polecenie tar -cvf backup.tar /etc świetnie się sprawdzi. Warto pamiętać, że tar umożliwia archiwizację z zachowaniem struktury katalogów, uprawnień i symlinków – co przy migracji systemów czy backupach jest kluczowe. Moim zdaniem znajomość tar to absolutna podstawa pracy z Linuksem, bo praktycznie każdy administrator czy programista szybciej czy później z niego skorzysta. Nawet w środowiskach produkcyjnych spotkasz automatyczne skrypty wykorzystujące tar do backupów całych systemów. Przy okazji polecam zerknąć do man tar – tam jest naprawdę sporo opcji, które potrafią się przydać, na przykład do przyrostowych backupów.

Pytanie 31

Jakie urządzenie jest pokazane na ilustracji?

Ilustracja do pytania
A. Przełącznik
B. Modem
C. Ruter
D. Punkt dostępu
Punkt dostępu, znany również jako Access Point (AP), to urządzenie sieciowe, które umożliwia bezprzewodowe połączenie urządzeń z istniejącą siecią przewodową. Jego główną funkcją jest rozszerzenie zasięgu sieci Wi-Fi, co jest szczególnie przydatne w dużych budynkach lub miejscach, gdzie sygnał jest tłumiony przez przeszkody. Punkt dostępu może być podłączony do routera za pomocą kabla Ethernet, co pozwala mu na przekazywanie sygnału bezprzewodowego do obszarów, które wymagają zasięgu. W praktyce punkty dostępu są szeroko stosowane w miejscach publicznych, takich jak lotniska, hotele czy biura, gdzie zapewniają ciągłość i stabilność połączenia dla wielu użytkowników jednocześnie. Ponadto punkty dostępu mogą oferować zaawansowane funkcje, takie jak zarządzanie pasmem, kontrola dostępu i monitorowanie ruchu, co czyni je kluczowymi elementami w zarządzaniu nowoczesnymi sieciami bezprzewodowymi. Standardem komunikacji dla punktów dostępu są protokoły IEEE 802.11, które definiują sposób przesyłania danych w sieciach bezprzewodowych. Dzięki możliwościom skalowania i adaptacji do różnych środowisk punkty dostępu są nieodzowne w profesjonalnym wdrażaniu sieci bezprzewodowych.

Pytanie 32

Jakie urządzenie powinno być użyte do połączenia komputerów w układzie gwiazdowym?

A. Bridge
B. Switch
C. Transceiver
D. Repeater
Switch, czyli przełącznik, jest kluczowym urządzeniem w topologii gwiazdy, ponieważ umożliwia efektywne i wydajne zarządzanie komunikacją między komputerami w sieci lokalnej (LAN). W topologii gwiazdy wszystkie urządzenia są podłączone do centralnego węzła, którym jest właśnie switch. Dzięki temu, gdy jeden komputer wysyła dane, switch kieruje te dane bezpośrednio do odpowiedniego odbiorcy, minimalizując zatory i zwiększając prędkość transferu. Przykładem zastosowania może być biuro, w którym każdy komputer pracownika jest podłączony do switcha, co umożliwia wydajną komunikację i dobrą organizację pracy w sieci. Dodatkowo, urządzenia te obsługują standardy takie jak IEEE 802.3, co zapewnia zgodność i interoperacyjność w różnych środowiskach sieciowych. Ponadto, wiele nowoczesnych switchów oferuje możliwości zarządzania, takie jak VLAN, co pozwala na segregację ruchu i zwiększenie bezpieczeństwa w sieci, zgodnie z najlepszymi praktykami branżowymi.

Pytanie 33

Jakie narzędzie służy do delikatnego wygięcia blachy obudowy komputera i przykręcenia śruby montażowej w trudno dostępnych miejscach?

