Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 9 lutego 2026 14:55
  • Data zakończenia: 9 lutego 2026 14:59

Egzamin niezdany

Wynik: 6/40 punktów (15,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

~230V Zadaniem kondensatora C1 w układzie, którego schemat przedstawiono na rysunku, jest

Ilustracja do pytania
A. zmiana przebiegu napięcia wyjściowego z jednopołówkowego na dwupołówkowy.
B. stabilizacja sygnału na wyjściu układu.
C. zmiana przebiegu napięcia wyjściowego z dwupołówkowego na jednopołówkowy.
D. zmniejszenie tętnień.
Kondensator C1 w analizowanym układzie ma kluczową rolę w procesie wygładzania napięcia wyjściowego. Po prostowaniu sygnału, napięcie wyjściowe charakteryzuje się obecnością tętnień, które mogą wpływać na działanie innych komponentów układu elektronicznego. Kondensator działa jako element filtrujący, gromadząc ładunek elektryczny w momentach wzrostu napięcia i oddając go w trakcie jego spadku. To zjawisko pozwala na uzyskanie bardziej stabilnego i jednolitego napięcia, co jest kluczowe w wielu zastosowaniach, takich jak zasilacze impulsowe, układy audio czy systemy zasilania dla mikroprocesorów. W praktyce, dobór odpowiedniego kondensatora, uwzględniającego wartość pojemności oraz napięcie znamionowe, jest istotny dla zapewnienia efektywnego wygładzania. Standardy branżowe, takie jak IEC 60950, podkreślają znaczenie odpowiednich rozwiązań filtracyjnych dla zwiększenia niezawodności działania układów elektronicznych, co czyni tę wiedzę niezbędną dla inżynierów projektujących układy elektroniczne.

Pytanie 2

Który z poniższych elementów nagle obniża swoją rezystancję po osiągnięciu określonego poziomu napięcia na jego terminalach?

A. Termistor.
B. Warystor.
C. Gaussotron.
D. Tensometr.
Tensometr, będący czujnikiem, który przekształca odkształcenie mechaniczne w zmianę rezystancji, działa na zupełnie innych zasadach. Jego głównym zastosowaniem jest mierzenie sił i momentów, co czyni go niezwykle użytecznym w inżynierii do monitorowania naprężeń w konstrukcjach. Obserwując zmiany rezystancji w odpowiedzi na odkształcenia, tensometr nie reaguje na napięcia w sposób, w jaki robi to warystor. Termistor, z kolei, to element, którego rezystancja zmienia się w odpowiedzi na zmiany temperatury, a nie napięcia. Używając go w obwodach, możemy monitorować temperaturę oraz regulować różne procesy, ale nie ma związku z gwałtownym spadkiem rezystancji wskutek wzrostu napięcia. Gaussotron to z kolei rodzaj detektora, który działa na zasadzie zjawisk magnetycznych, a nie elektrycznych, co czyni go nieodpowiednim w kontekście analizowanego pytania. Zrozumienie różnicy pomiędzy tymi elementami jest kluczowe dla prawidłowego projektowania układów elektronicznych oraz systemów pomiarowych. Typowe błędy myślowe, które mogą prowadzić do pomyłek w takich pytaniach, obejmują mylenie funkcji zależnych od napięcia i temperatury, co pokazuje, jak ważna jest znajomość specyfiki działania każdego z tych komponentów w praktyce inżynieryjnej.

Pytanie 3

Wskaż opis ruchu tłoczyska siłownika 1A zgodny z zamieszczonym rysunkiem.

Ilustracja do pytania
A. Wysuw po naciśnięciu przycisku 1S3, gdy tłok całkowicie wsunięty i powrót po określonym czasie od zwarcia łącznika krańcowego 1S2.
B. Wysuw po określonym czasie od naciśnięcia przycisku 1S3 i natychmiastowy powrót po zwarciu łącznika krańcowego 1S2.
C. Wysuw po naciśnięciu przycisku 1S3, gdy tłok jest całkowicie wsunięty i natychmiastowy powrót po zwarciu łącznika krańcowego 1S2.
D. Wysuw po określonym czasie od naciśnięcia przycisku 1S3 i powrót po określonym czasie od zwarcia łącznika krańcowego 1S2.
Niestety, twoje odpowiedzi mają kilka błędów, które mogą wprowadzić w błąd co do działania siłownika 1A. Na przykład, jeśli zaznaczasz, że siłownik rusza zaraz po naciśnięciu przycisku 1S3, to nie do końca tak jest. Siłownik powinien czekać, aż tłok będzie całkowicie wsunięty, w przeciwnym razie może się zdarzyć, że zacznie działać bez odpowiednich warunków, co jest niebezpieczne. Ważne, żeby każdy ruch był uzależniony od pozycji tłoka. Również, powrót tłoka po zwarciu łącznika krańcowego 1S2 nie może się zdarzać od razu. W praktyce używa się elementów czasowych, które dają czas na reakcje, żeby nie zniszczyć systemu. Dlatego warto zwracać uwagę na elementy zabezpieczające i zrozumieć, jak działa automatyzacja w sekwencjonowaniu ruchów. To umiejętność, która przyda się, jeśli planujesz projektować coś związanego z automatyką.

Pytanie 4

Wskaż jednostkę głównego parametru prądnicy tachometrycznej (stałej prądnicy)?

A. obr./min
B. V
C. Hz
D. V/(obr./min)
Odpowiedź V/(obr./min) jest poprawna, ponieważ jednostka ta odzwierciedla zależność napięcia wyjściowego prądnicy tachometrycznej od prędkości obrotowej. Prądnice tachometryczne to urządzenia, które przekształcają ruch obrotowy w sygnał elektryczny, a ich zastosowanie jest kluczowe w systemach automatyki i kontroli procesów. Wartość wyjściowa, mierzona w woltach, jest proporcjonalna do prędkości obrotowej wyrażonej w obrotach na minutę. Dlatego stosunek V/(obr./min) idealnie charakteryzuje tę zależność. Na przykład, w aplikacjach takich jak regulacja prędkości silników elektrycznych, prądnice tachometryczne dostarczają istotnych informacji o prędkości obrotowej, co pozwala na precyzyjne sterowanie i monitorowanie systemów. W branży inżynieryjnej wykorzystuje się standardy, takie jak ISO 9001, które zapewniają jakość i niezawodność urządzeń pomiarowych, w tym prądnic tachometrycznych.

Pytanie 5

Którego narzędzia należy użyć do demontażu z szyny TH 35 przedstawionego na rysunku aparatu modułowego?

Ilustracja do pytania
A. Wkrętaka płaskiego.
B. Klucza płaskiego.
C. Klucza imbusowego.
D. Szczypiec uniwersalnych.
Wybór wkrętaka płaskiego do demontażu aparatu modułowego z szyny TH 35 jest zgodny z praktykami przemysłowymi. Aparaty te są zazwyczaj wyposażone w mechanizm zatrzaskowy, który umożliwia łatwe ich wpinanie i wypinanie z szyny. Wkrętak płaski, dzięki swojej konstrukcji, jest idealnym narzędziem do zwolnienia zatrzasków, co pozwala na szybki i bezpieczny demontaż. W praktyce, korzystanie z wkrętaka płaskiego minimalizuje ryzyko uszkodzenia elementów sprzętu oraz samej szyny, co jest kluczowe w kontekście zapewnienia trwałości instalacji. Dobre praktyki wskazują, że podczas demontażu urządzeń elektrycznych należy zawsze wyłączać zasilanie oraz stosować odpowiednie środki ochrony osobistej. Należy również pamiętać, że w przypadku niektórych modeli aparatów modułowych, zwolnienie zatrzasku może wymagać delikatnego podważenia, co czyni wkrętak płaski najlepszym wyborem dla tego zadania. W ten sposób zapewniamy zarówno efektywność pracy, jak i bezpieczeństwo użytkownika.

