Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektroradiolog
  • Kwalifikacja: MED.08 - Świadczenie usług medycznych w zakresie diagnostyki obrazowej, elektromedycznej i radioterapii
  • Data rozpoczęcia: 2 stycznia 2026 15:45
  • Data zakończenia: 2 stycznia 2026 15:51

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W radiologii analogowej lampy rentgenowskiej z tubusem używa się do wykonania zdjęcia

A. wewnątrzustnego zębów.
B. bocznego czaszki.
C. PA zatok.
D. osiowego czaszki.
Prawidłowo – w radiologii analogowej lampa rentgenowska z tubusem jest typowo wykorzystywana właśnie do wykonywania zdjęć wewnątrzustnych zębów. Tubus to nic innego jak specjalna nasadka/kanał ograniczający wiązkę promieniowania X do stosunkowo małego pola. Dzięki temu można precyzyjnie naświetlić obszar zębowy, minimalizując dawkę dla pozostałych tkanek i poprawiając jakość obrazu poprzez redukcję rozproszenia. W stomatologii klasycznym przykładem są zdjęcia zębowe okołowierzchołkowe, zgryzowe czy skrzydłowo-zgryzowe, gdzie aparat stomatologiczny (często ścienny lub mobilny) ma właśnie wąski, długi tubus. W dobrych praktykach przyjmuje się używanie tubusów prostokątnych lub kolimowanych, co dodatkowo ogranicza niepotrzebne napromienianie. Moim zdaniem to jedno z lepszych zastosowań promieniowania – małe pole, konkretna informacja diagnostyczna. W przeciwieństwie do projekcji czaszki czy zatok, gdzie stosuje się raczej klasyczne aparaty ogólnodiagnostyczne z ruchomą lampą i stołem, zdjęcia wewnątrzustne wymagają bardzo precyzyjnego ustawienia wiązki względem zęba i błony obrazowej/filmu umieszczonej w jamie ustnej pacjenta. Stąd tubus: ustala odległość ognisko–film, kierunek wiązki i ogranicza pole ekspozycji. Standardy stomatologiczne i wytyczne ochrony radiologicznej mocno podkreślają znaczenie właściwej kolimacji i stosowania osłon (fartuch ołowiany, osłona na tarczycę), a przy tubusie jest to łatwiejsze do zrealizowania. W praktyce technik powinien kojarzyć: mały aparat z tubusem = zdjęcia wewnątrzustne, duży aparat z bucky/stojakiem = klasyczne projekcje czaszki, zatok itp.

Pytanie 2

Zamieszczone obrazy związane są z badaniem

Ilustracja do pytania
A. testu wysiłkowego.
B. densytometrycznym.
C. audiometrycznym.
D. dopplerowskim.
Prawidłowo wskazana odpowiedź to badanie densytometryczne. Na obrazie po lewej stronie widać projekcję bliższego końca kości udowej z nałożonymi polami pomiarowymi, a po prawej charakterystyczny wykres zależności BMD (Bone Mineral Density, gęstość mineralna kości) od wieku z zaznaczonym T-score i strefami: zieloną (norma), żółtą (osteopenia) i czerwoną (osteoporoza). To jest typowy ekran z badania DXA (dual-energy X-ray absorptiometry), czyli złotego standardu w diagnostyce osteoporozy według zaleceń WHO i większości towarzystw osteologicznych. W densytometrii wykorzystuje się promieniowanie rentgenowskie o dwóch różnych energiach, a oprogramowanie aparatu wylicza BMD w g/cm² oraz wskaźniki T-score i Z-score. Kluczowe miejsca pomiaru to kręgosłup lędźwiowy i bliższy koniec kości udowej, dokładnie tak jak na pokazanym obrazie. W praktyce klinicznej wynik densytometrii służy nie tylko do rozpoznania osteoporozy, ale też do oceny ryzyka złamań (np. FRAX), kwalifikacji do leczenia farmakologicznego i monitorowania skuteczności terapii. Z mojego doświadczenia ważne jest prawidłowe pozycjonowanie pacjenta i unikanie artefaktów, bo błędy ułożenia biodra czy obecność metalowych elementów potrafią istotnie zafałszować BMD. Dobrą praktyką jest porównywanie kolejnych badań na tym samym aparacie, w tej samej projekcji i z identycznym protokołem analizy, żeby trend gęstości mineralnej kości był wiarygodny. Warto też pamiętać, że densytometria nie bada „jakości” kości jako takiej, tylko ich gęstość, dlatego wynik zawsze interpretujemy razem z obrazem klinicznym, wywiadem o złamaniach i innymi czynnikami ryzyka.

Pytanie 3

Na radiogramie strzałką oznaczono

Ilustracja do pytania
A. kość łódkowatą.
B. głowę kości skokowej.
C. kość sześcienną.
D. staw skokowo-piętowy.
Na tym radiogramie pokazano boczną projekcję stawu skokowego i stępu, więc łatwo wpaść w pułapkę mylenia poszczególnych kości, jeśli nie ma się jeszcze dobrze utrwalonej anatomii w obrazowaniu. Strzałka nie wskazuje kości sześciennej, ponieważ ta leży bardziej bocznie i dystalnie, w okolicy przylegającej do podstaw kości śródstopia IV–V. W projekcji bocznej cień kości sześciennej zwykle częściowo nakłada się na kości klinowate i jest nieco dalej od kości skokowej; nie przylega bezpośrednio do jej głowy. Błędne rozpoznanie wynika często z założenia, że każda „mała” kość z przodu stępu to od razu kość sześcienna, co jest dużym uproszczeniem. Głowa kości skokowej też bywa wybierana omyłkowo, bo znajduje się bardzo blisko zaznaczonej struktury. Jednak głowa skokowa jest ciągłością trzonu kości skokowej, ma wyraźne przejście od bloczka skokowego i tworzy gładką, zaokrągloną powierzchnię stawową, która łączy się z kością łódkowatą. Strzałka na obrazie nie pokazuje tej zaokrąglonej powierzchni, tylko kość leżącą już przed nią. Jeśli chodzi o staw skokowo-piętowy, to jest on położony między kością skokową a piętową, bardziej ku tyłowi stępu. Na zdjęciu bocznym widzimy go jako przestrzeń stawową z charakterystycznym ułożeniem powierzchni stawowych, często opisywaną warstwowo (podskokowa, śródskokowa). Wskazany punkt zdecydowanie nie leży w tej okolicy. Typowy błąd myślowy to utożsamianie dowolnej przerwy między kośćmi z „jakimś stawem”, bez dokładnego przeanalizowania, które kości ten staw tworzą według klasycznej anatomii. W diagnostyce obrazowej dobrą praktyką jest najpierw mentalnie „ułożyć” sobie główne kości: piszczel, strzałkę, kość skokową, kość piętową, a dopiero potem identyfikować mniejsze elementy stępu. Dzięki temu łatwiej uniknąć takich pomyłek i konsekwentnie odróżniać kość łódkowatą od sześciennej czy od samej głowy kości skokowej.

Pytanie 4

Który zestaw zdjęć narządów klatki piersiowej należy wykonać u pacjenta z podejrzeniem lewostronnego zapalenia płuc?

A. AP i lewoboczne.
B. PA i lewoboczne.
C. AP i prawoboczne.
D. PA i prawoboczne.
Prawidłowo – przy podejrzeniu lewostronnego zapalenia płuc standardem jest wykonanie zdjęcia PA (projekcja tylno‑przednia) oraz zdjęcia bocznego lewobocznego. Projekcja PA jest podstawową projekcją klatki piersiowej u pacjentów, którzy mogą stać lub siedzieć. Promień wchodzi od tyłu (posterior) i wychodzi z przodu (anterior), co daje dobrą jakość obrazu, właściwe powiększenie struktur serca i prawidłową ocenę pól płucnych. Moim zdaniem to jest taki „złoty standard” w radiografii klatki piersiowej u przytomnych, współpracujących pacjentów. Drugim, kluczowym badaniem jest projekcja boczna – w tym przypadku lewoboczna. Lewy bok pacjenta przylega do detektora, dzięki czemu struktury po lewej stronie klatki piersiowej (m.in. lewa połowa klatki, lewy płat dolny, segmenty języczkowe) są mniej powiększone i wyraźniej widoczne. Właśnie dlatego w podejrzeniu lewostronnego zapalenia płuc wybiera się lewoboczne, a nie prawoboczne zdjęcie. W praktyce klinicznej często na zdjęciu PA zmiany zapalne mogą się „chować” za sercem lub nakładać na inne struktury. Projekcja boczna pomaga wtedy ustalić, czy naciek jest w płacie górnym, dolnym, czy w segmencie języczkowym, oraz czy zmiana jest rzeczywiście w miąższu płuca, czy np. w śródpiersiu. Dobre praktyki w diagnostyce obrazowej mówią też, że komplet PA + boczne daje dużo większą pewność diagnostyczną niż samo PA, szczególnie przy zmianach jednostronnych. W niektórych ośrodkach, gdy pacjent jest wydolny krążeniowo i oddechowo, taki zestaw projekcji jest traktowany jako badanie wyjściowe przy każdej podejrzanej patologii płuc. Z mojego doświadczenia technicznego wynika, że prawidłowy dobór projekcji oszczędza potem dodatkowych badań i skraca czas diagnostyki.

Pytanie 5

Jednostką indukcji magnetycznej jest

A. tesla (T)
B. weber (Wb)
C. kulomb (C)
D. om (Ω)
Prawidłową jednostką indukcji magnetycznej (nazywanej też gęstością strumienia magnetycznego) w układzie SI jest tesla (T). Indukcja magnetyczna B opisuje „siłę” pola magnetycznego w danym miejscu, czyli jak mocno to pole oddziałuje na ładunki elektryczne w ruchu lub na przewodnik z prądem. Formalnie 1 tesla to taka indukcja magnetyczna, przy której na przewód o długości 1 m, ustawiony prostopadle do linii pola i przewodzący prąd 1 A, działa siła 1 N. Wzór, który to ładnie pokazuje, to F = B · I · l · sinα. W praktyce, w technice medycznej, z indukcją magnetyczną spotykasz się głównie przy rezonansie magnetycznym (MR). Typowe skanery kliniczne mają pola 1,5 T albo 3 T, a w badaniach naukowych używa się nawet 7 T i więcej. Im większa wartość tesli, tym silniejsze pole magnetyczne, lepszy sygnał i potencjalnie wyższa rozdzielczość obrazów, ale też większe wymagania dotyczące ochrony i bezpieczeństwa. W dokumentacji producentów magnesów, cewek gradientowych czy systemów do MR zawsze podaje się natężenie pola właśnie w teslach, zgodnie z normami i standardami (np. IEC dotyczące bezpieczeństwa MR). Dobrą praktyką w pracy z aparaturą jest świadome odróżnianie jednostek: tesla odnosi się do pola magnetycznego, gauss to starsza jednostka spoza SI (1 T = 10 000 G), a weber służy do opisu całkowitego strumienia magnetycznego, a nie jego gęstości. Moim zdaniem warto mieć to w głowie, bo potem łatwiej czytać instrukcje urządzeń, wytyczne BHP i opisy stref bezpieczeństwa w pracowni MR.

