Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 13 października 2025 21:09
  • Data zakończenia: 13 października 2025 21:22

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Który z podanych materiałów najlepiej przewodzi strumień magnetyczny?

A. Stal
B. Aluminium
C. Brąz
D. Miedź
Aluminium, miedź i brąz, mimo że są to metale, nie są najlepszymi przewodnikami strumienia magnetycznego. Aluminium, na przykład, jest dobrym przewodnikiem elektryczności, ale jego permeabilność magnetyczna jest znacznie niższa niż stali. W rzeczywistości, aluminium jest stosowane w aplikacjach, gdzie kluczowa jest niska waga, ale nie spełnia oczekiwań w kontekście efektywnego przewodzenia strumienia magnetycznego. Miedź, chociaż jest doskonałym przewodnikiem elektrycznym, ma również niską permeabilność i nie nadaje się do koncentracji strumienia magnetycznego w zastosowaniach wymagających silnych pól magnetycznych. Brąz, będący stopem miedzi, także nie oferuje lepszych właściwości magnetycznych niż jego składniki. Typowym błędem myślowym, który prowadzi do wyboru tych metali jako potencjalnych przewodników strumienia magnetycznego, jest skupienie się na ich właściwościach elektrycznych, a nie magnetycznych. W zastosowaniach inżynieryjnych i elektrotechnicznych, skuteczność materiału w przewodzeniu strumieni magnetycznych jest kluczowa dla osiągania wysokiej wydajności energetycznej. Dlatego w kontekście odpowiedzi na pytanie o najlepszy przewodnik strumienia magnetycznego, stal wyraźnie wyróżnia się na tle innych materiałów, co każdorazowo należy brać pod uwagę w projektach inżynieryjnych.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

W dokumentacji dotyczącej instalacji elektrycznej w łazience podano, że gniazdo zasilające dla pralki powinno być umieszczone poza strefą II. Jaką minimalną odległość od wanny powinno mieć to gniazdo?

A. 0,6 m
B. 0,5 m
C. 1,2 m
D. 1,0 m
Wybór 0,5 m albo 1,0 m jako odpowiedzi na to pytanie może wynikać z pewnych nieporozumień co do stref w łazience i zasad bezpieczeństwa związanych z instalacjami elektrycznymi. Gniazdo musi być przynajmniej 0,6 m od krawędzi wanny, żeby było bezpiecznie. Odpowiedź 0,5 m jest słaba, bo zbliżenie gniazda do strefy II stwarza ryzyko porażenia prądem. Z kolei 1,0 m to też nie ma sensu, bo to za duża odległość, niezgodna z tym, co mówią przepisy. Te strefy są ściśle określone, a odpowiednie odległości mają na celu ograniczenie ryzyka, które może się pojawić w pobliżu wody. Dlatego żeby uniknąć niebezpieczeństwa związanego z nieprawidłowym montażem, ważne jest, żeby przestrzegać norm, takich jak PN-EN 60364, które mówią o zasadach instalacji elektrycznych w budynkach. Nie zapomnij także, że gniazda w łazienkach muszą być odporne na wilgoć i mieć odpowiednią klasę szczelności, bo to też wpływa na bezpieczeństwo. Ignorowanie tych zasad może prowadzić do poważnych problemów zdrowotnych i uszkodzeń sprzętu.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

W instalacjach elektrycznych w budynkach mieszkalnych o napięciu 230 V nie wolno używać opraw oświetleniowych zrealizowanych w klasie ochrony

A. III
B. I
C. 0
D. II
Wybór klasy ochronności I, II lub III dla opraw oświetleniowych w instalacjach o napięciu 230 V jest nieodpowiedni ze względu na różnice w poziomie zabezpieczeń, które oferują poszczególne klasy. Klasa I obejmuje urządzenia, które mają zabezpieczenie w postaci uziemienia, co może stwarzać mylne wrażenie większego bezpieczeństwa w porównaniu do klasy 0. W rzeczywistości jednak, jeśli nie jest zastosowane odpowiednie uziemienie, urządzenie klasy I może być równie niebezpieczne, zwłaszcza w przypadku uszkodzeń. Z kolei klasa II zapewnia dodatkową izolację, co czyni ją bardziej odpowiednią dla instalacji domowych. Klasa III jest z kolei przeznaczona dla urządzeń niskonapięciowych, co nie jest zgodne z wymaganiami dla standardowych opraw oświetleniowych w mieszkaniach, gdzie napięcie wynosi 230 V. Błędem myślowym jest zakładanie, że klasy z większym poziomem zabezpieczeń mogą być stosowane w sytuacjach, gdzie nie jest to zalecane. Właściwe zrozumienie klas ochrony i ich zastosowań jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych, a ich niewłaściwe dobieranie może prowadzić do poważnych wypadków oraz uszkodzeń sprzętu. Dlatego tak ważne jest, aby zawsze przestrzegać standardów oraz zasad bezpieczeństwa określonych w normach elektrycznych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jakiego urządzenia należy użyć, aby zweryfikować ciągłość przewodu podczas instalacji?

