Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 13 lutego 2026 20:59
  • Data zakończenia: 13 lutego 2026 21:23

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Na którą z wymienionych przyczyn, występującą w obwodzie odbiorczym instalacji elektrycznej, musi reagować wyłącznik różnicowoprądowy poprzez samoczynne wyłączenie?

A. Upływ prądu
B. Przeciążenie
C. Zwarcie międzyfazowe
D. Przepięcie
Przeciążenie, zwarcie międzyfazowe i przepięcie to sytuacje, które nie są bezpośrednio związane z włączaniem wyłącznika różnicowoprądowego. Przeciążenie dotyczy sytuacji, w której obciążenie na linii elektrycznej przekracza dopuszczalny poziom, co może prowadzić do przegrzania przewodów i ich uszkodzenia, ale nie stanowi bezpośredniego zagrożenia dla życia. W takich przypadkach stosuje się wyłączniki nadprądowe, które reagują na wzrost natężenia prądu. Zwarcie międzyfazowe to awaria, która polega na bezpośrednim połączeniu dwóch przewodów fazowych, co prowadzi do znacznego wzrostu prądu i potencjalnie niebezpiecznych warunków, a także wymaga zastosowania wyłączników zabezpieczających. Przepięcie z kolei odnosi się do nagłych wzrostów napięcia, które mogą uszkodzić urządzenia, ale również nie są powodem do załączenia RCD. Zrozumienie różnicy pomiędzy tymi sytuacjami jest kluczowe dla prawidłowego projektowania i eksploatacji instalacji elektrycznych, a błędne przypisanie funkcji RCD do tych zagrożeń może prowadzić do niewłaściwej ochrony oraz zwiększonego ryzyka awarii instalacji.

Pytanie 2

Które z przedstawionych narzędzi najlepiej nadaje się do wyznaczania tras przebiegu przewodów przed montażem instalacji elektrycznej w pomieszczeniu o dużej powierzchni?

Ilustracja do pytania
A. Narzędzie 2.
B. Narzędzie 3.
C. Narzędzie 4.
D. Narzędzie 1.
W tym zadaniu chodzi głównie o dopasowanie narzędzia do skali pracy. W małym pokoju klasyczna poziomica bańkowa sprawdzi się całkiem nieźle, ale w dużym pomieszczeniu zaczyna się robić kłopot. Trzeba ją ciągle przesuwać, przenosić punkty, łatwo o narastające błędy i różnice poziomów. Dlatego wybór zwykłej poziomnicy aluminiowej, nawet bardzo dokładnej, nie jest optymalny przy planowaniu długich, prostych tras przewodów na ścianach czy pod sufitami. Wiele osób kieruje się przyzwyczajeniem – "zawsze tak robiłem" – i bierze to, co zna z małych robót. To typowy błąd myślowy: skupienie się na samym pomiarze poziomu, a nie na zasięgu i wygodzie przenoszenia linii na większą odległość. Narzędzia pokazane na ilustracjach 1, 3 i 4 to różne odmiany poziomic bańkowych (w tym elektroniczne czy o większej długości), ale nadal wymagają fizycznego przykładania do podłoża. Przy dużej hali albo długim korytarzu prowadzenie trasy przewodów w ten sposób jest czasochłonne i zwiększa ryzyko rozjechania się linii, szczególnie gdy trasy muszą być idealnie równoległe i na tej samej wysokości w wielu punktach pomieszczenia. Dobra praktyka montażu instalacji elektrycznych mówi, że przed wykonaniem bruzd, mocowaniem koryt i rur instalacyjnych należy możliwie szybko i precyzyjnie wyznaczyć wszystkie linie odniesienia. Do tego służą właśnie poziomice laserowe, które rzucają stabilną linię na całą długość ściany czy nawet kilku ścian naraz. Pozostałe narzędzia z obrazka, choć przydatne przy wielu pracach wykończeniowych, nie zapewniają takiej efektywności i powtarzalności przy pracy na dużych powierzchniach. W praktyce zawodowej coraz rzadziej projektuje się trasy na dużych obiektach tylko z użyciem klasycznej poziomnicy – to po prostu mniej ergonomiczne rozwiązanie.

Pytanie 3

Którym symbolem oznacza się, przedstawiony na rysunku, przewód do wykonania instalacji oświetleniowej wtynkowej?

Ilustracja do pytania
A. YDYp
B. YDYtżo
C. SMYp
D. OMYp
Wybór niewłaściwych symboli przewodów w kontekście instalacji oświetleniowych wtynkowych może prowadzić do poważnych nieprawidłowości oraz zagrożeń. Odpowiedzi takie jak "OMYp", "YDYp" czy "SMYp" nie spełniają wymogów dotyczących przewodów wtynkowych, co jest kluczowe w projektowaniu instalacji. Symbol "OMYp" wskazuje na przewód o podwyższonej elastyczności, który nie jest odpowiedni do instalacji wtynkowych, ponieważ jego konstrukcja nie zapewnia odpowiedniej ochrony w zamkniętych przestrzeniach, co jest niezgodne z normami bezpieczeństwa. Z kolei "YDYp" nie zawiera oznaczenia dotyczącego przewodu ochronnego, co jest fundamentalne, aby zabezpieczyć instalację przed wadami izolacji. Odpowiedź "SMYp" jest związana z przewodami stosowanymi w instalacjach mobilnych, co dodatkowo potwierdza, że nie powinny być one używane w instalacjach stacjonarnych. Błędny dobór symboli wynika często z braku znajomości specyfikacji technicznych oraz norm, takich jak PN-IEC 60364, które jasno określają, jakie przewody są odpowiednie w konkretnych zastosowaniach. Dostosowanie do tych standardów jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 4

Jakiego wyłącznika nadprądowego powinno się zastosować do ochrony obwodu jednofazowego instalacji elektrycznej z napięciem 230 V, który zasila grzejnik oporowy o mocy 1600 W?

A. C16
B. C10
C. B16
D. B10
Wybór wyłączników nadprądowych powinien być oparty na dokładnych obliczeniach prądu roboczego danego obwodu oraz na charakterystyce urządzeń, które są zasilane. Wyłącznik C10, mimo iż ma mniejszy prąd znamionowy niż B16 i C16, nie jest odpowiedni dla obszarów, gdzie występują urządzenia o dużych prądach rozruchowych, jak silniki elektryczne czy grzejniki oporowe, ponieważ może zareagować zbyt szybko na chwilowe skoki prądu. Z kolei wyłącznik B16 jest przeznaczony dla obwodów, które mogą mieć większe obciążenia i prądy do 16 A, co sprowadza się do przekroczenia maksymalnych wartości obciążenia na obwodzie z grzejnikiem 1600 W. Chociaż wyłącznik B16 mógłby teoretycznie zadziałać, w praktyce nie zapewniałby odpowiedniego poziomu zabezpieczenia, co może prowadzić do niebezpiecznych sytuacji. Podobnie, wyłącznik C16 ma zbyt wysoką wartość prądową dla tego konkretnego zastosowania, co czyni go niewłaściwym wyborem, gdyż nie zadziałałby w przypadku przeciążenia, a tym samym nie chroniłby instalacji. Właściwy wybór wyłącznika nadprądowego powinien opierać się na danych technicznych urządzeń oraz na normach bezpieczeństwa, aby zapewnić optymalną ochronę przed skutkami awarii elektrycznych.

Pytanie 5

Rysunek przedstawia sposób zainstalowania urządzenia ochronnego różnicowoprądowego w sieci typu

Ilustracja do pytania
A. TN-C-S
B. IT
C. TT
D. TN-S
Wybór odpowiedzi spośród pozostałych typów sieci może prowadzić do nieporozumień związanych z zasadami ich działania. Sieci TN-S charakteryzują się tym, że przewód neutralny i przewód ochronny są oddzielone, co jest zupełnie inną koncepcją niż izolacja stosowana w sieciach IT. Użytkownicy mogą błędnie myśleć, że w sieci TN-S urządzenia różnicowoprądowe są tak samo efektywne jak w IT, jednak w przypadku awarii izolacji, prąd upływowy w sieci TN-S może spowodować poważniejsze konsekwencje. Podobnie sieci TN-C-S, które łączą funkcję przewodów neutralnych i ochronnych, są bardziej narażone na zjawiska związane z prądami upływowymi, co stawia pod znakiem zapytania ich bezpieczeństwo. Z kolei w sieciach TT, gdzie przewód neutralny i ochronny są oddzielne, istnieje większe ryzyko wystąpienia różnicy potencjałów między ziemią a neutralnym przewodem, co może prowadzić do niebezpiecznych sytuacji. Błędem jest zakładanie, że wszystkie te systemy zapewniają taki sam poziom ochrony jak sieci IT; każdy typ ma swoje unikalne właściwości i zastosowania, które powinny być starannie rozważane w kontekście wymagań bezpieczeństwa. W przypadku sieci IT, kluczowe jest zrozumienie ich struktury oraz właściwego zastosowania, aby uniknąć niebezpieczeństw związanych z awariami. Warto również zaznaczyć, że w sieciach TN i TT instalacje różnicowoprądowe są często mniej skuteczne w detekcji uszkodzeń, co może prowadzić do większych zagrożeń dla użytkowników i urządzeń.