Pytanie 6

Na zamieszczonym obrazie TK strzałką zaznaczono zatokę

Ilustracja do pytania
A. czołową w przekroju czołowym.
B. szczękową w przekroju czołowym.
C. czołową w przekroju strzałkowym.
D. szczękową w przekroju strzałkowym.
Na obrazie TK widzisz klasyczny przekrój czołowy (koronalny) przez okolice zatok przynosowych. Świadczy o tym układ struktur: symetrycznie położone oczodoły po obu stronach, przegroda nosa biegnąca pionowo pośrodku oraz charakterystyczny kształt małżowin nosowych. Strzałka wskazuje dużą, powietrzną jamę położoną bocznie i nieco poniżej jamy nosowej – to właśnie zatoka szczękowa. Zatoki czołowe leżałyby znacznie wyżej, nad oczodołami, w obrębie kości czołowej, a tutaj ich po prostu nie widać. W praktyce technik i lekarz radiolog muszą bardzo dobrze rozpoznawać takie przekroje, bo od poprawnej identyfikacji zależy opis zmian zapalnych, torbieli, polipów czy poziomów płynu. W badaniach TK zatok standardem jest wykonywanie serii przekrojów koronalnych, bo najlepiej pokazują drożność kompleksu ujściowo-przewodowego i relacje między zatoką szczękową a jamą nosową. Moim zdaniem warto się „oswoić” z obrazem tej zatoki: położenie bocznie od jamy nosowej, cienka kostna ściana dolna sąsiadująca z korzeniami zębów trzonowych i przedtrzonowych, przyśrodkowa ściana granicząca z małżowinami nosowymi. W praktyce laryngologicznej i stomatologicznej to ma duże znaczenie – np. przy planowaniu podniesienia dna zatoki, implantów czy ocenie powikłań zapaleń okołowierzchołkowych. Dobre rozpoznanie, że jest to zatoka szczękowa w przekroju czołowym, jest więc zgodne z typowym standardem interpretacji badań TK zatok i pokazuje, że prawidłowo orientujesz się w anatomii w obrazowaniu.

Pytanie 7

Do zdjęcia lewobocznego kręgosłupa lędźwiowo-krzyżowego pacjenta należy ułożyć na boku

A. prawym, promień centralny pada 4 palce poniżej górnego zarysu talerza biodrowego.
B. lewym, promień centralny pada 4 palce powyżej górnego zarysu talerza biodrowego.
C. prawym, promień centralny pada 4 palce powyżej górnego zarysu talerza biodrowego.
D. lewym, promień centralny pada 4 palce poniżej górnego zarysu talerza biodrowego.
Prawidłowa odpowiedź wynika z zasad pozycjonowania pacjenta do projekcji lewobocznej kręgosłupa lędźwiowo‑krzyżowego. Do klasycznego bocznego zdjęcia L‑S pacjenta układamy na lewym boku, tak żeby lewa strona ciała przylegała do detektora. Taka pozycja minimalizuje powiększenie struktur położonych głębiej i zmniejsza zniekształcenia geometryczne, bo kręgosłup lędźwiowy jest wtedy bliżej kasety. W praktyce radiologicznej przyjmuje się, że promień centralny kierujemy na poziom mniej więcej L3–L4, a prostym, „łóżkowym” sposobem wyznaczenia tego poziomu jest właśnie punkt około 4 palce powyżej górnego zarysu talerza biodrowego. Ten talerz biodrowy jest łatwy do wyczucia palpacyjnie, więc technik ma szybki, powtarzalny punkt odniesienia. Moim zdaniem takie proste triki anatomiczne naprawdę ratują w codziennej pracy, zwłaszcza przy dużej liczbie badań. W dobrze wykonanej projekcji lewobocznej L‑S powinny być widoczne trzonów kręgów L1–L5, przestrzenie międzykręgowe, część kości krzyżowej, a wyrostki kolczyste powinny się nakładać w jednej linii (lub prawie jednej), co świadczy o braku rotacji. Często stosuje się też klin pod talię, żeby wyrównać lordozę lędźwiową i uzyskać lepsze odwzorowanie przestrzeni międzykręgowych. W technikach zgodnych z podręcznikami i wytycznymi (różne szkoły trochę się różnią, ale sens jest ten sam) bardzo pilnuje się właśnie: właściwej strony ułożenia (lewy bok), wysokości promienia centralnego (około L3–L4), prostopadłości wiązki do stołu oraz prawidłowego zabezpieczenia pacjenta (podparcie nóg, wałki pod kolana, osłona gonad jeśli możliwe). Warto pamiętać, że przy złym pozycjonowaniu, np. za nisko lub za wysoko, radiolog może nie zobaczyć istotnych zmian w dolnych segmentach lędźwiowych albo w przejściu lędźwiowo‑krzyżowym, co potem przekłada się na gorszą diagnostykę bólu krzyża czy rwy kulszowej. Dlatego to pytanie nie jest tylko „na pamięć”, ale mocno praktyczne, bo odruchowo poprawne ułożenie to podstawa dobrej jakości zdjęcia.

Pytanie 8

W sekwencji echa spinowego obraz T2-zależny uzyskuje się przy czasie repetycji TR

A. od 500 ms do 700 ms
B. powyżej 2000 ms
C. poniżej 400 ms
D. od 800 ms do 900 ms
Poprawna jest odpowiedź „powyżej 2000 ms”, bo obraz T2-zależny w sekwencji echa spinowego uzyskuje się dopiero przy długim czasie repetycji TR i jednocześnie długim czasie echa TE. W uproszczeniu: TR kontroluje, na ile obraz będzie zależny od różnic T1, a TE – od różnic T2. Jeśli TR jest krótki, dominują efekty T1, jeśli TR jest długi (typowo > 2000 ms w klasycznych sekwencjach spin echo), efekt T1 jest mocno „wypłaszczony”, więc lepiej widać różnice relaksacji T2 między tkankami. W praktyce klinicznej, przy klasycznym SE, dla T2-zależnych obrazów stosuje się zwykle TR rzędu 2000–4000 ms i TE około 80–120 ms. Wtedy płyn (np. płyn mózgowo-rdzeniowy) jest bardzo jasny, a tkanki o krótkim T2 (np. istota biała) są ciemniejsze. To jest taki typowy „look” T2, który radiolodzy i technicy od razu rozpoznają. Moim zdaniem warto zapamiętać to w parze: T1 – krótki TR, krótki TE; T2 – długi TR, długi TE. W codziennej pracy, np. przy badaniu mózgowia, kręgosłupa czy stawów, sekwencje T2-zależne są kluczowe do wykrywania obrzęku, wysięku, zmian zapalnych i wielu guzów, bo płyn i obszary o podwyższonej zawartości wody świecą jasno. Dobrą praktyką jest zawsze patrzeć w protokole badania na ustawione TR i TE – dzięki temu łatwiej zrozumieć, dlaczego obraz wygląda tak, a nie inaczej, i odróżnić, czy patrzymy właśnie na T1, T2 czy obraz PD-zależny.

Pytanie 9

Na obrazie MR jamy brzusznej strzałką wskazano

Ilustracja do pytania
A. śledzionę.
B. nerkę.
C. trzustkę.
D. wątrobę.
Na obrazie MR jamy brzusznej strzałka wskazuje wątrobę, czyli największy narząd miąższowy w górnej części jamy brzusznej, po prawej stronie. Na przekroju czołowym, takim jak na tym zdjęciu, wątroba zajmuje prawą górną część obrazu, tuż pod przeponą, przylega do prawej ściany klatki piersiowej i zwykle częściowo przykrywa prawą nerkę. W rezonansie magnetycznym jej sygnał jest stosunkowo jednorodny, a granica z płucem i przeponą jest wyraźna. Moim zdaniem to jedno z podstawowych ćwiczeń w radiologii: najpierw lokalizacja wątroby, potem dopiero szukanie zmian patologicznych. W praktyce klinicznej prawidłowe rozpoznanie wątroby na MR jest kluczowe przy ocenie ogniskowych zmian, takich jak naczyniaki, przerzuty, HCC czy torbiele. Standardem jest porównywanie położenia narządu względem kręgosłupa, żeber i innych narządów – to bardzo pomaga, gdy obraz nie jest idealny albo pacjent był słabo ułożony. Dobre praktyki mówią, żeby zawsze „czytać” badanie systematycznie: najpierw orientacja w płaszczyźnie i stronach ciała (oznaczenia L/R), potem narządy miąższowe (wątroba, śledziona, nerki, trzustka), a dopiero na końcu drobne szczegóły. Dzięki temu łatwiej uniknąć pomylenia wątroby np. ze śledzioną w nietypowych wariantach anatomicznych czy przy dużych guzach. W codziennej pracy technika lub młodego radiologa poprawna identyfikacja wątroby na MR to absolutna podstawa do dalszej, bardziej zaawansowanej interpretacji badania.

Pytanie 10

Który radioizotop jest stosowany w scyntygrafii perfuzyjnej mózgu?

A. ⁹⁹ᵐTc
B. ¹³¹I
C. ¹²³I
D. ⁹⁴ᵐTc
Prawidłowa odpowiedź to 99mTc, bo jest to podstawowy radioizotop stosowany w medycynie nuklearnej do badań scyntygraficznych, w tym do scyntygrafii perfuzyjnej mózgu. Technet-99m ma kilka bardzo wygodnych cech fizycznych: emituje promieniowanie gamma o energii ok. 140 keV, które jest idealne dla gammakamery, ma krótki okres półtrwania (ok. 6 godzin), dzięki czemu dawka pochłonięta przez pacjenta jest relatywnie niska, a jednocześnie jest czas na wykonanie badania. Z mojego doświadczenia to jest taki „koń roboczy” medycyny nuklearnej – używa się go w sercu, kościach, tarczycy, nerkach i właśnie w mózgu. W scyntygrafii perfuzyjnej mózgu 99mTc podaje się w postaci odpowiedniego radiofarmaceutyku, najczęściej związków takich jak HMPAO czy ECD. Są to lipofilne kompleksy, które przechodzą przez barierę krew–mózg i zatrzymują się w tkance mózgowej proporcjonalnie do przepływu krwi. Dzięki temu na obrazie z gammakamery widzimy rozkład perfuzji, czyli w praktyce które obszary mózgu są dobrze ukrwione, a które słabiej. Ma to ogromne znaczenie np. w diagnostyce padaczki ogniskowej, zmian niedokrwiennych, otępień, a także w ocenie skutków urazów czaszkowo–mózgowych. W nowoczesnych pracowniach badania te wykonuje się zwykle w technice SPECT, często łączonej z CT (SPECT/CT), co pozwala na lepszą lokalizację ognisk patologicznych. Standardem dobrej praktyki jest dobór jak najmniejszej aktywności 99mTc, która nadal zapewnia dobrą jakość obrazu, oraz dokładne przygotowanie radiofarmaceutyku zgodnie z procedurami jakościowymi (GMP, kontrola radiochemicznej czystości). Warto też pamiętać, że dzięki właściwościom 99mTc możliwe jest stosunkowo bezpieczne wykonywanie badań nawet u pacjentów wymagających powtórnych ocen perfuzji. Moim zdaniem znajomość roli technetu-99m w perfuzji mózgu to absolutna podstawa dla każdego technika medycyny nuklearnej.