Pytanie 6

Wartością tarcia wewnętrznego cieczy dla oleju smarnego jest

A. gęstość
B. utlenianie
C. lepkość
D. smarność
Lepkość jest miarą oporu, jaki ciecz stawia podczas przepływu i jest kluczowym parametrem w ocenie właściwości olejów smarowych. Wysoka lepkość oznacza, że ciecz jest bardziej gęsta i oporna na przepływ, co jest korzystne w zastosowaniach wymagających skutecznego smarowania. Przykładowo, oleje silnikowe muszą mieć odpowiednią lepkość, aby skutecznie chronić silnik przed zużyciem oraz zapewniać odpowiednie smarowanie w różnych temperaturach pracy. Standardy, takie jak SAE, określają klasyfikacje lepkości, co pozwala na wybór odpowiedniego oleju do konkretnego zastosowania. Na przykład, olej 10W-40 ma różne właściwości lepkości w niskich i wysokich temperaturach, co czyni go wszechstronnym wyborem dla wielu silników. Ponadto, lepkość wpływa na inne parametry, takie jak temperatura krzepnięcia i przewodność cieplna, co jest istotne w kontekście efektywności energetycznej urządzeń mechanicznych.

Pytanie 7

W układzie do przygotowania sprężonego powietrza, reduktor ciśnienia

A. łączy sprężone powietrze z mgłą olejową
B. generuje mgłę olejową
C. zapewnia stałe ciśnienie robocze
D. zmniejsza ilość zanieczyszczeń w sprężonym powietrzu
Reduktor ciśnienia w zespole przygotowania sprężonego powietrza pełni kluczową rolę w utrzymaniu stałego ciśnienia roboczego, co jest niezbędne do prawidłowego funkcjonowania urządzeń pneumatycznych. Dzięki zastosowaniu reduktora, można dostosować ciśnienie powietrza do wymagań konkretnego procesu technologicznego, co przekłada się na poprawę efektywności energetycznej i wydajności systemu. Przykładem zastosowania reduktorów ciśnienia może być linia produkcyjna, gdzie różne maszyny wymagają różnych poziomów ciśnienia, a reduktor umożliwia ich optymalne zasilanie. W standardach branżowych, takich jak ISO 8573, podkreśla się znaczenie kontrolowania parametrów sprężonego powietrza, a właściwe ustawienie i konserwacja reduktorów ciśnienia są kluczowe dla zminimalizowania ryzyka awarii oraz zapewnienia jakości wykorzystywanego medium. Dodatkowo, stałe ciśnienie robocze pozwala na przewidywalność działania systemów, co jest istotne w kontekście bezpieczeństwa operacji przemysłowych.

Pytanie 8

Do zdejmowania izolacji z przewodów elektrycznych należy zastosować narzędzie przedstawione na rysunku

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Szczypce do ściągania izolacji, oznaczone literą D, są specjalistycznym narzędziem zaprojektowanym do zdejmowania izolacji z przewodów elektrycznych. Dzięki swojej konstrukcji, pozwalają na precyzyjne i kontrolowane usunięcie izolacji bez uszkadzania samego przewodu. To kluczowe, ponieważ uszkodzenie przewodu może prowadzić do niebezpieczeństw związanych z przewodnictwem elektrycznym, takich jak zwarcia czy przerwy w obwodzie. W praktyce, użycie odpowiednich szczypiec eliminuje ryzyko przypadkowego przecięcia przewodu, co jest powszechnym problemem przy używaniu nieodpowiednich narzędzi. Zaleca się, aby w każdej instalacji elektrycznej stosować narzędzia zgodne z normami bezpieczeństwa oraz z zasadami BHP, co zapewnia nie tylko wygodę pracy, ale przede wszystkim bezpieczeństwo użytkowników. Zastosowanie szczypiec do ściągania izolacji jest niezbędne w procesach montażowych i konserwacyjnych, gdzie precyzja i bezpieczeństwo są kluczowe. Dobrze dobrane narzędzia w znaczący sposób zwiększają efektywność pracy oraz minimalizują ryzyko wystąpienia usterek.

Pytanie 9

Jaką funkcję pełni element V2 w układzie przedstawionym na rysunku?

Ilustracja do pytania
A. Zmniejsza prędkość wsuwania tłoczyska siłownika.
B. Zwiększa prędkość wsuwania tłoczyska siłownika.
C. Zmniejsza prędkość wysuwania tłoczyska siłownika.
D. Zwiększa prędkość wysuwania tłoczyska siłownika.
Każde z błędnych podejść do funkcji elementu V2 w układzie hydraulicznym może wynikać z nieporozumienia dotyczącego działania zaworów oraz wpływu, jaki mają na prędkość ruchu tłoczyska. Przykładowo, stwierdzenie, że element ten zmniejsza prędkość wysuwania tłoczyska, jest oparte na fałszywym założeniu, że zawór ma jakikolwiek wpływ na ten proces. W rzeczywistości, zawór jednokierunkowy, jak V2, jedynie blokuje ciecz w przeciwnym kierunku, co oznacza, że jego funkcja nie zmienia prędkości wysuwania. Innym błędnym założeniem jest przekonanie, że zawór może zwiększać prędkość wysuwania tłoczyska. W rzeczywistości, podczas wysuwania ciśnienie w układzie nie przechodzi przez zawór V2, co nie pozwala na jego otwarcie. Ponadto, niektóre osoby mogą mylić funkcję zaworu z działaniem siłowników, co prowadzi do nieprawidłowych wniosków związanych z dynamiką ruchu. Ważne jest zrozumienie, że ścisłe pojęcie hydrauliki, w tym rola zaworów, jest kluczowe w praktycznych zastosowaniach inżynieryjnych. Aby uniknąć tych nieporozumień, warto zapoznać się z literaturą techniczną oraz uczestniczyć w szkoleniach dotyczących hydrauliki, które wyjaśniają te kwestie w kontekście rzeczywistych aplikacji.