Pytanie 6

Który skutek dla organizmu pracownika może spowodować utrzymywanie się mgły olejowej w słabo wentylowanym pomieszczeniu?

A. Zaburzenia w układzie krążenia.
B. Podrażnienie skóry, oczu, gardła i płuc.
C. Zmęczenie i obciążenie wzroku.
D. Zakłócenia w układzie kostno-stawowym.
Prawidłowo wskazana odpowiedź „podrażnienie skóry, oczu, gardła i płuc” bardzo dobrze oddaje realne skutki zdrowotne długotrwałego przebywania w pomieszczeniu z mgłą olejową i słabą wentylacją. Mgła olejowa to drobne aerozole, czyli mikroskopijne kropelki oleju unoszące się w powietrzu. Powstają np. przy obróbce skrawaniem, smarowaniu, chłodzeniu narzędzi, w sprężarkach, niektórych układach pneumatycznych. Te drobinki osiadają na skórze, błonach śluzowych oczu i dróg oddechowych, co prowadzi do mechanicznego i chemicznego podrażnienia. W praktyce pracownik odczuwa pieczenie oczu, łzawienie, swędzenie skóry, kaszel, drapanie w gardle, czasem ucisk w klatce piersiowej. Przy dłuższej ekspozycji może dojść do stanów zapalnych skóry (dermatozy), przewlekłego zapalenia oskrzeli czy pogorszenia wydolności oddechowej. Zgodnie z zasadami BHP i wymaganiami norm (np. ogólne przepisy bezpieczeństwa i higieny pracy, rozporządzenia w sprawie NDS/NDN dla czynników szkodliwych) mgła olejowa jest traktowana jako szkodliwy czynnik chemiczny i należy ograniczać jej stężenie w powietrzu. Stosuje się wentylację mechaniczną, wyciągi miejscowe przy maszynach, osłony, a także środki ochrony indywidualnej – okulary ochronne, półmaski filtrujące, rękawice i odzież roboczą. Moim zdaniem kluczowe w praktyce jest to, żeby nie bagatelizować pierwszych objawów podrażnienia, bo ludzie często myślą „przyzwyczaję się”, a organizm się nie przyzwyczaja, tylko stopniowo uszkadza. W dobrze zarządzonym zakładzie utrzymywanie mgły olejowej powyżej dopuszczalnych stężeń jest traktowane jako poważne naruszenie zasad bezpieczeństwa i wymaga natychmiastowej reakcji: przeglądu instalacji, poprawy wentylacji, czasem nawet chwilowego wstrzymania pracy maszyn.

Pytanie 7

Na której ilustracji przedstawiono puszkę do montażu w ścianie gipsowo-kartonowej?

Ilustracja do pytania
A. Na ilustracji 4.
B. Na ilustracji 3.
C. Na ilustracji 2.
D. Na ilustracji 1.
Prawidłowo – na ilustracji 4 pokazano typową puszkę instalacyjną do montażu w ścianie gipsowo‑kartonowej. Charakterystyczne jest tu kilka elementów konstrukcyjnych. Po pierwsze, korpus jest wykonany z tworzywa i ma wyraźny rant oporowy, który opiera się o zewnętrzną powierzchnię płyty GK. Po drugie, widać wkręty lub łapki rozporowe – po dokręceniu zaciskają się one od wewnętrznej strony płyty, dzięki czemu puszka stabilnie "wisi" w otworze wyciętym w karton‑gipsie, bez potrzeby osadzania w tynku. Po trzecie, głębokość i kształt są dostosowane do montażu osprzętu podtynkowego (gniazda, łączniki, ściemniacze), zgodnie z wymaganiami norm PN‑HD 60364 i ogólnymi zasadami montażu instalacji w lekkich ścianach szkieletowych. W praktyce takie puszki stosuje się wszędzie tam, gdzie ściana nie jest murowana, tylko wykonana z profili stalowych i płyt GK: w mieszkaniach deweloperskich, w biurach z systemowymi ściankami działowymi, na poddaszach. Ważne jest też właściwe przygotowanie otworu – używa się zwykle otwornicy 68 mm, żeby puszka dobrze przylegała i nie "latała". Moim zdaniem warto od razu pamiętać o doborze odpowiedniej głębokości puszki do ilości przewodów i osprzętu, żeby później nie męczyć się z upychaniem żył. Dobrą praktyką jest też stosowanie puszek z odpowiednimi przepustami do kabli i przewodów, zapewniającymi wymaganą ochronę izolacji oraz stabilne mocowanie żył wewnątrz puszki.

Pytanie 8

Oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym należy do klasy oświetlenia

Ilustracja do pytania
A. przeważnie pośredniego.
B. przeważnie bezpośredniego.
C. bezpośredniego.
D. pośredniego.
Zrozumienie klasyfikacji oświetlenia jest kluczowe dla prawidłowego zastosowania w praktyce, a błędna interpretacja może prowadzić do niewłaściwego doboru opraw oświetleniowych. Odpowiedzi sugerujące, że oprawa ta należy do kategorii oświetlenia bezpośredniego są mylące, ponieważ oświetlenie bezpośrednie charakteryzuje się tym, że światło jest emitowane bezpośrednio na powierzchnię użytkową, co zazwyczaj prowadzi do silnego kontrastu i może powodować olśnienia. W praktyce, takie podejście może być korzystne w sytuacjach wymagających intensywnego oświetlenia, jak w przypadku precyzyjnych prac ręcznych, jednak w wielu środowiskach, gdzie komfort i estetyka są równie ważne, może być niewłaściwe. Ponadto, odpowiedzi wskazujące na przeważnie bezpośrednie oświetlenie nie uwzględniają faktu, że oświetlenie pośrednie zapewnia bardziej równomierne rozproszenie światła, co minimalizuje cienie i poprawia ogólną widoczność. Typowe błędne myślenie dotyczy także klasyfikacji w kontekście zastosowania — oprawy, które kierują światło głównie w dół, często wzbogacają przestrzeń o efekt estetyczny, co jest istotne w architekturze wnętrz. Dlatego kluczowe jest, aby przy doborze opraw oświetleniowych uwzględniać nie tylko ich funkcjonalność, ale także wpływ na atmosferę i użytkowanie przestrzeni.

Pytanie 9

Wskaż symbol graficzny monostabilnego łącznika przyciskowego z zestykiem NO.

Ilustracja do pytania
A. Symbol 2.
B. Symbol 3.
C. Symbol 1.
D. Symbol 4.
Wybór innego symbolu zamiast symbolu 1 może wynikać z nieporozumienia dotyczącego rodzaju łącznika oraz jego funkcji. Monostabilne łączniki przyciskowe z zestykiem NO mają specyficzną konstrukcję, która różni się od innych typów łączników, takich jak bistabilne lub normalnie zamknięte (NC). Symbol, który przedstawia zamek lub inny rodzaj styku, jest mylący, ponieważ nie odzwierciedla funkcji chwilowego włączania obwodu. W kontekście automatyki przemysłowej istotne jest rozumienie różnic między tymi symbolami, gdyż niewłaściwe ich użycie prowadzi do błędnych instalacji i potencjalnych awarii w systemach. Na przykład, użycie symbolu przedstawiającego łącznik bistabilny może sugerować, że przycisk pozostaje w stanie włączonym po zwolnieniu, co jest sprzeczne z funkcją monostabilnego przycisku NO. W praktyce, to może prowadzić do sytuacji, gdzie obsługa urządzenia jest nieintuicyjna, a użytkownicy mogą być zdezorientowani, nie wiedząc, jak właściwie korzystać z systemu. Dodatkowo, błędne zrozumienie symboli może prowadzić do niezgodności z normami branżowymi, co w konsekwencji wpływa na bezpieczeństwo operacji oraz zgodność instalacji z obowiązującymi standardami.

Pytanie 10

Którą funkcję w wyłączniku nadprądowym pełni element wskazany na ilustracji czerwoną strzałką?

Ilustracja do pytania
A. Łączy styki.
B. Gasi łuk elektryczny.
C. Reaguje na zwarcia.
D. Reaguje na przeciążenia.
Element wskazany na ilustracji czerwoną strzałką to bimetaliczny wyzwalacz termiczny, którego główną funkcją jest reagowanie na zwarcia w obwodzie. W momencie wystąpienia zwarcia, natężenie prądu gwałtownie wzrasta, co może prowadzić do poważnych uszkodzeń instalacji elektrycznej oraz zwiększa ryzyko pożaru. Bimetaliczny wyzwalacz termiczny działa na zasadzie odkształcania się dwóch różnych metali w odpowiedzi na wzrost temperatury, co powoduje zamknięcie obwodu i odłączenie zasilania. Zgodnie z normami IEC 60947-2 oraz EN 60898-1, wyłączniki nadprądowe są obowiązkowym elementem w nowoczesnych instalacjach elektrycznych, co podkreśla ich kluczowe znaczenie w zapewnieniu bezpieczeństwa. Przykładem zastosowania może być ochrona obwodów w budynkach mieszkalnych, gdzie wyłączniki te są projektowane tak, aby reagowały na wszelkie anomalie w działaniu urządzeń elektrycznych, co chroni zarówno użytkowników, jak i infrastrukturę. Dlatego znajomość funkcji bimetalicznych wyzwalaczy termicznych jest istotna dla każdego specjalisty z branży elektrycznej.

