Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 12 listopada 2025 07:28
  • Data zakończenia: 12 listopada 2025 07:40

Egzamin niezdany

Wynik: 12/40 punktów (30,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jakie powinno być napięcie pomiarowe przy ocenie rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V, w których brak jest ochrony przed przepięciami?

A. 250 V
B. 500 V
C. 750 V
D. 1 000 V
Wybór napięcia 1 000 V, 250 V lub 750 V w badaniach rezystancji izolacji w instalacjach 230/400 V jest nieodpowiedni i niezgodny z branżowymi standardami. Napięcie 1 000 V jest stosowane w niektórych specyficznych przypadkach, jednakże w instalacjach o napięciu nominalnym 230/400 V, użycie tak wysokiego napięcia może prowadzić do uszkodzenia delikatnych komponentów elektronicznych, co może skutkować nieprawidłowymi wynikami pomiarów, a także zagrażać bezpieczeństwu osób przeprowadzających testy. Z kolei napięcia 250 V i 750 V są zbyt niskie, aby skutecznie ocenić właściwości izolacji, co może prowadzić do fałszywie pozytywnych wyników, gdzie uszkodzona izolacja nie zostanie wykryta, a tym samym wprowadzi w błąd użytkowników co do bezpieczeństwa instalacji. Tego typu błędy często wynikają z niedostatecznego zrozumienia zasad działania izolacji oraz niewłaściwego doboru sprzętu pomiarowego. Aby zapewnić, że wyniki są rzetelne, niezbędne jest stosowanie właściwego napięcia, zgodnego z wymaganiami norm, co zwiększa bezpieczeństwo i niezawodność systemów elektrycznych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

W instalacji trójfazowej prąd obciążenia w przewodach fazowych IB = 25 A, a maksymalna obciążalność długotrwała tych przewodów Idd = 30 A. Który z poniższych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji przed działaniem nadmiernego prądu?

A. B32
B. B16
C. B20
D. B25
Zastosowanie wyłącznika B20, B16 czy B32 w tej instalacji będzie niewłaściwe z kilku powodów. Wyłącznik B20, z prądem znamionowym 20 A, nie zaspokoi wymogów obciążenia wynoszącego 25 A. W sytuacjach, gdy prąd obciążenia przekracza wartość znamionową wyłącznika, może dojść do niezamierzonych zadziałań, co prowadzi do częstych i niepotrzebnych wyłączeń systemu. Taki wybór mógłby narazić przewody na przeciążenie, co z kolei zwiększa ryzyko uszkodzeń, a nawet pożaru. Wyłącznik B16, o prądzie znamionowym 16 A, jest jeszcze bardziej niewłaściwy, ponieważ jego wartość jest znacznie niższa niż prąd obciążenia, co prowadzi do permanentnego wyłączenia w normalnych warunkach pracy. Z drugiej strony, wyłącznik B32 mógłby wydawać się odpowiedni, jednak jego zastosowanie w tej konkretnej instalacji nie jest zalecane, gdyż przewyższa on wartość prądu obciążenia, co może prowadzić do sytuacji, w której przewody nie będą odpowiednio chronione przed przeciążeniem, co narusza zasady ochrony instalacji. Właściwy dobór wyłącznika nadprądowego powinien być oparty na analizie rzeczywistego obciążenia oraz normach dotyczących instalacji elektrycznych. Aby zapewnić optymalną ochronę, warto zawsze wybierać wyłącznik, którego wartość znamionowa jest bliska prądowi obciążenia, co pozwala na uniknięcie fałszywych alarmów oraz skutecznie zabezpiecza instalację elektryczną.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jak zmienią się parametry napięcia wyjściowego prądnicy synchronicznej zasilającej oddzielną sieć energetyczną, jeśli prędkość obrotowa turbiny napędzającej tę prądnicę wzrośnie, a prąd wzbudzenia pozostanie bez zmian?