Pytanie 10

Aby chronić silnik przed wystąpieniem napięcia zasilającego po krótkim zgaśnięciu, należy użyć przekaźnika

A. podnapięciowy zwłoczny
B. różnicowoprądowy
C. nadnapięciowy zwłoczny
D. nadprądowy zwłoczny
Wybór innych typów przekaźników, takich jak nadnapięciowy zwłoczny, nadprądowy zwłoczny czy różnicowoprądowy, nie jest odpowiedni w kontekście zabezpieczania silnika przed pojawieniem się napięcia zasilania po krótkotrwałym zaniku. Przekaźnik nadnapięciowy zwłoczny jest zaprojektowany do wyłączania obwodu, gdy napięcie przekracza ustaloną wartość, co w przypadku zaniku napięcia nie zabezpiecza silnika, lecz może doprowadzić do niebezpiecznej sytuacji, gdy napięcie powraca. Nadprądowy zwłoczny z kolei ma na celu zabezpieczenie przed przeciążeniem, a nie przed zanikami napięcia, więc jego funkcjonalność w tym kontekście będzie niewystarczająca. Przekaźnik różnicowoprądowy wykrywa różnice w prądzie między przewodami roboczymi, chroniąc przed porażeniem elektrycznym, ale nie zareaguje na zmiany w napięciu zasilania. Wybór niewłaściwego przekaźnika może prowadzić do potencjalnych uszkodzeń silnika, a także stwarzać ryzyko dla osób pracujących w pobliżu. Dlatego istotne jest zrozumienie specyfiki działania różnych typów przekaźników, aby skutecznie zabezpieczyć urządzenia w warunkach zmienności napięcia zasilania.

Pytanie 11

Na rysunku przedstawiono sprzęgło

Ilustracja do pytania
A. samonastawne.
B. przegubowe.
C. podatne.
D. sztywne.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprzęgło podatne jest kluczowym elementem w wielu zastosowaniach inżynieryjnych, szczególnie tam, gdzie wymagane jest przenoszenie momentu obrotowego przy jednoczesnym kompensowaniu niewielkich odchyleń. Tego typu sprzęgła są wykorzystywane w silnikach elektrycznych, przekładniach oraz systemach napędowych, gdzie elastyczność połączenia jest istotna dla redukcji drgań. Dzięki zastosowaniu elementów elastycznych, sprzęgła podatne pozwalają na zminimalizowanie wpływu obciążeń dynamicznych na komponenty mechaniczne. W praktyce, sprzęgła te są zgodne z normami ISO 9001, zapewniając wysoką jakość wykonania i niezawodność. Przykładem zastosowania sprzęgieł podatnych mogą być układy napędowe w pojazdach elektrycznych, gdzie dążenie do minimalizacji drgań i hałasu ma kluczowe znaczenie dla komfortu użytkowania. W kontekście standardów inżynieryjnych, sprzęgła podatne wykazują właściwości, które są zgodne z dobrymi praktykami w projektowaniu systemów mechanicznych, co czyni je idealnym rozwiązaniem w nowoczesnych konstrukcjach.

Pytanie 12

W celu zwiększenia wskaźnika lepkości w układzie hydraulicznym oraz zmniejszenia zużycia jego elementów należy użyć oleju o oznaczeniu

DodatkiRodzaj oleju
HHHLHMHVHG
AntyutleniająceTakTakTakTak
Chroniące przed korozjąTakTakTakTak
Polepszające smarnośćTakTakTak
Zmniejszające zużycieTakTakTak
Zwiększające wskaźnik lepkościTak
O szczególnych właściwościach smarującychTak
A. HL
B. HV
C. HH
D. HM

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź HV jest poprawna, ponieważ oleje hydrauliczne o oznaczeniu HV (High Viscosity Index) zawierają dodatki, które zwiększają wskaźnik lepkości. Oznacza to, że ich lepkość zmienia się w mniejszym stopniu w zależności od temperatury, co jest kluczowe w zastosowaniach hydraulicznych, gdzie stabilność lepkości w różnych warunkach roboczych jest niezwykle istotna. Użycie oleju o wysokim wskaźniku lepkości zapewnia lepszą ochronę elementów hydraulicznych, co przekłada się na ich dłuższą żywotność i mniejsze zużycie. Przykładem zastosowania oleju HV może być hydraulika stosowana w maszynach budowlanych, gdzie zmienne warunki pracy i temperatura mogą wpływać na wydajność systemu. Praktyki branżowe zalecają stosowanie olejów HV w sytuacjach, gdy urządzenia działają w szerszym zakresie temperatur, co minimalizuje ryzyko ich uszkodzenia i poprawia efektywność działania.

Pytanie 13

Wskaż prawidłowe przyporządkowanie cyfr wskazujących części sprzęgła kłowego do ich nazw.

Piasta sprzęgłaKołnierz przykręcanyWkładka elastycznaPierścienie osadczePodkładka zabezpieczająca
Przyporządkowanie 1.1234 | 56
Przyporządkowanie 2.3124 | 56
Przyporządkowanie 3.4235 | 61
Przyporządkowanie 4.5124 | 63
Ilustracja do pytania
A. Przyporządkowanie 2.
B. Przyporządkowanie 4.
C. Przyporządkowanie 3.
D. Przyporządkowanie 1.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ przyporządkowanie 1. dokładnie odzwierciedla rzeczywiste rozmieszczenie i funkcje poszczególnych części sprzęgła kłowego. W praktyce, zrozumienie tych elementów jest kluczowe dla prawidłowego montażu i konserwacji urządzeń mechanicznych. Na przykład, płytka sprzęgła, oznaczona cyfrą 1, jest podstawowym elementem, który łączy różne części, a jej prawidłowe umiejscowienie zapewnia stabilność całego systemu. Kołnierz przykręcany (oznaczony cyfrą 2) odpowiada za mocowanie, co jest szczególnie istotne w kontekście obciążeń dynamicznych występujących w pracy sprzęgła. Wkładka elastyczna (cyfra 3) pełni kluczową rolę w amortyzacji drgań, co wpływa na żywotność oraz efektywność działania całego mechanizmu. Pozostałe elementy, takie jak pierścienie osadcze (4 i 5) i podkładka zabezpieczająca (6), również mają swoje określone funkcje, które są niezbędne dla prawidłowego działania sprzęgła. Zrozumienie tych interakcji jest nie tylko istotne z perspektywy inżynieryjnej, ale również w kontekście zachowania standardów jakości i bezpieczeństwa w przemyśle.

Pytanie 14

Z wykorzystaniem równania F_u = η ∙ S ∙ p oblicz powierzchnię S tłoka siłownika, w przypadku gdy siłownik generuje siłę czynną F_u = 1,6 kN przy ciśnieniu p = 1 MPa oraz współczynniku sprawności η = 0,8.

A. 1500 mm2
B. 2000 mm2
C. 1000 mm2
D. 3000 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć powierzchnię S tłoka siłownika, możemy skorzystać z podanej zależności F<sub>u</sub> = η ∙ S ∙ p. Wstawiając znane wartości: F<sub>u</sub> = 1,6 kN (co odpowiada 1600 N), p = 1 MPa (co odpowiada 1 000 000 Pa) oraz η = 0,8, możemy przekształcić równanie, aby znaleźć S. Wyrażenie przyjmuje postać S = F<sub>u</sub> / (η ∙ p). Podstawiając wartości, otrzymujemy S = 1600 N / (0,8 ∙ 1 000 000 Pa) = 0,002 m<sup>2</sup>, co odpowiada 2000 mm<sup>2</sup>. Tak obliczona powierzchnia tłoka jest zgodna z praktykami inżynieryjnymi i standardami branżowymi, które podkreślają znaczenie precyzyjnych obliczeń w projektowaniu siłowników hydraulicznych. W praktyce, takie obliczenia są kluczowe dla zapewnienia efektywności i bezpieczeństwa działania maszyn, w których używane są siłowniki. Przykładem zastosowania może być projektowanie systemów hydraulicznych w maszynach budowlanych, gdzie odpowiednia powierzchnia tłoka bezpośrednio wpływa na osiąganą siłę i efektywność działania siłownika.