Pytanie 11

Jakie właściwości definiują wyłącznik instalacyjny nadprądowy?

A. Prąd obciążenia, rezystancja zestyku, czas wyłączenia
B. Napięcie dopuszczalne, prąd różnicowy, czas zadziałania
C. Napięcie znamionowe, prąd znamionowy, rodzaj charakterystyki
D. Prąd zwarciowy, typ zestyku, napięcie podtrzymania
Zrozumienie parametrów wyłącznika instalacyjnego nadprądowego wymaga znajomości podstawowych zasad dotyczących jego funkcjonowania. Odpowiedzi sugerujące prąd zwarciowy, rodzaj zestyku i napięcie podtrzymania są mylące. Prąd zwarciowy to wartość prądu, która występuje w przypadku zwarcia, jednak nie jest to parametr, który definiuje działanie wyłącznika w normalnych warunkach pracy. Z kolei rodzaj zestyku dotyczy bardziej mechanicznej konstrukcji wyłącznika, a nie jego podstawowych właściwości elektrycznych, więc nie jest kluczowym parametrem do analizy wyłączników nadprądowych. Napięcie podtrzymania odnosi się do zdolności wyłącznika do pracy w określonym zakresie napięcia, ale nie jest to parametr, który bezpośrednio wiąże się z jego działaniem jako zabezpieczenia nadprądowego. W kolejnej propozycji, prąd obciążenia, rezystancja zestyku i czas wyłączenia, również odbiegają od istoty funkcjonowania wyłącznika nadprądowego. Prąd obciążenia jest bardziej związany z warunkami pracy urządzenia, a rezystancja zestyku nie jest parametrem specyfikującym wyłącznik. Z kolei czas wyłączenia to wynik działania wyłącznika, a nie jego właściwość. Ostatnia opcja, dotycząca napięcia dopuszczalnego i prądu różnicowego, również jest myląca, ponieważ prąd różnicowy dotyczy wyłączników różnicowoprądowych, a nie nadprądowych, co może prowadzić do nieporozumień i błędów w doborze odpowiednich zabezpieczeń. Właściwe zrozumienie tych parametrów jest kluczowe dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych, dlatego ważne jest, aby unikać takich nieścisłości w ocenie wyłączników nadprądowych.

Pytanie 12

Jakiego koloru jest wskaźnik wkładki topikowej o nominalnym natężeniu prądu wynoszącym 6 A?

A. zielony
B. niebieski
C. szary
D. żółty
Wybór niewłaściwego koloru wkładki topikowej może prowadzić do poważnych problemów w instalacjach elektrycznych. Odpowiedzi wskazujące na niebieski, szary, czy żółty kolor są nieprawidłowe, co wynika z nieznajomości standardów dotyczących oznaczeń wkładek topikowych. Niebieski kolor najczęściej kojarzony jest z wkładkami o prądzie znamionowym 10 A, co czyni go niewłaściwym dla wartości 6 A. Kolor szary z reguły odnosi się do wkładek o większym prądzie, a żółty często oznacza wkładki o wartości 16 A. Tego typu błędy wskazują na nieprawidłowe postrzeganie systemu kolorów, co może być efektem braku znajomości norm IEC 60127 oraz ogólnych zasad doboru elementów zabezpieczających w instalacjach elektrycznych. Właściwe oznaczenia kolorystyczne mają kluczowe znaczenie dla bezpieczeństwa, ponieważ niewłaściwie dobrana wkładka może nie zadziałać w przypadku przeciążenia, co prowadzi do ryzyka uszkodzenia urządzeń lub pożaru. Dlatego tak ważne jest, aby zapoznać się z obowiązującymi standardami i praktykami, aby uniknąć takich typowych błędów myślowych, które mogą mieć poważne konsekwencje w rzeczywistych warunkach operacyjnych.

Pytanie 13

Jaki z podanych warunków powinien być zrealizowany podczas instalacji elektrycznej prowadzonej na tynku na zewnątrz budynku mieszkalnego?

A. Zastosowanie wyłączników różnicowoprądowych o dużej czułości
B. Montaż ochronników przepięciowych w głównej rozdzielnicy
C. Użycie transformatora separacyjnego do zasilania
D. Zamontowanie osłon, które chronią przewody przed promieniowaniem słonecznym
W kontekście wykonywania instalacji elektrycznej na tynku na zewnątrz budynku mieszkalnego, wiele osób może być skłonnych do myślenia, że zastosowanie transformatora separacyjnego jest kluczowe. Choć transformatory separacyjne mają swoje miejsce w zastosowaniach, ich rola w kontekście ochrony przewodów elektrycznych przed działaniem promieni słonecznych jest nieznaczna. Transformator ten oddziela obwody od źródła zasilania, ale nie zapewnia ochrony przed dolegliwościami związanymi z ekspozycją na promieniowanie UV, co czyni go niewłaściwym wyborem w tej konkretnej sytuacji. Z kolei zastosowanie wyłączników różnicowoprądowych wysokoczułych, choć istotne dla ochrony przed porażeniem prądem, nie ma bezpośredniego wpływu na zabezpieczenie przewodów przed działaniem promieni słonecznych. Wyłączniki te działają na zasadzie wykrywania różnic prądów, co jest ważne, ale nie chroni instalacji przed uszkodzeniami spowodowanymi przez czynniki zewnętrzne. Ochronniki przepięciowe w rozdzielnicy głównej są istotne dla ochrony instalacji przed przepięciami, ale ich zastosowanie nie zastąpi fizycznych osłon przewodów, które są niezbędne w zewnętrznych instalacjach. Wszelkie te koncepcje mogą prowadzić do błędnego wniosku, że wystarczy zastosować te elementy, aby zapewnić bezpieczeństwo instalacji, podczas gdy kluczowym aspektem pozostaje zabezpieczenie przed działaniem promieni słonecznych przez odpowiednie osłony.

Pytanie 14

Na zdjęciu przedstawiono kabel

Ilustracja do pytania
A. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.
B. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w osłonie polwinitowej.
C. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V.
D. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
Poprawna odpowiedź odnosi się do kabla sygnalizacyjnego, który charakteryzuje się wieloma żyłami skręconymi parami. Tego typu kable są powszechnie stosowane w systemach telekomunikacyjnych oraz w instalacjach automatyki przemysłowej, gdzie przesyłane sygnały muszą być odporne na zakłócenia elektromagnetyczne. Warto zwrócić uwagę, że napięcie 300/500 V jest typowe dla kabli wykorzystywanych w obwodach sygnalizacyjnych, które nie wymagają tak wysokiej izolacji jak kable elektroenergetyczne. Kable sygnalizacyjne o wiązkach parowych zostały opracowane w celu zminimalizowania interferencji między żyłami, co czyni je idealnym wyborem tam, gdzie wymagana jest stabilna transmisja danych. Zgodnie z normą PN-EN 50288, odpowiednie oznakowanie oraz dobór materiałów izolacyjnych mają kluczowe znaczenie dla niezawodności i bezpieczeństwa instalacji. W praktyce, stosowanie kabli sygnalizacyjnych w automatyce przemysłowej pozwala na efektywne zarządzanie procesami oraz monitorowanie stanu urządzeń, co przekłada się na zwiększenie wydajności operacyjnej.

Pytanie 15

Przeciążenie w instalacji elektrycznej polega na

A. wystąpieniu w instalacji fali przepięciowej spowodowanej wyładowaniem atmosferycznym.
B. bezpośrednim połączeniu dwóch faz w systemie.
C. przekroczeniu maksymalnego prądu znamionowego instalacji.
D. nagłym wzroście napięcia elektrycznego w sieci powyżej wartości nominalnej.
Przeciążenie instalacji elektrycznej polega na przekroczeniu prądu znamionowego, co ma istotne znaczenie dla bezpieczeństwa i funkcjonowania systemów elektrycznych. Prąd znamionowy to maksymalny prąd, jaki instalacja lub urządzenie może bezpiecznie przewodzić bez ryzyka uszkodzenia. Przekroczenie tej wartości może prowadzić do przegrzewania się przewodów, co z kolei może skutkować uszkodzeniem izolacji, a w skrajnych przypadkach nawet pożarem. Dlatego tak ważne jest, aby projektując instalację elektryczną, odpowiednio dobrać przekroje przewodów oraz zabezpieczenia, takie jak bezpieczniki czy wyłączniki różnicowoprądowe, które chronią przed skutkami przeciążenia. W praktyce, w przypadku zakupu nowych urządzeń elektrycznych, należy zwracać uwagę na ich moc i prąd znamionowy, aby uniknąć przeciążenia instalacji. Przykładowo, jeżeli w danym obwodzie zainstalowane są urządzenia, których łączna moc przekracza wartość znamionową obwodu, może to prowadzić do poważnych problemów z bezpieczeństwem elektrycznym.