A. Megaomomierza
B. Omomierza
C. Watomierza
D. Amperomierza
Wybór watomierza, amperomierza lub megaomomierza w celu sprawdzenia ciągłości przewodu jest nieprawidłowy, ponieważ każdy z tych instrumentów ma inne funkcje i zastosowania, które nie odpowiadają wymaganiom zadania. Watomierz jest używany do pomiaru mocy elektrycznej w obwodzie, co oznacza, że mierzy ilość energii zużywanej przez urządzenia. Nie jest użyteczny w kontekście sprawdzania ciągłości przewodów, ponieważ nie dostarcza informacji o oporze elektrycznym ani o ewentualnych przerwach w obwodzie. Amperomierz natomiast służy do pomiaru natężenia prądu, co również nie jest adekwatne w przypadku testowania ciągłości. Przyrząd ten nie wykryje, czy przewód jest zerwany czy uszkodzony, a jedynie zmierzy ilość przepływającego prądu, co ma znaczenie tylko w pełnoobciążonym obwodzie. Megaomomierz, z kolei, jest narzędziem przeznaczonym do pomiaru oporu izolacji, a nie ciągłości przewodu. Jego zastosowanie jest kluczowe w testach urządzeń wysokiego napięcia oraz w ocenie stanu izolacji, ale nie jest on przeznaczony do sprawdzania samej ciągłości przewodów. Typowym błędem jest mylenie funkcji tych przyrządów i ich zastosowań, co może prowadzić do nieprawidłowych diagnoz i potencjalnych zagrożeń w instalacjach elektrycznych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

W instalacji zasilanej napięciem 400/230 V obwód chroniony jest przez wyłącznik nadprądowy typu S-303 CLS6-C10/3. Jaką maksymalną moc można zastosować dla klimatyzatora trójfazowego w tej instalacji?

A. 5,9 kW
B. 6,9 kW
C. 9,6 kW
D. 3,9 kW
Odpowiedź 6,9 kW jest prawidłowa, ponieważ maksymalna moc, jaką można zainstalować w obwodzie chronionym przez wyłącznik nadprądowy typu S-303 CLS6-C10/3, jest określona przez jego prąd znamionowy. W przypadku tego wyłącznika, prąd znamionowy wynosi 10 A. W systemach trójfazowych, całkowita moc jest obliczana ze wzoru P = √3 × U × I, gdzie U to napięcie międzyfazowe (400 V), a I to prąd wyłącznika (10 A). Obliczając, otrzymujemy P = √3 × 400 V × 10 A ≈ 6,93 kW, co zaokrąglamy do 6,9 kW. W praktyce oznacza to, że zainstalowanie klimatyzatora o tej mocy będzie zgodne z przepisami i zapewni bezpieczeństwo instalacji elektroenergetycznej, a także będzie zgodne z normami PN-IEC 60364. Ważne jest, aby przy doborze urządzeń zawsze uwzględniać parametry wyłączników oraz ich charakterystykę, aby uniknąć przeciążenia instalacji.

Pytanie 15

Który z podanych łączników instalacyjnych dysponuje dwoma klawiszami i trzema zaciskami przyłączeniowymi?