A. Wartość i częstotliwość napięcia zmniejszą się
B. Wartość napięcia zmniejszy się, a częstotliwość wzrośnie
C. Wartość i częstotliwość napięcia wzrosną
D. Wartość napięcia wzrośnie, a częstotliwość zmaleje
Wybór błędnych odpowiedzi wynika często z niepełnego zrozumienia zasad działania prądnic synchronicznych oraz ich charakterystyki. W przypadku stwierdzenia, że wartość napięcia się zmniejszy lub częstotliwość spadnie, można zauważyć typowe nieporozumienia. Zmniejszenie wartości napięcia sugerowałoby, że wzrost prędkości obrotowej turbiny jest w jakiś sposób negatywnie skorelowany z wydajnością prądnicy, co jest niezgodne z teorią i praktyką. W rzeczywistości, prądnica synchroniczna jest zaprojektowana tak, aby wydajnie przetwarzać energię mechaniczną na elektryczną, a zwiększenie obrotów wirnika powinno prowadzić do lepszej wydajności. Częstotliwość napięcia jest bezpośrednio związana z prędkością obrotową wirnika, co oznacza, że wzrost prędkości zawsze prowadzi do wzrostu częstotliwości, o ile inne parametry, takie jak prąd wzbudzenia, pozostają niezmienne. Zrozumienie tej dynamiki jest kluczowe dla inżynierów zajmujących się projektowaniem i eksploatacją systemów energetycznych, a także dla zapewnienia stabilności i niezawodności dostaw energii.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jaki jest maksymalny dopuszczalny czas wyłączenia zasilania w celu zapewnienia ochrony przed porażeniem elektrycznym w przypadku uszkodzenia w systemie sieciowym TN-S, kiedy napięcie fazowe przekracza 400 V, a obwody odbiorcze mają prąd znamionowy do 32 A?

A. 0,2 s
B. 0,8 s
C. 0,5 s
D. 0,1 s
Czas wyłączenia zasilania w instalacjach elektrycznych jest kluczowym elementem ochrony przed porażeniem prądem. W przypadku odpowiedzi, które wskazują na czasy wyłączenia dłuższe niż 0,1 s, istnieje fundamentalne nieporozumienie dotyczące norm ochrony przeciwporażeniowej. Czas 0,5 s czy 0,2 s, choć mogą wydawać się wystarczające, nie spełniają wymogów stawianych przez normy, takie jak PN-EN 60364-4-41, które jasno określają, że najkrótszy czas wyłączenia zasilania powinien wynosić 0,1 s dla obwodów o prądzie znamionowym do 32 A w układzie TN-S. W wydłużonych czasach wyłączenia zwiększa się ryzyko dla zdrowia użytkowników, ponieważ dłuższa ekspozycja na prąd może prowadzić do poważnych obrażeń. Typowe błędy myślowe prowadzące do takich wniosków obejmują ignorowanie specyfiki norm oraz nieprawidłowe rozumienie zasad działania zabezpieczeń elektrycznych. Często myli się również czasy wyłączenia dla różnych rodzajów instalacji, co prowadzi do stosowania niewłaściwych wartości czasowych, które mogą być nieadekwatne do zapewnienia bezpieczeństwa. Wiedza o ochronie przed porażeniem prądem oraz znajomość aktualnych norm są kluczowe dla projektowania i eksploatacji instalacji elektrycznych, aby zminimalizować ryzyko wypadków i zapewnić bezpieczeństwo użytkowników.

Pytanie 12

Jeżeli silnik prądu stałego z komutatorem po włączeniu zasilania nie zaczyna pracować, to możliwą przyczyną tej sytuacji może być

A. zbyt mocny nacisk szczotek na komutator
B. umiejscowienie szczotek poza obszarem neutralnym
C. brak kontaktu szczotek z komutatorem
D. zaśmiecenie komutatora pyłem węglowym
Brak przylegania szczotek do komutatora jest kluczowym problemem w silnikach komutatorowych prądu stałego. Gdy szczotki nie mają odpowiedniego kontaktu z komutatorem, nie dochodzi do przekazywania prądu do wirnika, co skutkuje brakiem obrotów silnika. Regularne kontrole stanu szczotek oraz komutatora są częścią dobrej praktyki w konserwacji tych urządzeń. W przypadku, gdy szczotki są zbyt zużyte, mogą nie przylegać wystarczająco, co uniemożliwia silnikowi uruchomienie. Właściwe ciśnienie szczotek na komutatorze oraz ich właściwe ustawienie w odpowiedniej strefie neutralnej są istotne dla efektywności działania silnika. Przykładem zastosowania tej wiedzy jest rutynowe serwisowanie silników w aplikacjach przemysłowych, gdzie ich awaria może prowadzić do znacznych przestojów. Zgodnie z normami branżowymi, regularne czyszczenie komutatora i kontrola stanu szczotek powinny być częścią harmonogramu konserwacji, aby zapewnić niezawodność i długowieczność urządzeń."

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jakie wymagania muszą być spełnione podczas pomiaru rezystancji izolacyjnej w instalacji elektrycznej po wcześniejszym odłączeniu zasilania?

A. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła
B. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła
C. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła
D. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła
Udzielenie odpowiedzi, w której odbiorniki pozostają włączone lub źródła światła są zamontowane, wskazuje na zrozumienie tematu, które nie uwzględnia podstawowych zasad bezpieczeństwa i dokładności pomiarów w instalacjach elektrycznych. Pozostawienie włączonych odbiorników może prowadzić do sytuacji, w której prąd płynie przez obwód, co z kolei może spowodować zwarcia lub inne niebezpieczeństwa. W kontekście pomiaru rezystancji izolacji istotne jest, aby wszystkie odbiorniki były odłączone, co zapobiega niespodziewanym skutkom ubocznym, a także minimalizuje ryzyko uszkodzenia cennych urządzeń elektronicznych. Wyposażenie w instalacje elektryczne powinno być zgodne z normami, które wymagają przeprowadzenia pomiarów w warunkach minimalizujących ryzyko. Zamontowane źródła światła mogą również zakłócić pomiary, ponieważ ich obwody mogą mieć różne charakterystyki oraz wpływ na wyniki rezystancji. Dlatego zasada, aby przed pomiarami izolacji usunąć wszystkie aktywne elementy z obwodu, jest nie tylko praktyką zalecaną, ale wręcz niezbędną do osiągnięcia wiarygodnych i bezpiecznych wyników.

Pytanie 15

Która z poniższych czynnościnie jest częścią prób odbiorczych w instalacjach elektrycznych?

A. Pomiar rezystancji ścian i podłóg
B. Weryfikacja kolejności faz
C. Weryfikacja ochrony uzupełniającej
D. Pomiar mocy, którą pobiera obwód odbiorczy
Chociaż pomiar rezystancji podłóg i ścian, sprawdzenie ochrony uzupełniającej oraz kontrola kolejności faz są istotnymi czynnościami w zakresie prób odbiorczych, należy zrozumieć, dlaczego pomiar mocy pobieranej przez obwód odbiorczy nie jest zgodny z tym zakresem. Mierzenie mocy pobieranej przez obwód odbiorczy dotyczy efektywności energetycznej i obciążenia, a nie bezpieczeństwa czy poprawności technicznej instalacji. W kontekście prób odbiorczych, kluczowym celem jest zapewnienie, że instalacja działa zgodnie z normami bezpieczeństwa, co obejmuje weryfikację takich parametrów jak rezystancja izolacji, która jest istotna dla zapobiegania porażeniom elektrycznym. Pomiar mocy jest bardziej związany z eksploatacją i zarządzaniem energią niż z odbiorem instalacji, co może prowadzić do mylnych wniosków. Istotne jest, aby podczas analizy funkcjonowania instalacji elektrycznych nie mylić procesów odbiorczych z monitorowaniem zużycia energii. Niekiedy, zwłaszcza w kontekście modernizacji czy rozbudowy instalacji, mogą występować niedopowiedzenia dotyczące tego, co stanowi właściwy zakres prób odbiorczych. Kluczowe jest zrozumienie, że odbiór koncentruje się na zapewnieniu bezpieczeństwa i zgodności z obowiązującymi normami, a nie na analizie efektywności energetycznej, co może prowadzić do błędnych interpretacji.

Pytanie 16

Jakie metody zapewniają ochronę przed porażeniem w instalacji fotowoltaicznej na stronie prądu stałego w przypadku uszkodzenia?

A. wykonanie wszystkich elementów w II klasie ochronności
B. użycie automatycznego wyłączenia zasilania poprzez wyłączniki nadprądowe
C. użycie automatycznego wyłączenia zasilania przez zastosowanie bezpieczników topikowych
D. umieszczenie wszystkich komponentów na izolowanym podłożu
Umieszczanie wszystkich urządzeń na podłożu izolacyjnym może wydawać się praktycznym rozwiązaniem, jednak nie zapewnia ono wystarczającego poziomu ochrony w przypadku uszkodzenia instalacji. Izolacja podłoża nie jest wystarczającym zabezpieczeniem, ponieważ nie eliminuje ryzyka pojawienia się napięcia na komponentach, które mogą stać się niebezpieczne w przypadku awarii. W przypadku wykonania urządzeń w II klasie ochronności, takie rozwiązanie zapewnia znacznie większą pewność bezpieczeństwa użytkowników. Stosowanie samoczynnego wyłączenia zasilania za pomocą bezpieczników topikowych również nie jest odpowiednim podejściem, ponieważ nie zapewnia ono szybkiej reakcji na awarie, a sama konstrukcja bezpieczników może nie być dostosowana do specyfiki prądu stałego. Co więcej, bezpieczniki topikowe mogą nie zadziałać w każdym przypadku awarii, co zwiększa ryzyko porażenia. Zastosowanie wyłączników nadprądowych, choć wydaje się lepszym rozwiązaniem, również nie jest wystarczające w kontekście instalacji fotowoltaicznych. Wyłączniki te są zaprojektowane przede wszystkim do ochrony przed przeciążeniem, niekoniecznie gwarantując pełne bezpieczeństwo w przypadku uszkodzenia izolacji lub innych awarii elektrycznych. W instalacjach takich jak fotowoltaiczne, gdzie prąd stały stanowi inne wyzwanie niż typowe systemy prądu zmiennego, odpowiednia klasa ochronności i zastosowanie odpowiednich zabezpieczeń są kluczowe dla bezpieczeństwa i zgodności z normami branżowymi.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Podczas przeglądu silnika elektrycznego stwierdzono nieprawidłowe działanie łożysk. Jakie mogą być tego skutki?