Pytanie 16

Które z podanych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Gniazda wtykowe w każdym pomieszczeniu powinny pochodzić z wydzielonego obwodu
B. Gniazda wtykowe w kuchni powinny być podłączane do oddzielnego obwodu
C. Obwody oświetleniowe należy oddzielić od gniazd wtykowych
D. Odbiorniki o dużej mocy powinny być zasilane z osobnych obwodów
Odpowiedź dotycząca zasilania gniazd wtykowych każdego pomieszczenia z osobnego obwodu jest poprawna, ponieważ zgodnie z aktualnymi normami i zaleceniami dotyczącymi instalacji elektrycznych, zapewnia to większe bezpieczeństwo i funkcjonalność. Zasilanie każdego pomieszczenia z osobnego obwodu umożliwia lepsze zarządzanie obciążeniem elektrycznym oraz minimalizuje ryzyko przeciążenia instalacji. Przykładowo, w przypadku awarii jednego z obwodów, pozostałe pomieszczenia mogą nadal być zasilane, co zwiększa komfort użytkowania. Dodatkowo, takie podejście ułatwia lokalizację ewentualnych usterek i ich naprawę, co jest szczególnie ważne w przypadku pomieszczeń takich jak kuchnia czy łazienka, gdzie używa się wielu urządzeń elektrycznych jednocześnie. Warto również zauważyć, że zgodnie z normą PN-IEC 60364, zaleca się stosowanie osobnych obwodów dla urządzeń o dużym poborze mocy, co podkreśla znaczenie wydzielenia obwodów w celu zapewnienia bezpieczeństwa i efektywności instalacji elektrycznej.

Pytanie 17

Jakie narzędzia będą konieczne do zamocowania listew elektroizolacyjnych na ścianie z płyt gipsowych?

A. Nóż monterski, wiertarka, zestaw kluczy.
B. Zestaw kluczy, wkrętarka, wiertło, przecinak.
C. Wiertarka, wiertło, piła do cięcia, wkrętak.
D. Piła do cięcia, przecinak, młotek.
Wybór odpowiedzi 'Wiertarka, wiertło, piła do cięcia, wkrętak' jest prawidłowy, ponieważ montaż listew elektroizolacyjnych na ścianie gipsowej wymaga precyzyjnych narzędzi do wykonania otworów oraz odpowiedniego przymocowania listew. Wiertarka z wiertłem pozwala na wykonanie otworów w ścianie, co jest kluczowe dla stabilnego montażu. Piła do cięcia jest niezbędna, gdyż listew często trzeba dostosować do długości, co wymaga precyzyjnego cięcia. Ostatnim kluczowym narzędziem jest wkrętak, który umożliwia przymocowanie listew do ściany za pomocą odpowiednich śrub. Zastosowanie wiertarki i wiertła zgodnie z zasadami bhp jest niezbędne, aby uniknąć uszkodzeń ściany i zapewnić, że otwory są odpowiedniej głębokości. Dobrą praktyką jest także stosowanie wkrętów samowiercących, co ułatwia montaż oraz zwiększa trwałość mocowania.

Pytanie 18

Rysunek przedstawia symbol graficzny przewodu

Ilustracja do pytania
A. PE
B. FE
C. PEN
D. FB
Symbol przedstawiony na rysunku rzeczywiście oznacza przewód ochronny, który w zgodzie z normą PN-EN 60617 jest identyfikowany skrótem "PE" (Protective Earth). Przewód ten jest kluczowy w systemach elektrycznych, ponieważ zapewnia bezpieczeństwo poprzez odprowadzanie potencjalnych prądów upływowych do ziemi, co minimalizuje ryzyko porażenia prądem. W praktyce, przewód PE jest często stosowany w instalacjach elektrycznych w budynkach, gdzie pełni rolę ochronną dla urządzeń oraz użytkowników. Warto również zauważyć, że w systemach zasilania trójfazowego, przewód ochronny jest wymagany, aby spełnić normy bezpieczeństwa, takie jak norma IEC 60364. Przewód PE powinien być zawsze jasno oznakowany zielono-żółtym kolorem, aby umożliwić łatwą identyfikację w instalacjach elektrycznych. Zastosowanie tego przewodu jest nie tylko praktyczne, ale i zgodne z zasadami ochrony przeciwwybuchowej w środowiskach, gdzie mogą występować niebezpieczne substancje.

Pytanie 19

Zdjęcie przedstawia

Ilustracja do pytania
A. Megaomomierz.
B. Woltomierz.
C. Techniczny mostek pomiarowy
D. Woltomierz probierczy.
Megaomomierz jest specjalistycznym przyrządem pomiarowym używanym do określenia rezystancji w zakresie megaomów. Jego konstrukcja, w tym duża skala oraz pokrętło do wyboru zakresu pomiaru, są charakterystyczne dla tego typu urządzeń. Megaomomierze są często wykorzystywane w przemyśle elektrycznym i elektronicznym do testowania izolacji przewodów oraz komponentów, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych. Na przykład, podczas przeprowadzania testów izolacji w instalacjach elektrycznych, megaomomierz pozwala na wykrycie ewentualnych przecieków prądu, co może zapobiec poważnym awariom. Stosowanie megaomomierzy jest zgodne z normami branżowymi, takimi jak IEC 61557, które regulują wymagania dotyczące pomiarów parametrów elektrycznych w instalacjach. Dzięki właściwemu doborowi przyrządów i umiejętnemu przeprowadzaniu testów, można znacznie zwiększyć bezpieczeństwo oraz trwałość instalacji.

Pytanie 20

Jakie są wartości znamionowe prądu oraz liczba biegunów wyłącznika oznaczonego symbolem S194 B3?

A. 19 A i 3 bieguny
B. 3 A i 4 bieguny
C. 4 A i 3 bieguny
D. 9 A i 4 bieguny
Podejmując decyzję o wyborze wyłącznika elektrycznego, kluczowe jest zrozumienie charakterystyki prądowej oraz liczby biegunów, co ma bezpośredni wpływ na bezpieczeństwo i funkcjonalność instalacji. Odpowiedzi wskazujące na prąd znamionowy 19 A, 4 A czy 9 A są błędne, ponieważ sugerują zastosowanie wyłączników do obciążeń, które wykraczają poza specyfikacje podane dla modelu S194 B3. Przykładowo, wyłącznik o prądzie 19 A byłby przeznaczony do bardziej intensywnych zastosowań, typowych dla dużych instalacji przemysłowych, co jest nieadekwatne w kontekście tego modelu. Natomiast prąd 4 A czy 9 A także wskazuje na zastosowania, które mogą być zbyt wysokie dla standardowego wyłącznika trójfazowego w małych instalacjach. Przy ocenie odpowiedzi warto zwrócić uwagę na zasady doboru wyłączników, które powinny być dostosowane do specyficznych potrzeb obwodu elektrycznego. W praktyce wykorzystywanie wyłączników o nieodpowiednich parametrach może prowadzić do ich nieprawidłowego działania, co z kolei zwiększa ryzyko uszkodzenia podłączonych urządzeń oraz może stwarzać zagrożenie pożarowe. Wszelkie decyzje w tym zakresie powinny być podejmowane na podstawie dokładnej analizy parametrów technicznych oraz zgodności z normami, np. normami IEC 60947 dotyczącymi wyłączników.

Pytanie 21

Który z podanych łączników elektrycznych jest przeznaczony do osobnego sterowania dwiema sekcjami oświetlenia w żyrandolu?

A. Krzyżowy
B. Dwubiegunowy
C. Schodowy
D. Świecznikowy
Świecznikowy łącznik instalacyjny jest zaprojektowany w taki sposób, aby umożliwiać niezależne sterowanie różnymi sekcjami źródeł światła w lampach, w tym żyrandolach. Jego konstrukcja pozwala na włączenie i wyłączenie poszczególnych źródeł światła, co jest szczególnie przydatne w przypadku żyrandoli z wieloma żarówkami. Dzięki temu użytkownik może dostosować natężenie oświetlenia w pomieszczeniu w zależności od potrzeb, co zwiększa funkcjonalność i komfort użytkowania. Przykładowo, w jadalni, gdzie często zasiadamy z rodziną lub gośćmi, można włączyć tylko kilka żarówek, aby stworzyć przytulną atmosferę. Zastosowanie łącznika świecznikowego jest zgodne z ogólnymi normami instalacji elektrycznych, które zalecają elastyczność w sterowaniu oświetleniem. Dobrą praktyką w projektowaniu systemów oświetleniowych jest również uwzględnienie możliwości dalszej rozbudowy instalacji oraz zastosowanie łączników, które umożliwiają późniejszą modyfikację układów oświetleniowych.

Pytanie 22

Jakim z podanych rodzajów przewodów powinno się zasilić jednofazowy ruchomy odbiornik?