A. Łącznik krzyżowy
B. Łącznik schodowy pojedynczy
C. Łącznik świecznikowy
D. Łącznik schodowy podwójny
Wybór innego typu łącznika, takiego jak łącznik schodowy podwójny, prowadzi do nieporozumienia dotyczącego jego funkcji i zastosowania. Łącznik schodowy podwójny jest zaprojektowany do pracy w układzie schodowym, gdzie umożliwia kontrolę nad tym samym źródłem światła z dwóch różnych miejsc. Posiada on jednak inną liczbę zacisków oraz inny sposób podłączenia w porównaniu do łącznika świecznikowego. Dodatkowo, łącznik schodowy pojedynczy również nie jest odpowiednią odpowiedzią, ponieważ jego konstrukcja zakłada jedynie jeden klawisz i dwa zaciski, co nie spełnia warunków postawionych w pytaniu. Z kolei łącznik krzyżowy, choć jest elementem integrującym w bardziej złożonych systemach oświetleniowych, nie odpowiada wymaganiom związanym z dwoma klawiszami i trzema zaciskami. Kluczowym błędem myślowym, który może prowadzić do nieprawidłowych wyborów, jest niezrozumienie różnicy między funkcjami różnych typów łączników i ich zastosowaniem w praktyce. Wybierając nieodpowiedni typ łącznika, można nie tylko zakłócić działanie całej instalacji elektrycznej, ale również zwiększyć ryzyko awarii. Świadomość różnic pomiędzy poszczególnymi typami łączników to klucz do efektywnego projektowania oraz bezpiecznej eksploatacji systemów oświetleniowych.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jakim narzędziem należy przeprowadzić demontaż oraz montaż połączeń kabli w puszce instalacyjnej rozgałęźnej z gwintowaną płytką?

A. Kluczem płaskim
B. Neonowym wskaźnikiem napięcia
C. Wkrętakiem
D. Nożem monterskim
Wykorzystywanie klucza płaskiego do demontażu i montażu połączeń w puszce instalacyjnej nie jest właściwe, ponieważ klucz ten jest zaprojektowany głównie do pracy z nakrętkami i śrubami o określonym kształcie, a nie do śrub, które często znajdują się w instalacjach elektrycznych. Klucz płaski może nie być w stanie dostarczyć odpowiedniego momentu obrotowego czy precyzyjnego dopasowania, co może prowadzić do obluzowania połączeń lub ich uszkodzenia. Z kolei nóż monterski, choć może być użyteczny w cięciu przewodów czy izolacji, nie jest przeznaczony do pracy z połączeniami śrubowymi, przez co jego stosowanie w tym kontekście jest niewłaściwe i może prowadzić do poważnych błędów. Neonowy wskaźnik napięcia służy do sprawdzania obecności napięcia w instalacji, a nie do modyfikacji połączeń. Użycie tego narzędzia w kontekście montażu czy demontażu może prowadzić do mylnego przekonania, że urządzenie jest bezpieczne do użycia, co jest niebezpieczne. Dobrą praktyką jest korzystanie z odpowiednich narzędzi, na co wskazują normy branżowe oraz wytyczne dotyczące bezpieczeństwa w instalacjach elektrycznych. Umiejętność wyboru odpowiednich narzędzi jest kluczowa dla zapewnienia jakości i bezpieczeństwa pracy w branży elektrycznej.

Pytanie 18

Jakie napięcie należy stosować podczas określania rezystancji izolacji w obwodach SELV lub PELV?

A. 500 V
B. 250 V
C. 750 V
D. 1000 V
Wybór wyższych wartości napięcia pomiarowego, takich jak 1000 V, 500 V czy 750 V, jest niewłaściwy w kontekście obwodów SELV i PELV. Te obwody, które są projektowane z myślą o bezpieczeństwie, nie powinny być testowane przy użyciu napięć, które mogą prowadzić do sytuacji niebezpiecznych dla użytkowników. Przy pomiarze rezystancji izolacji w instalacjach niskonapięciowych, takich jak SELV i PELV, zastosowanie wyższego napięcia pomiarowego może nie tylko prowadzić do uszkodzeń izolacji, ale także stwarzać ryzyko porażenia prądem elektrycznym. W rzeczywistości, zastosowanie napięć wyższych niż 250 V w takich instalacjach nie jest zgodne z normami bezpieczeństwa. Często błędnie przyjmuje się, że wyższe napięcie pomiarowe pozwala na dokładniejszą ocenę stanu izolacji, co jest mylnym przekonaniem. W rzeczywistości, pomiary w wyższych zakresach napięć mogą dawać fałszywe wyniki, ponieważ mogą powodować uszkodzenia materiałów izolacyjnych, które w normalnych warunkach pracy nie występują. Stąd też kluczowe jest przestrzeganie standardów oraz dobrych praktyk, aby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Który z wymienionych elementów należy do dodatkowej ochrony przed porażeniem elektrycznym?