Ilustracja do pytania
A. Rys. A
B. Rys. B
C. Rys. D
D. Rys. C
Szczypce przedstawione na rysunku D są idealnym narzędziem do manipulacji blachą i śrubami w trudno dostępnych miejscach. Ich długi, wąski zakończenie pozwala na precyzyjne działanie, co jest kluczowe w przypadku montażu komponentów komputerowych, gdzie przestrzeń operacyjna jest często ograniczona. Szczypce te są zaprojektowane tak, aby zapewniać pewny chwyt i umożliwiać operacje w wąskich szczelinach, co jest szczególnie przydatne, gdy chcemy lekko odgiąć blachę obudowy, nie ryzykując jej uszkodzenia, oraz gdy musimy zamocować śrubę w miejscu, do którego inne narzędzia nie mają dostępu. W branży IT i serwisowaniu sprzętu komputerowego używanie szczypiec o cienkich końcówkach jest standardem ze względu na ich wszechstronność i precyzję. Ponadto, w kontekście standardów bezpieczeństwa, tego rodzaju narzędzia minimalizują ryzyko uszkodzenia delikatnych komponentów elektronicznych, co czyni je nieocenionymi w codziennej pracy techników i inżynierów sprzętu komputerowego. Dbałość o użycie odpowiednich narzędzi to dobra praktyka w każdej profesji technicznej, zwłaszcza gdy mamy do czynienia z wrażliwym sprzętem komputerowym.

Pytanie 34

Wskaź 24-pinowe lub 29-pinowe złącze żeńskie, które jest w stanie przesyłać skompresowany sygnał cyfrowy do monitora?

A. HDMI
B. DVI
C. RCA
D. VGA
RCA to złącze, które zostało zaprojektowane głównie do przesyłania analogowego sygnału audio i wideo. Nie jest w stanie przesyłać skompresowanego cyfrowego sygnału wideo, co czyni je nieodpowiednim wyborem w kontekście nowoczesnych technologii monitorów. Złącze HDMI (High-Definition Multimedia Interface) jest nieco bardziej skomplikowane, ponieważ może przesyłać zarówno sygnał wideo, jak i audio w formacie cyfrowym, jednak nie odpowiada wymaganiom dotyczącym 24 lub 29-pinowego złącza żeńskiego. Z kolei VGA (Video Graphics Array) jest analogowym standardem, który nie obsługuje sygnałów cyfrowych i w rezultacie nie zapewnia takiej samej jakości obrazu jak DVI. Typowe błędy myślowe, które prowadzą do wyboru tych opcji, mogą wynikać z niepełnego zrozumienia różnicy między sygnałami analogowymi a cyfrowymi, oraz zastosowania złączy w praktyce. Współczesne rozwiązania w dziedzinie technologii multimedialnych silnie opierają się na cyfrowych standardach, a złącze DVI jest jednym z kluczowych elementów w tym kontekście.

Pytanie 35

Jaki instrument służy do określania długości oraz tłumienności kabli miedzianych?

A. Omomierz
B. Reflektometr TDR
C. Woltomierz
D. Miernik mocy
Reflektometr TDR (Time Domain Reflectometer) jest zaawansowanym przyrządem, który pozwala na precyzyjne pomiary długości oraz tłumienności przewodów miedzianych. Działa na zasadzie wysyłania sygnału elektromagnetycznego wzdłuż przewodu i analizy echa sygnału, które odbija się od różnych punktów wzdłuż linii. Dzięki tej metodzie można nie tylko określić długość przewodu, ale także zdiagnozować problemy, takie jak uszkodzenia czy nieciągłości w instalacji. Reflektometr TDR jest szeroko stosowany w telekomunikacji oraz sieciach komputerowych, gdzie odpowiednie zarządzanie jakością sygnału jest kluczowe dla stabilności i wydajności systemu. Przykładowo, w przypadku kabla Ethernet, TDR może pomóc w identyfikacji miejsc, gdzie może występować spadek jakości sygnału, co jest szczególnie istotne w kontekście utrzymania standardów, takich jak ISO/IEC 11801 dotyczących kabli strukturalnych. Używanie reflektometrów TDR w codziennej praktyce inżynieryjnej nie tylko zwiększa efektywność diagnostyki, ale także przyczynia się do obniżenia kosztów utrzymania infrastruktury sieciowej.