Pytanie 15

Osoba obsługująca elektryczne urządzenie prądu stałego o nominalnym napięciu 60 V oraz III klasie ochronności jest narażona na

A. poranienie prądem elektrycznym w trakcie dotykania ręką metalowej obudowy
B. poranienie prądem elektrycznym w momencie kontaktu ręką z nieizolowanymi elementami aktywnymi
C. poranienie prądem elektrycznym podczas dotykania ręką nieizolowanego zacisku PEN
D. odczuwalne efekty przepływu prądu przy kontakcie ręką z nieizolowanymi elementami aktywnymi

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź wskazuje na to, że pracownik obsługujący urządzenie elektryczne prądu stałego o napięciu znamionowym 60 V w III klasie ochronności może odczuwać skutki przepływu prądu podczas kontaktu z nieizolowanymi elementami czynnych. W kontekście III klasy ochronności urządzeń elektrycznych, oznacza to, że sprzęt jest zabezpieczony w taki sposób, aby nie stwarzał zagrożenia dla użytkownika. Urządzenia te są projektowane z dodatkowymi środkami ochrony, na przykład przez zastosowanie izolacji oraz zastosowanie materiałów, które nie przewodzą prądu. Niemniej jednak, w sytuacji, gdy pracownik ma kontakt z nieizolowanymi elementami, takich jak przewody lub terminale, ryzyko odczuwalnych skutków przepływu prądu istnieje. Ważne jest, aby przestrzegać norm i dobrych praktyk, takich jak zapewnienie odpowiednich procedur szkoleniowych oraz stosowanie osłon ochronnych, aby minimalizować ryzyko porażenia prądem. W praktyce oznacza to, że zawsze należy zachować ostrożność i stosować odpowiednie środki ochrony osobistej, takie jak rękawice izolacyjne oraz narzędzia z izolowanymi uchwytami.

Pytanie 16

Jakie jest przeznaczenie przedstawionego na rysunku zbiornika rozdzielonego elastyczną membraną, w którym jedna komora przeznaczona jest na ciecz pod ciśnieniem, a druga na gaz?

Ilustracja do pytania
A. Naolejanie powietrza.
B. Magazynowanie energii hydraulicznej.
C. Chłodzenie cieczy.
D. Gromadzenie oleju transformatorowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zbiornik rozdzielony elastyczną membraną, w którym jedna komora przeznaczona jest na ciecz pod ciśnieniem, a druga na gaz, pełni rolę akumulatora hydraulicznego. Jego głównym przeznaczeniem jest magazynowanie energii hydraulicznej, co jest kluczowe w systemach hydraulicznych, gdzie stabilizacja ciśnienia oraz odpowiedź na zmieniające się zapotrzebowanie na moc są niezbędne. Systemy te są powszechnie stosowane w przemyśle, zwłaszcza w maszynach roboczych, takich jak prasy hydrauliczne czy układy hamulcowe. Zbiorniki te umożliwiają gromadzenie energii w momencie, gdy zapotrzebowanie na moc jest niskie, a następnie uwalnianie jej w momentach wzmożonego zapotrzebowania, co zwiększa efektywność energetyczną systemu. Oprócz tego, akumulatory hydrauliczne pozwalają na tłumienie drgań i szoków hydraulicznych, co przyczynia się do zwiększenia trwałości komponentów systemu. W praktyce stosowanie akumulatorów hydraulicznych jest zgodne z najlepszymi praktykami w inżynierii hydraulicznej, co potwierdzają normy ISO oraz SAE.

Pytanie 17

Na rysunku przedstawiono tabliczkę znamionową

Ilustracja do pytania
A. silnika synchronicznego.
B. prądnicy prądu stałego.
C. przetwornicy jednotwornikowej.
D. silnika indukcyjnego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ta odpowiedź jest prawidłowa, ponieważ tabliczka znamionowa przedstawiona na rysunku zawiera informacje charakterystyczne dla silników indukcyjnych. Silniki te są szeroko stosowane w przemyśle, szczególnie w zastosowaniach wymagających dużej mocy, jak w napędach maszyn przemysłowych. Wartości, takie jak moc 20 kW, napięcie 400 V oraz prąd 42,5 A, są typowe dla silników indukcyjnych, które często działają w zakresie napięć trójfazowych. Częstotliwość 50 Hz wskazuje na standardowy zasilacz w Europie, co dodatkowo potwierdza zastosowanie silnika w warunkach przemysłowych. Współczynnik mocy (cos φ) oraz liczba biegunów (P) są również kluczowymi parametrami, które wpływają na efektywność energetyczną silnika. W praktyce, silniki indukcyjne znajdują zastosowanie w pompach, wentylatorach, kompresorach oraz wielu innych urządzeniach, gdzie wymagana jest wysoka niezawodność i trwałość. Wiedza o charakterystyce tabliczki znamionowej jest kluczowa dla inżynierów i techników, by prawidłowo dobierać silniki do konkretnych zastosowań.

Pytanie 18

Aby zweryfikować ciągłość połączeń elektrycznych pomiędzy różnymi elementami systemu, należy skorzystać z

A. wskaźnika napięcia
B. woltomierza
C. omomierza
D. amperomierza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Omomierz jest urządzeniem służącym do pomiaru oporu elektrycznego, co czyni go idealnym narzędziem do sprawdzania ciągłości połączeń elektrycznych. W kontekście instalacji elektrycznych, ciągłość połączeń jest kluczowa dla zapewnienia bezpieczeństwa i niezawodności systemu. Użycie omomierza pozwala na szybkie zidentyfikowanie przerw w obwodzie oraz nieprawidłowych połączeń, co może być kluczowe w przypadku awarii. Przykładem praktycznego zastosowania omomierza jest testowanie przewodów przed ich podłączeniem do zasilania - w ten sposób można upewnić się, że nie ma przerw, które mogłyby prowadzić do ryzyka porażenia prądem lub uszkodzenia sprzętu. Dobre praktyki branżowe zalecają regularne sprawdzanie ciągłości połączeń w instalacjach elektrycznych, zwłaszcza w warunkach, gdzie mogą występować zmienne obciążenia lub wysokie napięcia. Ponadto, zgodnie z normami IEC 60364, przeglądy instalacji elektrycznych powinny obejmować pomiar oporu izolacji oraz ciągłości, co podkreśla znaczenie omomierza w codziennej pracy elektryków.

Pytanie 19

Symbolem K1 oznaczono

Ilustracja do pytania
A. sprężarkę.
B. silnik pneumatyczny.
C. pompę hydrauliczną.
D. pompę próżniową.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pompa hydrauliczna z symbolem K1 to naprawdę ważny element w systemach hydraulicznych. Działa tak, że zamienia energię mechaniczną na hydrauliczną, co jest mega istotne przy zasilaniu różnych mechanizmów. Widziałem to na różnych budowach czy w maszynach do podnoszenia, gdzie pompy hydrauliczne są w użyciu. Warto też zwrócić uwagę, że najczęściej pompa jest zasilana przez silnik elektryczny (symbol M), co sprawia, że wszystko działa sprawnie i niezawodnie. Jak patrzymy na schematy, to umiejętność rozpoznawania tych symboli jest kluczowa, zwłaszcza dla inżynierów. Ostatnio czytałem, że nowoczesne systemy hydrauliczne mogą być zintegrowane z elektronicznym sterowaniem, co dodatkowo zwiększa ich precyzję. Bez znajomości tych symboli i ich funkcji trudno byłoby pracować w tej branży.

