Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 18 lutego 2026 01:36
  • Data zakończenia: 18 lutego 2026 01:49

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Do montażu czujnika przedstawionego na rysunku niezbędne jest użycie

Ilustracja do pytania
A. szczypiec Segera.
B. wkrętaków płaskich.
C. kluczy nasadowych.
D. kluczy płaskich.
Wkrętaki płaskie są używane głównie do śrub z nacięciem prostym, więc ich zastosowanie do montażu tego czujnika jest nieodpowiednie. Czujnik na zdjęciu posiada gwintowaną nakrętkę, która wymaga użycia klucza, a nie wkrętaka. Użycie wkrętaka w tej sytuacji mogłoby prowadzić do uszkodzenia nakrętki lub obudowy czujnika. Klucze nasadowe, choć również stosowane do nakrętek, wymagają dostępu osiowego, co w przypadku montażu w wąskich przestrzeniach może być utrudnione. Klucze płaskie, w przeciwieństwie do nasadowych, są bardziej uniwersalne w zastosowaniu do nakrętek zewnętrznych. Szczypce Segera służą do obsługi pierścieni osadczych sprężynowych, a nie do gwintowanych połączeń, więc są zupełnie nieadekwatne do tego zadania. Użycie niewłaściwego narzędzia nie tylko komplikuje montaż, ale także niesie ryzyko uszkodzenia, co jest częstym błędem popełnianym przez osoby nieuwzględniające specyfikacji technicznych narzędzi. W branży technicznej kluczowe jest stosowanie się do zaleceń producenta i wykorzystywanie narzędzi zgodnych z normami, aby zapewnić trwałość i funkcjonalność montowanych elementów.

Pytanie 2

Wskaż oznaczenie literowe gwintu metrycznego.

A. S
B. Tr
C. M
D. W
Gwint oznaczony literą 'S' nie jest standardowym określeniem w kontekście systemu metrycznego. Może prowadzić to do zamieszania, gdyż takie oznaczenie nie funkcjonuje w istniejących normach gwintów. Często spotykanym błędem jest przypisywanie nowych oznaczeń do istniejących standardów, co wynika z niedoinformowania lub błędnych założeń. Gwint 'Tr' odnosi się do gwintów trapezowych, które mają odmienny kształt i zastosowanie, głównie w mechanizmach przenoszenia ruchu, takich jak śruby napędowe w maszynach. Mają one trapezowy profil i są projektowane z myślą o dużych obciążeniach osiowych, stąd ich specyfika różni się od gwintów metrycznych. Z kolei 'W' to oznaczenie gwintu Whitwortha, który ma korzenie historyczne i był szeroko stosowany w Wielkiej Brytanii przed wprowadzeniem systemu metrycznego. Gwinty Whitwortha mają profil z kątem 55° i są obecnie rzadziej stosowane w przemysłowych zastosowaniach. Często studenci czy młodzi technicy, myśląc o gwintach, nie zwracają uwagi na różnice w profilu czy kącie, co jest kluczowe przy wyborze odpowiedniego rozwiązania. Dlatego tak ważne jest zapoznanie się z normami i ich praktycznym zastosowaniem w branży. Niezrozumienie tych różnic może prowadzić do błędów w montażu czy projektowaniu, co z kolei wpływa na bezpieczeństwo i funkcjonalność konstrukcji. Ważne jest, aby zawsze sprawdzać dokumentację techniczną i normy dla danego zastosowania, by uniknąć takich pomyłek w przyszłości.

Pytanie 3

Stosując zasadę stałego spadku napięcia na przewodzie zasilającym, w przypadku zwiększenia dwukrotnie odległości odbiornika od źródła zasilania należy zastosować przewód o

Ilustracja do pytania
A. cztery razy większym polu przekroju.
B. cztery razy mniejszym polu przekroju.
C. dwa razy mniejszym polu przekroju.
D. dwa razy większym polu przekroju.
Zasadę stałego spadku napięcia stosujemy, aby uniknąć nadmiernych strat energii w przewodach, co jest istotne w instalacjach elektrycznych. Spadek napięcia jest proporcjonalny do długości przewodu i odwrotnie proporcjonalny do jego przekroju, co wynika z prawa Ohma i wzoru na rezystancję. Gdy zwiększamy długość przewodu dwukrotnie, spadek napięcia również się podwoi, chyba że zrekompensujemy to większym przekrojem przewodnika. Dlatego, aby utrzymać ten sam spadek napięcia, powinniśmy zwiększyć pole przekroju przewodu dwa razy. To podejście jest zgodne z dobrymi praktykami projektowania instalacji elektrycznych, które dążą do minimalizacji strat energetycznych i zapewnienia bezpiecznej pracy systemu. Praktycznie, w różnych zastosowaniach przemysłowych i budowlanych, inżynierowie często muszą brać pod uwagę te zmiany, aby zapewnić efektywność energetyczną i zgodność z normami, takimi jak PN-EN 60204 dotycząca bezpieczeństwa maszyn i instalacji elektrycznych.

Pytanie 4

Do zamontowania na szynie DIN przedstawionego na rysunku sterownika wystarczy użyć

Ilustracja do pytania
A. wkrętaka płaskiego.
B. nitownicy.
C. młotka.
D. klucza nasadowego.
Do montażu sterownika na szynie DIN używa się wkrętaka płaskiego, ponieważ większość sterowników ma specjalne zatrzaski, które można regulować lub zabezpieczać za pomocą takiego narzędzia. Szyny DIN to standardowe elementy montażowe w automatyce przemysłowej, które umożliwiają szybkie i pewne mocowanie urządzeń. Wkrętak płaski jest idealny do tego zadania, ponieważ pozwala na precyzyjne operowanie zatrzaskami bez ryzyka uszkodzenia urządzenia czy szyny. W praktyce, gdy montujesz sterownik na szynie, musisz jedynie delikatnie nacisnąć na zatrzaski, umożliwiając ich prawidłowe osadzenie. To podstawowe narzędzie w skrzynce każdego elektryka czy automatyka. Dzięki temu rozwiązaniu, montaż i demontaż są szybkie i nie wymagają dużego nakładu siły. Ważne jest też, aby używać narzędzi zgodnych ze standardami bezpieczeństwa, co minimalizuje ryzyko wypadków w miejscu pracy. Szyny DIN zapewniają także porządek i estetykę w rozdzielniach elektrycznych, co jest kluczowe w utrzymaniu systemów przemysłowych w dobrym stanie.

Pytanie 5

Element przedstawiany na schemacie symbolem graficznym jak na przedstawionym rysunku najczęściej w układzie automatyki pełni funkcję elementu

Ilustracja do pytania
A. pomiarowego.
B. wykonawczego.
C. sterującego.
D. regulującego.
Wybierając niepoprawną odpowiedź, warto zrozumieć różnice funkcji elementów w układzie automatyki. Gdy mówimy o elementach pomiarowych, odnosimy się do urządzeń takich jak czujniki i przetworniki, które mierzą fizyczne wielkości procesowe jak temperatura, ciśnienie czy przepływ i przekazują te dane dalej w systemie. Nie są one odpowiedzialne za wykonywanie czynności w sensie mechanicznym, lecz za dostarczanie danych do dalszego przetwarzania. Element regulujący, z kolei, to zazwyczaj komponenty takie jak zawory czy regulatory, które mają wpływ na przebieg procesu, zmieniając jego parametry zgodnie z ustalonymi zadaniami. Ich zadanie to raczej modyfikacja parametrów procesu niż bezpośrednie wykonanie pracy mechanicznej. Element sterujący w systemach automatyki odnosi się do jednostek takich jak PLC (Programmable Logic Controller), które zarządzają logiką procesu. Ich główną rolą jest koordynacja pracy całego systemu, ale nie wykonują one fizycznej pracy w sensie mechanicznym. Typowym błędem jest mylenie tych pojęć, wynikające z braku zrozumienia ich specyficznych ról i powiązań w systemach automatyki. Znajomość tej struktury pomaga w efektywnym projektowaniu i diagnozowaniu układów automatycznych, co jest kluczowe w pracy inżyniera automatyka.