A. LGu 3×1,5 mm2
B. YDYt 3×1,5 mm2
C. YDY 3×1,5 mm2
D. OMYp 3×1,5 mm2
YDYt 3×1,5 mm2, YDY 3×1,5 mm2 oraz LGu 3×1,5 mm2 to inne typy przewodów, które mają różne zastosowania, lecz nie są odpowiednie do zasilania jednofazowego odbiornika ruchomego. Przewód YDYt, będący wersją przewodu YDY z dodatkowym ekranem, przeznaczony jest głównie do instalacji stałych i nie jest przystosowany do dużych ruchów oraz narażeń mechanicznych. Stosowanie go w aplikacjach ruchomych może prowadzić do uszkodzeń mechanicznych, co z czasem może skutkować awarią lub zagrożeniem bezpieczeństwa. Podobnie, przewód YDY, mimo że jest powszechnie używany w instalacjach elektrycznych, nie zapewnia elastyczności wymaganej w przypadku przewodów zasilających mobilne urządzenia. Z kolei przewód LGu, który jest przeznaczony do instalacji wewnętrznych oraz jako przewód sygnałowy, nie spełnia standardów dotyczących zasilania urządzeń, które są narażone na ruch i zmienne warunki pracy. Użycie tych typów przewodów w aplikacjach, które wymagają mobilności, może prowadzić do ich uszkodzenia, a w konsekwencji do problemów z bezpieczeństwem i niezawodnością zasilania. Wybór niewłaściwego typu przewodu w obszarze zasilania ruchomych odbiorników elektrycznych jest typowym błędem, który wynika z braku zrozumienia różnic pomiędzy przewodami przeznaczonymi do instalacji stałych i mobilnych.

Pytanie 23

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Identyfikuje przeciążenia
B. Rozpoznaje zwarcia
C. Napina sprężynę mechanizmu
D. Zatrzymuje łuk elektryczny
Wybór odpowiedzi dotyczącej gaszenia łuku elektrycznego jest mylny, ponieważ proces ten nie jest bezpośrednio związany z funkcją wyzwalacza elektromagnetycznego. Wyłączniki nadprądowe, przy wykrywaniu zwarcia, mogą generować łuk elektryczny, który jest następnie gaszony przez specjalne mechanizmy w urządzeniach, takich jak komory gaszenia łuku. W związku z tym, gaszenie łuku to proces, który zachodzi po detekcji zwarcia, a nie jest funkcją wyzwalacza. Ponadto, odpowiedź odnosząca się do wykrywania przeciążeń jest również nieprawidłowa, ponieważ wyzwalacz elektromagnetyczny skupia się głównie na detekcji zwarć, a przeciążenia są zwykle rozpoznawane przez funkcję wyzwalacza termicznego, który działa na zasadzie wydłużania się elementu bimetalowego pod wpływem ciepła generowanego przez przepływający prąd. Naciąganie sprężyny napędu, chociaż istotne w niektórych mechanizmach wyłączników, nie ma żadnego związku z funkcjami wyzwalacza elektromagnetycznego. W praktyce, mylenie funkcji tych komponentów prowadzi do nieporozumień w zakresie projektowania systemów zabezpieczeń elektrycznych, co może skutkować niewłaściwym doborem urządzeń oraz potencjalnym zagrożeniem dla użytkowników i sprzętu.

Pytanie 24

Brodzik zostanie osłonięty kabiną prysznicową. W której strefie można zainstalować gniazda z kołkiem ochronnym w łazience, aby było to zgodne z przepisami bezpieczeństwa i higieny pracy oraz przepisami przeciwporażeniowymi?

Ilustracja do pytania
A. W l i 3.
B. W 1 i 2.
C. Tylko w 3.
D. Tylko w 2.
Odpowiedź "Tylko w 3" jest poprawna, ponieważ zgodnie z polskimi normami dotyczącymi bezpieczeństwa instalacji elektrycznych w pomieszczeniach narażonych na wilgoć, gniazda z kołkiem ochronnym mogą być instalowane tylko w strefie 3. Strefa ta jest usytuowana najdalej od wszelkich źródeł wody, co minimalizuje ryzyko porażenia prądem. Strefa 3 zaczyna się od 2,4 metra od krawędzi brodzika czy wanny, co oznacza, że w tym obszarze ryzyko kontaktu z wodą jest zdecydowanie mniejsze. W praktyce oznacza to, że gniazda elektryczne powinny być umiejscowione w taki sposób, aby użytkownik mógł z nich korzystać bez obaw o bezpieczeństwo, np. do podłączenia suszarki do włosów. Stosując się do tych zasad, można zapewnić bezpieczeństwo użytkowników łazienek, co jest kluczowe w kontekście ochrony przed porażeniem elektrycznym i zgodności z przepisami przeciwporażeniowymi. Warto również zapoznać się z odpowiednimi normami, takimi jak PN-IEC 60364, które szczegółowo opisują wymagania dotyczące instalacji elektrycznych w strefach zagrożonych wilgocią.

Pytanie 25

Która z poniższych czynności jest częścią oględzin przy konserwacji wirnika silnika komutatorowego?

A. Wyważanie
B. Weryfikacja braku zwarć międzyzwojowych
C. Sprawdzenie kondycji wycinków komutatora
D. Pomiar rezystancji izolacji
Odpowiedzi, które nie dotyczą sprawdzenia stanu wycinków komutatora, choć mogą wydawać się związane z konserwacją silników komutatorowych, nie odpowiadają na kluczową kwestię oględzin wirnika. Wyważenie wirnika jest istotne dla eliminacji drgań, które mogą prowadzić do uszkodzeń łożysk i innych komponentów, jednak nie jest to bezpośrednia czynność związana z ocena stanu komutatora. Pomiar rezystancji izolacji to ważny krok w ocenie stanu izolacji uzwojeń silnika, ale również nie dotyczy bezpośrednio stanu wycinków komutatora. Z kolei sprawdzenie braku zwarć międzyzwojowych jest kluczowe dla bezpieczeństwa i niezawodności silnika, jednak nie dotyczy to bezpośrednio stanu komutatora, który jest kluczowym elementem zapewniającym poprawną pracę silnika. Zrozumienie, że każda z tych czynności odgrywa swoją rolę w konserwacji silnika, jest ważne, ale nie wszystkie są równorzędne w kontekście oględzin wirnika. Często można spotkać się z mylnym przekonaniem, że te wszystkie czynności służą temu samemu celowi, podczas gdy każda z nich ma swoją specyfikę oraz odmienny wpływ na działanie silnika. Dlatego kluczowe jest skupienie się na właściwych czynnościach konserwacyjnych, które odpowiadają na konkretne potrzeby diagnostyczne silnika, a nie tylko na ogólnych działaniach związanych z jego konserwacją.

Pytanie 26

Korzystając z tabeli obciążalności prądowej przewodów, dobierz przewód o najmniejszym przekroju żył miedzianych do wykonania trójfazowej instalacji wtynkowej, która jest zabezpieczona wyłącznikiem instalacyjnym z oznaczeniem B20.

Tabela obciążalności prądowej przewodów
Przekrój przewodu mm2Jeden lub kilka kabli 1-żyłowych ułożonych w rurzeKilka kabli np.: przewody płaszczowe, rurowe, wtynkowePojedynczy w powietrzu, przy czym odstęp odpowiada przynajmniej średnicy kabla
Żyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, A
0,75--12-15-
1,011-15-19-
1,515-18-24-
2,5201526203226
4252034274233
A. YDY 5x1,5 mm2
B. YDY 5x2,5 mm2
C. YADY 5x4 mm2
D. YADY 5x6 mm2
Wybór przewodu YDY 5x2,5 mm2 do trójfazowej instalacji wtynkowej z wyłącznikiem B20 to dobry ruch. Ten przewód ma obciążalność prądową 26A, co spokojnie wystarcza na te 20A, które wymaga zabezpieczenie B20. W praktyce oznacza to, że nie ma ryzyka, że przewód się przegrzeje, a to jest kluczowe dla bezpieczeństwa. Kiedy dobierasz przewody, pamiętaj, żeby zawsze myśleć o maksymalnym obciążeniu, bo to ważne. W trójfazowych instalacjach dobór przewodów musi być starannie przemyślany, żeby zrównoważyć obciążenia na poszczególnych fazach. Fajnie, że bierzesz pod uwagę normy, jak PN-IEC 60364 – to pokazuje, że robisz to odpowiedzialnie. Zwróć też uwagę na czynniki zewnętrzne, takie jak temperatura czy położenie przewodów – mogą one wpłynąć na ich obciążalność.