A. Uniedostępnianie (umieszczenie poza zasięgiem ręki)
B. Bardzo niskie napięcie ze źródła bezpiecznego
C. Samoczynne wyłączenie zasilania
D. Dodatkowe miejscowe wyrównawcze połączenia ochronne
Dodatkowe miejscowe wyrównawcze połączenia ochronne stanowią kluczowy element uzupełniającej ochrony przeciwporażeniowej, która ma na celu zminimalizowanie ryzyka porażenia prądem elektrycznym. Tego typu połączenia wykorzystuje się w instalacjach elektrycznych, aby zapewnić wyrównanie potencjałów między różnymi elementami systemu. Przykładem zastosowania jest podłączenie obudowy metalowej urządzeń elektrycznych do instalacji wyrównawczej, co zapobiega gromadzeniu się niebezpiecznych napięć na obudowie. Zgodnie z normami IEC 60364, które regulują zagadnienia związane z instalacjami elektrycznymi w budynkach, zastosowanie dodatkowych miejscowych połączeń ochronnych jest zalecane w obiektach narażonych na zwiększone ryzyko porażenia. W praktyce, takie połączenia mogą być stosowane w miejscach, gdzie występuje możliwość przypadkowego kontaktu z elementami przewodzącymi, jak np. w laboratoriach czy zakładach przemysłowych. Dodatkowe miejsca wyrównawcze są zatem niezbędnym zabezpieczeniem, które wspiera podstawowe metody ochrony, takie jak izolacja czy wyłączniki różnicowoprądowe.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jakie działania oraz w jakiej sekwencji powinny zostać przeprowadzone przy wymianie uszkodzonego fragmentu przewodu w instalacji umieszczonej w rurach peszla?

A. Odłączenie zasilania, rozkuwanie tynku w miejscu uszkodzenia, wymiana rury peszla z przewodami, włączenie napięcia, sprawdzenie funkcjonowania instalacji
B. Odłączenie zasilania, otwarcie puszek instalacyjnych, odkręcenie końców uszkodzonego przewodu, wymiana uszkodzonego odcinka przewodu, połączenie wymienionego przewodu w puszkach, zamknięcie puszek, włączenie zasilania, sprawdzenie poprawności działania instalacji
C. Pomiar rezystancji przewodu, odłączenie napięcia, wymiana uszkodzonego przewodu, włączenie zasilania, sprawdzenie działania instalacji
D. Odłączenie napięcia, rozkuwanie tynku, poprowadzenie nowej rury peszla z przewodami, uzupełnienie tynku, włączenie napięcia
Wymiana uszkodzonego odcinka przewodu w instalacji elektrycznej to poważna sprawa, więc trzeba to robić według ustalonej procedury, żeby wszystko działało jak należy i było bezpiecznie. Na początek odłączamy napięcie, bo to kluczowe, żeby nie dostać porażenia. Potem otwieramy puszki instalacyjne, żeby dostać się do przewodów. Kolejno odkręcamy końcówki uszkodzonego przewodu, a następnie zakładamy nowy. Ważne, żeby dobrze połączyć ten nowy przewód z innymi, które są w puszkach, żeby obwód działał bez problemu. Na koniec zamykamy puszki, żeby chronić przewody przed uszkodzeniami. Po wszystkim, włączamy napięcie i robimy test, żeby sprawdzić, czy wszystko działa. Taka procedura to co najmniej standard w branży, a jak wiadomo, bezpieczeństwo i efektywność to podstawa.

Pytanie 26

Jaką maksymalną wartość impedancji pętli zwarcia należy przyjąć w trójfazowym układzie elektrycznym o napięciu 230/400 V, aby zabezpieczenie przeciwporażeniowe działało prawidłowo w przypadku uszkodzenia izolacji, zakładając, że zasilanie tego obwodu ma być odłączone przez instalacyjny wyłącznik nadprądowy B20?