Pytanie 6

Przy doborze przewodów w instalacji elektrycznej nie uwzględnia się

A. skuteczności ochrony przeciwporażeniowej.
B. parametrów ekonomicznych.
C. obciążalności prądowej.
D. dopuszczalnego spadku napięcia.
Przy doborze przewodów w instalacji elektrycznej obciążalność prądowa, dopuszczalny spadek napięcia i skuteczność ochrony przeciwporażeniowej to kluczowe elementy, które muszą być uwzględniane, aby zapewnić bezpieczną i efektywną pracę instalacji. Obciążalność prądowa pozwala na ustalenie maksymalnego prądu, jaki przewód może przenosić bez przegrzewania się, co jest kluczowe dla uniknięcia pożarów i uszkodzeń. Bez prawidłowego dobrania obciążalności prądowej przewody mogą ulec przeciążeniu, co prowadzi do ich uszkodzenia. Dopuszczalny spadek napięcia z kolei wpływa na efektywność energetyczną instalacji. Zbyt duży spadek napięcia może prowadzić do nieprawidłowego działania urządzeń końcowych i zwiększonego zużycia energii. To szczególnie istotne w dużych instalacjach przemysłowych, gdzie długości przewodów są znaczne. Skuteczność ochrony przeciwporażeniowej zabezpiecza użytkowników przed porażeniem, co jest absolutnie niezbędne z punktu widzenia przepisów BHP i norm elektrycznych. Typowym błędem jest niedocenianie znaczenia tych parametrów na rzecz kosztów, co może prowadzić do niebezpiecznych sytuacji i awarii systemu. Rozważanie jedynie aspektów ekonomicznych w procesie projektowania instalacji może sugerować brak doświadczenia lub zrozumienia kluczowych zasad bezpieczeństwa i efektywności energetycznej w pracy elektryka. Dlatego też każdy projekt instalacji elektrycznej powinien być opracowywany z uwzględnieniem tych istotnych aspektów technicznych, a dopiero w dalszej kolejności rozważane powinny być aspekty ekonomiczne.

Pytanie 7

Do pomiaru temperatury w systemie automatyki użyto elementów oznaczonych jako Pt100 z przetwornikami pomiarowymi posiadającymi sygnał wyjściowy 4÷20 mA. Oznacza to, że w urządzeniu pomiarowym zastosowano czujniki

A. rezystancyjne metalowe
B. rezystancyjne półprzewodnikowe.
C. termoelektryczne.
D. bimetalowe.
Kiedy mówimy o czujnikach do pomiaru temperatury w systemach automatyki, kluczowe jest zrozumienie ich zasady działania. Rezystancyjne czujniki półprzewodnikowe, choć również mierzą temperaturę przez zmianę rezystancji, mają inne zastosowania. Są bardziej czułe na zmiany temperatury, ale mniej dokładne i stabilne w porównaniu do metalowych jak Pt100. Często można je spotkać w prostych i tańszych aplikacjach, gdzie precyzja nie jest kluczowa. Termoelektryczne czujniki, inaczej termopary, działają na zasadzie zjawiska Seebecka – generują sygnał napięciowy w odpowiedzi na różnicę temperatur pomiędzy dwoma złączami. Choć są używane w szerokim zakresie temperatur, ich dokładność jest mniejsza bez stosowania dodatkowych układów kompensacyjnych. Bimetalowe czujniki opierają się na różnicy rozszerzalności cieplnej dwóch złączonych metali i są bardziej mechaniczne niż elektroniczne w działaniu. Znajdują zastosowanie w prostych termostatach i zabezpieczeniach przed przegrzaniem, ale nie w precyzyjnych systemach pomiarowych z sygnałem 4-20 mA. Często myli się te rodzaje czujników z powodu podobieństw w nazwach, ale ich zastosowanie i działanie są zupełnie odmienne. Wybór niewłaściwego czujnika może prowadzić do błędnych pomiarów i problemów w aplikacji przemysłowej. Dlatego tak ważne jest, aby znać różnice i stosować się do wytycznych branżowych oraz dobrych praktyk przy ich wyborze i implementacji.

Pytanie 8

Na schemacie zespołu przygotowania powietrza, symbolem X oznaczono

Ilustracja do pytania
A. manometr.
B. smarownicę.
C. filtr.
D. zawór.
Manometr to urządzenie służące do pomiaru ciśnienia w systemach pneumatycznych. Na schemacie oznaczony symbolem przypominającym zegar, jest kluczowym elementem w diagnostyce i utrzymaniu systemów. Bez dokładnego pomiaru ciśnienia trudno ocenić, czy system działa poprawnie – zbyt wysokie ciśnienie może prowadzić do awarii, a zbyt niskie wpływa na efektywność pracy. W praktyce manometry są umieszczane w strategicznych miejscach, aby zapewnić stały nadzór nad parametrami systemu. Istnieją różne typy manometrów, w tym analogowe oraz cyfrowe – każde z nich ma swoje zastosowania, ale zasada działania pozostaje taka sama. Dobre praktyki branżowe wskazują na regularną kalibrację tych urządzeń, co zapewnia dokładność pomiarów, a tym samym bezpieczeństwo i wydajność pracy całego układu pneumatycznego. Warto również pamiętać, że manometry mogą być wyposażone w różne rodzaje przyłączy, co pozwala na ich elastyczne stosowanie w różnych konfiguracjach systemowych.

Pytanie 9

Który miernik należy zastosować w miejscu oznaczonym literą X na schemacie elektrycznym przedstawionym na rysunku?

Ilustracja do pytania
A. Omomierz.
B. Woltomierz.
C. Amperomierz.
D. Częstotliwościomierz.
Amperomierz to właściwy wybór, ponieważ mierzy prąd płynący przez obwód. W miejscu oznaczonym literą X mamy do czynienia z typową konfiguracją obwodu, gdzie chcemy zmierzyć prąd przepływający przez R2 i R3. Amperomierz włączamy szeregowo z elementami, przez które płynie prąd, co umożliwia dokładny pomiar bez zakłóceń. W praktyce, dobrze zamontowany amperomierz ma mały opór wewnętrzny, aby nie wpływać na obwód. Warto pamiętać, że dla bezpieczeństwa i dokładności pomiaru, amperomierz powinien być przystosowany do zakresu mierzonego prądu. W sytuacjach przemysłowych, gdzie mamy do czynienia z większymi wartościami prądów, używa się czasem przekładników prądowych. Przykładowo, w instalacjach elektrycznych takie pomiary pomagają w diagnozowaniu problemów i optymalizacji zużycia energii. Moim zdaniem, zrozumienie działania amperomierza to kluczowy element dla każdego początkującego elektryka, bo to narzędzie jest podstawą w codziennej pracy z obwodami elektrycznymi.

Pytanie 10

Na przedstawionym rysunku z dokumentacji technicznej zapisano tolerancję

Ilustracja do pytania
A. równoległości dwóch osi.
B. współosiowości dwóch osi.
C. przecinania się dwóch osi.
D. prostopadłości dwóch osi.
Na przedstawionym rysunku rzeczywiście mamy do czynienia z tolerancją równoległości dwóch osi. To oznaczenie, z charakterystycznym symbolem podwójnej kreski równoległości, wskazuje, że osie muszą być utrzymane w określonej wzajemnej odległości i kierunku, co jest kluczowe w wielu mechanizmach. Moim zdaniem, takie precyzyjne określenie parametrów jest niezbędne w projektowaniu maszyn, gdzie niezachowanie równoległości może prowadzić do ich uszkodzenia lub awarii. Na przykład, w przypadku wałków w przekładniach zębatych, nieprawidłowe ustawienie może skutkować nierównomiernym zużyciem zębów kół zębatych. Z mojego doświadczenia wynika, że dokładne przestrzeganie takich norm to podstawa w branży i pozwala na uniknięcie wielu problemów eksploatacyjnych. Standardy, takie jak ISO 1101, są tutaj absolutnie kluczowe, ponieważ oferują uniwersalne ramy dla określenia tolerancji geometrycznych, które muszą być respektowane w produkcji precyzyjnej. To nie tylko reguła, ale i najlepsza praktyka, której powinniśmy się trzymać.

Pytanie 11

Na podstawie tabeli, określ ile oleju należy przygotować do całkowitej wymiany zużytego oleju w pompie IF1 400.