A. Zmniejszenie momentu obrotowego
B. Zwiększenie poziomu hałasu
C. Zmniejszenie napięcia zasilania
D. Zmniejszenie częstotliwości prądu
Zmniejszenie momentu obrotowego w silniku elektrycznym jest zjawiskiem, które może wystąpić z różnych powodów, jednak nie jest bezpośrednim skutkiem nieprawidłowego działania łożysk. Choć uszkodzone łożyska mogą wpływać na zwiększenie oporów ruchu, co teoretycznie mogłoby przełożyć się na obniżenie efektywności silnika, to jednak zmniejszenie momentu obrotowego jest bardziej związane z problemami w układzie napędowym, takimi jak niewłaściwe napięcie zasilania czy problemy z wirnikiem. Zmniejszenie napięcia zasilania także nie jest bezpośrednio związane z uszkodzeniami łożysk. Źródłem takiego zjawiska mogą być problemy w sieci elektrycznej, takie jak spadki napięcia, przeciążenia czy błędy w układach kontrolnych. Napięcie zasilania jest parametrem niezależnym od stanu mechanicznego silnika i jego elementów, takich jak łożyska. Podobnie zmniejszenie częstotliwości prądu zasilającego jest związane z problemami w sieci energetycznej, a nie z uszkodzeniami mechanicznymi silnika, takimi jak wadliwe łożyska. Częstotliwość prądu zależy od sieci zasilającej i nie jest bezpośrednio powiązana ze stanem technicznym samego silnika. W praktyce, problemy z częstotliwością mogą wynikać z awarii w elektrowniach, transformatorach czy liniach przesyłowych, a nie z mechanicznych uszkodzeń w samym silniku.

Pytanie 20

Jaką czynność powinno się przeprowadzić przed rozpoczęciem pracy silnika trójfazowego w przenośnym urządzeniu budowlanym, po zmianie jego lokalizacji?

A. Dokonać pomiaru rezystancji izolacji urządzenia.
B. Zmierzyć prąd różnicowy wyłącznika różnicowoprądowego
C. Zweryfikować symetrię napięć w instalacji.
D. Sprawdzić kolejność faz w źródle zasilania.
Zrozumienie roli kolejności faz w pracy silników trójfazowych jest kluczowe, co niestety nie jest uwzględniane w pozostałych odpowiedziach. Sprawdzenie symetrii napięć w sieci, choć istotne, nie jest krokiem, który można podjąć przed uruchomieniem silnika po zmianie miejsca pracy. Symetria napięć odnosi się do równomiernego rozkładu napięcia w fazach, co jest ważne w kontekście stabilności zasilania, ale nie wpływa bezpośrednio na kierunek obrotu silnika. Kolejnym nieporozumieniem jest pomiar rezystancji izolacji, który jest istotny dla oceny stanu izolacji urządzenia, ale nie odpowiada na pytanie o kolejność faz. Zmiana miejsca pracy urządzenia może wiązać się z różnymi konfiguracjami zasilania, dlatego wcześniejsze sprawdzenie kolejności faz jest kluczowe. Mierzenie prądu różnicowego wyłącznika różnicowoprądowego jest również ważnym krokiem w zapewnieniu bezpieczeństwa, jednak powinno być zrealizowane po upewnieniu się, że silnik jest prawidłowo podłączony i gotowy do pracy. Często zdarza się, że użytkownicy traktują te kroki jako równorzędne, co prowadzi do błędnych przekonań o ich znaczeniu. Ważne jest, aby zawsze podchodzić do procedur uruchamiania silników trójfazowych z pełnym zrozumieniem ich funkcji i zależności między poszczególnymi czynnościami, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 21

Jaką maksymalną wartość impedancji pętli zwarcia można zastosować w trójfazowym układzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczność ochrony przeciwporażeniowej w przypadku uszkodzenia izolacji, gdy wyłączenie tego obwodu ma być realizowane przez instalacyjny wyłącznik nadprądowy C10?