Pytanie 27

Jaką z poniższych wkładek bezpiecznikowych powinno się zastosować w celu zabezpieczenia przewodów przed skutkami zwarć oraz przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. aM 20 A
B. aM 16 A
C. gG 16 A
D. gG 20 A
Wybór wkładki bezpiecznikowej gG 16 A do zabezpieczenia obwodu jednofazowego bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V jest uzasadniony z kilku powodów. Po pierwsze, moc bojlera wynosząca 3 kW przy 230 V generuje prąd znamionowy równy około 13 A (obliczane według wzoru I = P/U). W tym przypadku wkładka gG, zaprojektowana do ochrony przewodów przed przeciążeniem i zwarciem, jest odpowiednia, gdyż może wytrzymać chwilowe przeciążenia, jakie mogą wystąpić podczas rozruchu bojlera. Ponadto, wkładki gG mają charakterystykę czasowo-prądową, co oznacza, że mogą tolerować krótkotrwałe przeciążenia, co czyni je idealnym wyborem w aplikacjach, gdzie występują takie zjawiska. Stosowanie wkładek aM, które są bardziej przystosowane do ochrony obwodów silnikowych, nie jest wskazane w tym przypadku, ponieważ ich charakterystyka nie jest optymalna do zabezpieczenia obwodu grzewczego. W praktyce, dobór wkładek bezpiecznikowych powinien opierać się na analizie specyfiki obciążenia oraz na standardach takich jak PN-EN 60269, które definiują wymagania dla wkładek bezpiecznikowych. Dlatego wkładka gG 16 A jest najlepszym wyborem dla tego zastosowania.

Pytanie 28

Wskaż skutek bezpośredni porażenia pracownika prądem przemiennym.

A. Uszkodzenie mechaniczne ciała w wyniku upadku.
B. Uszkodzenie narządów słuchu.
C. Naświetlenie oczu łukiem elektrycznym.
D. Migotanie komór sercowych.
W pytaniu chodzi o bezpośredni skutek porażenia prądem przemiennym, czyli taki efekt, który wynika z samego przepływu prądu przez ciało człowieka, a nie z towarzyszących zjawisk. Prąd przemienny o częstotliwości sieciowej 50 Hz oddziałuje głównie na układ nerwowy i mięśniowy, a najbardziej niebezpieczne są zaburzenia pracy serca, zwłaszcza migotanie komór. To właśnie ten efekt jest typowym, bezpośrednim skutkiem rażenia, opisanym w normach i materiałach szkoleniowych. Uszkodzenie narządów słuchu kojarzy się raczej z działaniem hałasu, fali uderzeniowej czy eksplozji. W kontekście instalacji i urządzeń elektrycznych może się pojawić np. przy wybuchu rozdzielnicy, zwarciu łukowym z silnym hukiem, ale to jest skutek pośredni zjawisk towarzyszących awarii, a nie efekt przepływu prądu przez ciało człowieka. Naświetlenie oczu łukiem elektrycznym też jest problemem bezpieczeństwa, ale dotyczy promieniowania optycznego (UV, światło widzialne) i temperatury łuku, a nie samego prądu rażeniowego przechodzącego przez organizm. To klasyczny temat z BHP przy spawaniu elektrycznym czy przy obsłudze aparatów łączeniowych o dużych prądach zwarciowych. Uszkodzenie mechaniczne ciała w wyniku upadku zdarza się bardzo często przy porażeniach – człowiek odskakuje, traci równowagę, spada z drabiny, z rusztowania. Ale znowu, to jest skutek pośredni: prąd powoduje skurcz mięśni, utratę kontroli nad ciałem, a obrażenia powstają dopiero w wyniku uderzenia o podłoże czy element konstrukcji. Typowym błędem myślowym jest wrzucanie do jednego worka wszystkich możliwych następstw zdarzenia z prądem, bez rozróżnienia, co jest skutkiem działania prądu na organizm, a co konsekwencją warunków otoczenia (wysokość pracy, obecność łuku, hałas, odłamki). W ochronie przeciwporażeniowej skupiamy się przede wszystkim na ograniczeniu ryzyka zaburzeń pracy serca i zatrzymania oddechu, bo to są bezpośrednie, krytyczne skutki porażenia. Dlatego normy i dobre praktyki projektowe kładą nacisk na utrzymanie napięć dotykowych i czasów wyłączenia w takich granicach, żeby zminimalizować ryzyko migotania komór, a nie na przykład uszkodzenia słuchu czy urazy mechaniczne, które należą już bardziej do ogólnego BHP i organizacji stanowiska pracy.

Pytanie 29

Największy prąd, który może pobierać długotrwale obwód oświetleniowy, zasilany z rozdzielnicy o przedstawionym na rysunku schemacie, wynosi

Ilustracja do pytania
A. 16 A
B. 26 A
C. 20 A
D. 6 A
Zrozumienie mocy oraz obciążenia w obwodach elektrycznych jest kluczowe dla prawidłowego działania instalacji. Wybór niewłaściwej wartości prądu, na przykład 6 A, 16 A lub 26 A, wynika z typowych błędów myślowych związanych z analizą schematu. Udzielając odpowiedzi 6 A lub 16 A, można sądzić, że prąd ograniczający jest możliwy do przyjęcia na podstawie zastosowanych komponentów. Jednakże, wyłącznik B20 oraz stycznik SM-320, które są kluczowe w tym obwodzie, mogą bezpiecznie obsłużyć znacznie wyższy prąd – aż do 20 A. Wybór 26 A jest również niewłaściwy, ponieważ przekracza maksymalną wartość obciążenia, co prowadziłoby do ryzyka uszkodzenia elementów instalacji. Warto również zauważyć, że w praktyce inżynierskiej wymagane jest przestrzeganie standardów znamionowych oraz zapewnienie odpowiednich marginesów bezpieczeństwa. Właściwy dobór elementów i obliczeń jest zatem kluczowy dla bezpieczeństwa i długowieczności instalacji elektrycznych, a każdy element w obwodzie powinien być dostosowany do jego przewidywanego obciążenia. Analizując powyższe, nie powinno się pomijać znaczenia norm i przepisów, które mają na celu ochronę zarówno osób, jak i mienia przed niebezpieczeństwami wynikającymi z niewłaściwego doboru lub eksploatacji instalacji elektrycznych.

Pytanie 30

Przyporządkuj rodzaje trzonków świetlówek kompaktowych, w kolejności jak na rysunku.

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Wybór niepoprawnej odpowiedzi może wynikać z braku znajomości klasyfikacji trzonków świetlówek kompaktowych, co jest kluczowe dla prawidłowego doboru źródeł światła. Odpowiedzi, które nie odpowiadają rzeczywistości, mogą wprowadzać w błąd, prowadząc do wyboru niewłaściwego trzonka, co z kolei skutkuje problemami z montażem oraz użytkowaniem. Na przykład, wiele osób może mylić trzonek E27 z B22d, co jest typowym błędem, ponieważ mają one różne średnice oraz sposoby montażu. Nieprawidłowe zrozumienie tych różnic prowadzi do sytuacji, w której użytkownicy zamawiają niewłaściwe żarówki, co skutkuje frustracją i dodatkowymi kosztami związanymi z wymianą. Ważne jest, aby zapoznać się z rysunkami oraz opisami technicznymi, które wyraźnie przedstawiają różnice między rodzajami trzonków. Praktyczna znajomość tych elementów jest niezbędna, szczególnie w sytuacjach, gdy chodzi o projektowanie oświetlenia w pomieszczeniach, gdzie efektywność energetyczna ma kluczowe znaczenie. Niepoprawne odpowiedzi mogą również wynikać z nieuwagi podczas analizy rysunku, co może zniekształcić postrzeganie właściwego wsparcia technicznego oraz prowadzić do pomyłek w przyszłych zakupach oświetleniowych.

Pytanie 31

Co może być przyczyną usterki na przedstawionym schemacie, jeżeli: żarówka E2 świeci się, a żarówka E1 nie świeci się, obie żarówki są sprawne, zmierzone napięcie U12 = 228 V, oprawy E1 i E2 są sprawne?

Ilustracja do pytania
A. Uszkodzony przewód pomiędzy W1 a S191B10
B. Uszkodzone przewody pomiędzy W2 a W3
C. Uszkodzone przewody pomiędzy W1 a W2
D. Uszkodzony przewód pomiędzy W3 a E1
Odpowiedź wskazująca na uszkodzony przewód pomiędzy W3 a E1 jest poprawna, ponieważ analizując sytuację, w której żarówka E2 świeci, a E1 nie, można wywnioskować, że obwód dostarczający prąd do E1 jest przerwany. Pomimo iż napięcie U12 wynosi 228 V, co sugeruje prawidłowe działanie obwodu pomiędzy W1 a W2, to brak świecenia żarówki E1 wskazuje na problem w dalszej części obwodu. W przypadku, gdyby przewody pomiędzy W1 a W2 lub W2 a W3 były uszkodzone, to również E2 nie mogłoby świecić. Praktyczne zastosowanie tej wiedzy odnosi się do diagnostyki usterek w instalacjach elektrycznych, gdzie kluczowym krokiem jest analiza obwodów oraz sprawdzanie, w którym miejscu prąd nie dociera do założonych punktów. W obiektach przemysłowych oraz mieszkalnych, stosowanie schematów połączeń i przeprowadzanie pomiarów napięcia jest niezbędne dla efektywnej diagnostyki i konserwacji. Zgodnie z normami bezpieczeństwa, każdy elektryk powinien być w stanie szybko zidentyfikować potencjalne problemy w obwodach, co prowadzi do oszczędności czasu oraz zasobów.