Pytanie 20

Przyłącze T zaworu hydraulicznego przedstawionego na rysunku należy podłączyć do

Ilustracja do pytania
A. zbiornika oleju.
B. siłownika dwustronnego działania.
C. siłownika jednostronnego działania.
D. pompy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przyłącze T w zaworze hydraulicznym to naprawdę ważny element w systemach hydraulicznych. Jego główne zadanie to odprowadzanie oleju z powrotem do zbiornika, co jest kluczowe dla prawidłowego działania całego układu. Kiedy zawór jest w pozycji neutralnej, olej nie zasila siłowników, więc nadmiar musi wrócić do zbiornika, żeby uniknąć zbyt dużego ciśnienia. Widziałem to na budowie, gdzie koparki i dźwigi używają takich rozwiązań, żeby wszystko działało stabilnie i bezpiecznie. Jeśli przyłącze T jest źle podłączone, może to prowadzić do uszkodzenia hydrauliki, więc naprawdę warto trzymać się dobrych praktyk i standardów, jak choćby ISO 4413, które regulują te kwestie.

Pytanie 21

Który symbol graficzny oznacza sterowanie ręczne dźwignią?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol graficzny oznaczający sterowanie ręczne dźwignią, przedstawiony przy odpowiedzi A, jest powszechnie stosowany w różnych dziedzinach inżynierii, w tym w automatyce i hydraulice. Dźwignie ręczne są kluczowym elementem w wielu urządzeniach, takich jak podnośniki, maszyny budowlane oraz systemy transportowe. Ich zrozumienie jest niezbędne dla inżynierów i techników, aby skutecznie projektować i obsługiwać urządzenia. W praktyce, dźwignia umożliwia użytkownikowi manualne sterowanie procesem, co jest istotne w sytuacjach, gdzie automatyzacja jest niewystarczająca. Symbol ten jest również zgodny z normami ISO, które regulują oznakowanie urządzeń i ich funkcji. Przy odpowiedniej interpretacji tego symbolu, operatorzy są w stanie skutecznie i bezpiecznie korzystać z urządzeń, co przekłada się na zwiększenie wydajności pracy oraz minimalizację ryzyka błędów. Zrozumienie tych symboli jest kluczowe w kontekście szkoleń BHP oraz przy wprowadzaniu nowych pracowników do procedur obsługi maszyn.

Pytanie 22

W aplikacjach sterujących, wykonywanych przy użyciu sterownika PLC, do zapisywania sygnałów impulsowych oraz ich konwersji na sygnały trwałe (włączanie z samopodtrzymaniem) wykorzystuje się moduły

A. filtrów komparatorowych
B. przerzutników
C. zegarów czasowych
D. rejestrów licznikowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przerzutniki są podstawowymi elementami w systemach automatyki, które umożliwiają przechowywanie i przetwarzanie sygnałów impulsowych na sygnały długotrwałe. Działają poprzez zmianę swojego stanu na podstawie sygnałów wejściowych, co pozwala na samopodtrzymanie stanu wyjściowego. Na przykład, w aplikacjach przemysłowych, przerzutniki D mogą być używane do włączania silników na określony czas po otrzymaniu impulsu startowego, co jest szczególnie przydatne w systemach transportowych czy w procesach produkcyjnych. W kontekście standardów branżowych, przerzutniki często występują w projektach zgodnych z normami IEC 61131-3, które definiują programowanie PLC, co zapewnia ich szeroką zastosowalność i kompatybilność. Warto również zauważyć, że przerzutniki są kluczowymi elementami w tworzeniu bardziej złożonych systemów automatyki, takich jak sekwencjonery czy sygnalizatory. Zapewniają one stabilność działania systemu oraz pozwalają na elastyczne zarządzanie procesami, co czyni je niezastąpionymi w nowoczesnej automatyce przemysłowej.

Pytanie 23

Filtr o charakterystyce pasmowo-zaporowej

A. przepuszcza sygnały w zakresie określonego pasma częstotliwości.
B. tłumi sygnały o częstotliwościach w obrębie określonego pasma częstotliwości.
C. przepuszcza sygnały o niskich częstotliwościach.
D. tłumi sygnały o niskich częstotliwościach.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Filtr pasmowo-zaporowy to urządzenie elektroniczne, które ma na celu tłumienie sygnałów o częstotliwościach znajdujących się w określonym pasmie, co czyni go niezwykle przydatnym w różnych zastosowaniach inżynieryjnych. Działa on na zasadzie eliminacji zakłóceń, które mogą wpływać na jakość sygnału w systemach komunikacyjnych, audio oraz telewizyjnych. Przykładami zastosowania filtrów pasmowo-zaporowych są systemy audio, gdzie eliminuje się szumy z zakresu częstotliwości, które nie są potrzebne dla jakości dźwięku, oraz w telekomunikacji, gdzie pozwala to na poprawę jakości odbioru sygnałów bez zakłóceń. W kontekście standardów branżowych, filtry pasmowo-zaporowe są zgodne z normami ITU (Międzynarodowa Unia Telekomunikacyjna) i IEEE, co zapewnia ich efektywność oraz kompatybilność w różnych systemach. Warto także pamiętać, że konstrukcja tych filtrów może być zrealizowana zarówno w technologii analogowej, jak i cyfrowej, co zwiększa ich wszechstronność w nowoczesnych aplikacjach.

Pytanie 24

Sygnał MO w układzie przedstawionym na rysunku jest równy 1, gdy

Ilustracja do pytania
A. S1 = 1 i S2 = 0
B. S1 = 0 i S2 = 1
C. S1 = 0 i S2 = 0
D. S1 = 1 i S2 = 1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ w układzie przedstawionym na rysunku, który działa jako przerzutnik typu SR, sygnał MO przyjmuje wartość 1, gdy wejście S jest w stanie wysokim (1), a wejście R, po zanegowaniu, również osiąga stan wysoki. W tej sytuacji, aby stan R był aktywny, S musi mieć wartość 1, co jest zgodne z zasadami działania przerzutników. W praktycznych zastosowaniach przerzutników SR, takie jak w systemach pamięci czy licznikach, zrozumienie działania tych sygnałów jest kluczowe. Umożliwia to projektowanie bardziej złożonych układów cyfrowych, które są fundamentem technologii mikroprocesorowej. Dobrą praktyką w projektowaniu układów cyfrowych jest zawsze uwzględnianie logiki negacji sygnałów, co pozwala na pełne wykorzystanie możliwości przerzutników. Wiedza na temat działania przerzutników jest nieoceniona w kontekście inżynierii elektronicznej oraz automatyzacji, gdzie precyzyjne sterowanie sygnałami jest kluczowe.