Pytanie 11

Audiogram przedstawia próbę

Ilustracja do pytania
A. Lüschera-Zwisłockiego.
B. SISI.
C. Langenbecka.
D. Fowlera.
Prawidłowo – ten charakterystyczny wykres to audiogram z próby Fowlera, czyli tzw. testu wyrównywania głośności (loudness balance test). Próba Fowlera służy głównie do oceny rekrutacji słuchu, czyli nienormalnie szybkiego narastania wrażenia głośności w uchu z uszkodzeniem ślimaka. W praktyce klinicznej wykonuje się ją u pacjentów z jedno- lub obustronnym niedosłuchem odbiorczym, szczególnie gdy podejrzewamy uszkodzenie ślimakowe. Na audiogramie, takim jak na rysunku, widzimy kilka krzywych dla różnych poziomów natężenia i częstotliwości, a ich zbieganie się lub szybkie wyrównywanie głośności między uchem chorym i zdrowym wskazuje właśnie na rekrutację. Moim zdaniem warto zapamiętać, że w próbie Fowlera zawsze porównujemy odczucie głośności między dwoma uszami – jedno jest referencyjne, drugie badane. Technik audiologiczny powinien dbać o stabilne warunki akustyczne, dobre wytłumienie kabiny oraz dokładną kalibrację audiometru, bo nawet niewielkie błędy poziomu dB wpływają na interpretację rekrutacji. W dobrych praktykach zaleca się wcześniejsze wykonanie klasycznej audiometrii tonalnej, żeby znać progi słyszenia w obu uszach i na tej podstawie ustawić poziomy wyjściowe do testu Fowlera. Taki test pomaga potem odróżnić uszkodzenie ślimakowe od pozaślimakowego, co ma znaczenie np. przy kwalifikacji do aparatowania czy dalszej diagnostyki otologicznej. W skrócie: jeśli audiogram pokazuje wyrównywanie głośności przy niewielkim zwiększeniu natężenia w uchu chorym, to typowy obraz rekrutacji w próbie Fowlera.

Pytanie 12

Którą strukturę anatomiczną uwidoczniono na zamieszczonym obrazie USG?

Ilustracja do pytania
A. Nerkę lewą ze złogami.
B. Pęcherzyk żółciowy z kamieniami.
C. Pęcherz moczowy z kamieniami.
D. Ciężarną macicę z czterema płodami.
Na obrazie USG widoczny jest typowy pęcherzyk żółciowy z kamieniami (cholecystolithiasis). Charakterystyczny jest wydłużony, gruszkowaty kształt bezechowej (czarnej) struktury, otoczonej cienką, wyraźną ścianą. W świetle pęcherzyka widoczne są silnie hiperechogeniczne ogniska z wyraźnym cieniem akustycznym za nimi – to klasyczny obraz złogów żółciowych. Zgodnie z zasadami opisu USG jamy brzusznej, zawsze zwracamy uwagę na: kształt pęcherzyka, grubość ściany, zawartość światła oraz obecność cienia akustycznego. Kamienie są jasne, dobrze odgraniczone i „rzucają cień” w głąb obrazu, co jest jednym z najważniejszych kryteriów różnicujących je od np. polipów. W praktyce klinicznej taki obraz, szczególnie przy dolegliwościach bólowych w prawym podżebrzu, jest podstawą do rozpoznania kamicy pęcherzyka żółciowego i dalszego postępowania – zwykle obserwacja albo kwalifikacja do cholecystektomii laparoskopowej, zgodnie z aktualnymi zaleceniami. Moim zdaniem warto wyrobić sobie nawyk, żeby przy każdym badaniu USG jamy brzusznej bardzo dokładnie oceniać pęcherzyk w pozycji leżącej i w razie wątpliwości także w pozycji stojącej lub na lewym boku – kamienie często zmieniają położenie pod wpływem grawitacji, co dodatkowo potwierdza rozpoznanie. Dobra praktyka to też dokumentowanie przynajmniej dwóch przekrojów (podłużny i poprzeczny) oraz opisywanie wielkości największego złogu, bo ma to znaczenie przy planowaniu zabiegu i dalszej obserwacji pacjenta.

Pytanie 13

Na zamieszczonej ilustracji przedstawiono ułożenie pacjenta do wykonania zdjęcia rentgenowskiego

Ilustracja do pytania
A. kości piętowej.
B. śródstopia.
C. palców stopy.
D. stopy.
Prawidłowo rozpoznałeś, że na ilustracji pokazano ułożenie pacjenta do wykonania zdjęcia rentgenowskiego całej stopy. Stopa jest oparta podeszwą na kasecie, palce są swobodnie wyprostowane, a oś promienia głównego (strzałka) jest skierowana mniej więcej na środkową część podeszwy, w okolice łuku podłużnego. To jest typowe ułożenie do projekcji AP (dorso–plantarnej) stopy, stosowanej rutynowo w radiologii. W standardach opisujących technikę badania RTG stopy przyjmuje się, że promień centralny przechodzi przez środek stopy, tak aby na jednym obrazie ocenić paliczki, kości śródstopia, stawy śródstopno‑paliczkowe, kość skokową, piętową oraz część stawów stępu. Chodzi o kompleksową ocenę całej stopy, a nie tylko jednego jej fragmentu. W praktyce klinicznej taka projekcja jest wykorzystywana m.in. przy urazach (podejrzenie złamań śródstopia, paliczków, urazów stawu Lisfranca), przy deformacjach (płaskostopie, hallux valgus), w kontroli pooperacyjnej po zespoleniach kostnych czy przy ocenie zmian zwyrodnieniowych i reumatycznych. Moim zdaniem kluczowe jest tu rozumienie, że przy projekcji stopy pacjent leży lub siedzi, a stopa spoczywa podeszwą na kasecie, dzięki czemu uzyskujemy obraz zbliżony do warunków obciążenia fizjologicznego. W odróżnieniu od zdjęć celowanych na kość piętową lub palce, tutaj nie rotujemy istotnie stopy ani nie ustawiamy jej w skrajnych zgięciach. Dobra praktyka techniczna wymaga też prawidłowego kolimowania – obejmujemy całą stopę, ale ograniczamy pole, aby zminimalizować dawkę promieniowania. Dodatkowo należy pamiętać o oznaczeniu strony (L/P) oraz stabilnym ułożeniu, żeby uniknąć poruszenia i rozmycia obrazu. Takie nawyki bardzo ułatwiają późniejszą interpretację zdjęcia przez lekarza radiologa lub ortopedę.

Pytanie 14

Warstwa półchłonna (WP) służy do obliczania

A. bezpiecznej odległości.
B. dawki promieniowania.
C. grubości osłon.
D. czasu napromieniania.
Warstwa półchłonna kojarzy się wielu osobom z różnymi aspektami pracy z promieniowaniem: dawką, czasem świecenia lampy, nawet odległością od źródła. To dość typowe, bo w praktyce wszystko to jest ze sobą powiązane, ale fizycznie są to różne pojęcia. WP jest parametrem materiału i wiązki promieniowania, a nie parametrem czasu czy odległości. Jej definicja jest czysto geometryczna i fizyczna: to taka grubość osłony, która redukuje natężenie wiązki o połowę. Nie ma tam ani słowa o sekundach, ani o metrach. Jeśli ktoś łączy WP z czasem napromieniania, to zwykle wynika to z myślenia: „skoro coś zmniejsza dawkę, to pewnie wpływa też na czas”. W praktyce czas napromieniania w diagnostyce ustala się przez parametry ekspozycji (mAs, kV) i wymagany poziom jakości obrazu, a w radioterapii – przez zaplanowaną dawkę i moc dawki wiązki. Warstwa półchłonna nie służy do ustawiania czasu, tylko do oceny, jak szybko wiązka jest osłabiana przez materiał ochronny. Można potem oczywiście skrócić lub wydłużyć czas, żeby skompensować tłumienie, ale to już inny etap obliczeń. Podobnie jest z dawką promieniowania. WP wpływa na to, ile promieniowania „przejdzie” przez osłonę, więc pośrednio ma związek z dawką po drugiej stronie bariery, ale nie jest bezpośrednim narzędziem do obliczania dawki u pacjenta czy personelu. Do dawki używa się parametrów ekspozycji, współczynników pochłaniania w tkankach, krzywych głębokościowych w radioterapii, współczynników konwersji – a warstwa półchłonna jest jednym z elementów służących głównie do projektowania ekranowania. Częste jest też mylenie WP z bezpieczną odległością. Odległość od źródła promieniowania opisuje prawo odwrotności kwadratu odległości: im dalej, tym natężenie spada z kwadratem odległości, niezależnie od materiału. Warstwa półchłonna natomiast opisuje tłumienie w materiale, a nie w powietrzu na drodze geometrycznej. W praktyce w ochronie radiologicznej łączy się te trzy rzeczy: czas, odległość i osłony, ale tylko to ostatnie jest bezpośrednio związane z WP. Dlatego w dobrych praktykach ochrony radiologicznej warstwa półchłonna jest używana przede wszystkim przy obliczaniu grubości ścian, drzwi, fartuchów i innych osłon, a nie jako narzędzie do wyznaczania czasu ekspozycji, dawki czy „magicznej” bezpiecznej odległości.

Pytanie 15

W medycznym przyspieszaczu liniowym jest generowana wiązka fotonów o energii w zakresie

A. 100 + 150 MeV
B. 0,1 + 0,3 MeV
C. 4 + 25 MeV
D. 1 + 3 MeV
Poprawna odpowiedź „4–25 MeV” dobrze oddaje typowy zakres energii wiązki fotonowej generowanej w medycznym przyspieszaczu liniowym stosowanym w radioterapii. W praktyce klinicznej większość akceleratorów terapeutycznych pracuje z energiami fotonów około 4, 6, 10, 15, czasem 18 MV (czyli MeV, bo w tym kontekście używa się zamiennie skrótu MV), a górna granica rzędu 20–25 MeV jest już stosowana rzadziej, ale wciąż mieści się w standardach. Takie energie pozwalają na głęboką penetrację w tkankach, co jest kluczowe przy napromienianiu nowotworów położonych kilka–kilkanaście centymetrów pod powierzchnią skóry, np. guzów w miednicy czy w śródpiersiu. Z mojego doświadczenia, w codziennej pracy klinicznej najczęściej używa się wiązek 6 i 10 MV, bo dają dobry kompromis między głębokością dawki a ochroną skóry. Dzięki zjawisku tzw. build-up dawka maksymalna odkłada się na pewnej głębokości, a nie od razu na powierzchni, co jest ważnym elementem dobrej praktyki radioterapeutycznej. Standardy planowania (np. zalecenia ESTRO, IAEA) zakładają stosowanie właśnie takich energii w teleterapii megawoltowej, z użyciem technik IMRT czy VMAT. Przy niższych energiach fotonów nie uzyskano by odpowiedniej głębokości penetracji, a przy dużo wyższych pojawiłyby się dodatkowe problemy, jak nasilona produkcja neutronów i trudniejsza ochrona radiologiczna bunkra. Warto też pamiętać, że inny jest zakres energii w diagnostyce (kilkadziesiąt–kilkaset keV), a inny w terapii megawoltowej, i to pytanie właśnie ładnie to rozgranicza. W praktyce technik radioterapii, wiedza o typowym zakresie 4–25 MeV pomaga lepiej rozumieć krzywe procentowej dawki w głębokości, dobór energii do lokalizacji guza i ograniczeń narządów krytycznych, a więc realnie przekłada się na bezpieczeństwo i skuteczność leczenia.

Pytanie 16

Jakie symbole mają odprowadzenia kończynowe dwubiegunowe w badaniu EKG?