Typ pompyIlość oleju w silniku [l]Ilość oleju w komorze olejowej [l]Całkowita ilość oleju w pompie [l]
IF1 100; 150; 2000,40-0,40
IF1 50; 75; 100; 150; 2000,40-0,40
IF2 3000,900,121,02
IF1 300; 4001,700,121,82
IF2 4001,700,121,82
IF1 5501,700,121,82
IF2 5501,700,121,82
IF1 7502,000,122,12
IF1 10002,000,122,12
IF1 1500; 20005,000,185,18
A. 0,90 l
B. 1,82 l
C. 1,70 l
D. 0,40 l
Odpowiedź 1,82 l jest prawidłowa, ponieważ to dokładnie tyle oleju potrzeba do całkowitej wymiany w pompie IF1 400, jak wskazuje tabela. Warto zauważyć, że ilość oleju jest sumą oleju w silniku oraz w komorze olejowej, co jest standardowym podejściem do mierzenia całkowitej pojemności olejowej w urządzeniach mechanicznych. Dobre praktyki branżowe sugerują, by regularnie sprawdzać i wymieniać olej w pompach, ponieważ zapewnia to ich optymalne działanie i wydłuża żywotność urządzenia. W tym przypadku, wiedza o możliwości wystąpienia luzów w połączeniach i ich wpływie na przepływ oleju może być kluczowa. Często w zakładach przemysłowych stosuje się oleje o określonych parametrach lepkościowych, co również powinno być brane pod uwagę przy wymianie. Takie detale mogą mieć ogromne znaczenie przy wyborze odpowiednich materiałów eksploatacyjnych w przemyśle mechanicznym. Warto dodać, że prawidłowe utrzymanie poziomu oleju to nie tylko wymiana, ale też monitorowanie jego jakości, co można robić poprzez regularne analizy laboratoryjne. Tego rodzaju podejście do konserwacji jest często zalecane w normach ISO dotyczących zarządzania jakością i utrzymania ruchu.

Pytanie 12

Regulator służy do utrzymywania w urządzeniach grzewczych temperatury T z zadaną histerezą H. Pomiar temperatury dokonywany jest za pomocą czujnika temperatury, zaś sterowanie elementem grzewczym odbywa się przez wyjście przekaźnikowe. Na którym wykresie czasowym przedstawiony jest prawidłowy sposób załączania wyjścia regulatora, zgodny z zamieszczonym przebiegiem temperatury?

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Problem z nieprawidłowymi odpowiedziami polega na niezrozumieniu zasady działania histerezy w układach regulacji temperatury. Wykresy, które pokazują zbyt częste przełączanie wyjścia przekaźnikowego, jak w przypadku niektórych błędnych odpowiedzi, wskazują na brak zastosowania właściwej histerezy. Jeśli wyjście włącza się i wyłącza zbyt szybko, powoduje to nadmierne zużycie elementów przekaźnikowych oraz zwiększone zużycie energii. Taki mechanizm nie jest efektywny, ani praktyczny w rzeczywistych zastosowaniach, jak systemy HVAC czy przemysłowe piece grzewcze. Typowym błędem jest myślenie, że im szybciej system reaguje, tym lepiej, podczas gdy w rzeczywistości prowadzi to do niepożądanych oscylacji w systemie. Brak właściwej histerezy może także prowadzić do niestabilności temperaturowej, co jest niekorzystne dla delikatnych procesów technologicznych. Dlatego tak ważne jest, aby zrozumieć, jak histereza działa jako element buforujący, stabilizujący cały proces regulacji. W systemach automatyki przemysłowej, takich jak sterowniki PLC, właściwe zaimplementowanie histerezy jest kluczem do efektywnego i trwałego działania systemu regulacji temperatury. Z mojego doświadczenia, często spotyka się błędne założenie, że mniejsza histereza oznacza lepszą kontrolę, podczas gdy w rzeczywistości optymalny dobór histerezy to kompromis między efektywnością a stabilnością.

Pytanie 13

W celu wykonania połączenia między zasilaczem a sterownikiem punktów oznaczonych jako PE należy zastosować przewód którego izolacja ma kolor

A. niebieski.
B. niebiesko-zielony.
C. czerwony.
D. żółto-zielony.
Wybór niepoprawnego koloru izolacji przewodu do połączeń ochronnych może wynikać z niezrozumienia istoty oznaczeń kolorystycznych w instalacjach elektrycznych. Kolor niebieski jest powszechnie stosowany do oznaczania przewodów neutralnych (N), a nie do przewodów ochronnych. Przewody neutralne pełnią funkcję zamknięcia obwodu i są niezbędne do działania urządzeń elektrycznych. Natomiast kolor czerwony, mimo że jest atrakcyjny wizualnie, w systemach elektrycznych używany jest rzadko i przeważnie nie ma ściśle przypisanej funkcji, choć czasem może być używany jako przewód fazowy. Takie zamieszanie może prowadzić do poważnych pomyłek, szczególnie w środowiskach przemysłowych, gdzie kolory przewodów mają kluczowe znaczenie dla bezpieczeństwa pracowników. Błędem myślowym jest założenie, że kolorystyka przewodów jest dowolna. Każdy kolor ma swoje konkretne przeznaczenie, a jego nieprzestrzeganie może prowadzić do groźnych sytuacji. Typowym błędem jest też niedocenienie potrzeby stałego kształcenia się w zakresie przepisów dotyczących kolorystyki przewodów. Wiedza o tym, jakie kolory są przypisane do konkretnych funkcji, jest kluczowa dla każdego technika zajmującego się instalacjami elektrycznymi. Dlatego tak ważne jest, by zawsze posługiwać się aktualnymi normami i standardami, które określają, jakie kolory powinny być stosowane w określonych sytuacjach.

Pytanie 14

Na rysunku przedstawiono symbol graficzny czujnika

Ilustracja do pytania
A. pojemnościowego.
B. indukcyjnego.
C. magnetycznego.
D. optycznego.
Na rysunku nie przedstawiono czujnika indukcyjnego, magnetycznego ani pojemnościowego, choć wizualnie symbole mogą się wydawać podobne. Czujnik indukcyjny działa na zasadzie zmiany pola elektromagnetycznego – reaguje wyłącznie na obecność metalowych obiektów, a jego symbol zawiera cewkę lub pętlę pola. Czujnik magnetyczny wykorzystuje magnes lub element reagujący na pole magnetyczne, np. kontaktron, i w symbolu ma zaznaczone linie pola magnetycznego lub prostokąt symbolizujący magnes trwały. Czujnik pojemnościowy z kolei działa na zasadzie zmiany pojemności elektrycznej między elektrodami, a jego symbol przypomina kondensator. Błędne rozpoznanie czujnika optycznego zwykle wynika z nieuwagi – strzałki przy diodzie symbolizują emisję światła, nie pole elektromagnetyczne ani przepływ prądu. W automatyce rozróżnienie tych symboli jest kluczowe, bo każdy typ czujnika działa w inny sposób i wymaga innego podłączenia. Czujniki optyczne reagują na światło, indukcyjne na metal, a pojemnościowe na zmianę dielektryka – dlatego warto zapamiętać charakterystyczny symbol diody jako znak rozpoznawczy czujników optycznych.

Pytanie 15

Którym z przedstawionych na rysunkach miernikiem należy się posłużyć przy testowaniu okablowania strukturalnego?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Wybór nieprawidłowego miernika może wynikać z mylnego rozumienia ich zastosowań. Na przykład, multimetr z obrazu #1, choć bardzo użyteczny w wielu zastosowaniach, nie posiada funkcji do testowania okablowania strukturalnego. Multimetry są najlepsze do pomiarów napięcia, prądu czy oporu, ale nie dostarczają informacji o parametrach takich jak tłumienie sygnału czy przesłuch między przewodami, które są kluczowe w sieciach komputerowych. Miernik z obrazu #3, choć wygląda na bardziej zaawansowany, jest zaprojektowany do pomiarów izolacji i wytrzymałości dielektrycznej, co ma małe zastosowanie w testowaniu kabli sieciowych, chyba że chodzi o bardzo specyficzne sytuacje. Z kolei miernik cęgowy z obrazu #4 jest idealny do pomiaru prądu w przewodach bez potrzeby ich rozłączania, ale nie do testowania strukturalnych instalacji sieciowych. Typowym błędem w myśleniu jest zakładanie, że każdy zaawansowany miernik będzie odpowiedni do wszystkich zastosowań, co nie jest prawdą. Każde z tych urządzeń ma swoje specyficzne zastosowania i kluczowe jest, by wybierać je zgodnie z konkretnymi wymaganiami testów, jakie się przeprowadza. Dlatego też ważne jest, aby dobrze rozumieć różnice między tymi narzędziami i wybrać odpowiedni sprzęt, który zapewni precyzyjne i wiarygodne wyniki w danym kontekście.