A. 3,83 Ω
B. 2,30 Ω
C. 0,56 Ω
D. 1,15 Ω
Maksymalna dopuszczalna wartość impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, przy zastosowaniu instalacyjnego wyłącznika nadprądowego B20, wynosi 2,30 Ω. Zrozumienie tej wartości jest kluczowe dla zapewnienia skutecznej ochrony przeciwporażeniowej, ponieważ wyłącznik nadprądowy B20 ma charakterystykę, która wymaga odpowiedniej impedancji, aby w przypadku zwarcia mógł zadziałać w odpowiednim czasie. Przy wartościach impedancji powyżej 2,30 Ω czas wyłączenia może być zbyt długi, co zwiększa ryzyko porażenia prądem. Przykładowo, w praktyce, przy pomiarach używa się specjalistycznych instrumentów do określenia impedancji pętli zwarcia, co pozwala na weryfikację zgodności instalacji z normami, takimi jak PN-IEC 60364. Ponadto, dla zapewnienia bezpieczeństwa, projektowanie instalacji elektrycznych powinno obejmować dokładne obliczenia oraz pomiary impedancji, co wpisuje się w dobre praktyki inżynierskie.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Który z wymienionych elementów chroni nakrętki przed poluzowaniem?

A. Tuleja redukcyjna
B. Tuleja kołnierzowa
C. Podkładka sprężysta
D. Podkładka dystansowa
Podkładka sprężysta, znana również jako podkładka naciskowa, to element konstrukcyjny stosowany w wielu zastosowaniach inżynieryjnych, którego głównym celem jest zapewnienie odpowiedniego docisku oraz zabezpieczenie połączeń gwintowych przed luzowaniem. Działa ona poprzez wytworzenie siły sprężystej, która przeciwdziała odkręcaniu się nakrętek, co jest szczególnie istotne w aplikacjach narażonych na wibracje. W praktyce, podkładki sprężyste są powszechnie stosowane w motoryzacji, budownictwie, a także w produkcji maszyn. Zgodnie z normami DIN, takich jak DIN 127 i DIN 137, podkładki te powinny być odpowiednio dobrane do zastosowań, co wpływa na ich efektywność w zapobieganiu luzowaniu. Należy również zwrócić uwagę na materiał, z którego podkładki są wykonane. Na przykład, podkładki ze stali nierdzewnej są odporne na korozję i sprawdzają się w trudnych warunkach atmosferycznych, co znacząco przedłuża żywotność połączenia. Użycie podkładek sprężystych jest wskazane w przypadku połączeń, gdzie występują zmienne obciążenia i wstrząsy, co czyni je niezastąpionymi w nowoczesnej inżynierii.

Pytanie 29

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa stosowana do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach: PN = 3 kW, UN = 230 V?

A. aM 20 A
B. aR 16 A
C. gG 16 A
D. gB 20 A
Wybór wkładki topikowej gG 16 A jako zabezpieczenia dla obwodu jednofazowego bojlera elektrycznego o mocy 3 kW i napięciu 230 V jest właściwy z kilku powodów. Przede wszystkim, wkładki gG są stosowane do ochrony obwodów przed przeciążeniem oraz zwarciem, co jest kluczowe w przypadku urządzeń grzewczych, takich jak bojler. Znamionowy prąd bojlera można obliczyć, dzieląc moc przez napięcie, co daje wynik P/N = 3000 W / 230 V ≈ 13 A. Wybierając wkładkę o wartości 16 A, zapewniamy odpowiedni margines bezpieczeństwa, który zapobiega przypadkowemu wyłączeniu z powodu chwilowych przeciążeń. Standardy branżowe, takie jak PN-EN 60269, wskazują na odpowiednie zastosowanie wkładek gG w instalacjach, gdzie wymagane jest zabezpieczenie przed skutkami zwarć i przegrzania. W praktyce, wkładki topikowe gG są powszechnie stosowane w domowych instalacjach elektrycznych i zapewniają skuteczną ochronę oraz niezawodność działania.