A. 8,0 Ω
B. 4,6 Ω
C. 7,7 Ω
D. 2,3 Ω
Wybór wartości impedancji pętli zwarcia wyższej niż 2,3 Ω w kontekście zapewnienia skutecznej ochrony przeciwporażeniowej jest nieprawidłowy z kilku powodów. Po pierwsze, każda wartość impedancji, która przekracza tę wartość, skutkuje niższym prądem zwarciowym, co wydłuża czas wyłączenia zasilania przez wyłącznik nadprądowy. Dla przykładu, przy impedancji 4,6 Ω prąd zwarciowy wynosi jedynie około 87 A, co może spowodować, że wyłącznik C10 nie zareaguje wystarczająco szybko, co zwiększa ryzyko porażenia. Ponadto, wartość 7,7 Ω oraz 8,0 Ω stawia instalację w strefie ryzyka, gdyż czas wyłączenia może przekroczyć bezpieczne limity określone w normach, co jest sprzeczne z zasadami ochrony elektrycznej. Wartości te są również niezgodne z zaleceniami wynikającymi z dyrektyw unijnych i krajowych przepisów prawa budowlanego, które nakładają obowiązek przeprowadzenia analizy ryzyka oraz projektowania instalacji zgodnie z zasadami bezpieczeństwa. W praktyce, projektanci i wykonawcy powinni zawsze dążyć do zminimalizowania impedancji pętli zwarcia, aby zapewnić maksymalną ochronę użytkowników. Nieprzestrzeganie tej zasady może prowadzić do poważnych konsekwencji, zarówno dla użytkowników, jak i dla samej instalacji elektrycznej.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jakie konsekwencje wystąpią w instalacji elektrycznej po zamianie przewodów ADY 2,5 mm2 na DY 2,5 mm2?

A. Wzrost spadku napięcia na przewodach
B. Obniżenie obciążalności prądowej
C. Zwiększenie temperatury przewodu
D. Obniżenie rezystancji pętli zwarciowej
Kiedy analizujemy skutki wymiany przewodów, ważne jest zrozumienie, że nie wszystkie zmiany w instalacji prowadzą do negatywnych efektów. Stwierdzenie, że wymiana przewodów ADY na DY 2,5 mm² spowoduje zwiększenie nagrzewania się przewodu, jest błędne. Przewody DY, wykonane z materiałów o lepszej przewodności elektrycznej, mogą w rzeczywistości poprawić efektywność przewodzenia prądu, co skutkuje mniejszymi stratami energii w postaci ciepła. Zwiększenie spadku napięcia na przewodach również jest mylne; w rzeczywistości, bardziej efektywne przewody mogą zredukować spadki napięcia, co jest szczególnie istotne w długich instalacjach. Z kolei stwierdzenie, że obciążalność prądowa zwiększy się po wymianie, jest niepoprawne, gdyż nowe przewody mogą mieć lepsze właściwości izolacyjne i przewodzące, co w rzeczywistości zwiększa ich obciążalność. Typowe błędy myślowe prowadzące do takich konkluzji to zbytnie uogólnienie negatywnych skutków związanych z wymianą przewodów, a nie uwzględnienie ich specyfikacji technicznych oraz standardów branżowych, jak PN-IEC, które jasno określają wymagania dla instalacji elektrycznych. Kluczowe jest zrozumienie, że właściwy dobór i zastosowanie materiałów w instalacjach elektrycznych wpływa na ich bezpieczeństwo oraz efektywność działania.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jaki przyrząd jest wykorzystywany do pomiaru rezystancji izolacji kabli?

A. Waromierz
B. Pirometr
C. Megaomomierz
D. Sonometr
Megaomomierz jest urządzeniem służącym do pomiaru rezystancji izolacji, które jest niezwykle istotne w kontekście bezpieczeństwa elektrycznego. Jego zastosowanie polega na sprawdzaniu jakości izolacji przewodów oraz urządzeń elektrycznych, co pozwala na wykrycie ewentualnych uszkodzeń izolacji, które mogą prowadzić do awarii lub zagrożeń, takich jak porażenie prądem. Dzięki pomiarom wykonywanym przy użyciu megaomomierza, można ocenić stan izolacji w instalacjach elektrycznych, co jest zgodne z normami takimi jak PN-EN 61557-2, które określają procedury testowania urządzeń elektrycznych. W praktyce, megaomomierz jest używany podczas regularnych przeglądów instalacji elektrycznych w budynkach, co ma na celu zapewnienie odpowiedniego poziomu bezpieczeństwa i zgodności z obowiązującymi przepisami. Użycie tego narzędzia pozwala na wczesne wykrywanie problemów, co przyczynia się do minimalizacji ryzyka wystąpienia awarii oraz zwiększa trwałość systemów elektrycznych.

Pytanie 26

Który z podanych przewodów nie jest stosowany jako przewód fazowy w instalacjach trójfazowych?