Pytanie 16

Urządzenie 1-fazowe jest oznaczone symbolem. W celu podłączenia do sieci niezbędne będzie podpięcie do niego przewodów

Ilustracja do pytania
A. L, PE
B. L, N, PE
C. N, PE
D. L, N
Często można się pomylić, myśląc, że wszystkie urządzenia wymagają podłączenia przewodu ochronnego PE. Jednak w przypadku urządzeń oznaczonych symbolem podwójnej izolacji, nie jest to konieczne. Przewód ochronny PE stosuje się, by zabezpieczać przed porażeniem w przypadku awarii izolacji, ale urządzenia z podwójną izolacją już taką ochronę zapewniają z założenia. Tym samym połączenie L i PE czy N i PE jest zbędne. Warto wiedzieć, że urządzenia 1-fazowe działają prawidłowo i bezpiecznie przy połączeniu przewodów L i N. To wynika ze standardów branżowych, które mówią, że takie urządzenia same w sobie są zabezpieczone przed niebezpieczeństwami, które mogłyby wynikać z awarii mechanicznej lub elektrycznej. Właściwe odczytanie symboli oraz zrozumienie zastosowania izolacji to klucz do prawidłowego montażu i użytkowania urządzeń elektrycznych. Pomimo że czasem wydaje się logiczne podłączenie większej liczby przewodów, praktyka pokazuje, że jest to nie tylko zbędne, ale również może prowadzić do niepotrzebnych komplikacji w instalacji.

Pytanie 17

Do trasowania na płaszczyźnie stosuje się

A. pryzmę.
B. rysik.
C. wałeczki pomiarowe.
D. średnicówkę mikrometryczną.
Wybór narzędzia do trasowania na płaszczyźnie jest kluczowy dla precyzyjnego wykonania zadań technicznych. Średnicówka mikrometryczna, choć precyzyjne narzędzie pomiarowe, służy przede wszystkim do mierzenia średnic wewnętrznych i zewnętrznych elementów, a nie do trasowania. Jej konstrukcja i sposób działania nie pozwalają na kreślenie linii na powierzchni materiałów, co jest istotą trasowania. Wałeczki pomiarowe, z kolei, używane są głównie do pomiaru gwintów i jako elementy pomocnicze w różnych układach pomiarowych. Nie mają funkcji trasowania i nie pozwalają na nanoszenie linii na powierzchni materiału. Pryzma to narzędzie stosowane głównie jako podparcie dla elementów cylindrycznych podczas pomiarów czy obróbki mechanicznej. Jej rola jest pomocnicza, a nie związana bezpośrednio z trasowaniem. Często błędnie zakłada się, że każde narzędzie precyzyjne można używać do rysowania linii, jednak trasowanie wymaga specyficznych narzędzi, takich jak rysik, które umożliwiają precyzyjne i trwałe naniesienie linii na materiał. Nieprawidłowe zrozumienie funkcji tych narzędzi prowadzi do błędnych wniosków co do ich zastosowania w trasowaniu. Zrozumienie różnicy między narzędziami pomiarowymi a trasującymi jest kluczowe dla uniknięcia błędów w pracy technicznej. Takie błędy mogą prowadzić do problemów produkcyjnych, co podkreśla znaczenie prawidłowego doboru narzędzi.

Pytanie 18

Na schemacie układu sterowania wskaż, dla którego odcinka przewodu została błędnie wpisana wartość rezystancji.

Ilustracja do pytania
A. S0:2/WE1 0,1
B. S1:4/WE2 ∞
C. V0:A2/V1:A2 0,1
D. WY1/V0:A1 0,1
Wartość rezystancji dla odcinka S1:4/WE2 została wpisana jako nieskończoność (∞), co oznacza, że obwód jest otwarty. W praktyce, taka wartość wskazuje na brak połączenia elektrycznego, czyli że przewód nie przewodzi prądu. W układzie sterowania, szczególnie w przypadku przewodów łączących elementy takie jak przełączniki czy sterowniki PLC, poprawna rezystancja powinna być bardzo niska, zbliżona do zera, aby zapewnić prawidłowe działanie systemu. Otwarty obwód uniemożliwi działanie komponentów, które powinny być zasilane lub kontrolowane przez ten przewód. W praktyce, jeśli napotkasz nieskończoną rezystancję, powinieneś sprawdzić, czy przewód jest poprawnie podłączony lub czy nie został przerwany. Standardy branżowe wymagają od techników, aby regularnie sprawdzali rezystancję w przewodach jako część konserwacji prewencyjnej, co pozwala uniknąć przestojów wynikających z niewłaściwego działania systemu.

Pytanie 19

Przetwornik przedstawiony na rysunkach to

Ilustracja do pytania
A. przetwornik PWM.
B. analogowo-cyfrowy konwerter USB.
C. przetwornica napięcia.
D. zadajnik cyfrowo-analogowy.
Zgadza się, przedstawiony przetwornik to analogowo-cyfrowy konwerter USB. Dlaczego? Konwertery tego rodzaju służą do przekształcania sygnałów analogowych na cyfrowe, co jest kluczowe w wielu aplikacjach, gdzie potrzebujemy monitorować i analizować sygnały analogowe za pomocą komputerów. Proces ten odbywa się dzięki przetwornikowi analogowo-cyfrowemu (A/D), który zamienia sygnał analogowy na cyfrowy, a następnie poprzez interfejs USB przekazuje go do komputera. USB zapewnia także zasilanie i komunikację, co czyni te urządzenia bardzo praktycznymi i wszechstronnymi. W praktyce takie konwertery są często używane w laboratoriach, przemyśle oraz w projektach inżynieryjnych, gdzie dokładne pomiary i analiza danych są niezbędne. Z mojego doświadczenia, są one również bardzo wygodne w zastosowaniach edukacyjnych, ponieważ pozwalają na szybkie i bezproblemowe podłączenie urządzeń pomiarowych do PC.

Pytanie 20

Do mocowania elementów przy wykorzystaniu wkrętów o wyglądzie przedstawionym na ilustracji trzeba użyć

Ilustracja do pytania
A. kluczy oczkowych.
B. wkrętaków krzyżowych.
C. kluczy imbusowych.
D. wkrętaków płaskich.
Wybór wkrętaka krzyżowego do tego rodzaju wkrętów jest absolutnie właściwy. Wkręty z łbem krzyżowym, często oznaczane jako Phillips, są zaprojektowane tak, by zapewniać pewne mocowanie bez ryzyka wyślizgnięcia się narzędzia. Konstrukcja krzyża w łbie wkrętu umożliwia lepszą dystrybucję siły, co przekłada się na bardziej efektywne wkręcanie. Dzięki temu nie tylko łatwiej jest uzyskać odpowiedni moment dokręcania, ale także zmniejsza się ryzyko uszkodzenia samego wkrętu. W codziennej praktyce, takie wkręty są używane w wielu dziedzinach, od montażu mebli po skomplikowane konstrukcje elektroniczne. Korzystanie z wkrętaka krzyżowego jest zgodne z dobrymi praktykami branżowymi, które podkreślają znaczenie właściwego dopasowania narzędzia do elementu złącznego. Jest to kluczowe nie tylko dla trwałości samego połączenia, ale także dla bezpieczeństwa użytkowania danego produktu. Obecnie, na rynku dostępne są wkrętaki krzyżowe o różnych rozmiarach, co pozwala na precyzyjne dopasowanie narzędzia do konkretnego wkrętu, co jest nieocenione w profesjonalnych zastosowaniach.

Pytanie 21

Na podstawie przedstawionej tabliczki znamionowej wskaż dopuszczalny zakres napięć zasilania silnika prądu przemiennego, posiadającego uzwojenia połączone w gwiazdę zasilanego z sieci o częstotliwości 60 Hz.