Pytanie 25

Ciecze hydrauliczne, które przekazują energię, lecz nie oferują ochrony przed korozją ani smarowania, to ciecze klasy

A. HH
B. HG
C. HR
D. HL

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ciecze hydrauliczne typu HH to tak naprawdę te, które przenoszą energię, ale nie chronią przed korozją ani się nie smarują. Używa się ich głównie w hydraulice, gdzie priorytetem jest efektywne przenoszenie mocy, bez potrzeby dodatkowej ochrony. Przykłady? Proste układy hydrauliczne w maszynach budowlanych, które raczej nie są narażone na dużą korozję czy duże obciążenia. W takich sytuacjach można zbudować układ hydrauliczny z materiałów odpornych na rdzewienie, więc nie ma potrzeby dodawania dodatkowych środków ochronnych do płynów. W branży można spotkać standardy jak ISO 6743, które definiują różne klasy cieczy hydraulicznych na podstawie ich cech. Zrozumienie klasyfikacji cieczy hydraulicznych, w tym typu HH, to klucz do tego, by inżynierowie i technicy mogli wybierać odpowiednie materiały do konkretnych zastosowań, co jest ważne, żeby systemy hydrauliczne działały efektywnie i były niezawodne.

Pytanie 26

Zależność między ciśnieniem p, temperaturą T i objętością V powietrza opisuje zależność poniżej. Obniżenie temperatury powietrza przy jego stałej objętości

p · V
T
= const
A. zwiększa ciśnienie powietrza.
B. zwiększa ciśnienie powietrza dla temperatur mniejszych od 0 stop.C
C. zmniejsza ciśnienie powietrza.
D. nie ma wpływu na ciśnienie powietrza.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obniżenie temperatury powietrza przy stałej objętości rzeczywiście prowadzi do zmniejszenia ciśnienia powietrza. Zgodnie z prawem Boyle'a-Mariotte'a, dla danej masy gazu, iloczyn ciśnienia (p) i objętości (V) jest wprost proporcjonalny do temperatury (T) wyrażonej w kelwinach. Przy stałej objętości zmiana temperatury wpływa bezpośrednio na ciśnienie. Na przykład, w zastosowaniach inżynieryjnych, w układach pneumatycznych, obniżenie temperatury powietrza może prowadzić do spadku efektywności systemu, co jest kluczowe w kontekście chłodzenia, gdzie kontrola temperatury jest niezbędna dla zapewnienia odpowiednich parametrów pracy. W praktyce, w systemach klimatyzacyjnych, obniżenie temperatury powietrza zewnętrznego skutkuje zmniejszeniem ciśnienia wewnętrznego, co może wpływać na wydajność całego układu. Zrozumienie tej zależności jest niezbędne dla projektantów systemów klimatyzacyjnych oraz inżynierów zajmujących się aerodynamiką.

Pytanie 27

Przy obróbce metalu z użyciem pilników, jakie środki ochrony osobistej są wymagane?

A. rękawicach i okularach ochronnych
B. rękawicach skórzanych i fartuchu skórzanym
C. obuwiu z gumową podeszwą oraz fartuchu ochronnym
D. kasku ochronnym i rękawicach elektroizolacyjnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obrabianie metalu wymaga stosowania odpowiednich środków ochrony osobistej, a rękawice i okulary ochronne są kluczowe dla zapewnienia bezpieczeństwa podczas tego procesu. Rękawice chronią dłonie przed ostrymi krawędziami oraz szkodliwymi substancjami, które mogą wystąpić w wyniku obróbki. Okulary ochronne są niezbędne, aby zabezpieczyć oczy przed odłamkami metalu oraz pyłem, który może być generowany podczas obróbki. W praktyce, np. podczas używania pilników, niewłaściwe zabezpieczenie może prowadzić do poważnych urazów, dlatego stosowanie rękawic i okularów jest zgodne z normami BHP oraz zasadami dobrych praktyk przemysłowych. Dodatkowo, warto zwrócić uwagę na jakość stosowanych środków ochrony; rękawice powinny być wykonane z materiałów odpornych na przekłucia i ścieranie, a okulary muszą spełniać normy EN 166, które określają ich właściwości ochronne. Przestrzeganie tych zasad nie tylko minimalizuje ryzyko urazów, ale także przyczynia się do poprawy komfortu pracy.

Pytanie 28

Ile stopni swobody ma manipulator, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. 6 stopni swobody
B. 4 stopnie swobody
C. 5 stopni swobody
D. 3 stopnie swobody

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Manipulator z pięcioma stopniami swobody to świetna rzecz, bo potrafi ruszać się w trzech osiach oraz obracać wokół trzech osi. Dzięki temu może zarówno przesuwać się, jak i kręcić w przestrzeni, co jest naprawdę ważne w różnych zastosowaniach – mówimy tu o przemyśle czy robotyce. Z mojego doświadczenia, pięć stopni swobody to super rozwiązanie, bo daje większą precyzję i elastyczność, co przydaje się na przykład przy montażu części, przenoszeniu materiałów lub nawet bardziej skomplikowanych zadaniach. Widziałem, jak roboty na liniach montażowych wykorzystują to, bo dzięki temu mogą dostosowywać się do różnych zadań i warunków. W inżynierii robotów, te manipulatory są właściwie standardem, bo balansują między złożonością a tym, co mogą zrobić. Warto też wspomnieć, że według norm ISO dotyczących robotyki, projektując manipulatory, trzeba brać pod uwagę stopnie swobody, bo to ma wpływ na ich efektywność i bezpieczeństwo. Te wszystkie cechy sprawiają, że manipulator to naprawdę świetny wybór w nowoczesnych zastosowaniach przemysłowych.

Pytanie 29

Za pomocą przedstawionego na rysunku przyrządu można zmierzyć prędkość obrotową elementów napędowych urządzenia mechatronicznego metodą

Ilustracja do pytania
A. elektromagnetyczną.
B. laserową.
C. stroboskopową.
D. wibroakustyczną.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
No to tak, odpowiedź jest jak najbardziej na plus. Tachometr laserowy to świetny wybór, bo naprawdę fajnie mierzy prędkość obrotową. Działa to tak, że wiązka laserowa odbija się od obracającego się obiektu, co daje dokładne wyniki. To mega ważne w mechatronice, gdzie liczy się precyzja i niezawodność. W różnych dziedzinach, jak automatyka czy robotyka, ten sprzęt jest nie do przebicia. Na przykład, gdy technicy serwisują maszyny, używają tachometru laserowego do sprawdzania prędkości obrotowej wałów napędowych, co pozwala im na wcześniejsze wykrycie potencjalnych problemów. W branży motoryzacyjnej też jest nieoceniony, zwłaszcza przy testowaniu silników, gdzie dokładność pomiarów ma ogromne znaczenie dla osiągów pojazdów. A co ważne, pomiar laserowy jest nieinwazyjny, więc nie ma ryzyka uszkodzenia mierzonych elementów, co jest naprawdę na plus.

Pytanie 30

Na rysunku przedstawiono pneumatyczne elementy

Ilustracja do pytania
A. sterujące.
B. wejściowe.
C. wytwarzające.
D. wykonawcze.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Właściwa odpowiedź to "wykonawcze". Pneumatyczne elementy wykonawcze, takie jak siłowniki, pełnią kluczową rolę w systemach automatyki i przemysłu. Ich zadaniem jest przekształcanie energii sprężonego powietrza na energię mechaniczną, co umożliwia wykonanie różnych rodzajów pracy, takich jak ruch liniowy, obrotowy czy podnoszenie ciężarów. Siłowniki pneumatyczne są szeroko stosowane w wielu aplikacjach, od prostych mechanizmów w maszynach po zaawansowane systemy automatyki przemysłowej. Przy projektowaniu układów pneumatycznych istotne jest przestrzeganie norm, takich jak ISO 1219, które definiują symbole i oznaczenia dla elementów pneumatycznych. Dobrze zaprojektowany system pneumatyczny zapewnia nie tylko efektywność operacyjną, ale również bezpieczeństwo, co jest niezbędne w aplikacjach przemysłowych. Właściwe zrozumienie oraz umiejętność identyfikacji elementów wykonawczych to kluczowe umiejętności w dziedzinie automatyki, które mają wpływ na wydajność i niezawodność całego systemu.