A. Przewód L3
B. Przewód L1
C. Przewód N
D. Przewód L2
W instalacjach trójfazowych przewód neutralny (N) pełni kluczową rolę w zrównoważeniu obciążenia i zapewnieniu stabilności systemu. Przewód neutralny jest odpowiedzialny za powrót prądu do źródła i wyrównanie potencjałów między fazami. W standardowych systemach trójfazowych, oznaczonych jako L1, L2, L3, przewody te są wykorzystywane jako przewody fazowe, które prowadzą prąd do odbiorników. Przewód neutralny nie przenosi prądu w sposób ciągły, ale umożliwia jego powrót w sytuacjach asymetrii obciążenia. Może być też wykorzystywany do podłączenia niektórych urządzeń jednofazowych w instalacjach trójfazowych. Dzięki temu system całkowicie funkcjonuje stabilnie, a użytkownicy mogą korzystać z zasilania w sposób bezpieczny i efektywny. Zrozumienie funkcji przewodu neutralnego jest kluczowe dla prawidłowej eksploatacji i konserwacji systemów elektrycznych, co jest niezbędne dla każdego technika elektryka.

Pytanie 27

Który z poniższych przewodów powinien zastąpić uszkodzony przewód OW 4×2,5 mm2, który zasila silnik indukcyjny trójfazowy do napędu maszyny w warsztacie ślusarskim?

A. H03V2V2-F 3G2,5
B. H07VV-U 5G2,5
C. H07RR-F 5G2,5
D. H03V2V2H2-F 2X2,5
Odpowiedzi H07VV-U 5G2,5, H03V2V2-F 3G2,5 oraz H03V2V2H2-F 2X2,5 nie są odpowiednie do zastąpienia uszkodzonego przewodu OW 4×2,5 mm² w przypadku silnika indukcyjnego trójfazowego. Przewód H07VV-U 5G2,5 jest przewodem typu płaskiego, przeznaczonym głównie do instalacji stałych, co nie jest idealnym rozwiązaniem w warunkach warsztatowych, gdzie elastyczność przewodu jest kluczowa. Zastosowanie przewodu, który nie jest odporny na uszkodzenia mechaniczne, może prowadzić do jego uszkodzenia, a w konsekwencji do awarii silnika. Z kolei przewody H03V2V2-F 3G2,5 oraz H03V2V2H2-F 2X2,5 charakteryzują się mniejszą liczbą żył oraz niższymi parametrami elektrycznymi, co czyni je niewystarczającymi do zasilania silników o większej mocy, które wymagają solidnych połączeń trójfazowych. Wybierając przewody, istotne jest, aby zwracać uwagę na ich klasyfikację zgodnie z europejskimi normami, a także na zastosowanie w konkretnych warunkach. Ignorowanie tych aspektów prowadzi do niewłaściwego doboru materiałów oraz potencjalnych zagrożeń dla zdrowia i bezpieczeństwa w miejscu pracy.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

W trakcie serwisowania silnika indukcyjnego jednofazowego pracownik przez przypadek zamienił miejscami kondensator rozruchowy o pojemności 300 µF z kondensatorem roboczym o pojemności 50 µF. Jakie mogą być konsekwencje tego błędu?

A. Silnik nie włączy się
B. Silnik zmieni swój kierunek obrotów
C. Zniszczenie kondensatora 50 µF podczas uruchamiania silnika
D. Uszkodzenie uzwojenia pomocniczego po kilku minutach działania silnika
Podczas rozruchu silnika indukcyjnego jednofazowego, kondensator rozruchowy o pojemności 300 µF jest kluczowy dla zapewnienia momentu obrotowego niezbędnego do uruchomienia silnika. Jeśli zamienimy go z kondensatorem pracy 50 µF, silnik nie otrzyma odpowiedniej wartości pojemności, co skutkuje niewystarczającym momentem obrotowym. W rezultacie silnik nie ruszy. To zjawisko jest zgodne z zasadami działania silników indukcyjnych, gdzie kondensatory pełnią istotną rolę w tworzeniu przesunięcia fazowego między prądem a napięciem. W praktyce, stosowanie odpowiednich kondensatorów zgodnych z wymaganiami producenta, jest kluczowe dla prawidłowego działania silników. Właściwe dobieranie kondensatorów to standardowa praktyka, która minimalizuje ryzyko awarii i zapewnia długotrwałą niezawodność urządzeń elektrycznych.