Ilustracja do pytania
A. 220 ÷ 240 V
B. 380 ÷ 420 V
C. 254 ÷ 277 V
D. 440 ÷ 480 V
Analizując niewłaściwe opcje dotyczące zakresu napięć zasilania, warto zwrócić uwagę na kilka kluczowych kwestii. Niewłaściwe dobranie napięcia zasilania może prowadzić do poważnych problemów technicznych, takich jak przegrzanie silnika, zwiększone zużycie energii, a nawet uszkodzenie uzwojeń. Głównym powodem wyboru niewłaściwego zakresu napięć jest często nieuwzględnienie specyfikacji częstotliwości sieci oraz konfiguracji uzwojeń. W przypadku tego silnika, gdy pracuje on przy częstotliwości 60 Hz i w konfiguracji gwiazdy, wyraźnie określony jest zakres 440 ÷ 480 V. Inne wartości, takie jak 220 ÷ 240 V czy 254 ÷ 277 V, mogą być mylące, jeśli nie zwróci się uwagi na inne parametry pracy, takie jak częstotliwość czy sposób połączenia uzwojeń. Zrozumienie, jak te parametry wpływają na wydajność i bezpieczeństwo pracy silnika, jest kluczowe dla unikania błędnych decyzji. Często spotykanym błędem jest stosowanie domyślnych wartości napięcia bez analizy specyficznych wymagań aplikacji, co może prowadzić do nieefektywnej pracy urządzenia i zwiększenia kosztów operacyjnych. Dlatego tak ważne jest gruntowne zapoznanie się z dokumentacją techniczną i stosowanie się do zawartych w niej wskazówek.

Pytanie 22

Do bezstykowego pomiaru temperatury gniazda łożyska należy zastosować termometr

A. rozszerzalnościowy.
B. manometryczny.
C. bimetalowy.
D. pirometryczny.
Kiedy próbujemy zrozumieć różne metody pomiaru temperatury, można łatwo popaść w błędne koła myślenia. Zaczynając od termometrów bimetalowych, które składają się z dwóch różnych metali złączonych razem, działają one na zasadzie różnicy rozszerzalności termicznej tych metali. Są to urządzenia stosowane głównie w aplikacjach domowych, takich jak termostaty, ale nie nadają się do bezstykowego pomiaru, ponieważ wymagają kontaktu z mierzonym obiektem, co w przypadku gorących lub trudno dostępnych elementów może być niepraktyczne. Manometryczne termometry działają na zasadzie zmiany ciśnienia w zamkniętej przestrzeni gazu lub cieczy pod wpływem temperatury. Są to typowe termometry wykorzystywane do pomiarów w układach zamkniętych, takich jak kotły czy zbiorniki ciśnieniowe, jednak również wymagają fizycznego kontaktu z obiektem. W przypadku termometrów rozszerzalnościowych, które bazują na rozszerzalności cieplnej cieczy wewnątrz szklanej rurki, mamy do czynienia z kolejnym ograniczeniem - klarowne odczyty możliwe są tylko przy bezpośrednim kontakcie. Typowym błędem myślowym jest założenie, że każdy typ termometru nadaje się do każdego rodzaju pomiaru, co nie jest prawdą. Każda z tych technologii ma swoje miejsce i zastosowanie, ale jeśli mówimy o bezkontaktowym pomiarze temperatury, to pirometr jest niezastąpiony. Kluczowe jest zrozumienie, że technologie te różnią się zasadniczo w mechanizmie działania i aplikacjach, w których są efektywne, dlatego dobór odpowiedniego narzędzia musi być świadomy i dostosowany do specyfiki zadania pomiarowego. To pomoże uniknąć błędów i zapewni precyzyjne wyniki, co w kontekście przemysłu jest nieocenione.

Pytanie 23

Którą funkcję logiczną realizuje program zapisany w pamięci sterownika PLC przedstawiony na rysunku?

Ilustracja do pytania
A. XOR
B. NAND
C. OR
D. NOR
Program przedstawiony na rysunku realizuje funkcję logiczną NOR, co jest skrótem od „NOT OR”. W logice oznacza to, że wyjście będzie aktywne tylko wtedy, gdy wszystkie wejścia są nieaktywne. W przypadku sterowników PLC, funkcja NOR jest często używana w sytuacjach, gdy chcemy, aby określone wyjście działało tylko wtedy, gdy żaden z czujników lub przełączników nie jest aktywowany. Na rysunku widzimy dwie szeregowo połączone cewki, co oznacza, że wyjście zostanie aktywowane tylko wtedy, gdy oba wejścia są w stanie niskim (czyli logiczne 0). To typowe w aplikacjach bezpieczeństwa, gdzie z różnych powodów potrzebujemy gwarancji, że coś się nie wydarzy, dopóki wszystkie warunki nie są spełnione. Moim zdaniem, zastosowanie funkcji NOR jest niezwykle praktyczne, szczególnie w automatyce przemysłowej, gdzie niezawodność jest kluczowa. Warto pamiętać, że użycie tej funkcji jest zgodne z normami IEC dotyczących projektowania systemów sterowania, co gwarantuje wysoką jakość i bezpieczeństwo działania systemu.

Pytanie 24

Który z bloków oprogramowania sterowników PLC działa wg diagramu przedstawionego na rysunku?

Ilustracja do pytania
A. Blok przerzutnika asynchronicznego RS z dominującym wejściem S
B. Blok przerzutnika synchronicznego RS z dominującym wejściem S
C. Blok przerzutnika synchronicznego RS z dominującym wejściem R
D. Blok przerzutnika asynchronicznego RS z dominującym wejściem R
Wybór przerzutnika synchronicznego lub przerzutnika z dominującym wejściem S mógł wynikać z pewnych błędnych założeń. Przerzutniki synchroniczne działają w oparciu o sygnał zegarowy, co w tym kontekście nie ma zastosowania, ponieważ diagram wskazuje na działanie asynchroniczne, czyli niezależne od zegara. Z kolei wybór przerzutnika z dominującym wejściem S mógł sugerować, że priorytet jest przyznawany wejściu S, jednak na diagramie wyraźnie widać, że to wejście R ma przewagę, co widać po zmianie stanu wyjścia Q zgodnie z aktywnością wejścia R. Takie podejście jest mylące, szczególnie w sytuacjach, gdzie ważna jest natychmiastowa reakcja systemu na sygnały sterujące. Często spotykanym błędem jest przyjmowanie, że wszystkie przerzutniki RS działają na podobnych zasadach, jednak różnice w ich zachowaniu mogą być kluczowe dla poprawnego działania układu. Dlatego ważne jest zrozumienie ich specyfiki oraz praktyczne stosowanie się do standardów i zasad projektowania układów logicznych. Jeśli zrozumiesz te różnice, unikniesz błędów w projektowaniu i implementacji oprogramowania sterowników PLC, co jest kluczowe w świecie automatyzacji przemysłowej.

Pytanie 25

Którym kodem oznaczony będzie przekaźnik programowalny dobrany do układu automatycznego sterowania, jeżeli zasilanie układu będzie wynosiło 24 V DC, a maksymalne wartości prądów obciążenia nie będą przekraczały 8 A przy napięciu nieprzekraczającym wartości 250 V AC?

Kod przekaźnikaNapięcie zasilaniaWyjściaZnamionowe obciążenie wyjścia
001230 V AC4 wyjścia przekaźnikowe10 A/ 250 V AC
00224 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
00324 V DC4 wyjścia tranzystorowe0,5 A/ 24 V DC
00412 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
005220 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
A. 002
B. 005
C. 003
D. 004
Wybór przekaźnika 002 to doskonała decyzja, ponieważ odpowiada on wymaganiom zadania. Zasilanie na poziomie 24 V DC to główna cecha tego przekaźnika, która idealnie pasuje do układu sterowania podanego w pytaniu. W przypadku automatyki, zgodność parametrów zasilania i obciążenia jest kluczowa. Przekaźnik 002 ma 4 wyjścia przekaźnikowe, które mogą dostarczyć obciążenie do 10 A przy napięciu do 250 V AC. To oznacza, że spełnia on wymagania, gdzie prądy obciążenia nie przekraczają 8 A. W praktyce, przekaźniki te są używane w wielu zastosowaniach automatyki przemysłowej, takich jak sterowanie silnikami czy systemami oświetleniowymi, gdzie wymagana jest wysoka niezawodność i precyzja. Dobór odpowiedniego przekaźnika jest istotny z punktu widzenia bezpieczeństwa i efektywności energetycznej, a przekaźnik 002, dzięki swoim parametrom, zapewnia obie te cechy. Wybierając taki przekaźnik, działamy zgodnie z najlepszymi praktykami w dziedzinie automatyki, gdzie kluczowe jest nie tylko odpowiednie napięcie zasilania, ale także dostosowanie obciążeń wyjściowych do realnych potrzeb systemu.