Pytanie 30

Które z podanych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Odbiorniki o dużej mocy powinny być zasilane z osobnych obwodów
B. Gniazda wtykowe w kuchni powinny być podłączane do oddzielnego obwodu
C. Gniazda wtykowe w każdym pomieszczeniu powinny pochodzić z wydzielonego obwodu
D. Obwody oświetleniowe należy oddzielić od gniazd wtykowych
Odpowiedź dotycząca zasilania gniazd wtykowych każdego pomieszczenia z osobnego obwodu jest poprawna, ponieważ zgodnie z aktualnymi normami i zaleceniami dotyczącymi instalacji elektrycznych, zapewnia to większe bezpieczeństwo i funkcjonalność. Zasilanie każdego pomieszczenia z osobnego obwodu umożliwia lepsze zarządzanie obciążeniem elektrycznym oraz minimalizuje ryzyko przeciążenia instalacji. Przykładowo, w przypadku awarii jednego z obwodów, pozostałe pomieszczenia mogą nadal być zasilane, co zwiększa komfort użytkowania. Dodatkowo, takie podejście ułatwia lokalizację ewentualnych usterek i ich naprawę, co jest szczególnie ważne w przypadku pomieszczeń takich jak kuchnia czy łazienka, gdzie używa się wielu urządzeń elektrycznych jednocześnie. Warto również zauważyć, że zgodnie z normą PN-IEC 60364, zaleca się stosowanie osobnych obwodów dla urządzeń o dużym poborze mocy, co podkreśla znaczenie wydzielenia obwodów w celu zapewnienia bezpieczeństwa i efektywności instalacji elektrycznej.

Pytanie 31

Przygotowując się do wymiany uszkodzonego gniazda trójfazowego w systemie elektrycznym, po odłączeniu napięcia w obwodzie tego gniazda, należy przede wszystkim

A. zabezpieczyć obwód przed niezamierzonym włączeniem napięcia
B. rozłożyć dywanik elektroizolacyjny w obszarze roboczym
C. oznaczyć miejsce pracy
D. poinformować dostawcę energii o zamiarze przeprowadzenia naprawy
Zabezpieczenie obwodu przed przypadkowym załączeniem napięcia jest kluczowym krokiem w procesie wymiany gniazda trójfazowego, co wynika z podstawowych zasad bezpieczeństwa w pracy z instalacjami elektrycznymi. Po wyłączeniu napięcia, warto zastosować wyłącznik rozłączający lub blokadę, aby uniemożliwić przypadkowe włączenie zasilania. Dobrym przykładem praktycznym jest użycie blokady w systemach, w których dostęp do urządzeń jest wspólny, co minimalizuje ryzyko niebezpiecznych sytuacji. Dodatkowo, zgodnie z normami PN-IEC 60364, należy stosować odpowiednie procedury bezpieczeństwa, w tym oznaczenie obszaru pracy oraz zapewnienie, że osoba pracująca ma odpowiednie kwalifikacje. Takie działania nie tylko chronią pracowników, ale również klientów i innych osób znajdujących się w pobliżu. Warto również pamiętać o stosowaniu odpowiednich środków ochrony osobistej, takich jak rękawice izolacyjne oraz okulary ochronne, aby dodatkowo zminimalizować ryzyko wystąpienia wypadków.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Jakie uszkodzenie mogło wystąpić w instalacji elektrycznej, dla której wyniki pomiarów rezystancji izolacji przedstawiono w tabeli?

Rezystancja izolacji, MΩ
Zmierzona międzyWymagana
L1–L2L2–L3L1–L3L1–PENL2–PENL3–PEN
2,101,051,101,401,300,991,00
A. Zawilgocenie izolacji jednej z faz.
B. Przeciążenie jednej z faz.
C. Zwarcie międzyfazowe.
D. Jednofazowe zwarcie doziemne.
Przeciążenie jednej z faz, mimo że jest to problem, który może wystąpić w instalacjach elektrycznych, nie jest odpowiedzią w tym przypadku. Przeciążenie związane jest z nadmiernym przepływem prądu przez przewody, co prowadzi do ich nagrzewania się. W tej sytuacji jednak, wyniki pomiarów rezystancji izolacji wykazują, że wszystkie fazy mają wartości powyżej 1 MΩ, co wyklucza obecność przeciążenia. Przeciążenie fazy charakteryzuje się innymi objawami, takimi jak wzrost temperatury przewodów czy wyłączanie się zabezpieczeń, co nie jest zgodne z danymi z tabeli. Z kolei zwarcie międzyfazowe również nie znajduje potwierdzenia w wynikach pomiarów, ponieważ wymagałoby niskich rezystancji międzyfazowych, co w tym przypadku nie ma miejsca. Warto pamiętać, że zwarcie międzyfazowe najczęściej prowadzi do natychmiastowego wyłączenia zabezpieczeń, a nieprawidłowe wartości rezystancji nie są jedynym objawem tego zjawiska. Jednofazowe zwarcie doziemne, mimo że może wpływać na rezystancję L3 do PEN, nie byłoby jedynym czynnikiem mającym wpływ na pozostałe fazy, które w tym przypadku wykazywały poprawne wartości. Kluczowe jest, aby podczas analizy wyników pomiarów izolacji brać pod uwagę wszystkie aspekty, a nie jedynie pojedyncze parametry, co pozwala na trafną diagnozę stanu instalacji elektrycznej.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jakiej z wymienionych czynności nie przeprowadza się w trakcie oględzin urządzenia napędowego z silnikiem elektrycznym podczas pracy?