Pytanie 32

Które stwierdzenie dotyczące normalizacji jest prawdziwe?

A. Stosowanie się do wymagań norm jest dobrowolne, a stosowanie się do wymagań zawartych w dyrektywach UE jest obowiązkowe.
B. Stosowanie się do wymagań norm jest obowiązkowe, a stosowanie się do wymagań zawartych w dyrektywach UE jest dobrowolne.
C. Stosowanie się do wymagań norm i stosowanie się do wymagań zawartych w dyrektywach UE jest dobrowolne.
D. Stosowanie się do wymagań norm i stosowanie się do wymagań zawartych w dyrektywach UE jest obowiązkowe.
W tym pytaniu łatwo się pomylić, bo w praktyce normy i przepisy często „idą w pakiecie” i wiele osób ma wrażenie, że wszystko jest po prostu obowiązkowe. Trzeba jednak rozdzielić dwie rzeczy: akty prawne (ustawy, rozporządzenia, wdrożone dyrektywy UE) oraz normy techniczne. Dyrektywy Unii Europejskiej po wdrożeniu do prawa krajowego stają się podstawą obowiązków prawnych. Przykładowo dyrektywa niskonapięciowa, dyrektywa EMC czy dyrektywa maszynowa wymagają, żeby urządzenia i instalacje były bezpieczne, nie stwarzały zagrożenia porażeniem, pożarem, zakłóceniami itp. Tego nie można sobie odpuścić – niespełnienie wymagań dyrektyw to naruszenie prawa, z wszystkimi konsekwencjami: od kar administracyjnych po odpowiedzialność karną, jeśli dojdzie do wypadku. Inaczej wygląda sytuacja z normami. Normy, takie jak PN-EN 60364 dla instalacji elektrycznych czy zestaw norm dotyczących ochrony przeciwporażeniowej, same w sobie nie są aktem prawnym. To są „uznane zasady techniczne”. Państwo bardzo często odwołuje się do nich w rozporządzeniach, ale zwykle w taki sposób, że ich stosowanie jest domyślną ścieżką wykazania zgodności z wymaganiami prawa. Błędne myślenie polega na założeniu, że albo normy są z natury obowiązkowe (co sugeruje, że każde odejście od zapisów normy jest nielegalne), albo że dyrektywy można traktować jak luźne wytyczne, a ważniejsze są normy. To odwraca role. W rzeczywistości rdzeniem są wymagania prawne z dyrektyw, a normy są narzędziem, żeby je spełnić w sposób uporządkowany i powtarzalny. Spotyka się też przekonanie, że skoro normy są dobrowolne, to można „robić po swojemu” bez głębszej refleksji. To też jest pułapka. Jeżeli ktoś świadomie odchodzi od normy, musi mieć mocne, technicznie uzasadnione argumenty, że wybrany sposób nadal zapewnia poziom bezpieczeństwa co najmniej taki, jak rozwiązanie normowe. W praktyce w branży elektrycznej przyjmuje się, że normy są standardem zawodowym i podstawą oceny przez nadzór techniczny, ubezpieczycieli czy biegłych sądowych. Dlatego warto dobrze rozumieć tę różnicę: obowiązkowe są wymagania prawa i dyrektyw UE, a normy są formalnie dobrowolne, ale w praktyce stanowią najlepszą drogę do spełnienia tych wymagań i ochrony własnej odpowiedzialności.

Pytanie 33

Podczas sprawdzania samoczynnego wyłączenia zasilania jako metody ochrony przeciwporażeniowej w sieciach TN-S, realizowanego poprzez nadprądowy wyłącznik instalacyjny, oprócz pomiaru impedancji pętli zwarcia, należy dla danego wyłącznika ustalić

A. wartość prądu wyłączającego
B. zwarciową zdolność łączeniową
C. czas zadziałania wyzwalacza zwarciowego
D. próg zadziałania wyzwalacza przeciążeniowego
Wartość prądu wyłączającego jest kluczowa w kontekście samoczynnego wyłączenia zasilania, ponieważ określa poziom prądu, przy którym nadprądowy wyłącznik instalacyjny zareaguje i odłączy obwód. W sieciach TN-S, które charakteryzują się oddzieleniem systemu uziemienia od neutralnego, ważne jest, aby wartość ta była odpowiednio dobrana do warunków ochrony przeciwporażeniowej. Standardy takie jak PN-EN 60947-2 wskazują, że wyłącznik musi działać w określonym czasie, aby zapewnić bezpieczeństwo użytkowników. Przykładowo, dla prądu wyłączającego o wartości 30 mA w obwodach ochronnych, wyłącznik powinien zadziałać w czasie nieprzekraczającym 0,2 sekundy. Oprócz tego, dobór wartości prądu wyłączającego ma również praktyczne zastosowanie w projektowaniu instalacji, gdyż zbyt wysoka wartość może prowadzić do ryzyka porażenia prądem, a zbyt niska do niepotrzebnych wyłączeń. Z tego względu, analiza warunków pracy wyłącznika oraz jego parametrów jest niezbędna dla zapewnienia ochrony użytkowników i minimalizacji ryzyka awarii.

Pytanie 34

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWynik
U - V15 Ω
V - W15 Ω
W - U20 Ω
A. Przerwa w uzwojeniu fazy V
B. Przerwa w uzwojeniu fazy W
C. Zwarcie międzyzwojowe w fazie W
D. Zwarcie międzyzwojowe w fazie V
Przerwa w uzwojeniu fazy V oraz zwarcie międzyzwojowe w fazie W to odpowiedzi, które mogą wydawać się logiczne na pierwszy rzut oka, jednak analiza pomiarów rezystancji wskazuje na błędne interpretacje. Przerwa w uzwojeniu fazy V skutkujełaby znacznie wyższą rezystancją między zaciskami U-V i V-W, co jest sprzeczne z danymi, które pokazują mniejsze wartości rezystancji. Taki błąd myślowy często wynika z niepoprawnego założenia, że wszystkie rezystancje powinny być jednorodne, co w praktyce nie zawsze ma miejsce, zwłaszcza w obliczu uszkodzeń. Natomiast zwarcie międzyzwojowe w fazie W, choć również może wydawać się możliwą przyczyną uszkodzenia, nie znajduje potwierdzenia w pomiarach, które jasno wskazują na asymetrię w rezystancjach, a nie na zjawisko zwarcia w fazie W. W przypadku zwarcia międzyzwojowego, oczekiwalibyśmy, że rezystancja tej fazy będzie znacznie niższa niż w innych fazach, co nie jest zgodne z wynikami. Takie nieporozumienia mogą prowadzić do niewłaściwego diagnozowania problemów w silnikach indukcyjnych, co w efekcie może skutkować dalszymi uszkodzeniami i kosztownymi naprawami. Ważne jest zrozumienie różnicy pomiędzy przerwą w uzwojeniu a zwarciami, oraz umiejętność analizy danych pomiarowych w kontekście ich praktycznego zastosowania.

Pytanie 35

Które z oznaczeń określa przewód przeznaczony do wykonania obwodu jednofazowych gniazd wtyczkowych w instalacji wtynkowej w sieci TN-S?

A. \( \text{YDYp 2} \times 1{,}5 \, \text{mm}^2 \)
B. \( \text{YDYtżo 3} \times 2{,}5 \, \text{mm}^2 \)
C. \( \text{YLYżo 3} \times 1{,}5 \, \text{mm}^2 \)
D. \( \text{YDYt 2} \times 2{,}5 \, \text{mm}^2 \)
W tym zadaniu łatwo się pomylić, bo na pierwszy rzut oka wszystkie oznaczenia wyglądają podobnie, a diabeł siedzi w szczegółach. Kluczowe są tu trzy rzeczy: rodzaj przewodu (materiał, izolacja), liczba żył i ich przeznaczenie oraz przekrój znamionowy dobrany do obwodu gniazd w instalacji wtynkowej w sieci TN-S. Wiele osób odruchowo sięga po przewód dwużyłowy, na przykład 2 × 2,5 mm² albo 2 × 1,5 mm², bo kojarzy, że „jednofazowe gniazdo to faza i neutralny”. I tu pojawia się typowy błąd: w układzie TN-S przewód ochronny PE musi być osobną żyłą, a gniazda wtyczkowe ogólnego przeznaczenia wymagają podłączenia przewodu ochronnego. Dlatego przewód dwużyłowy w ogóle odpada – brakuje trzeciej żyły ochronnej, co jest niezgodne z zasadami ochrony przeciwporażeniowej i warunkami technicznymi. Innym częstym potknięciem jest sięganie po przekrój 1,5 mm² do gniazd. Ten przekrój używa się raczej do obwodów oświetleniowych, gdzie prądy są mniejsze. Dla obwodów gniazd przy zabezpieczeniu 16 A i typowych długościach obwodów przyjmuje się 2,5 mm², aby zapewnić odpowiednią obciążalność prądową, ograniczyć spadek napięcia i zyskać rozsądny zapas bezpieczeństwa eksploatacyjnego. Kolejna sprawa to rodzaj powłoki i przeznaczenie przewodu. W instalacji wtynkowej stosuje się przewody przystosowane do układania pod tynkiem, najczęściej typu YDYt. Przewody płaskie lub o innym przeznaczeniu, jak na przykład YLY stosowane raczej jako przewody elastyczne, nie są typowym wyborem do stałej instalacji w ścianie. Dochodzi jeszcze oznaczenie „żo”, które informuje, że jedna z żył jest żółto-zielona, czyli przeznaczona jako PE. Brak tego oznaczenia w przewodzie wielożyłowym sygnalizuje, że w środku nie ma żyły ochronnej w standardowym kolorze, co znowu kłóci się z wymaganiami dla sieci TN-S. Podsumowując, błędne odpowiedzi wynikają zwykle z pomylenia obwodów gniazd z obwodami oświetleniowymi, nieuwzględnienia osobnej żyły PE albo zignorowania faktu, że przewód ma być typowo instalacyjny pod tynk, a nie jakikolwiek przewód o zbliżonym przekroju.