Pytanie 26

Podczas montażu został nacięty przewód zasilający 3-fazowy silnik hydroforu. Uszkodzeniu uległy izolacja zewnętrzna oraz izolacja żyły N niepodłączonej do silnika. Które zdanie poprawnie określa możliwość użytkowania tak uszkodzonej instalacji?

Ilustracja do pytania
A. Mimo tego uszkodzenia instalacja może być normalnie eksploatowana.
B. Eksploatacja tej instalacji jest możliwa, ale przy uszkodzonym przewodzie trzeba umieścić tabliczkę ostrzegawczą.
C. Można tę instalację eksploatować pod warunkiem, że nie ma wycieku wody z hydroforu.
D. Ta instalacja nie może być eksploatowana.
Taka instalacja nie może być eksploatowana. Nawet jeśli uszkodzenie dotyczy tylko izolacji zewnętrznej i nieużywanej żyły N, przepisy jasno zabraniają użytkowania przewodów z naruszoną izolacją. Zgodnie z normą PN-EN 50110-1 oraz zasadami eksploatacji urządzeń elektrycznych, każdy przewód musi mieć pełną, nienaruszoną izolację, gwarantującą ochronę przed porażeniem i zwarciem. W tym przypadku przewód jest nacięty – odsłonięty metalowy rdzeń może stanowić zagrożenie porażeniem, a także doprowadzić do zwarcia między żyłami. W praktyce zawodowej taki przewód należy niezwłocznie wymienić lub odciąć uszkodzony odcinek i wykonać nowe połączenie zgodne z normami. Moim zdaniem nie warto ryzykować – nawet najmniejsze nacięcie może w dłuższym czasie prowadzić do przegrzewania, utleniania i awarii całej instalacji, szczególnie w środowisku wilgotnym, jak przy hydroforze.

Pytanie 27

Do pomiaru ciśnienia cieczy w układach hydraulicznych stosuje się

A. barometry.
B. manometry.
C. higrometry.
D. areometry.
Manometry to podstawowe narzędzia stosowane w hydraulice do pomiaru ciśnienia cieczy. Działają na zasadzie równowagi sił w układzie zamkniętym, co pozwala na dokładne określenie wartości ciśnienia. Są niezwykle powszechne w wielu branżach, od przemysłu petrochemicznego po produkcję maszyn. Praktyczne zastosowania manometrów obejmują monitorowanie ciśnienia w układach chłodniczych, instalacjach wodociągowych czy systemach pneumatycznych. Warto wiedzieć, że manometry są kluczowym elementem bezpieczeństwa w zakładach przemysłowych, ponieważ pozwalają na szybkie wykrycie nieprawidłowości, które mogą prowadzić do awarii lub wypadków. Standardowe praktyki branżowe zalecają regularną kalibrację manometrów, aby zapewnić ich dokładność i niezawodność. Istnieją różne rodzaje manometrów, takie jak manometry mechaniczne czy cyfrowe, które mogą być stosowane w zależności od specyfiki aplikacji. Ważne jest, by wybierać odpowiednie manometry zgodnie z zakresem ciśnienia i medium, z którym będą pracować. Stosowanie manometrów to nie tylko kwestia pomiaru, ale również dbałości o bezpieczeństwo i efektywność procesów.

Pytanie 28

Element zaznaczony na ilustracji strzałką, posiadający jedno uzwojenie, umożliwiający w zależności od konstrukcji obniżanie lub podwyższanie wartości napięcia przemiennego, to

Ilustracja do pytania
A. opornik dekadowy.
B. multimetr cyfrowy.
C. autotransformator.
D. silnik prądu stałego.
Autotransformator to bardzo ciekawe urządzenie, które często znajduje zastosowanie w laboratoriach i różnych systemach elektrycznych. Ma jedno uzwojenie, które pełni zarówno funkcję pierwotną, jak i wtórną. Dzięki temu jest bardziej kompaktowy i efektywny kosztowo niż standardowy transformator dwuuzwojeniowy. Często używa się go do regulacji napięcia przemiennego w sposób płynny. To znaczy, że możesz precyzyjnie dostosować napięcie wyjściowe do swoich potrzeb, co jest niezwykle przydatne w sytuacjach, gdy wymagana jest zmienna wartość napięcia, np. w testach laboratoryjnych czy w zasilaniu urządzeń elektrycznych o różnych wymaganiach. W praktyce autotransformatory są używane w przemyśle do zasilania maszyn o różnych standardach napięcia oraz w systemach przesyłowych do regulacji poziomów napięcia. Co ciekawe, pomimo swojej prostoty, autotransformatory muszą być używane z odpowiednią ostrożnością. Dobry projekt i odpowiednie zabezpieczenia to klucz do ich bezpiecznego użycia. Warto też pamiętać, że zgodnie z normami, ich stosowanie powinno uwzględniać specyficzne wymagania systemów elektrycznych, aby uniknąć przeciążeń i uszkodzeń.

Pytanie 29

Urządzenie, którego schemat przedstawiono na rysunku, pracuje w sposób oscylacyjny. Który zawór należy zamontować w miejscu oznaczonym X, aby prędkość wysuwania tłoczyska siłownika była większa od prędkości wsuwania?

Ilustracja do pytania
A. Progowy.
B. Przełącznik obiegu.
C. Dławiąco-zwrotny.
D. Podwójnego sygnału.
Odpowiedź dławiąco-zwrotny jest prawidłowa, ponieważ ten zawór pozwala na regulację przepływu cieczy lub powietrza w jednym kierunku, jednocześnie umożliwiając swobodny przepływ w przeciwnym. W kontekście siłowników dwustronnego działania, taki zawór umożliwia precyzyjne dostosowanie prędkości wysuwania tłoczyska, co jest kluczowe w wielu aplikacjach przemysłowych oraz automatyce. Dzięki temu można zwiększyć efektywność i precyzję działania maszyn. Instalacja zaworu dławiąco-zwrotnego to standardowa praktyka w systemach pneumatycznych i hydraulicznych, gdzie kontrola prędkości ruchu jest istotna. Praktyczne zastosowanie takiego rozwiązania można znaleźć w liniach produkcyjnych, gdzie różne fazy operacji muszą być zsynchronizowane. Ten zawór jest również często wykorzystywany w maszynach CNC, gdzie precyzyjne sterowanie elementami roboczymi jest niezbędne. Dzięki zastosowaniu zaworów dławiąco-zwrotnych można również zmniejszyć zużycie energii poprzez optymalizację przepływu, co jest ważne z punktu widzenia ekonomii produkcji i ochrony środowiska.

Pytanie 30

Na rysunku przedstawiono diagram działania jednego z bloków funkcyjnych sterownika PLC. Jest to blok

Ilustracja do pytania
A. timera opóźniającego załączenie TON.
B. licznika impulsów zliczającego w górę CTU.
C. timera opóźniającego wyłączenie TOF.
D. licznika impulsów zliczającego w dół CTD.
W automatyce przemysłowej znajdziemy różne bloki funkcyjne, które pełnią specyficzne funkcje. Timer opóźniający załączenie (TON) oraz timer opóźniający wyłączenie (TOF) operują na zasadzie odmierzania czasu i nie mają związku z zliczaniem impulsów. TON zaczyna odliczanie po aktywacji sygnału wejściowego, po czym załącza wyjście po określonym czasie. TOF natomiast utrzymuje wyjście aktywne przez zdefiniowany czas po zaniku sygnału wejściowego. Są one używane w aplikacjach wymagających opóźnień czasowych, np. w procesach technologicznych, gdzie wymagane jest dokładne odmierzanie czasu. Natomiast licznik zliczający w górę (CTU) działa odwrotnie do CTD. Zwiększa wartość przy każdym impulsie, co jest przydatne w sytuacjach takich jak zliczanie wyprodukowanych jednostek. Wybierając odpowiedni typ licznika lub timera, kluczowe jest zrozumienie, jaka funkcjonalność jest potrzebna w danej aplikacji. Błędne przypisanie funkcji może prowadzić do nieoptymalnego działania systemu. Typowe błędy mogą wynikać z nieuwzględnienia fizycznego charakteru procesu, co może prowadzić do wyboru niewłaściwego bloku funkcyjnego. Dlatego ważne jest, aby dobrze zrozumieć działanie każdego z tych elementów, zanim zostaną zastosowane w projekcie, co pozwala na unikanie takich nieporozumień w praktyce.