A. Kontroli stanu osłon elementów wirujących
B. Sprawdzenia działania systemów chłodzenia
C. Sprawdzenia szczotek i szczotkotrzymaczy
D. Oceny stanu przewodów ochronnych oraz ich podłączenia
Podczas analizy działań związanych z oględzinami urządzenia napędowego z silnikiem elektrycznym, ważne jest zrozumienie, że wiele czynności może być wykonanych w czasie pracy, a inne wymagają zatrzymania silnika. Kontrola stanu osłon części wirujących, sprawdzenie działania układów chłodzenia oraz ocena stanu przewodów ochronnych i ich podłączenia to czynności, które można przeprowadzić bez konieczności zatrzymywania maszyny. Osłony mają kluczowe znaczenie w zapewnieniu bezpieczeństwa, zapobiegając kontaktowi z ruchomymi częściami silnika, co jest zgodne z zasadami BHP oraz standardami ochrony. Kontrola układów chłodzenia jest niezbędna dla zapewnienia prawidłowego funkcjonowania silników elektrycznych, ponieważ ich przegrzanie może prowadzić do awarii. Sporadyczne sprawdzanie przewodów ochronnych oraz ich podłączenia jest istotne z punktu widzenia ochrony elektrycznej, co jest podkreślone w normach PN-IEC 60364, dotyczących instalacji elektrycznych. Ignorowanie tych czynności może prowadzić do poważnych usterek technicznych lub zagrożeń dla zdrowia i życia operatorów. Wiele osób myli te aspekty, myśląc, że wszystkie kontrole można przeprowadzić wyłącznie w czasie postoju urządzenia. To błędne podejście może skutkować ignorowaniem potencjalnych zagrożeń, które mogłyby być zidentyfikowane podczas działania. Dlatego istotne jest, aby operatorzy byli dobrze przeszkoleni i świadomi, które czynności mogą być bezpiecznie wykonane w trakcie użytkowania, a które wymagają zatrzymania urządzenia.

Pytanie 37

Jakie narzędzia powinny być użyte do montażu urządzeń oraz realizacji połączeń elektrycznych w rozdzielnicy w budynku mieszkalnym?

A. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
B. Szczypce płaskie, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
C. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
D. Szczypce płaskie, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
Wybrany zestaw narzędzi jest idealny do montażu aparatury oraz wykonywania połączeń elektrycznych w rozdzielnicy mieszkaniowej. Szczypce do cięcia przewodów umożliwiają precyzyjne przycinanie przewodów do żądanej długości, co jest kluczowe dla zapewnienia dobrego połączenia. Przyrząd do ściągania powłoki pozwala na łatwe usunięcie zewnętrznej izolacji z przewodów, dzięki czemu można uzyskać dostęp do żył przewodów. Z kolei przyrząd do ściągania izolacji jest niezbędny do delikatnego usunięcia izolacji z końców przewodów, co jest ważne dla uniknięcia uszkodzeń drutów. Zestaw wkrętaków jest kluczowy przy montażu elementów rozdzielnicy, takich jak złącza, bezpieczniki czy przekaźniki. Wszystkie te narzędzia są zgodne z najlepszymi praktykami w branży elektrycznej, co zapewnia bezpieczeństwo oraz efektywność pracy. Dobrze dobrany zestaw narzędzi znacząco wpływa na jakość i trwałość wykonanej instalacji elektrycznej.