A. I, II, III
B. aVR, aVL, aVF
C. V4, V5, V6
D. V1, V2, V3
Prawidłowo – odprowadzenia kończynowe dwubiegunowe w standardowym 12‑odprowadzeniowym EKG mają symbole I, II, III. Nazywają się „dwubiegunowe”, bo rejestrują różnicę potencjałów pomiędzy dwiema elektrodami czynnościowymi założonymi na kończyny. W odprowadzeniu I aparat porównuje lewą rękę z prawą ręką (LA–RA), w odprowadzeniu II – lewą nogę z prawą ręką (LL–RA), a w odprowadzeniu III – lewą nogę z lewą ręką (LL–LA. W praktyce klinicznej właśnie te trzy odprowadzenia są podstawą tzw. trójkąta Einthovena, który opisuje elektryczną oś serca w płaszczyźnie czołowej. Z mojego doświadczenia, jeżeli ktoś dobrze ogarnia I, II, III, to dużo łatwiej rozumie potem interpretację osi serca, zmian niedokrwiennych czy przerostów komór. W zapisie monitorującym (np. na OIT czy w ratownictwie) najczęściej używa się właśnie odprowadzenia II, bo zwykle daje ono najwyższe, najbardziej czytelne załamki P i zespoły QRS. To jest taki „roboczy standard” w wielu oddziałach. Warto też pamiętać, że technik zakładający EKG musi poprawnie rozmieścić elektrody kończynowe (czerwony, żółty, zielony, czarny) – nawet jeśli w praktyce klinicznej często daje się je na przedramiona i podudzia, a nie na nadgarstki i kostki. Dla jakości zapisu i poprawnej interpretacji odprowadzeń I, II, III ważne jest jeszcze ograniczenie artefaktów ruchowych, dobra przyczepność elektrod i powtarzalny schemat podłączenia, zgodny z wytycznymi producenta aparatu i standardami pracowni EKG.

Pytanie 17

Wiązka elektronów najczęściej stosowana jest do leczenia zmian nowotworowych w obrębie

A. płuc.
B. macicy.
C. prostaty.
D. skóry i płytko pod skórą.
Prawidłowo wskazana odpowiedź „skóry i płytko pod skórą” idealnie oddaje główne zastosowanie kliniczne wiązki elektronów w radioterapii. Elektrony mają stosunkowo mały zasięg w tkankach – ich dawka rośnie szybko od powierzchni, osiąga maksimum na kilku–kilkunastu milimetrach głębokości, a potem gwałtownie spada. Moim zdaniem to jest właśnie najważniejszy parametr, który trzeba kojarzyć: krótki zasięg i oszczędzanie głębiej położonych narządów. Dlatego w standardach radioterapii (np. zalecenia ESTRO, krajowe rekomendacje) elektrony stosuje się głównie do leczenia zmian powierzchownych: rak skóry, przerzuty skórne, naciekające blizny pooperacyjne, węzły chłonne leżące płytko, blizna po mastektomii, czasem kikut piersi. W praktyce planowania leczenia fizyk medyczny dobiera energię wiązki elektronów (np. 6 MeV, 9 MeV, 12 MeV) tak, żeby maksymalna dawka pokrywała guz, ale nie „przebijała” zbyt głęboko. To jest właśnie przewaga nad fotonami, które penetrują głęboko i oddają istotną dawkę w narządach położonych za guzem. Wiązka elektronowa pozwala np. napromieniać rozległy rak skóry na czaszce, minimalizując dawkę w mózgu, albo zmiany skórne na klatce piersiowej z ograniczeniem dawki w płucach. Dobrą praktyką jest też stosowanie bolusa (materiału dosłownie położonego na skórze), żeby „przesunąć” maksimum dawki bliżej powierzchni, gdy zmiana jest bardzo płytka. Warto zapamiętać: jak widzisz zmianę nowotworową w skórze lub do ok. 3–4 cm pod skórą, w głowie od razu powinna zapalić się lampka – to potencjalne pole do zastosowania elektronów, oczywiście po weryfikacji onkologicznej i fizycznej.

Pytanie 18

Hiperfrakcjonowanie dawki w radioterapii oznacza napromieniowywanie pacjenta

A. codziennie.
B. kilka razy dziennie.
C. raz w tygodniu.
D. pięć razy w tygodniu.
W radioterapii bardzo łatwo pomylić różne pojęcia związane z frakcjonowaniem dawki, bo w praktyce klinicznej funkcjonuje kilka schematów: konwencjonalny, hiperfrakcjonowanie, hipofrakcjonowanie, przyspieszone frakcjonowanie. Intuicyjnie wiele osób kojarzy leczenie promieniowaniem z codziennymi wizytami, pięć razy w tygodniu, i to jest prawda dla tzw. frakcjonowania konwencjonalnego, ale nie dla hiperfrakcjonowania. Standardowy schemat, stosowany w większości klasycznych planów radykalnych, to jedna frakcja dziennie, od poniedziałku do piątku, czyli de facto pięć razy w tygodniu. Taki rozkład dawki ma swoje uzasadnienie radiobiologiczne i organizacyjne, jednak nie jest to hiperfrakcjonowanie, tylko podstawowy, konwencjonalny tryb napromieniania. Dlatego odpowiedzi typu „codziennie” albo „pięć razy w tygodniu” opisują zwykły, rutynowy plan leczenia, a nie szczególną technikę modyfikacji frakcji. Z kolei „raz w tygodniu” bardziej pasowałoby do specyficznych schematów hipofrakcjonowania o bardzo dużej dawce na frakcję, używanych np. w niektórych procedurach paliatywnych lub stereotaktycznych, gdzie celem jest szybkie podanie wysokiej dawki w niewielkiej liczbie sesji. To zupełnie inna filozofia niż hiperfrakcjonowanie. W hiperfrakcjonowaniu kluczowe są właśnie „wiele małych porcji” w ciągu jednej doby, czyli kilka frakcji dziennie. Całkowita dawka bywa nawet większa niż w klasycznym schemacie, ale dzięki podziałowi na mniejsze frakcje zmniejsza się ryzyko późnych powikłań w tkankach zdrowych. Typowym błędem myślowym jest utożsamianie słowa „hiper” z „więcej dni leczenia” albo „dłużej trwająca terapia”, podczas gdy w rzeczywistości chodzi o większą liczbę frakcji w jednostce czasu, najczęściej w jednym dniu. W nowoczesnych wytycznych radioterapii podkreśla się, że dobór schematu frakcjonowania zależy od biologii guza, wrażliwości narządów krytycznych, stanu ogólnego pacjenta oraz możliwości organizacyjnych ośrodka. Dlatego warto zapamiętać: hiperfrakcjonowanie = częściej w ciągu doby, a nie po prostu „częściej w tygodniu” czy „dłużej w kalendarzu”.

Pytanie 19

Zarejestrowany na obrazie TK artefakt jest spowodowany

Ilustracja do pytania
A. wysokim stężeniem środka cieniującego.
B. metalowym implantem.
C. nieliniowym osłabieniem wiązki.
D. ruchem mimowolnym.
Prawidłowo powiązałeś obraz z obecnością metalowego implantu. Na przedstawionym skanie TK widoczny jest bardzo typowy artefakt metaliczny: centralny, ekstremalnie jasny obszar (wysoka gęstość, wartości HU wykraczające poza skalę) oraz promieniste smugi i pasma wychodzące na zewnątrz. To tzw. streak artifacts. Metal bardzo silnie pochłania promieniowanie rentgenowskie, przez co detektory rejestrują skrajne wartości sygnału, a algorytm rekonstrukcji obrazu „gubi się” i tworzy te charakterystyczne smugi. Z mojego doświadczenia, tak wygląda np. endoproteza, śruba kostna, proteza stawu, czasem klips naczyniowy – zawsze coś metalowego o dużej gęstości. W praktyce technik TK powinien od razu kojarzyć taki obraz z metalem w polu badania i wiedzieć, że może to istotnie utrudniać ocenę struktur sąsiednich. Standardem jest wtedy stosowanie technik redukcji artefaktów: odpowiednie ułożenie pacjenta, dobór wyższej kV, włączenie algorytmów MAR (Metal Artifact Reduction) w konsoli, czasem rekonstrukcja iteracyjna lub dual-energy CT. Warto pamiętać, że artefakty od ruchu wyglądają inaczej – dają rozmycie, podwójne kontury, ząbkowanie krawędzi, a nie ostre, promieniste smugi wychodzące z jednego bardzo gęstego punktu. Również wysoki kontrast jodowy zwykle nie powoduje aż tak dramatycznych smug, choć może dawać tzw. blooming. W nowoczesnych protokołach TK zawsze uwzględnia się obecność metalu, bo ma to wpływ na dawkę, jakość obrazu i sposób interpretacji – radiolog musi wiedzieć, że część zmian może być zwyczajnie „ukryta” w artefaktach metalicznych. Moim zdaniem to jedno z ważniejszych rozpoznań artefaktu, bo występuje bardzo często w praktyce szpitalnej, szczególnie na ortopedii i neurochirurgii.

Pytanie 20

Na przekroju poprzecznym TK mózgu strzałką wskazano obszar

Ilustracja do pytania
A. hypodensyjny w móżdżku.
B. hypodensyjny w płacie czołowym.
C. hyperdensyjny w płacie czołowym.
D. hyperdensyjny w móżdżku.
Na przedstawionym przekroju poprzecznym TK głowy widoczny jest obraz w projekcji osiowej na poziomie tylnego dołu czaszki. Strzałka wyraźnie wskazuje strukturę położoną w obrębie móżdżku, poniżej półkul mózgowych i powyżej otworu wielkiego. Z mojego doświadczenia w opisywaniu takich badań najczęstszy błąd to pomylenie tego poziomu z płatami potylicznymi, ale tutaj widać typowy układ półkul móżdżku i robaka móżdżku. Zaznaczony obszar jest jaśniejszy niż prawidłowa tkanka móżdżku, czyli ma większą gęstość w jednostkach Hounsfielda – mówimy więc, że jest hyperdensyjny. W TK bez kontrastu taka hyperdensyjna zmiana w móżdżku najczęściej sugeruje świeży krwotok śródmózgowy lub krwotok do guza. W praktyce klinicznej rozpoznanie hyperdensyjnego ogniska w móżdżku ma duże znaczenie, bo krwotok w tej lokalizacji może szybko dawać wzrost ciśnienia śródczaszkowego i ucisk pnia mózgu. Standardowo, zgodnie z dobrymi praktykami radiologicznymi, opisując taki obraz, zwraca się uwagę na lokalizację (półkula móżdżku, robak), gęstość zmiany, obecność obrzęku, przemieszczenie struktur pośrodkowych i ewentualne poszerzenie układu komorowego. Warto też pamiętać, że hyperdensyjny obszar w TK może wynikać nie tylko z krwi, ale też z zwapnień, materiału kontrastowego lub ciała obcego, dlatego zawsze ocenia się kontekst kliniczny i porównuje z innymi warstwami oraz z wcześniejszymi badaniami. Moim zdaniem to pytanie dobrze uczy podstawowego odruchu: najpierw lokalizacja anatomiczna (tu móżdżek), dopiero potem charakter densyjny (hyper- czy hypodensyjny).