Pytanie 30

Kontrolne pomiary w instalacji elektrycznej niskiego napięcia powinny być wykonane po każdym

A. zadziałaniu wyłącznika różnicowoprądowego
B. zadziałaniu bezpiecznika
C. zamontowaniu w oprawach nowych źródeł światła
D. rozbudowaniu instalacji
Przeprowadzenie pomiarów kontrolnych w instalacji elektrycznej niskiego napięcia jako odpowiedź na inne sytuacje, takie jak zadziałanie bezpiecznika czy wyłącznika różnicowoprądowego, nie jest zgodne z najlepszymi praktykami w zakresie eksploatacji i bezpieczeństwa instalacji elektrycznych. Zadziałanie bezpiecznika zazwyczaj oznacza, że wystąpił jakiś problem w obwodzie, jednak nie daje to pełnego obrazu stanu całej instalacji. Pomiar kontrolny w tym przypadku nie jest konieczny, ponieważ może to prowadzić do fałszywego poczucia bezpieczeństwa, a problem może wynikać z wadliwej instalacji lub nieodpowiedniej ochrony. Z kolei zadziałanie wyłącznika różnicowoprądowego wskazuje na wykrycie upływu prądu, co sugeruje, że instalacja ma niedoskonałości, ale ponownie nie wymaga to przeprowadzania pełnych pomiarów, które są istotne po zmianach w instalacji. Natomiast zamontowanie nowych źródeł światła, choć również może być istotne, nie powinno być traktowane jako wyzwalacz do przeprowadzenia kompleksowych pomiarów, jeśli nie wiąże się z dalszymi zmianami w obwodzie elektrycznym. Dlatego też, kluczowe jest zrozumienie, że pomiary kontrolne powinny być przeprowadzane głównie w kontekście istotnych modyfikacji instalacji, a nie sporadycznych zdarzeń eksploatacyjnych.

Pytanie 31

Która z poniższych tachoprądnic, poza pomiarem prędkości obrotowej wirującego wału, pozwala również na określenie kierunku jego obrotu?

A. Dwufazowa z wirnikiem klatkowym
B. Prądu stałego
C. Dwufazowa z wirnikiem kubkowym
D. Synchroniczna
Odpowiedzi, które wskazały na tachoprądnice synchroniczne, dwufazowe z wirnikiem klatkowym i z wirnikiem kubkowym są błędne, bo te urządzenia działają na innych zasadach. Tachoprądnice synchroniczne mogą mierzyć prędkość, ale nie rozróżniają kierunku obrotów. Działa to tak, że są zasilane prądem AC i nie mają możliwości uzyskania polaryzacji sygnału wyjściowego. Jeśli chodzi o tachoprądnice dwufazowe z wirnikiem klatkowym, to ich mechanizm pomiarowy bazuje na wirniku kaskadowym i też nie odróżnia kierunków obrotów, bo sygnał wyjściowy dostajemy tylko w kontekście prędkości. Podobnie jest z tachoprądnicami dwufazowymi z wirnikiem kubkowym, bo ich sygnały są symetryczne i nie dają informacji o kierunku obrotów. Zrozumienie, że do pomiaru kierunku obrotów potrzeba specyficznej konstrukcji, jest istotne przy doborze urządzeń do zastosowań przemysłowych. Często myli się funkcje pomiarowe różnych tachoprądnic, co prowadzi do nieporozumień.

Pytanie 32

Który z podanych środków można uznać za metodę ochrony przed porażeniem w przypadku uszkodzenia?

A. Obudowa
B. Samoczynne wyłączenie zasilania
C. Umieszczenie części czynnych poza zasięgiem ręki
D. Ogrodzenie
Samoczynne wyłączenie zasilania jest kluczowym środkiem ochrony przeciwporażeniowej, który automatycznie przerywa dopływ energii elektrycznej w przypadku wykrycia nieprawidłowości, takich jak zwarcie czy przeciążenie. To działanie jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 61140, które określają wymagania dotyczące ochrony przed porażeniem prądem elektrycznym. Samoczynne wyłączenie zasilania minimalizuje ryzyko wystąpienia niebezpiecznych sytuacji, a jego zastosowanie jest powszechne w instalacjach elektrycznych, w których występują urządzenia o podwyższonym ryzyku. Przykładem zastosowania może być automatyczny wyłącznik różnicowoprądowy, który nie tylko wyłącza zasilanie, ale także monitoruje różnicę prądów, co jest istotne w ochronie osób pracujących w pobliżu urządzeń elektrycznych. Dzięki takiemu rozwiązaniu, w przypadku wystąpienia niebezpiecznego prądu różnicowego, zasilanie jest natychmiastowo odłączane, co znacznie zwiększa bezpieczeństwo użytkowników.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jak wpłynie na wartość mocy generowanej przez elektryczny grzejnik, jeśli długość jego spirali grzejnej zostanie skrócona o 50%, a napięcie zasilające pozostanie niezmienne?