Pytanie 31

Zintegrowany interfejs komunikacyjny w sterowniku PLC przedstawionym na rysunku to

Ilustracja do pytania
A. 8P8C
B. OBD II
C. RS-232
D. USB
Wybór interfejsu komunikacyjnego ma kluczowe znaczenie w kontekście integracji i funkcjonalności sterowników PLC. RS-232, choć kiedyś popularny, obecnie jest rzadko stosowany w zaawansowanych systemach przemysłowych ze względu na ograniczoną prędkość transmisji i brak możliwości sieciowych. Wspiera jedynie komunikację punkt-punkt, co ogranicza jego zastosowanie w nowoczesnych rozwiązaniach automatyki. OBD II to interfejs diagnostyczny stosowany w motoryzacji, zupełnie nieodpowiedni dla przemysłowych aplikacji PLC, które wymagają integracji z sieciami komputerowymi. USB, choć wszechstronny i używany do podłączania różnych urządzeń w komputerach osobistych, nie jest standardowym interfejsem komunikacyjnym w systemach przemysłowych. Przemysł stawia na stabilność i możliwość pracy w trudnych warunkach, co zapewnia interfejs 8P8C. Użycie standardu Ethernet w PLC to krok w stronę nowoczesności i integracji z systemami IT, których wymaga współczesna automatyka przemysłowa. Dlatego wybór nieodpowiedniego interfejsu może prowadzić do problemów z kompatybilnością i wydajnością w przyszłych implementacjach.

Pytanie 32

Czujnik przedstawiony na schemacie ma wyjścia sygnałowe typu

Ilustracja do pytania
A. PNP NO
B. PNP NC
C. NPN NC
D. NPN NO
Rozważając różne typy wyjść czujników, warto zwrócić uwagę na różnice między konfiguracjami PNP i NPN oraz NO i NC. Wyjście PNP oznacza, że czujnik w stanie aktywnym podaje napięcie na wyjście, co często jest używane w miejscach, gdzie obciążenie jest podłączone bezpośrednio do masy. To może być mylące, zwłaszcza gdy pracuje się w systemach wymagających odwrotnego podejścia. Wyjście NO (normalnie otwarte) działa w taki sposób, że w stanie spoczynku obwód jest otwarty, co w przypadku przerwy w działaniu czujnika może nie sygnalizować problemu od razu, co jest mniej pożądane w systemach wymagających wysokiego poziomu bezpieczeństwa. Częstym błędem jest założenie, że konfiguracje NO są zawsze lepsze ze względu na prostotę ich działania, co nie zawsze jest prawdą w zastosowaniach wymagających niezawodności. Warto pamiętać, że nieodpowiedni dobór typu wyjścia może prowadzić do nieprawidłowego sygnalizowania stanów awaryjnych, co jest krytyczne w aplikacjach przemysłowych. Dlatego dobór odpowiedniego typu wyjścia powinien być przemyślany i dostosowany do specyfiki projektu oraz wymagań systemowych.

Pytanie 33

Na rysunku przedstawiono listwę przyłączeniową regulatora temperatury. Do których zacisków regulatora należy podłączyć czujnik termoelektryczny?

Ilustracja do pytania
A. 2 i 3
B. 1 i 3
C. 1 i 2
D. 5 i 6
Wybór innych zacisków niż 2 i 3 prowadzi do błędnego podłączenia czujnika termoelektrycznego. Zaciski 1 i 3 lub 1 i 2 mogą być używane do innych funkcji niż podłączenie termopary, np. dla innych typów czujników lub jako część obwodu sterowania. Często popełnianym błędem jest mylenie zacisków z powodu podobieństwa ich oznaczeń lub konfiguracji fizycznej na listwie. W praktyce, wybór niewłaściwych zacisków skutkuje brakiem odczytu temperatury lub generowaniem błędnych wartości, co może wpływać na działanie całego systemu regulacji temperatury. Zaciski 5 i 6, które także były jedną z opcji, są zazwyczaj używane w innych częściach układu, np. do zasilania bądź jako część innego obwodu. Kluczowe jest, aby zawsze odnosić się do dokumentacji technicznej regulatora temperatury, która precyzyjnie opisuje funkcje poszczególnych zacisków. Zrozumienie, jak działa efekt Seebecka i jak termopary generują sygnały, jest istotne dla prawidłowego podłączania i diagnozowania potencjalnych problemów. Dlatego edukacja w zakresie podstawowych zasad działania czujników i regulatorów jest nieoceniona dla każdego technika zajmującego się automatyką przemysłową.

Pytanie 34

Aby zapewnić właściwy moment siły przy dokręcaniu nakrętek mocujących urządzenie do podłoża, należy zastosować klucz

A. oczkowy.
B. hakowy.
C. imbusowy.
D. dynamometryczny.
Klucz hakowy, choć użyteczny w niektórych przypadkach, nie nadaje się do precyzyjnego kontrolowania momentu siły. Jego głównym zastosowaniem jest praca w miejscach, gdzie dostęp jest ograniczony, ale nie pozwala na kontrolę napięcia śruby. Klucz oczkowy z kolei jest bardzo popularny w codziennych pracach manualnych dzięki łatwości użycia i wszechstronności – dobrze nadaje się do pracy w ciasnych przestrzeniach. Jednak nie gwarantuje on dokładności niezbędnej przy specyfikacji momentu dokręcania, co jest kluczowe w aplikacjach wymagających wysokiej precyzji. Klucz imbusowy, znany również jako klucz sześciokątny, służy głównie do śrub z łbem sześciokątnym. Jest narzędziem prostym, lecz nie oferuje żadnej możliwości kontrolowania siły dokręcania. Wybór niewłaściwego narzędzia do dokręcania może prowadzić do nieodpowiedniego napięcia śruby, co z kolei skutkuje niewłaściwym rozłożeniem siły, a nawet uszkodzeniem gwintu lub samego elementu montowanego. Często ludzie mylą się, wybierając klucz oparty na łatwości użycia zamiast na precyzyjnych wymaganiach montażowych. Z mojego doświadczenia wynika, że brak zrozumienia różnic między tymi narzędziami może prowadzić do nieodwracalnych uszkodzeń w komponentach mechanicznych, co jest szczególnie niebezpieczne w branżach wymagających dużej dokładności, takich jak motoryzacja czy lotnictwo. Dlatego tak ważne jest, aby zawsze wybierać narzędzie zgodnie z jego specyfikacją i przeznaczeniem, co w praktyce oznacza stosowanie klucza dynamometrycznego, gdy wymagana jest precyzja dokręcania.

Pytanie 35

Program sterowniczy przedstawiony na rysunku realizuje funkcję

Ilustracja do pytania
A. OR
B. NOR
C. Ex-OR
D. Ex-NOR
Funkcja Ex-OR, czyli exclusive OR, jest jedną z podstawowych funkcji logicznych używanych w automatyce i elektronice. To, co jest charakterystyczne dla Ex-OR, to jej zdolność do wykrywania różnic między dwoma sygnałami wejściowymi. W praktyce oznacza to, że wyjście będzie aktywne (czyli w stanie wysokim) tylko wtedy, gdy jeden z sygnałów wejściowych jest w stanie wysokim, a drugi w niskim. Taki mechanizm znajduje szerokie zastosowanie w systemach cyfrowych, gdzie konieczne jest porównywanie dwóch sygnałów lub wartości binarnych. W programowalnych sterownikach logicznych (PLC) Ex-OR używa się często do celów diagnostycznych, np. do wykrywania błędów w przesyłanych danych. W standardach przemysłowych, takich jak IEC 61131-3, Ex-OR jest jedną z kluczowych funkcji logicznych, które programiści muszą znać. Z mojego doświadczenia wynika, że opanowanie tej funkcji otwiera drogę do bardziej skomplikowanych aplikacji, gdzie liczy się precyzyjne sterowanie i analiza danych. To właśnie dzięki Ex-OR można tworzyć systemy, które reagują na konkretne różnice między stanami wejściowymi, co jest często wykorzystywane w systemach zabezpieczeń i kontroli jakości.