Pytanie 21

Parametr spirometryczny czynnościowa pojemność zalegająca oznaczany jest skrótem

A. TLC
B. TV
C. FRC
D. RV
Czynnościowa pojemność zalegająca to pojęcie, które bardzo łatwo pomylić z innymi objętościami płucnymi, bo nazwy i skróty są do siebie podobne, a wszystko kręci się wokół tych samych kilku litrów powietrza. Czynnościowa pojemność zalegająca oznaczana jest skrótem FRC (functional residual capacity) i opisuje ilość powietrza pozostającą w płucach po spokojnym wydechu. To jest stan równowagi między sprężystością płuc a sprężystością ściany klatki piersiowej. Wiele osób intuicyjnie zaznacza TLC, bo brzmi to „poważnie” – total lung capacity, czyli całkowita pojemność płuc. TLC to jednak maksymalna objętość gazu w płucach po najgłębszym możliwym wdechu. To zupełnie inny punkt krzywej oddechowej, skrajnie po stronie wdechu, podczas gdy FRC leży w środku, przy spokojnym oddychaniu. Utożsamianie TLC z FRC to typowy błąd polegający na myleniu pojemności opisujących maksima z pojemnościami opisującymi stan spoczynkowy. Kolejne częste skojarzenie to RV – residual volume, czyli objętość zalegająca. Sama nazwa „zalegająca” podpowiada, że może chodzić właśnie o czynnościową pojemność zalegającą. Problem w tym, że RV obejmuje tylko powietrze, którego nie można usunąć nawet przy maksymalnie forsownym wydechu. FRC jest większa, bo zawiera RV oraz dodatkowo zapasową objętość wydechową (ERV). Mylenie RV z FRC wynika zwykle z tego, że ktoś kojarzy słowo „zalegająca”, ale nie pamięta, że FRC to pojemność (czyli suma), a RV to tylko jedna z objętości. Odpowiedź TV też bywa wybierana przez osoby, które trzymają się bardziej podstaw: TV, czyli tidal volume, to objętość oddechowa – ilość powietrza nabieranego i wydychanego w jednym spokojnym oddechu. To tylko „porcja” powietrza, która krąży między wdechem a wydechem, a nie to, co zostaje w płucach po wydechu. Z mojego doświadczenia najbezpieczniej jest zapamiętać proste skojarzenie: po spokojnym wydechu zostaje FRC, po maksymalnym wydechu zostaje RV, a po maksymalnym wdechu mamy TLC. W dobrych praktykach interpretacji badań czynnościowych układu oddechowego, zgodnie z zaleceniami ATS/ERS, rozróżnienie tych parametrów jest kluczowe, bo każdy z nich inaczej zmienia się w chorobach obturacyjnych i restrykcyjnych. Bez tego łatwo się pogubić w opisie spirometrii czy pletyzmografii i wyciągnąć błędne wnioski kliniczne.

Pytanie 22

Radiogram jamy brzusznej uwidacznia

Ilustracja do pytania
A. złogi w nerkach.
B. złogi w pęcherzyku żółciowym.
C. połknięte ciało obce.
D. perforację przewodu pokarmowego.
Prawidłowo wskazana perforacja przewodu pokarmowego odnosi się do jednej z najważniejszych, wręcz klasycznych wskazań do wykonania przeglądowego radiogramu jamy brzusznej w projekcji stojącej. Na takim zdjęciu szukamy przede wszystkim wolnego powietrza w jamie otrzewnej – tzw. odmy otrzewnowej. Typowy obraz to pas powietrza pod kopułami przepony, oddzielony wyraźną linią od cienia wątroby lub śledziony. W standardach opisowych przyjmuje się, że nawet niewielka ilość gazu, jeżeli jest dobrze uwidoczniona pod przeponą, jest bardzo silnym argumentem za perforacją żołądka, dwunastnicy albo jelit. W praktyce ostrych dyżurów chirurgicznych takie RTG w projekcji stojącej albo bocznej leżącej jest szybkim, tanim i ciągle stosowanym badaniem przesiewowym, zanim pacjent trafi na TK. Moim zdaniem warto zapamiętać, że w sytuacji ostrego brzucha, nagłego bólu, twardego „deskowatego” brzucha – zlecenie RTG jamy brzusznej i klatki piersiowej w pozycji stojącej to standardowa dobra praktyka. Radiolog opisując obraz zwraca uwagę na obecność wolnego powietrza, poziomy płyn–powietrze, rozdęcie pętli jelitowych, ale to właśnie odma podprzeponowa jest najbardziej charakterystycznym i jednoznacznym wskaźnikiem perforacji. W przeciwieństwie do złogów czy ciał obcych, które mogą być widoczne albo nie (zależnie od ich wysycenia), wolne powietrze ma bardzo typową, kontrastową prezentację. Współczesne wytyczne sugerują, że TK jamy brzusznej jest dokładniejsza, ale zwykłe RTG nadal pozostaje ważnym, szybkim narzędziem wstępnej diagnostyki i triage’u pacjentów z podejrzeniem pęknięcia przewodu pokarmowego.

Pytanie 23

Podczas wykonywania zdjęcia rentgenowskiego lewobocznego czaszki promień centralny powinien przebiegać

A. od lewej do prawej strony czaszki, prostopadle do płaszczyzny czołowej.
B. od lewej do prawej strony czaszki, prostopadle do płaszczyzny strzałkowej.
C. od prawej do lewej strony czaszki, prostopadle do płaszczyzny czołowej.
D. od prawej do lewej strony czaszki, prostopadle do płaszczyzny strzałkowej.
Prawidłowa odpowiedź wynika z geometrii ułożenia pacjenta i definicji płaszczyzn anatomicznych. W projekcji lewobocznej czaszki badana jest lewa strona głowy, czyli to ona powinna przylegać do detektora (kasety). Żeby uzyskać obraz lewej strony możliwie ostry i bez powiększenia, promień centralny musi przechodzić z prawej do lewej strony czaszki – od strony lampy w kierunku detektora. To jest klasyczna zasada w radiografii: część badana bliżej detektora, lampa po stronie przeciwnej. Dodatkowo promień powinien być prostopadły do płaszczyzny strzałkowej, bo ta płaszczyzna dzieli ciało na część prawą i lewą. W lewym bocznym zdjęciu czaszki płaszczyzna strzałkowa pacjenta jest ustawiona równolegle do detektora, więc prostopadły do niej promień daje prawidłową, „czystą” projekcję boczną, bez skośnego nałożenia struktur. Płaszczyzna czołowa (frontalna) w tym ustawieniu jest z kolei prostopadła do detektora, więc promień padający prostopadle do niej dałby projekcję czołową, a nie boczną. W praktyce technik ustawia pacjenta bokiem do detektora, wyrównuje linie anatomiczne (np. linia między kątem oka a przewodem słuchowym zewnętrznym), sprawdza brak rotacji i pochyleń, a potem centralny promień kieruje z prawej na lewą, pod kątem 90° do płaszczyzny strzałkowej. Tak się uzyskuje standardowe boczne RTG czaszki zgodne z atlasami i wytycznymi radiologicznymi. Moim zdaniem warto sobie to zwizualizować na modelu czaszki, bo wtedy łatwiej zapamiętać, że „boczne = promień prostopadły do płaszczyzny strzałkowej, po stronie przeciwnej do badanej”.

Pytanie 24

Wskazaniem do wykonania scyntygrafii perfuzyjnej jest

A. zapalenie płuc.
B. zatorowość płucna.
C. ropień płuca.
D. ciężkie nadciśnienie płucne.
Prawidłowo wskazana zatorowość płucna jako główne wskazanie do scyntygrafii perfuzyjnej bardzo dobrze pokazuje zrozumienie roli medycyny nuklearnej w diagnostyce chorób układu oddechowego. Scyntygrafia perfuzyjna polega na dożylnym podaniu radiofarmaceutyku (najczęściej makroagregatów albuminy znakowanych technetem-99m), które zatrzymują się w naczyniach włosowatych płuc proporcjonalnie do przepływu krwi. Gammakamera rejestruje rozkład perfuzji w miąższu płucnym. W zatorowości płucnej typowym obrazem są ogniskowe ubytki gromadzenia znacznika w obszarach, gdzie doszło do zamknięcia tętnicy płucnej lub jej odgałęzień, przy jednocześnie zachowanej wentylacji (w badaniu V/Q – ventilation/perfusion). W praktyce klinicznej scyntygrafię perfuzyjną wykonuje się, gdy podejrzewa się zatorowość, a np. angio-TK klatki piersiowej jest przeciwwskazana (ciężka niewydolność nerek, alergia na jodowy środek cieniujący, ciąża) lub daje niejednoznaczny wynik. W wytycznych (np. europejskich ESC/ERS) scyntygrafia V/Q jest uznawana za równorzędną metodę obrazowania w PE, szczególnie u młodych pacjentów i kobiet w ciąży, bo wiąże się z mniejszą dawką promieniowania dla gruczołów sutkowych. Moim zdaniem w praktyce warto też pamiętać o interpretacji w kontekście obrazu klinicznego i D-dimerów, bo sama scyntygrafia nie rozwiązuje wszystkiego, ale bardzo pomaga odróżnić zator od zmian zapalnych czy przewlekłej choroby płuc. Dobrą praktyką jest łączenie perfuzji z oceną wentylacji, bo dopiero niezgodność tych dwóch map jest naprawdę charakterystyczna dla ostrej zatorowości płucnej.

Pytanie 25

Dobierz dla standardowego pacjenta projekcję, pozycję i sposób ułożenia kasety o wymiarach 30 cm x 40 cm do zdjęcia przeglądowego układu moczowego.

ProjekcjaPozycjaUłożenie kasety
1.AP3.stojąca5.poprzeczne
2.PA4.leżąca6.podłużne
A. 2, 4, 5
B. 2, 3, 6
C. 1, 4, 6
D. 1, 3, 5
Prawidłowo dobrana kombinacja 1, 4, 6 oznacza projekcję AP, pozycję leżącą i ułożenie kasety podłużne – dokładnie tak, jak wykonuje się standardowe zdjęcie przeglądowe układu moczowego (tzw. KUB – kidneys, ureters, bladder). W praktyce klinicznej większość takich badań robi się w pozycji leżącej na plecach, bo pozwala to spokojnie ułożyć pacjenta, dobrze wycentrować wiązkę i zminimalizować poruszenie. Projekcja AP oznacza, że promień główny biegnie od przodu do tyłu pacjenta, czyli pacjent leży plecami na detektorze, a lampa jest nad brzuchem. To jest najbardziej klasyczny układ w radiografii przeglądowej jamy brzusznej i miednicy. Kaseta 30×40 cm w tym badaniu powinna być ułożona wzdłuż długiej osi ciała (podłużnie), żeby objąć od górnych biegunów nerek aż do okolicy spojenia łonowego i pęcherza moczowego. Przy ułożeniu poprzecznym zwykle zabrakłoby zasięgu w kierunku czaszkowo-ogonowym, szczególnie u wyższych pacjentów. Moim zdaniem warto zapamiętać prostą regułę: gdy interesuje nas cały układ moczowy w jednym ujęciu, wybieramy AP leżące z kasetą podłużnie, centrowanie na poziom grzebieni biodrowych, lekkie zwiększenie kV w stosunku do typowego brzucha, tak żeby dobrze uwidocznić zarysy nerek, cienie złogów i gaz w jelitach. W wielu pracowniach to badanie jest jednym z podstawowych przed urografią czy TK, więc dobrze opanowana technika AP leżące + kaseta podłużnie to po prostu codzienny chleb technika RTG.