Pytanie 31

Wyłącznik przedstawiony na rysunku można zastosować w obwodach napięcia

Ilustracja do pytania
A. przemiennego o wysokiej częstotliwości.
B. sinusoidalnego o częstotliwości 50 Hz.
C. stałego stabilizowanego.
D. sinusoidalnego wyprostowanego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik nadprądowy, jak przedstawiony na rysunku, jest zaprojektowany do pracy w obwodach z napięciem sinusoidalnym o częstotliwości 50 Hz, co odpowiada standardowym warunkom zasilania w instalacjach elektrycznych w Polsce. Oznaczenia na wyłączniku, takie jak 'Un=230V' i 'In=0,030A', wskazują na napięcie znamionowe oraz prąd znamionowy, co jest kluczowe dla prawidłowego doboru urządzenia do zabezpieczania obwodów. Przy zastosowaniu tego typu wyłącznika w obwodach AC 50 Hz, możemy mieć pewność, że urządzenie będzie skutecznie chronić instalację przed przeciążeniem oraz zwarciami, co jest zgodne z normami PN-EN 60898. W praktyce, wyłączniki te są powszechnie stosowane w budynkach mieszkalnych oraz komercyjnych, aby zapewnić bezpieczeństwo elektryczne i zminimalizować ryzyko pożarów spowodowanych przeciążeniem. Dlatego, wiedza o zastosowaniu wyłącznika w takich obwodach jest niezbędna dla każdego elektryka oraz inżyniera w dziedzinie energetyki.

Pytanie 32

Elementy zespołów przeznaczone do montażu powinny być ułożone na stanowisku pracy zgodnie z

A. formą
B. poziomem skomplikowania
C. kolejnością montażu
D. rozmiarem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Części podzespołów przeznaczone do montażu powinny być uporządkowane na stanowisku pracy według kolejności montowania, ponieważ takie podejście znacząco zwiększa efektywność oraz bezpieczeństwo pracy. Przede wszystkim, właściwe zorganizowanie stanowiska roboczego według sekwencji montażu pozwala na płynne przechodzenie z jednego etapu do drugiego, co minimalizuje ryzyko pomyłek i opóźnień. Przykładowo, w przemyśle elektronicznym przy montażu komponentów na płytach PCB, kolejność ich umieszczania ma kluczowe znaczenie dla funkcjonowania całego układu. Umożliwia to także lepszą kontrolę jakości, ponieważ każdy etap montażu można łatwo nadzorować. Dobre praktyki w zakresie organizacji stanowisk pracy, takie jak zasady 5S, promują utrzymanie porządku i efektywną organizację miejsca pracy, co wspiera optymalizację procesów produkcyjnych i zapewnia zachowanie wysokich standardów bezpieczeństwa.

Pytanie 33

Jakie urządzenie pomiarowe wykorzystuje się do określania podciśnienia?

A. Wariometr
B. Dynamometr
C. Wakuometr
D. Pirometr

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wakuometr to urządzenie pomiarowe, które służy do pomiaru podciśnienia, czyli ciśnienia mniejszego niż ciśnienie atmosferyczne. Wakuometry są kluczowe w wielu branżach, takich jak przemysł chemiczny, farmaceutyczny czy spożywczy, gdzie kontrola ciśnienia odgrywa fundamentalną rolę w procesach technologicznych. Na przykład, w systemach próżniowych stosowanych do pakowania żywności, wakuometry pomagają monitorować poziom podciśnienia, co jest niezbędne dla zapewnienia odpowiedniej jakości i trwałości produktów. W kontekście medycyny, wakuometr może być używany do pomiaru ciśnienia w systemach laboratoryjnych, gdzie precyzyjna kontrola ciśnienia jest niezbędna do uzyskania wiarygodnych wyników. Praktyczna znajomość wakuometrów i ich zasad działania jest również istotna w kontekście bezpieczeństwa, ponieważ niewłaściwe pomiary podciśnienia mogą prowadzić do poważnych awarii technicznych. Zgodność z normami takimi jak ISO 9001, które podkreślają znaczenie precyzyjnych pomiarów w procesach produkcyjnych, jest kluczowa dla zapewnienia wysokiej jakości i niezawodności urządzeń pomiarowych.

Pytanie 34

Ile oleju, zgodnie z przedstawionymi w tabeli wskazaniami producenta, należy przygotować do całkowitej wymiany zużytego oleju w pompie IF1 400?

Typ pompyIlość oleju w silniku
l
Ilość oleju w komorze olejowej
l
Całkowita ilość
oleju w pompie
l
IF1 100; 150; 2000,40-0,40
IF1 50; 75; 100; 150; 2000,40-0,40
IF2 3000,900,121,02
IF1 300; 4001,700,121,82
IF2 4001,700,121,82
IF1 5501,700,121,82
IF2 5501,700,121,82
IF1 7502,000,122,12
IF1 10002,000,122,12
IF1 1500; 20005,000,185,18
A. 1,70 l
B. 0,40 l
C. 1,82 l
D. 0,90 l

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1,82 l jest prawidłowa, ponieważ dokładnie odpowiada całkowitej ilości oleju potrzebnej do wymiany w pompie IF1 400. Aby obliczyć tę wartość, należy zsumować ilości oleju wymagane w silniku oraz w komorze olejowej, które są przedstawione w tabeli producenta. W praktyce, zapewnienie odpowiedniej ilości oleju jest kluczowe dla prawidłowego funkcjonowania urządzenia, gdyż niedobór oleju może prowadzić do przegrzewania się pompy i jej szybszego zużycia. W branży inżynieryjnej i mechanicznej, przestrzeganie zaleceń producentów dotyczących wymiany oleju i jego ilości jest uznawane za standardową praktykę, która wpływa na niezawodność oraz efektywność działania maszyn. Dobór właściwego oleju i jego ilości ma również znaczenie dla utrzymania optymalnych parametrów pracy, co w efekcie przekłada się na dłuższą żywotność urządzenia oraz oszczędności w kosztach eksploatacji.