Pytanie 36

Poprawę jakości skanowania można osiągnąć poprzez zmianę

A. formatu pliku źródłowego
B. wielkości wydruku
C. rozmiaru skanowanego dokumentu
D. rozdzielczości
Poprawa jakości skanowania poprzez zwiększenie rozdzielczości jest kluczowym aspektem, który wpływa na szczegółowość obrazu. Rozdzielczość skanera, mierzona w dpi (dots per inch), określa, ile punktów obrazu jest rejestrowanych na cal. Wyższa rozdzielczość pozwala na uchwycenie większej ilości detali, co jest szczególnie istotne przy skanowaniu dokumentów tekstowych, grafik czy zdjęć. Na przykład, dla dokumentów tekstowych zaleca się ustawienie rozdzielczości na co najmniej 300 dpi, aby zapewnić czytelność i dokładność. Dla zdjęć lub materiałów graficznych warto rozważyć jeszcze wyższą rozdzielczość, na przykład 600 dpi lub więcej. Dobrą praktyką jest również przemyślenie wyboru rozdzielczości w kontekście przechowywania i edytowania obrazów; wyższa rozdzielczość generuje większe pliki, co może być problematyczne przy dużych ilościach danych. Standardy branżowe, takie jak ISO 12647, podkreślają znaczenie jakości obrazu w procesach druku i reprodukcji, co czyni umiejętność dostosowywania rozdzielczości niezbędną w pracy z dokumentami cyfrowymi.

Pytanie 37

Określ adres sieci, do której przypisany jest host o adresie 172.16.0.123/27?

A. 172.16.0.224
B. 172.16.0.96
C. 172.16.0.112
D. 172.16.0.16
Adres IP 172.16.0.123 z maską podsieci /27 oznacza, że mamy do czynienia z adresowaniem w klasie A. Maska /27 przekłada się na 255.255.255.224, co oznacza, że 5 bitów jest przeznaczonych na adresy hostów, a 3 bity na adresy podsieci. Przy tej masce, liczba dostępnych adresów hostów wynosi 2^5 - 2 = 30, z czego odejmujemy 2 adresy - jeden dla adresu sieci, a drugi dla adresu rozgłoszeniowego. Adres sieci można wyznaczyć przez zidentyfikowanie pierwszego adresu w danej podsieci. W przypadku adresu 172.16.0.123, adres sieci to 172.16.0.96, co możemy obliczyć poprzez zaokrąglenie 172.16.0.123 w dół do najbliższego adresu, który jest wielokrotnością 32 (32, 64, 96, 128, itd.). Znajomość takich podstawowych zasad adresacji IP jest kluczowa w projektowaniu sieci komputerowych. Przykładem zastosowania takiej wiedzy może być efektywne planowanie i segmentowanie sieci w przedsiębiorstwie, co zwiększa bezpieczeństwo i wydajność przesyłania danych.

Pytanie 38

Która z usług serwerowych oferuje automatyczne ustawienie parametrów sieciowych dla stacji roboczych?

A. WINS
B. DHCP
C. NAT
D. DNS
DHCP, czyli Dynamic Host Configuration Protocol, to protokół, który automatycznie konfiguruje parametry sieciowe dla stacji roboczych, takie jak adres IP, maska podsieci, brama domyślna oraz serwery DNS. Użycie DHCP w sieciach komputerowych znacznie upraszcza proces zarządzania adresami IP, eliminując konieczność ręcznej konfiguracji każdego urządzenia w sieci. Dzięki DHCP, administratorzy mogą łatwo zarządzać pulą dostępnych adresów IP oraz wprowadzać zmiany w konfiguracji sieci bez konieczności bezpośredniego dostępu do każdego urządzenia. Na przykład, w typowej sieci biurowej, gdy nowe urządzenia są podłączane do sieci, automatycznie otrzymują odpowiednie parametry konfiguracyjne, co pozwala na szybkie i efektywne włączenie ich do infrastruktury sieciowej. Zgodnie z najlepszymi praktykami, stosowanie DHCP jest zalecane w sieciach o dużej liczbie urządzeń, gdzie ręczna konfiguracja byłaby czasochłonna i podatna na błędy. Protokół DHCP jest również zgodny z różnymi standardami IETF, co zapewnia jego niezawodność i szeroką kompatybilność.