Pytanie 26

Strzałką na schemacie oznaczono

Ilustracja do pytania
A. lewą odnogę pęczka Hisa.
B. prawą odnogę pęczka Hisa.
C. węzeł przedsionkowo-komorowy.
D. węzeł zatokowo-przedsionkowy.
Strzałka na schemacie pokazuje strukturę położoną w ścianie prawego przedsionka, przy ujściu żyły głównej górnej – to klasyczna lokalizacja węzła zatokowo‑przedsionkowego (SA). Ten węzeł to fizjologiczny rozrusznik serca: generuje impulsy elektryczne, które następnie szerzą się przez mięsień przedsionków i dalej trafiają do węzła przedsionkowo‑komorowego. Moim zdaniem warto to sobie skojarzyć tak: wszystko „zaczyna się” w prawym przedsionku, wysoko, przy żyle głównej górnej. W praktyce diagnostyki elektromedycznej znajomość położenia SA ma znaczenie np. przy interpretacji EKG – rytm zatokowy oznacza, że bodźce powstają właśnie w tym węźle. Na zapisie widzimy wtedy prawidłowe załamki P dodatnie w odprowadzeniach kończynowych (np. II, aVF), z równym odstępem między kolejnymi załamkami R. W badaniach obrazowych (echo serca, TK, MR) węzła nie widać tak ładnie jak na schemacie, ale orientacja anatomiczna jest ta sama: górna część prawego przedsionka, grzebień graniczny. W praktyce klinicznej zaburzenia funkcji węzła zatokowo‑przedsionkowego prowadzą do tzw. choroby węzła zatokowego, bradykardii zatokowej czy naprzemiennych okresów tachy‑ i bradykardii. Wtedy często konieczne jest wszczepienie stymulatora serca, który przejmuje rolę naturalnego rozrusznika. W technice EKG i przy analizie zabiegów elektroterapii (ablacje, implantacje stymulatorów) rozumienie, skąd fizjologicznie startuje impuls, jest absolutną podstawą i pomaga unikać błędów interpretacyjnych. Dlatego dobrze, że kojarzysz ten mały „guzek” przy żyle głównej górnej właśnie z węzłem zatokowo‑przedsionkowym.

Pytanie 27

W badaniu EEG elektrody referencyjne przymocowane do płatka ucha to

A. P3, P4
B. C3, C4
C. Fp1,Fp2
D. A1, A2
Prawidłowo – w klasycznym badaniu EEG elektrody referencyjne umieszczane na płatkach uszu oznaczamy jako A1 (ucho lewe) i A2 (ucho prawe). Litera „A” pochodzi od słowa „auricular”, czyli uszny. W systemie 10–20 to jest standardowe, międzynarodowo przyjęte oznaczenie i praktycznie w każdej pracowni EEG, która trzyma się zaleceń IFCN (International Federation of Clinical Neurophysiology), spotkasz właśnie te symbole. Płatki uszu traktuje się jako miejsca stosunkowo „elektrycznie spokojne”, czyli z mniejszym udziałem aktywności korowej, dlatego dobrze się nadają na elektrody odniesienia w wielu montażach, np. w montażu uszno-mózgowym (ear-linked). W praktyce technik EEG często sprawdza, czy A1 i A2 są poprawnie przymocowane, bo jeśli kontakt z płatkiem ucha jest słaby, to później w zapisie widzimy sztuczne różnice potencjałów i pojawiają się fałszywe asymetrie między półkulami. Co ciekawe, w niektórych pracowniach stosuje się referencję złączoną A1+A2, żeby zminimalizować wpływ jednostronnych zakłóceń. Moim zdaniem warto zapamiętać, że A1/A2 to taki punkt wyjścia – jak zobaczysz w opisie montażu „referencja do A1/A2”, od razu wiesz, że chodzi o płatki uszu, a nie o okolice czaszkowe. Znajomość tych oznaczeń ułatwia potem interpretację zapisu, rozróżnianie artefaktów od rzeczywistej aktywności bioelektrycznej mózgu oraz poprawne porównywanie zapisów między różnymi pracowniami i aparatami EEG. To jest po prostu element podstawowej „mapy” głowy w EEG, bez którego ciężko się poruszać w diagnostyce elektromedycznej.

Pytanie 28

Brachyterapia polegająca na wielokrotnym wsuwaniu i wysuwaniu źródła promieniowania do tego samego aplikatora nosi nazwę

A. PDR
B. LDR
C. HDR
D. MDR
Prawidłowa odpowiedź to PDR, czyli Pulsed Dose Rate brachyterapia. Chodzi dokładnie o taką technikę, gdzie wysokoaktywny izotop (najczęściej Ir-192) jest wielokrotnie wsuwany i wysuwany do tego samego aplikatora w krótkich, powtarzających się impulsach dawki. Mechanicznie wygląda to bardzo podobnie do HDR, bo też używa się afterloadera krokowego, który przemieszcza źródło po kolejnych pozycjach w aplikatorze, ale kluczowa różnica jest w sposobie podawania dawki w czasie: w PDR podaje się wiele krótkich impulsów, np. co godzinę, tak żeby biologicznie przypominało to napromienianie ciągłe jak w klasycznej LDR. W praktyce klinicznej PDR jest często stosowana tam, gdzie chcemy mieć precyzję i elastyczność HDR (dokładne pozycjonowanie źródła, możliwość modyfikacji planu), ale jednocześnie zależy nam na ochronie tkanek zdrowych dzięki efektowi repopulacji i naprawy uszkodzeń DNA pomiędzy impulsami. Moim zdaniem fajne w PDR jest to, że łączy trochę dwa światy: technologię wysokiej mocy dawki z radiobiologią dawki niskiej. W zaleceniach międzynarodowych (np. ESTRO, ICRU) podkreśla się, że planowanie PDR wymaga bardzo dokładnego określenia czasu trwania impulsu, przerw między impulsami oraz całkowitej dawki, bo z punktu widzenia tkanek liczy się nie tylko suma Gy, ale też rozkład w czasie. W codziennej pracy technika czy fizyka medycznego ważne jest rozumienie, że „pulsed” w nazwie to właśnie te wielokrotne wjazdy i wyjazdy źródła do tego samego aplikatora według zaprogramowanego harmonogramu, a nie jednorazowa ekspozycja jak w HDR. Dzięki temu łatwiej odróżnić PDR od pozostałych skrótów, które mówią głównie o mocy dawki, a nie o tym specyficznym, impulsowym sposobie jej podawania.

Pytanie 29

Do pomiaru dawek indywidualnych u osób narażonych zawodowo na promieniowanie rentgenowskie są stosowane

A. detektory termoluminescencyjne.
B. liczniki geigera.
C. detektory półprzewodnikowe.
D. liczniki scyntylacyjne.
Prawidłowa odpowiedź to detektory termoluminescencyjne i dokładnie takie dozymetry są standardem w ochronie radiologicznej pracowników narażonych na promieniowanie rentgenowskie. Dozymetr termoluminescencyjny (TLD) zawiera kryształ, najczęściej fluorek litu (LiF) albo inne materiały termoluminescencyjne, w których podczas napromieniania gromadzi się energia z promieniowania jonizującego. Później, w pracowni dozymetrycznej, ten kryształ jest podgrzewany w specjalnym czytniku, a zgromadzona energia jest uwalniana w postaci światła. Ilość tego światła jest proporcjonalna do pochłoniętej dawki. To pozwala bardzo dokładnie wyznaczyć dawkę indywidualną, czyli to, co faktycznie „złapał” pracownik na swoim ciele. W praktyce takie dozymetry nosi się zwykle na klatce piersiowej, czasem dodatkowo przy tarczycy lub dłoniach, zależnie od rodzaju pracy. Z mojego doświadczenia w pracowniach RTG i TK właśnie TLD są najczęściej spotykane, bo są małe, tanie, stabilne i dobrze znoszą warunki codziennej pracy. Spełniają wymagania przepisów BHP i zaleceń inspekcji sanitarnej oraz Państwowej Agencji Atomistyki dotyczących monitorowania dawek zawodowych. W wielu ośrodkach stosuje się też tzw. dawkomierze pierścionkowe TLD dla osób pracujących blisko wiązki, np. przy zabiegach hemodynamicznych czy w salach hybrydowych. Warto też pamiętać, że dozymetr indywidualny nie służy do bieżącej kontroli w czasie zabiegu, tylko do oceny skumulowanej dawki w miesięcznych lub kwartalnych okresach rozliczeniowych. To jest typowa i uznana dobra praktyka w ochronie radiologicznej personelu medycznego.

Pytanie 30

Elementem systemu rejestracji obrazu, w którym fotony promieniowania X są bezpośrednio konwertowane na sygnał elektryczny, jest

A. płyta luminoforowa.
B. detektor z jodkiem cezu.
C. błona halogenosrebrowa.
D. detektor z amorficznym selenem.
W tym pytaniu bardzo łatwo dać się złapać na skojarzenie, że każdy nowoczesny detektor cyfrowy „konwertuje promieniowanie X na sygnał elektryczny”, więc każda z opcji brzmi trochę sensownie. Klucz leży jednak w słowie „bezpośrednio”. W systemach bezpośrednich fotony promieniowania X wnikają w warstwę półprzewodnika i tam od razu generują ładunek elektryczny. W systemach pośrednich jest etap światła pośredniego – promieniowanie X najpierw zamieniane jest na fotony widzialne w luminoforze, a dopiero to światło przetwarzane jest na sygnał elektryczny w fotodiodach. Płyta luminoforowa, znana z radiografii pośredniej (CR), jest typowym przykładem detekcji pośredniej. Promieniowanie X wzbudza centra pułapkowe w fosforze, a obraz jest „zapisany” w postaci energii uwięzionej. Dopiero później laser w czytniku CR wzbudza płytę, ta emituje światło, które fotopowielacz zamienia na sygnał elektryczny. Mamy więc kilka kroków, żadnego bezpośredniego przejścia X → ładunek. Detektor z jodkiem cezu (CsI) również nie jest układem bezpośrednim. CsI działa jak scyntylator: promieniowanie X jest pochłaniane i emitowane jest światło widzialne, które dopiero w kolejnym etapie pada na matrycę fotodiod (najczęściej z amorficznego krzemu) i tam dopiero powstaje sygnał elektryczny. Tego typu panele są bardzo popularne w radiografii przyłóżkowej i w aparatach stacjonarnych, ale to nadal jest detekcja pośrednia. Błona halogenosrebrowa w klasycznej radiografii analogowej też nie spełnia warunku bezpośredniej konwersji na sygnał elektryczny. Tam promieniowanie X (lub światło z ekranu wzmacniającego) powoduje zmiany fotochemiczne w kryształkach halogenków srebra. Obraz staje się widoczny dopiero po procesie chemicznym wywoływania i utrwalania, a nie jest w ogóle sygnałem elektrycznym. To już w ogóle zupełnie inny świat technologiczny. Typowy błąd myślowy polega na tym, że skoro na końcu zawsze mamy cyfrowy obraz, to wydaje się, że każdy element „jakimś cudem” działa elektrycznie. W rzeczywistości tylko detektor z amorficznym selenem w tym zestawie robi bezpośrednią konwersję promieniowania X na ładunek elektryczny, bez etapu światła ani procesów chemicznych. Dlatego właśnie ta odpowiedź jest jedyna zgodna z fizyką działania nowoczesnych detektorów bezpośrednich.

Pytanie 31

Który obszar napromieniania wskazano na ilustracji strzałką?