Pytanie 35

W układzie elektropneumatycznym przedstawionym na ilustracji należy zamontować zawór rozdzielający w wersji

Wersja zaworuW1W2W3W4
Liczba cewek1212
Typ zaworu4/24/35/25/2
Biegunowość zasilaniadowolnadowolnadowolnadowolna
Ilustracja do pytania
A. W3.
B. W4.
C. W2.
D. W1.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór W4 to naprawdę dobry wybór w tym układzie elektropneumatycznym, bo pasuje do wymagań dla systemu z dwoma siłownikami pneumatycznymi. To zawór 5/2, więc ma pięć portów i dwie pozycje. Dzięki temu możemy bardzo dokładnie sterować siłownikami 1M1 i 1M2. W praktyce oznacza to, że każdy z siłowników możemy kontrolować niezależnie, co jest kluczowe, gdy potrzebujemy różne cykle robocze. Wybierając W4, możemy też korzystać ze standardowych komponentów w układach pneumatycznych, co potem ułatwia modyfikacje i konserwację. Przy projektowaniu takich układów trzeba zwracać uwagę na normy branżowe, jak ISO 4414, które mówią o bezpieczeństwie i efektywności w systemach pneumatycznych. Użycie odpowiedniego zaworu jest istotne, bo to zapewnia płynność pracy i zmniejsza ryzyko awarii spowodowanej złym doborem komponentów. Kiedy myślimy nad wyborem zaworu, ważne, żeby uwzględnić takie rzeczy jak ciśnienie robocze, przepływ i rodzaj medium, bo to wszystko wpływa na wydajność układu.

Pytanie 36

Który z wymienionych elementów zabezpiecza łożysko przed wysunięciem z obudowy w mechanizmie przedstawionym na rysunku?

Ilustracja do pytania
A. Podkładka dystansująca.
B. Pierścień Segera.
C. Zawleczka zabezpieczająca.
D. Nakrętka koronowa.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pierścień Segera to kluczowy element zabezpieczający łożysko przed wysunięciem z obudowy w mechanizmach maszynowych. Zamontowany w rowku na zewnętrznej powierzchni łożyska lub wału, pierścień ten blokuje ruch łożyska w kierunku osiowym, co jest szczególnie ważne w zastosowaniach, gdzie występują znaczne siły działające na łożysko. W przemyśle maszynowym, na przykład w silnikach elektrycznych czy przekładniach, obecność pierścieni Segera minimalizuje ryzyko uszkodzenia łożyska oraz zwiększa trwałość całego systemu. Dobrą praktyką jest regularne sprawdzanie stanu pierścieni zabezpieczających w celu zapewnienia niezawodności działania urządzeń. Zgodnie z normami ISO, stosowanie odpowiednich elementów zabezpieczających jest kluczowe dla bezpieczeństwa i wydajności mechanizmów, co podkreśla znaczenie stosowania pierścieni Segera w projektach inżynieryjnych. W praktyce, nieodpowiedni dobór lub brak pierścienia Segera może prowadzić do awarii, a w konsekwencji do przestojów w pracy maszyn, co generuje dodatkowe koszty.

Pytanie 37

Podaj możliwą przyczynę osłabienia siły nacisku generowanej przez tłoczysko siłownika hydraulicznego?

A. Zablokowany zawór przelewowy
B. Niewystarczające smarowanie tłoczyska
C. Otwarty odpowietrznik filtra wlewowego
D. Nieszczelność instalacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Nieszczelność w instalacji to chyba jeden z głównych powodów, dla których siłownik hydrauliczny nie działa tak, jak powinien. Jak system ma nieszczelności, to traci ciśnienie i przez to siłownik nie ma tej mocy, której potrzebuje. W praktyce, to sprawia, że sprzęt, w którym go zainstalowaliśmy, może działać gorzej, co jest dość problematyczne. Zwykle te nieszczelności pojawiają się w miejscach złącz czy uszczelek, a ich znalezienie wymaga czasami użycia specjalistycznych narzędzi, np. detektorów nieszczelności. Z tego, co pamiętam, normy takie jak ISO 4413 mocno podkreślają, jak ważne jest dobre uszczelnienie i regularne przeglądy. Warto monitorować ciśnienie w hydraulice i wdrożyć różne procedury, żeby wcześniej wyłapać takie nieszczelności. Dzięki temu można uniknąć kosztownych napraw i przestojów w produkcji, co zawsze jest na plus.

Pytanie 38

Radarowy czujnik wykorzystujący efekt Dopplera pozwala na określenie wartości

A. temperatury
B. prędkości
C. podciśnienia
D. nadciśnienia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sensor radarowy działający na zasadzie efektu Dopplera jest wykorzystywany przede wszystkim do pomiaru prędkości obiektów. Efekt Dopplera polega na zmianie częstotliwości fali elektromagnetycznej w zależności od ruchu źródła fali oraz obserwatora. W kontekście radaru, gdy obiekt porusza się w kierunku sensora, fale radarowe są przesuwane ku wyższej częstotliwości, a gdy się oddala, dochodzi do obniżenia częstotliwości. Ta zmiana częstotliwości jest bezpośrednio związana z prędkością obiektu. Przykładem zastosowania tej technologii jest pomiar prędkości pojazdów w systemach monitorowania ruchu drogowego oraz w radarach meteorologicznych do analizy prędkości wiatru. W praktyce, radary oparte na efekcie Dopplera są standardem w wielu dziedzinach, takich jak lotnictwo, motoryzacja czy meteorologia, co czyni je nieocenionym narzędziem w nowoczesnej technologii pomiarowej.

Pytanie 39

Na rysunku przedstawiono symbol czujnika

Ilustracja do pytania
A. ultradźwiękowego.
B. indukcyjnego.
C. magnetycznego.
D. mechanicznego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol przedstawiony na rysunku jest charakterystyczny dla czujników magnetycznych, które są szeroko stosowane w różnych dziedzinach technologii. Czujniki te działają na zasadzie wykrywania obecności pola magnetycznego, co pozwala na monitorowanie i kontrolowanie wielu procesów. Przykładem aplikacji czujników magnetycznych jest automatyka przemysłowa, gdzie są używane do detekcji pozycji elementów maszyn, takich jak drzwi czy klapki. Dodatkowo, w branży motoryzacyjnej czujniki te mogą być wykorzystywane do pomiaru prędkości obrotowej silników oraz w systemach ABS, gdzie monitorują prędkość kół. Warto również zauważyć, że czujniki magnetyczne wykorzystują zasady elektromagnetyzmu, co jest zgodne z normami branżowymi, takimi jak IEC 60947 dla urządzeń elektrycznych. Ich niezawodność i prostota w implementacji sprawiają, że są one preferowanym rozwiązaniem w wielu zastosowaniach inżynieryjnych.

Pytanie 40

W przedstawionym na rysunku siłowniku dwustronnego działania ruch tłoka odbywa się w kierunku wskazanym strzałką. Która komora oznaczona została literą B?

Ilustracja do pytania
A. Spływowa.
B. Tłoczna.
C. Nadtłokowa.
D. Podtłokowa.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tak, odpowiedź "tłoczna" jest jak najbardziej trafna. Komora B w siłowniku dwustronnego działania to właśnie to miejsce, gdzie olej hydrauliczny wchodzi pod ciśnieniem, a to powoduje ruch tłoka w stronę strzałki. W siłownikach hydraulicznych ta komora tłoczna jest mega ważna, bo to ona przenosi energię do mechanizmu. Moim zdaniem, żeby siłowniki działały jak należy, trzeba zrozumieć, jak różnie te komory pełnią swoje funkcje. Komora tłoczna odpowiada za wytwarzanie siły, która zmienia energię hydrauliczną w ruch. W praktyce, zwłaszcza w maszynach budowlanych czy systemach automatyzacji, efektywność siłowników zależy od tego, jak dobrze znamy zasady hydrauliki i jak to zastosujemy w projektach. Standardy ISO 4413 czy ANSI B93 pomagają w tym, bo ich przestrzeganie podnosi niezawodność i wydajność układów hydraulicznych.