Pytanie 36

W jaki sposób należy połączyć zaciski sieci zasilającej L, N, PE do zacisków puszki zasilającej instalację elektryczną, której schemat przedstawiono na rysunku, aby połączenia były zgodne z przedstawionym schematem ideowym?

Ilustracja do pytania
A. L - 1, N - 3, PE - 4
B. L - 3, N - 4, PE - 1
C. L - 1, N - 4, PE - 3
D. L - 2, N - 3, PE - 4
Poprawna odpowiedź to L - 1, N - 3, PE - 4, co jest zgodne z obowiązującymi normami instalacji elektrycznych w Polsce. Zacisk L, odpowiadający za przesył energii elektrycznej, powinien być połączony z punktem 1. Jest to istotne, ponieważ zapewnia to prawidłowe zasilanie obwodu. Zacisk N, który jest neutralny, łączy się z punktem 3, co umożliwia bezpieczne odprowadzenie prądu wstecz do źródła. Wreszcie, zacisk PE, pełniący funkcję ochrony przed porażeniem elektrycznym, powinien być połączony z punktem 4. Takie połączenie minimalizuje ryzyko awarii oraz zapewnia bezpieczeństwo użytkowników. W praktyce, przy wykonywaniu instalacji elektrycznych, zgodność z tym schematem jest kluczowa. Ponadto, należy pamiętać o regularnych przeglądach instalacji oraz stosowaniu się do norm PN-IEC 60364, aby zapewnić trwałość oraz niezawodność sieci zasilającej.

Pytanie 37

Który z urządzeń umożliwia bezpośredni pomiar cos 9?

A. Omomierz
B. Fazomierz
C. Waromierz
D. Watomierz
Watomierz, omomierz i waromierz to przyrządy, które pełnią różne funkcje, ale nie są odpowiednie do bezpośredniego pomiaru cos φ. Watomierz mierzy moc elektryczną, co jest istotne w kontekście zużycia energii, ale nie informuje nas o kącie fazowym. Zrozumienie tego narzędzia jest kluczowe, jednak nie można go używać do oceny współczynnika mocy, ponieważ wymaga to pomiaru zarówno prądu, jak i napięcia, a także ich faz. Omomierz, z kolei, służy do pomiaru oporu, co w przypadku prądów zmiennych jest niewłaściwe, ponieważ nie uwzględnia on aspektu fazowego. Użycie omomierza w kontekście pomiaru cos φ może prowadzić do mylnych wniosków i błędów w ocenie stanu obwodu. Waromierz, który jest narzędziem do pomiaru energii w obwodach prądu zmiennego, także nie dostarcza informacji o fazie, co czyni go nieprzydatnym w tym kontekście. Wielu użytkowników może myśleć, że wystarcza pomiar mocy lub oporu, jednak te podejścia pomijają kluczowy aspekt, jakim jest kąt fazowy, co jest fundamentalne dla zrozumienia efektywności energetycznej. W praktyce, nieznajomość różnicy między tymi przyrządami a fazomierzem może prowadzić do poważnych problemów w diagnostyce i zarządzaniu systemami elektrycznymi.

Pytanie 38

Która z poniższych czynności ocenia efektywność ochrony uzupełniającej przed porażeniem prądem elektrycznym?

A. Pomiar impedancji pętli zwarciowej
B. Pomiar rezystancji izolacji przewodów
C. Badanie stanu izolacji podłóg
D. Badanie wyłącznika różnicowoprądowego
Badanie wyłącznika różnicowoprądowego (RCD) jest kluczowym krokiem w ocenie skuteczności ochrony przed porażeniem prądem elektrycznym. Wyłączniki różnicowoprądowe są zaprojektowane w celu wykrywania różnicy prądów między przewodem fazowym a neutralnym. W momencie, gdy prąd upływowy, wskazujący na potencjalne porażenie prądem, przekroczy ustalony próg, wyłącznik natychmiast odłącza zasilanie, co minimalizuje ryzyko urazu. Badanie RCD polega na sprawdzeniu, czy wyłącznik działa prawidłowo i odłącza obwód w określonym czasie i przy zadanym prądzie upływowym, co jest zgodne z normami takimi jak PN-EN 61008. Praktycznym przykładem jest rutynowe testowanie RCD w obiektach użyteczności publicznej, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie. Regularne kontrole RCD powinny być częścią planu konserwacji instalacji elektrycznych, aby zapewnić stałą ochronę przed zagrożeniami związanymi z prądem elektrycznym.

Pytanie 39

Którym z kluczy należy dokręcić nakrętkę kotwy przedstawionej na ilustracji?

Ilustracja do pytania
A. Oczkowym.
B. Imbusowym.
C. Płaskim.
D. Nasadowym.
Wybór innych typów kluczy niż klucz płaski do dokręcania nakrętki kotwy jest niewłaściwy z kilku względów. Klucz nasadowy, mimo że jest uniwersalnym narzędziem, dedykowanym często do elementów z łbem sześciokątnym, nie pasuje do nakrętki o specyficznym kształcie, jaką ma kotwa przedstawiona na ilustracji. Użycie klucza nasadowego może skutkować niemożnością pełnego uchwycenia nakrętki, co prowadzi do poślizgu i potencjalnych uszkodzeń. Z kolei klucz imbusowy, zaprojektowany do elementów z gniazdem sześciokątnym wewnętrznym, nie ma zastosowania w tym kontekście, gdyż nakrętka kotwy nie posiada takiego gniazda. W przypadku klucza oczkowego, jego konstrukcja również nie będzie odpowiednia, ponieważ nie pozwala na objęcie nakrętki w sposób, który zapewni stabilność i siłę dokręcania. W praktyce, niewłaściwy dobór klucza prowadzi nie tylko do problemów z dokręcaniem, ale także może skutkować uszkodzeniami narzędzi oraz elementów, co narazi użytkownika na dodatkowe koszty naprawy. Kluczowe jest zrozumienie, że w każdej sytuacji technicznej, wybór odpowiedniego narzędzia powinien być oparty na jego specyfikacji oraz na charakterystyce łączonych elementów. Zastosowanie niewłaściwego klucza to klasyczny błąd myślowy, który wynika z braku analizy sytuacji i nieznajomości podstawowych zasad doboru narzędzi.

Pytanie 40

W rozdzielnicy instalacji mieszkaniowej, wykonanej zgodnie z przedstawionym schematem, należy zainstalować

Ilustracja do pytania
A. cztery wyłączniki różnicowoprądowe i pięć jednofazowych wyłączników nadprądowych.
B. cztery wyłączniki różnicowoprądowe, cztery trójfazowe wyłączniki nadprądowe i jeden jednofazowy wyłącznik nadprądowy.
C. jeden wyłącznik różnicowoprądowy, cztery trójfazowe wyłączniki nadprądowe i cztery jednofazowe wyłączniki nadprądowe.
D. pięć wyłączników różnicowoprądowych i cztery jednofazowe wyłączniki nadprądowe.
Wybrana odpowiedź jest prawidłowa, ponieważ zgodnie z przedstawionym schematem w rozdzielnicy instalacji mieszkaniowej zainstalowane są cztery wyłączniki różnicowoprądowe. Ich rola polega na zabezpieczaniu obwodów przed prądem upływowym, co jest kluczowe dla ochrony ludzi przed porażeniem prądem elektrycznym. Dodatkowo każda z linii zasilających musi być zabezpieczona jednofazowym wyłącznikiem nadprądowym, co w tym przypadku odpowiada pięciu wyłącznikom o wartościach znamionowych B10 lub B16. Takie podejście jest zgodne z normami PN-EN 61439 oraz PN-IEC 60364, które wskazują na konieczność odpowiedniego zabezpieczenia instalacji elektrycznych, aby zapewnić bezpieczeństwo użytkowania. W praktyce, przestrzeganie tych zasad minimalizuje ryzyko awarii oraz zwiększa niezawodność całej instalacji, co jest niezwykle istotne w kontekście użytkowania w warunkach domowych.