Ilustracja do pytania
A. Kliniczny obszar napromieniania.
B. Obszar napromieniany.
C. Zaplanowany obszar napromieniania.
D. Obszar leczony.
W tym pytaniu haczyk polega na rozróżnieniu kilku bardzo podobnie brzmiących pojęć, które w radioterapii mają jednak ściśle określone znaczenie. Na schemacie widzimy kilka koncentrycznych obszarów: środek odpowiada zwykle guzowi makroskopowemu (GTV), kolejna warstwa – klinicznemu obszarowi napromieniania (CTV), a jeszcze większy obszar – zaplanowanemu obszarowi napromieniania (PTV). Strzałka wskazuje właśnie tę warstwę odpowiadającą CTV, a nie ogólnie „obszarowi leczonemu” czy „obszarowi napromienianemu”. Określenie „obszar leczony” jest potoczne, bardzo nieprecyzyjne. Może oznaczać zarówno sam guz, jak i całą objętość objętą dawką terapeutyczną, a czasem nawet cały region anatomiczny. W dokumentacji i planowaniu unika się tak ogólnych słów, bo prowadzą do nieporozumień między lekarzem, fizykiem a technikiem. Standardy ICRU kładą nacisk na używanie konkretnych terminów: GTV, CTV, PTV, OAR. Jeśli ktoś zaznacza „obszar leczony”, to z punktu widzenia fizyki planowania w zasadzie nie wiadomo, o czym dokładnie mówi. Z kolei odpowiedź „obszar napromieniany” też jest zbyt ogólna. W pewnym sensie każda z tych stref jest napromieniana, bo wiązka promieniowania przechodzi przez nie wszystkie. Jednak w radioterapii precyzyjnej nie wystarczy powiedzieć „obszar napromieniany”, trzeba określić, czy mówimy o objętości celu klinicznego, czy o objętości z marginesem na błędy ustawienia. Typowym błędem myślowym jest utożsamianie wszystkiego, co otrzymuje dawkę, z jednym „obszarem napromieniania”, bez rozróżnienia poziomów planowania. Odpowiedź „zaplanowany obszar napromieniania” sugeruje PTV, czyli CTV powiększony o margines na niepewności (ruchy narządów, niedokładność pozycjonowania, zmiany objętości w trakcie leczenia). Na rysunkach schematycznych PTV jest zazwyczaj największym kolorowym obszarem wokół guza, a nie tym węższym pierścieniem. Typowe nieporozumienie polega na tym, że osoba ucząca się widzi kolorowy obrys wokół guza i automatycznie kojarzy go z „zaplanowaną” objętością, pomijając fakt, że CTV też jest już elementem planu, ale bez dodanych marginesów technicznych. Z mojego doświadczenia warto sobie utrwalić prostą zasadę: CTV = rozszerzenie guza o szerzenie mikroskopowe, PTV = CTV + margines bezpieczeństwa na błędy i ruch. Jeśli mylimy te pojęcia, łatwo potem źle interpretować plany leczenia, dawki brzegowe i tolerancje ustawienia pacjenta.

Pytanie 32

Folia wzmacniająca umieszczona w kasecie rentgenowskiej emituje pod wpływem promieniowania X światło

A. ultrafioletowe, wymagające zwiększenia dawki promieniowania do wykonania badania.
B. ultrafioletowe, umożliwiające zmniejszenie dawki promieniowania do wykonania badania.
C. widzialne, umożliwiające zmniejszenie dawki promieniowania do wykonania badania.
D. widzialne, wymagające zwiększenia dawki promieniowania do wykonania badania.
Prawidłowo – folia wzmacniająca (ekran wzmacniający) w kasecie rentgenowskiej emituje światło widzialne, a jej głównym zadaniem jest właśnie umożliwienie zmniejszenia dawki promieniowania X potrzebnej do wykonania zdjęcia. Promieniowanie rentgenowskie pada na folię, a kryształy luminoforu (np. wolframian wapnia w starszych kasetach albo związki ziem rzadkich – gadolinu, lantanu – w nowoczesnych) pochłaniają fotony X i zamieniają ich energię na błysk światła widzialnego. To światło naświetla film dużo efektywniej niż same fotony X, dlatego do uzyskania odpowiedniej czerni na filmie wystarczy znacznie mniejsza dawka promieniowania. W praktyce klinicznej oznacza to realne obniżenie narażenia pacjenta – w klasycznych systemach analogowych nawet kilkukrotne. Moim zdaniem to jeden z podstawowych przykładów, jak fizyka medyczna przekłada się na ochronę radiologiczną w codziennej pracy. W nowoczesnych kasetach CR/DR idea jest podobna: mamy warstwę fosforową lub detektor półprzewodnikowy, który też ma za zadanie jak najlepiej „wyłapać” fotony X i przekształcić je w sygnał (świetlny lub elektryczny), żeby nie trzeba było sztucznie podkręcać dawki. Ważna dobra praktyka: zawsze dobiera się kasetę i rodzaj folii do typu badania (np. folie o większej czułości do badań pediatrycznych), właśnie po to, żeby zgodnie ze standardem ALARA (As Low As Reasonably Achievable) trzymać dawki jak najniższe przy zachowaniu diagnostycznej jakości obrazu. Widać to choćby przy zdjęciach klatki piersiowej – odpowiednio dobrany ekran wzmacniający pozwala skrócić czas ekspozycji, zmniejszyć dawkę i jednocześnie ograniczyć poruszenie obrazu.

Pytanie 33

W lampie rentgenowskiej promieniowanie X powstaje w wyniku hamowania

A. elektronów na katodzie.
B. protonów na katodzie.
C. elektronów na anodzie.
D. protonów na anodzie.
Poprawnie – w lampie rentgenowskiej promieniowanie X powstaje głównie w wyniku gwałtownego hamowania szybkich elektronów na anodzie. W typowej lampie mamy katodę (żarnik), która emituje elektrony przez emisję termojonową. Następnie między katodą a anodą przykładane jest wysokie napięcie, zwykle kilkadziesiąt do nawet ponad 100 kV. To napięcie bardzo mocno przyspiesza elektrony w próżni w kierunku anody. Kiedy te rozpędzone elektrony uderzają w materiał anody (najczęściej wolfram, rzadziej molibden lub inne stopy), są gwałtownie hamowane w polu elektrycznym jąder atomowych anody. I właśnie to hamowanie powoduje emisję promieniowania hamowania, tzw. bremsstrahlung, które stanowi podstawową część widma promieniowania rentgenowskiego. Dodatkowo dochodzi jeszcze promieniowanie charakterystyczne, gdy elektron wybija elektron z wewnętrznej powłoki atomu wolframu, ale ono też powstaje w materiale anody, a nie na katodzie. W praktyce technik obrazowania musi rozumieć, że zmiana napięcia na lampie (kV) wpływa na energię elektronów i tym samym na energię i przenikliwość promieniowania X, a zmiana natężenia prądu (mA) wpływa głównie na ilość elektronów, czyli na ilość promieniowania. Z mojego doświadczenia opłaca się to dobrze ogarnąć, bo potem łatwiej rozumie się zależności między ustawieniami aparatu a jakością obrazu i dawką dla pacjenta. W nowoczesnych aparatach RTG cała konstrukcja lampy, chłodzenie anody (np. anoda obrotowa) i dobór materiałów są oparte właśnie na tym zjawisku hamowania elektronów w anodzie, żeby uzyskać dużo stabilnego promieniowania przy jednoczesnym bezpiecznym odprowadzeniu ciepła.

Pytanie 34

Na którym z zapisów EKG została uwidoczniona fala Pardee'go?

A. Zapis 1
Ilustracja do odpowiedzi A
B. Zapis 4
Ilustracja do odpowiedzi B
C. Zapis 2
Ilustracja do odpowiedzi C
D. Zapis 3
Ilustracja do odpowiedzi D
Na przedstawionych zapisach łatwo się pomylić, bo wszystkie pokazują jakieś odchylenia od typowego, książkowego EKG, ale tylko zapis 3 spełnia kryteria fali Pardee’go, czyli uniesienia odcinka ST typowego dla ostrego zawału z uniesieniem ST. W innych zapisach widzimy zmiany, które mogą sugerować różne stany – od przerostów, przez zaburzenia przewodzenia, aż po nieswoiste zaburzenia repolaryzacji – ale nie mają one klasycznego, ciągłego, kopulastego uniesienia ST z gładkim przejściem w dodatnią falę T. Typowym błędem jest utożsamianie każdego wyższego załamka R lub poszerzonego zespołu QRS z falą Pardee’go. Fala Pardee’go nie dotyczy zespołu QRS, tylko odcinka ST i kształtu całego kompleksu ST–T. Często też myli się ją z tzw. wczesną repolaryzacją, gdzie ST jest uniesiony, ale zwykle w odprowadzeniach przedsercowych u młodych osób, z wyraźnym punktem J i raczej wklęsłym do góry kształtem. W zawale ST-elevated uniesienie jest zwykle bardziej kopulaste, wypukłe, powiązane z objawami klinicznymi (ból zamostkowy, duszność, poty) i często towarzyszą mu inne cechy, np. załamki Q w późniejszej fazie czy zmiany lustrzane w przeciwległych odprowadzeniach. Z mojego doświadczenia dużym problemem jest też skupianie się tylko na jednym odprowadzeniu. Standardem jest ocena uniesienia ST w co najmniej dwóch sąsiednich odprowadzeniach – dopiero wtedy mówimy o obrazie zawału STEMI. W pozostałych zapisach z pytania brakuje tego typowego, równomiernego, kopulastego uniesienia ST, przez co nie spełniają one kryteriów fali Pardee’go, mimo że na pierwszy rzut oka „coś tam jest nie tak”. W praktyce warto więc nie tylko patrzeć na wysokość ST, ale też na jego kształt, kontekst kliniczny i rozmieszczenie zmian w różnych odprowadzeniach.

Pytanie 35

Który radioizotop jest emiterem promieniowania alfa?

A. ¹³¹I
B. ⁹⁹ᵐTc
C. ²²³Ra
D. ¹⁸F
W tym pytaniu łatwo się pomylić, bo wszystkie podane izotopy są dobrze znane w medycynie, ale pełnią zupełnie różne role i emitują różne typy promieniowania. Kluczowe jest rozróżnienie, które radioizotopy są typowo diagnostyczne, a które terapeutyczne, oraz jaki jest ich główny rodzaj promieniowania. Fluor-18 jest klasycznym izotopem stosowanym w PET. To emiter beta plus (β+), czyli emituje pozytony. Pozyton anihiluje z elektronem, powstają dwa kwanty promieniowania gamma 511 keV, rejestrowane przez detektory w skanerze PET. On nie jest emiterem alfa, więc mimo że często pojawia się w praktyce, nie pasuje do tego pytania. Jod-131 to z kolei izotop kojarzony z leczeniem chorób tarczycy i diagnostyką scyntygraficzną. Jego główne znaczenie terapeutyczne wynika z emisji promieniowania beta minus (β−), które ma zasięg kilku milimetrów w tkance i pozwala niszczyć komórki tarczycy. Dodatkowo emituje promieniowanie gamma, przydatne diagnostycznie. Wiele osób myli silne działanie terapeutyczne z promieniowaniem alfa, ale tutaj to nadal beta minus. Technet-99m jest natomiast złotym standardem w diagnostyce scyntygraficznej. Emituje głównie promieniowanie gamma o energii około 140 keV, idealne do obrazowania gammakamerą. Ten izotop prawie nie ma zastosowania terapeutycznego, bo nie emituje ani beta, ani alfa w sposób klinicznie istotny. Mylenie go z emiterem alfa wynika czasem z tego, że jest „wszędzie” w medycynie nuklearnej, więc intuicyjnie wydaje się dobrym kandydatem. W rzeczywistości jedynym z wymienionych izotopów, który jest typowym emiterem promieniowania alfa, jest rad-223. To on ma wysokie LET, bardzo krótki zasięg w tkance i jest używany w terapii izotopowej, a nie w obrazowaniu. Dobra praktyka jest taka, żeby przy nauce radioizotopów od razu łączyć: rodzaj promieniowania + zastosowanie (diagnostyka/terapia) + przykład badania lub procedury klinicznej. To mocno ułatwia unikanie takich pomyłek.

Pytanie 36

Który wynik badania tympanometrycznego potwierdza, że słuch badanego pacjenta jest w granicach normy?