Pytanie 38

Jaki wyłącznik nadmiarowo-prądowy najlepiej zastosować do zabezpieczenia instalacji elektrycznej z przewidywanym prądem zwarciowym Iz = 150 A?

A. C16
B. B25
C. D10
D. C20
Odpowiedzi C16, C20 i D10 to nie są najlepsze wybory i to z kilku powodów. Przede wszystkim, wybierając wyłącznik nadmiarowo-prądowy, trzeba brać pod uwagę przewidywany prąd zwarciowy. Przy 150 A, C16 i C20 mogą być za małe, bo ich prąd znamionowy nie jest wystarczający. C16 by działał za szybko w normalnych warunkach, co oznacza, że mógłby wyłączać się bez potrzeby, a to nie jest dobre, zwłaszcza przy takich prądach zwarciowych. C20, choć lepszy od C16, nadal nie spełnia wymagań, które mogą być w awaryjnych sytuacjach. A D10? No, to już w ogóle nie ma sensu, bo 10 A to zdecydowanie za mało na prąd zwarciowy wynoszący 150 A. Używanie takich słabych wyłączników może prowadzić do częstych wyłączeń i narażenia instalacji na różne niebezpieczeństwa. W praktyce to może skończyć się poważnymi kłopotami, nawet porażeniem elektrycznym. Dlatego tak ważne jest, żeby trzymać się norm i przepisów.

Pytanie 39

Który z wymienionych systemów powinien być zainstalowany w instalacji elektrycznej zasilającej istotne odbiory niskiego napięcia, aby w momencie utraty zasilania nastąpiło automatyczne przełączenie pomiędzy podstawowym źródłem a rezerwowym źródłem zasilania?

A. SCO
B. SPZ
C. SZR
D. SRN
Odpowiedź SZR (System Zasilania Rezerwowego) jest prawidłowa, ponieważ ten układ jest zaprojektowany do automatycznego przełączania źródeł zasilania w przypadku zaniku zasilania z głównego źródła. Działa on na zasadzie monitorowania napięcia w sieci zasilającej; w momencie wykrycia spadku napięcia lub całkowitego braku zasilania, SZR automatycznie uruchamia rezerwowe źródło zasilania, co zapewnia ciągłość pracy ważnych odbiorników niskiego napięcia, takich jak systemy alarmowe, oświetlenie awaryjne czy urządzenia medyczne. Przykładowo, w szpitalach i centrach danych, gdzie nieprzerwane zasilanie jest kluczowe, SZR eliminuje ryzyko przestojów. Stosowanie SZR jest zgodne z normami PN-EN 50171 oraz PN-EN 62040, które określają wymagania dotyczące systemów zasilania awaryjnego oraz UPS. Dzięki temu, instalacje z SZR nie tylko zwiększają bezpieczeństwo, ale też poprawiają efektywność operacyjną, co jest niezbędne w obiektach o krytycznym znaczeniu.

Pytanie 40

Na izolatorach wsporczych instaluje się przewody

A. kabelkowe
B. szynowe
C. rdzeniowe
D. uzbrojone
Przewody rdzeniowe zazwyczaj odnoszą się do kabli, które mają jeden lub więcej rdzeni przewodzących, jednak nie są stosowane w kontekście izolatorów wsporczych. Ich głównym zastosowaniem są instalacje, gdzie wymagana jest większa elastyczność i mniejsze obciążenia mechaniczne, co nie jest typowe dla izolatorów wsporczych. Przewody uzbrojone z kolei są to przewody, które mają dodatkowe wzmocnienia mechaniczne, często stosowane w trudniejszych warunkach, ale również nie znajdują zastosowania w izolatorach wsporczych, które wymagają specyficznych rozwiązań. Wreszcie, przewody kabelkowe, które są wykorzystywane w instalacjach kablowych, posiadają różne osłony i są wbudowane w ziemię lub inne struktury, co również nie jest odpowiednie dla izolatorów wsporczych, które zasadniczo podtrzymują przewody w przestrzeni powietrznej. Błędem jest zatem mylenie terminologii i funkcji różnych typów przewodów, co może prowadzić do nieefektywnego projektowania oraz stosowania niewłaściwych elementów w systemach elektroenergetycznych. Właściwe zastosowanie technologii jest kluczowe dla zapewnienia nieprzerwanej i bezpiecznej dostawy energii elektrycznej.