Pytanie 39

W dokumentacji powykonawczej dotyczącej fizycznej i logicznej struktury sieci lokalnej powinien znajdować się

A. harmonogram prac realizacyjnych
B. schemat sieci z wyznaczonymi punktami dystrybucji i gniazdami
C. umowa pomiędzy zlecającym a wykonawcą
D. wstępny kosztorys materiałów oraz robocizny
Schemat sieci z oznaczonymi punktami dystrybucyjnymi i gniazdami jest kluczowym elementem dokumentacji powykonawczej dla fizycznej i logicznej struktury sieci lokalnej. Taki schemat przedstawia topologię sieci, co umożliwia nie tylko zrozumienie, jak różne komponenty są ze sobą połączone, ale także lokalizację gniazd sieciowych, co jest niezbędne w przypadku przyszłych rozbudów lub konserwacji. W praktyce, posiadanie wizualizacji sieci pozwala administratorom na szybsze diagnozowanie problemów oraz efektywniejsze zarządzanie zasobami. Zgodnie z normą ISO/IEC 11801, właściwe dokumentowanie struktury sieci jest wymogiem, który zwiększa jej niezawodność oraz zapewnia zgodność z najlepszymi praktykami branżowymi. W sytuacjach, gdy sieć musi być rozbudowana lub modyfikowana, schematy te są fundamentem do podejmowania decyzji o zakupie dodatkowego sprzętu oraz planowaniu układu okablowania. Dodatkowo, w kontekście audytów, obecność takich schematów może przyczynić się do lepszej oceny bezpieczeństwa i wydajności sieci.

Pytanie 40

Aby komputer osobisty współpracował z urządzeniami korzystającymi z przedstawionych na rysunku złącz, należy wyposażyć go w interfejs

Ilustracja do pytania
A. HDMI
B. Fire Wire
C. Display Port
D. DVI-A
To właśnie Display Port jest interfejsem przedstawionym na zdjęciu — da się to rozpoznać po charakterystycznym kształcie wtyczki, gdzie jeden z rogów jest ścięty. Ten standard jest szeroko stosowany przede wszystkim w monitorach komputerowych, zwłaszcza tych przeznaczonych do pracy profesjonalnej, grafiki czy gamingu. Display Port umożliwia przesyłanie sygnału cyfrowego o bardzo wysokiej jakości, obsługuje rozdzielczości nawet powyżej 4K, wysokie częstotliwości odświeżania oraz transmisję wielu kanałów audio. Co ciekawe, Display Port wspiera też tzw. daisy chaining, czyli łączenie kilku monitorów szeregowo jednym przewodem, co według mnie jest mega wygodne w nowoczesnych stanowiskach pracy. W branży IT coraz częściej zaleca się stosowanie właśnie tego złącza tam, gdzie zależy nam na maksymalnej jakości obrazu i pełnej kompatybilności z najnowszymi technologiami. Ważne jest też to, że Display Port występuje w kilku wersjach, które różnią się przepustowością i możliwościami, ale nawet starsze wersje spokojnie obsługują rozdzielczości Full HD bez żadnych problemów. Szczerze mówiąc, moim zdaniem to absolutny standard, jeśli ktoś pracuje z profesjonalnymi monitorami. Dodatkowo, na rynku są też przejściówki z Display Port na HDMI czy DVI, ale to już rozwiązania raczej tymczasowe. Ten wybór pozwala Ci korzystać z nowoczesnych urządzeń bez ograniczeń w kwestii jakości obrazu i dźwięku.