A. Wynik badania 4
Ilustracja do odpowiedzi A
B. Wynik badania 3
Ilustracja do odpowiedzi B
C. Wynik badania 2
Ilustracja do odpowiedzi C
D. Wynik badania 1
Ilustracja do odpowiedzi D
W tym pytaniu łatwo dać się zmylić samym kształtem krzywej albo jej wysokością, ale kluczowa jest lokalizacja szczytu oraz ogólny typ tympanogramu. W prawidłowym uchu środkowym mówimy o typie A, gdzie maksymalna podatność błony bębenkowej wypada w okolicy 0 daPa. Jeśli szczyt jest wyraźnie przesunięty w stronę ciśnień ujemnych, jak na jednym z zaprezentowanych wykresów, sugeruje to typ C. Taki obraz wiąże się najczęściej z podciśnieniem w jamie bębenkowej, np. przy zaburzonej drożności trąbki słuchowej, początkach wysiękowego zapalenia ucha albo po infekcji górnych dróg oddechowych. Ucho może jeszcze nie dawać dużego ubytku w audiometrii, ale nie uznajemy tego za stan w pełni prawidłowy. Inny wykres pokazuje prawie płaską linię, bez wyraźnego szczytu – to typ B. Jest on typowy dla obecności płynu w uchu środkowym, perforacji błony bębenkowej lub nieprawidłowości w działaniu drenu wentylacyjnego. W takim przypadku błona bębenkowa praktycznie nie zmienia swojej podatności przy zmianach ciśnienia w przewodzie słuchowym zewnętrznym. To klasyczny obraz przewodzeniowego zaburzenia słuchu i zdecydowanie nie potwierdza prawidłowego słyszenia. Można też spotkać wykres z bardzo wysokim, wąskim lub przesadnie szerokim szczytem, który odpowiada typom Ad lub As. W typie Ad mamy nadmierną podatność, np. przy zbyt wiotkiej błonie bębenkowej albo przerwaniu łańcucha kosteczek, co w praktyce może dawać ubytek słuchu mimo pozornie „ładnej” krzywej. W typie As szczyt jest niski i spłaszczony, co sugeruje usztywnienie układu przewodzącego, np. w otosklerozie. Typowym błędem myślowym jest ocenianie jedynie kształtu „wierzchołka” bez zwrócenia uwagi na położenie względem osi ciśnienia i bez znajomości klasyfikacji Jergera. W badaniu tympanometrycznym zawsze trzeba łączyć pozycję szczytu, jego amplitudę oraz szerokość z obrazem klinicznym i wynikami audiometrii. Dlatego tylko krzywa o cechach typu A, jak w odpowiedzi 3, może być uznana za potwierdzenie słuchu w granicach normy.

Pytanie 37

Hiperfrakcjonowanie dawki w radioterapii oznacza napromienienie pacjenta

A. raz dziennie.
B. raz w tygodniu.
C. 2-3 razy w tygodniu.
D. 2-3 razy dziennie.
Nieprawidłowe odpowiedzi wynikają zwykle z mylenia pojęć związanych z różnymi schematami frakcjonowania dawki w radioterapii. Standardowa frakcjonacja to jedna frakcja dziennie, 5 razy w tygodniu, i właśnie taki schemat bywa intuicyjnie kojarzony z każdym leczeniem napromienianiem. Jednak hiperfrakcjonowanie to zupełnie inna koncepcja radiobiologiczna: chodzi o zwiększenie liczby frakcji w ciągu doby przy jednoczesnym zmniejszeniu dawki na pojedynczą frakcję. Dlatego odpowiedź sugerująca napromienianie raz dziennie opisuje standardowy, konwencjonalny schemat, a nie hiperfrakcjonowanie. Z kolei pomysł napromieniania raz w tygodniu lub 2–3 razy w tygodniu odpowiada raczej bardzo nietypowym, eksperymentalnym albo paliatywnym schematom, w których dawka na frakcję jest często wysoka, a przerwy między frakcjami długie. To jest bliższe hipofrakcjonowaniu, gdzie daje się mniej frakcji, ale o większej dawce, albo jedynie leczeniu objawowemu, a nie hiperfrakcjonowaniu. Typowym błędem myślowym jest utożsamianie słowa „hiper” z „więcej w sensie dawki jednorazowej” zamiast „więcej w sensie liczby frakcji”. W radioterapii terminy są dość precyzyjne: hiperfrakcjonowanie – więcej frakcji na dobę, mniejsza dawka na frakcję; hipofrakcjonowanie – mniej frakcji, większa dawka na frakcję. Jeśli więc ktoś wybiera odpowiedź z częstością tygodniową, to tak jakby odwracał logikę pojęcia. Z mojego doświadczenia dobrze jest skojarzyć to z organizacją pracy zakładu: hiperfrakcjonowanie wymaga, żeby pacjent pojawiał się 2–3 razy dziennie na akceleratorze, co ma bezpośredni wpływ na planowanie grafiku, kontrolę dawki i logistykę całego leczenia. Raz w tygodniu czy kilka razy w tygodniu nie spełnia tego założenia, bo nie zwiększa liczby frakcji na dobę, tylko wydłuża całkowity czas leczenia i zmienia zupełnie profil biologiczny dawki.

Pytanie 38

Dobierz dla standardowego pacjenta projekcję, pozycję i sposób ułożenia kasety o wymiarach 30 cm × 40 cm do zdjęcia przeglądowego układu moczowego.

ProjekcjaPozycjaUłożenie kasety
1.AP3.stojąca5.poprzeczne
2.PA4.leżąca6.podłużne
A. 1, 4, 6
B. 2, 3, 6
C. 2, 4, 5
D. 1, 3, 5
Prawidłowy zestaw to projekcja AP, pozycja leżąca i ułożenie kasety podłużne, czyli odpowiedź 1, 4, 6. W badaniu przeglądowym układu moczowego (tzw. KUB – nerki, moczowody, pęcherz) standardem jest projekcja przednio‑tylna, bo pacjent leży na plecach, a promień główny biegnie z przodu do tyłu. Taka projekcja AP daje stabilne warunki, małą odległość narządów od kasety i mniejsze zniekształcenia obrazu. Pozycja leżąca jest szczególnie ważna u pacjenta standardowego, bo pozwala dobrze odwzorować zarysy nerek, przebieg moczowodów i zarys pęcherza, bez wpływu przesunięć narządów związanych z grawitacją, które w pozycji stojącej mogą trochę zmieniać położenie struktur. Z mojego doświadczenia, w pozycji leżącej łatwiej też pacjentowi spokojnie wytrzymać ekspozycję i utrzymać bezruch. Kasetę 30×40 cm układamy podłużnie (dłuższy bok w osi długiej ciała), bo musimy objąć od górnych biegunów nerek aż po dolny brzeg spojenia łonowego, gdzie znajduje się pęcherz moczowy. Przy poprzecznym ustawieniu tej kasety zwyczajnie zabrakłoby nam zasięgu w osi czaszkowo‑ogonowej. W praktyce radiologicznej takie ułożenie – AP, leżąca, kaseta podłużnie – jest opisywane w podręcznikach i wytycznych jako podstawowy standard projekcyjny dla przeglądowego RTG jamy brzusznej pod kątem układu moczowego. Warto też pamiętać o prawidłowym centrowaniu: środek kasety zwykle na poziomie grzebieni biodrowych, z lekką korektą w zależności od wzrostu pacjenta, oraz o odległości ognisko–kaseta ok. 100–115 cm, co poprawia ostrość i ogranicza powiększenie anatomicznych struktur.

Pytanie 39

Jakie są wielkości mocy dawki stosowanej w brachyterapii HDR?

A. 0,4 – 2 Gy/godzinę.
B. 7 – 12 Gy/godzinę.
C. ponad 12 Gy/godzinę.
D. 3 – 6 Gy/godzinę.
Poprawna moc dawki dla brachyterapii HDR to wartości powyżej 12 Gy/godzinę i to właśnie odróżnia ten typ brachyterapii od LDR i PDR. W klasycznym podziale przyjmuje się, że brachyterapia niskiej mocy dawki (LDR) to zakres mniej więcej 0,4–2 Gy/godz., brachyterapia pulsacyjna (PDR) imituje LDR, ale podaje dawkę w krótkich impulsach, a HDR (High Dose Rate) to już dawki zdecydowanie wyższe – właśnie >12 Gy/godz. Ten podział nie jest przypadkowy, tylko wynika z radiobiologii tkanek i bezpieczeństwa prowadzenia leczenia. W HDR stosuje się bardzo aktywne źródła, najczęściej Ir-192, które wprowadzane są do aplikatorów na bardzo krótki czas, zwykle kilka–kilkanaście minut na frakcję. Dzięki tak wysokiej mocy dawki można uzyskać duże dawki frakcyjne w guzie przy bardzo precyzyjnym planowaniu, a jednocześnie ograniczyć napromienienie tkanek zdrowych. W praktyce klinicznej HDR wykorzystuje się np. w raku szyjki macicy, raka trzonu macicy, prostaty, nowotworach głowy i szyi czy w leczeniu zmian skórnych. W planowaniu zgodnie z dobrymi praktykami (np. zalecenia ESTRO, ICRU) bardzo ważne jest, żeby rozumieć różnice między mocą dawki a całkowitą dawką i dawką na frakcję – moc dawki >12 Gy/godz. nie oznacza, że pacjent dostaje taką dawkę całkowitą, tylko że tak szybko jest ona podawana. Moim zdaniem to jedno z kluczowych pojęć w brachyterapii: od mocy dawki zależy organizacja leczenia, ochrona radiologiczna, sposób kontroli jakości i wymagania sprzętowe, dlatego warto mieć ten próg 12 Gy/godz. dobrze w głowie.

Pytanie 40

W trakcie obrazowania metodą rezonansu magnetycznego wykorzystywane jest zjawisko wysyłania sygnału emitowanego przez

A. elektrony atomów wodoru.
B. elektrony atomów tlenu.
C. protony atomów tlenu.
D. protony atomów wodoru.
Prawidłowo wskazane zostały protony atomów wodoru, czyli dokładnie to, na czym opiera się klasyczna metoda rezonansu magnetycznego wykorzystywana w medycynie. W obrazowaniu MR wykorzystuje się zjawisko jądrowego rezonansu magnetycznego (NMR). W praktyce oznacza to, że w silnym polu magnetycznym jądra wodoru (protony) ustawiają się zgodnie lub przeciwnie do kierunku pola. Następnie aparat wysyła fale radiowe (impuls RF), które wybijają te protony z ich równowagi. Gdy impuls się kończy, protony wracają do stanu wyjściowego i w tym procesie emitują sygnał, który jest rejestrowany przez cewki odbiorcze. To właśnie ten sygnał jest potem przeliczany komputerowo na obraz przekrojowy ciała. W tkankach ludzkiego organizmu jest bardzo dużo wody i tłuszczu, a więc bardzo dużo atomów wodoru – dlatego MR jest tak czuły na różnice w nawodnieniu i składzie tkanek. W praktyce klinicznej wykorzystuje się to np. do oceny zmian w mózgu (udar, stwardnienie rozsiane), stawach, kręgosłupie, narządach jamy brzusznej. Różne sekwencje (T1, T2, PD, FLAIR, DWI itd.) bazują cały czas na tym samym zjawisku: relaksacji protonów wodoru i różnicach w czasach relaksacji T1 i T2 w różnych tkankach. Z mojego doświadczenia, jak raz się zrozumie, że MR „słucha” protonów wodoru w polu magnetycznym, to dużo łatwiej ogarnąć, dlaczego metal w ciele pacjenta jest problemem, czemu ważne jest jednorodne pole magnetyczne i czemu obecność wody w tkankach tak mocno wpływa na kontrast obrazu. To jest absolutna podstawa fizyki rezonansu, którą warto mieć dobrze poukładaną, bo przewija się wszędzie w diagnostyce obrazowej.