Pytanie 36

Przetwornik poziomu, o zakresie pomiarowym 0 cm ÷ 100 cm, przetwarza liniowo zmierzony poziom na natężenie prądu z przedziału 4 mA ÷ 20 mA. Przy wzroście poziomu z wartości 55 cm na 75 cm natężenie prądu wyjściowego z przetwornika

A. zmaleje o 3,2 mA
B. wzrośnie o 1,6 mA
C. zmaleje o 1,6 mA
D. wzrośnie o 3,2 mA
Kiedy mamy do czynienia z przetwornikiem przetwarzającym poziom na prąd, kluczowe jest zrozumienie, jak funkcjonuje jego liniowość. Zakres od 0 cm do 100 cm jest przekształcany na 4 mA do 20 mA, co oznacza, że każdy centymetr zmiany poziomu ma przypisany konkretny przyrost prądu. W tym przypadku, zmiana o 1 cm odpowiada zmianie prądu o 0,16 mA. Często błędnym jest założenie, że wzrost poziomu automatycznie zmniejsza prąd, choć logicznie byłoby to sprzeczne z proporcjonalnością funkcji liniowej, gdzie większy poziom to wyższy prąd. Podobnie, niektórzy mogą zakładać, że zmiana z 55 cm na 75 cm jest mniejsza niż rzeczywistości, co prowadzi do wniosku, że wzrost mógłby być mniejszy. Takie błędne rozumowanie często wynika z nieuwagi lub niewłaściwego przeliczenia proporcji. Niezrozumienie, że zakresy muszą być bezpośrednio związane proporcjonalnie do siebie, jest typowym źródłem błędów. Dlatego w praktyce, technicy i inżynierowie muszą często sprawdzać swoje obliczenia i stosować wypracowane metody kalibracji, aby uniknąć takich pomyłek. Właściwe zrozumienie zasad działania takich systemów jest kluczowe w kontekście ich zastosowania w automatyzacji procesów przemysłowych, gdzie dokładność odczytów jest fundamentalna dla bezpieczeństwa i efektywności produkcji.

Pytanie 37

Do pomiaru luzów pomiędzy współpracującymi powierzchniami służy

A. przymiar kreskowy.
B. liniał sinusowy.
C. szczelinomierz.
D. mikrometr.
Przymiar kreskowy, liniał sinusowy czy mikrometr to narzędzia o zupełnie innych zastosowaniach niż mierzenie luzów między powierzchniami. Przymiar kreskowy jest stosowany głównie do pomiaru długości z dużą dokładnością przy użyciu skali mikrometrowej, ale nie nadaje się do mierzenia szczelin. Często jest używany w warsztatach mechanicznych czy w kontroli jakości, ale do pomiaru wielkości, nie luzów. Liniał sinusowy to specjalistyczne narzędzie wykorzystywane do ustalania kątów, szczególnie w obróbce skrawaniem, i nie jest przeznaczony do pomiarów dystansów między powierzchniami. Używa się go głównie do ustawiania urządzeń w odpowiednim kącie, co jest kluczowe w precyzyjnej obróbce materiałów. Mikrometr natomiast, choć doskonały do mierzenia grubości czy średnicy przedmiotów z wysoką dokładnością, nie jest odpowiedni do oceny szczelin. Typowym błędem jest mylenie narzędzi pomiarowych z narzędziami służącymi do ustawiania lub kalibrowania, co może prowadzić do nieprawidłowych wniosków i decyzji. Wybór narzędzia powinien zawsze wynikać z konkretnego zastosowania i wymogów pomiarowych. Dlatego tak istotne jest zrozumienie charakterystyki każdego z narzędzi, aby unikać niepotrzebnych błędów w procesie produkcyjnym lub diagnostycznym. Pamiętajmy, że właściwe zrozumienie funkcji narzędzi pomiarowych jest kluczem do sukcesu w każdej dziedzinie technicznej.

Pytanie 38

Określ przeznaczenie urządzenia przedstawionego na rysunku.

Ilustracja do pytania
A. Wizualizacja przebiegu procesu.
B. Zasilanie układu sterowania.
C. Pomiar wielkości procesowych.
D. Programowanie układu.
Urządzenie, które widzisz, to panel HMI, czyli interfejs człowiek-maszyna. Jest to podstawowe narzędzie w systemach automatyki przemysłowej do wizualizacji przebiegu procesu. Tego typu panele, jak ten na zdjęciu, umożliwiają operatorom interakcję z systemami sterowania procesem. Za ich pomocą można monitorować parametry procesu, wizualizować dane w czasie rzeczywistym oraz podejmować decyzje operacyjne w oparciu o wizualizowane informacje. Moim zdaniem, panel HMI jest fundamentem każdego nowoczesnego systemu automatyki, bo pozwala na szybkie diagnozowanie i reagowanie na nieprawidłowości w procesie. W praktyce, panele HMI są używane w wielu gałęziach przemysłu, od produkcji po energetykę. Z mojego doświadczenia, dobry interfejs HMI zgodny z normami, jak ISO 9241, ułatwia pracę operatorom, a dobrze zaprojektowana wizualizacja ogranicza ryzyko błędów ludzkich. Warto też wspomnieć, że niektóre panele HMI oferują możliwość zdalnego dostępu, co jest ogromnym ułatwieniem w czasach wzmożonej automatyzacji i potrzeby szybkiego reagowania na sytuacje awaryjne.

Pytanie 39

W dokumentacji powykonawczej nie należy umieszczać

A. warunków gwarancji.
B. protokołów pomiarowych.
C. dowodów zakupu z cenami.
D. certyfikatów użytych materiałów.
Dokumentacja powykonawcza to kluczowy element w każdej budowie czy projekcie technicznym. Jest jak skarb dla każdego inżyniera czy technika, ponieważ zawiera wszystkie istotne informacje o zakończonym projekcie. Dlatego właśnie nie umieszczamy w niej dowodów zakupu z cenami. Dlaczego? Ponieważ dokumentacja powykonawcza ma być przede wszystkim dokumentem technicznym, a nie finansowym. Skupiamy się w niej na aspektach technicznych, takich jak warunki gwarancji, protokoły pomiarowe czy certyfikaty użytych materiałów. Wszystko to jest niezbędne do utrzymania i ewentualnych napraw, ale ceny zakupu nie mają tu większego znaczenia. Ceny mogą się zmieniać, inflacja robi swoje, ale dokumentacja techniczna powinna być zawsze aktualna i zgodna z faktycznym stanem technicznym obiektu. W praktyce, ceny zakupu są ważne na etapie budżetowania i rozliczeń, ale nie w kontekście późniejszej eksploatacji budynku. Moim zdaniem, skupienie się na jakości i technologiach użytych w projekcie ma większe znaczenie i dlatego dowody zakupu z cenami są pomijane.

Pytanie 40

Do pomiaru temperatury należy zastosować przyrząd pomiarowy przedstawiony na rysunku oznaczonym literą

A. Przyrząd 3.
Ilustracja do odpowiedzi A
B. Przyrząd 2.
Ilustracja do odpowiedzi B
C. Przyrząd 1.
Ilustracja do odpowiedzi C
D. Przyrząd 4.
Ilustracja do odpowiedzi D
Przyrząd przedstawiony na pierwszym zdjęciu to termometr bimetaliczny, służący do pomiaru temperatury. Zakres wskazań na skali podany jest w stopniach Celsjusza (°C), co jednoznacznie wskazuje na jego zastosowanie. Wewnątrz obudowy znajduje się spiralny element bimetaliczny złożony z dwóch metali o różnym współczynniku rozszerzalności cieplnej. Pod wpływem zmiany temperatury element ten wygina się, powodując obrót wskazówki. Tego typu termometry stosowane są w przemyśle, w instalacjach grzewczych, chłodniczych, a także w laboratoriach, ponieważ są proste w obsłudze i odporne na wstrząsy. Ich zaletą jest brak konieczności zasilania elektrycznego, a odczyt jest natychmiastowy. Moim zdaniem to klasyczny przykład niezawodnego przyrządu – prosty mechanicznie, a jednocześnie bardzo trwały. W codziennej praktyce warto pamiętać, że dokładność pomiaru zależy od właściwego montażu czujnika – końcówka pomiarowa musi znajdować się w pełnym kontakcie z medium, którego temperaturę mierzymy.