A. Zmniejszy się dwukrotnie
B. Zwiększy się czterokrotnie
C. Zmniejszy się czterokrotnie
D. Zwiększy się dwukrotnie
Myśląc o tym, co się dzieje, gdy długość spirali grzejnej się zmniejsza, niektórzy mogą pomyśleć, że moc grzejnika maleje. To jednak nie jest prawda, bo opór elektryczny elementu grzewczego zmienia się bezpośrednio w zależności od długości spirali. Kiedy skracasz spiralę, opór również spada, a to prowadzi do wzrostu mocy grzejnika, a nie do jej zmniejszenia. Niektóre błędne odpowiedzi sugerują, że zmiana długości spirali może negatywnie wpływać na efektywność urządzenia, a to nie ma sensu w świetle praw fizyki. W rzeczywistości, wzór P = U²/R wyraźnie pokazuje, że moc rośnie, skoro opór spada. Takie nieporozumienia mogą brać się z tego, że nie każdy do końca rozumie, jak opór, moc i napięcie się łączą, co jest kluczowe przy projektowaniu i używaniu grzejników. Fajnie by było, żeby przy analizowaniu takich zmian brać pod uwagę wszystkie zmienne, żeby uniknąć nieporozumień.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Korzystając z tabeli podaj jakimi przewodami, według sposobu Al, należy wykonać instalację podtynkową gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S?

Przekrój przewodów, mm²Obciążalność długotrwała przewodów, A
A.YDYp 2×1,514,5
B.YDYp 2×2,519,5
C.YDYp 3×1,513,5
D.YDYp 3×2,518
A. A.
B. D.
C. B.
D. C.
Wybór innej odpowiedzi niż D to dość powszechny błąd. Czasami wynika to z nieporozumień co do wymogów w systemie TN-S oraz jak dobierać przewody. Niektóre odpowiedzi mogą sugerować stosowanie przewodów, które nie mają odpowiednich parametrów dla gniazd jednofazowych z B16A. Kluczowy jest fakt, że dobierając przewód trzeba zwracać uwagę na jego parametry techniczne, a nie tylko na wygląd. No i obciążalność musi być odpowiednia, żeby przewody się nie przegrzewały. W TN-S ważny jest przewód ochronny, o którym niektóre odpowiedzi zapominają. Wiele osób nie wie, że w tym systemie przewód neutralny (N) i ochronny (PE) muszą być odseparowane – to fundamentalne dla bezpieczeństwa. Ignorowanie tych zasad może prowadzić do nieprzyjemnych sytuacji, jak porażenie prądem, gdy coś w instalacji się popsuje. Dlatego przy projektowaniu elektryki trzeba dobrze zrozumieć normy i praktyczne zastosowanie przewodów, bo to wpływa na bezpieczeństwo całej instalacji.

Pytanie 39

Jakie z wymienionych działań należy do inspekcji urządzenia napędowego z elektrycznym silnikiem podczas jego pracy?

A. Weryfikacja czystości obudowy
B. Kontrola stanu zamocowania osłony wentylatora
C. Sprawdzenie urządzeń ochronnych
D. Zbadanie poziomu nagrzewania obudowy i łożysk
W niniejszym przypadku wybór odpowiedzi dotyczącej sprawdzania czystości obudowy, kontroli urządzeń zabezpieczających oraz stanu zamocowania osłony wentylatora, choć istotny w kontekście ogólnego utrzymania urządzenia, nie odnosi się bezpośrednio do oględzin w ruchu. Sprawdzanie czystości obudowy, mimo że ma znaczenie dla trwałości materiałów i estetyki, nie dostarcza istotnych informacji o stanie technicznym urządzenia w trakcie pracy. Kontrola urządzeń zabezpieczających jest kluczowym elementem zapewnienia bezpieczeństwa, ale jej analiza zazwyczaj odbywa się w trybie postoju, a nie podczas eksploatacji. Natomiast kontrola stanu zamocowania osłony wentylatora, choć istotna, nie daje pełnego obrazu w kontekście oceny wydajności termicznej. Pomija ona kluczowy aspekt, jakim jest monitorowanie temperatury łożysk i obudowy, które są bezpośrednio narażone na działanie sił operacyjnych. Często zdarza się, że osoby oceniające stan urządzenia koncentrują się na aspektach wizualnych lub zabezpieczających, zapominając o fundamentalnym znaczeniu parametrów operacyjnych, takich jak temperatura. Ignorowanie tych czynników może prowadzić do poważnych awarii oraz kosztownych przestojów, co podkreśla znaczenie prawidłowego podejścia do monitorowania stanu technicznego urządzenia w trakcie jego pracy.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.