Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 23 listopada 2025 21:58
  • Data zakończenia: 23 listopada 2025 22:18

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w tabeli?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony uzupełniającej.
B. Ochrony przez zastosowanie bardzo niskiego napięcia.
C. Ochrony podstawowej.
D. Ochrony przy uszkodzeniu (dodatkowej).
Wiesz, te środki ochrony, które były w tabeli, jak urządzenia różnicowoprądowe i połączenia wyrównawcze, to naprawdę ważna sprawa, jeśli chodzi o bezpieczeństwo instalacji elektrycznych. Ochrona uzupełniająca to coś, co wchodzi w grę, gdy standardowe zabezpieczenia nie są wystarczające. To szczególnie istotne w miejscach, gdzie ryzyko porażenia prądem jest większe, na przykład w łazienkach czy kuchniach. RCD świetnie działa, bo wyłapuje prąd upływu i go eliminuje, co naprawdę ratuje życie. Połączenia wyrównawcze też mają swoje miejsce, szczególnie tam, gdzie jest kilka źródeł zasilania. Dzięki nim zmniejsza się różnica potencjałów, co podnosi bezpieczeństwo użytkowników. Warto też znać normy, takie jak IEC 60364 i PN-EN 61008, bo one mówią, jak budować te instalacje, żeby były bezpieczne. Zrozumienie ochrony uzupełniającej to klucz do tego, żeby każdy, kto projektuje i wykonuje instalacje elektryczne, mógł to robić dobrze.

Pytanie 5

Jakim kolorem oznaczona jest wkładka topikowa, której wartość prądu znamionowego wynosi 20 A?

A. szary
B. niebieski
C. czerwony
D. żółty
Wkładki topikowe, jako elementy zabezpieczające w obwodach elektrycznych, są klasyfikowane według wartości prądu znamionowego, co znajduje swoje odzwierciedlenie w kolorach obudowy. W przypadku wkładki o prądzie znamionowym 20 A stosuje się kolor niebieski, co jest zgodne z normami określającymi oznaczenia kolorystyczne. W praktyce, znajomość tych norm jest kluczowa dla właściwego doboru zabezpieczeń w instalacjach elektrycznych. Użycie wkładek topikowych o odpowiednich wartościach jest istotne, aby zminimalizować ryzyko przegrzania oraz uszkodzeń instalacji. Przykładowo, w przypadku awarii lub zwarcia, wkładka o odpowiednim prądzie znamionowym zadziała w odpowiednim czasie, co zapewnia bezpieczeństwo użytkowania urządzeń elektrycznych. Warto zaznaczyć, że standardy międzynarodowe, takie jak IEC 60269, precyzują klasyfikację wkładek topikowych, co potwierdza ich istotną rolę w zapewnieniu bezpieczeństwa w obwodach elektrycznych.

Pytanie 6

Jakie czynności powinny być przeprowadzone po serwisie silnika elektrycznego?

A. Pomiar rezystancji izolacji i próbne uruchomienie
B. Sprawdzenie układów sterowania i sygnalizacji
C. Impregnację uzwojeń i wyważenie wirnika
D. Sprawdzenie układów rozruchowych i regulacyjnych
Pomiar rezystancji izolacji oraz wykonanie próbnego uruchomienia silnika elektrycznego to kluczowe czynności po jego konserwacji. Rezystancja izolacji jest istotnym wskaźnikiem stanu izolacji uzwojeń silnika; jej wysoka wartość sygnalizuje dobrą izolację, co jest niezbędne do zapewnienia bezpieczeństwa eksploatacji. Standardy takie jak IEC 60034-1 zalecają, aby rezystancja izolacji była co najmniej 1 MΩ na każdy kV napięcia roboczego, co chroni przed przebiciem i zwarciem. Próbne uruchomienie pozwala na ocenę rzeczywistej pracy silnika, w tym jego momentu obrotowego, prędkości i stabilności działania. W praktyce, te czynności pozwalają na wczesne wykrycie potencjalnych usterek, co może zapobiec poważnym awariom i zwiększyć trwałość urządzenia. Regularne pomiary izolacji i testy operacyjne są zgodne z najlepszymi praktykami w branży, co przekłada się na wydajność i bezpieczeństwo operacyjne.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy
2. zmywarka - 3,5 kW - obwód jednofazowy
3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy
4. pralka automatyczna - 4,5 kW - obwód jednofazowy

Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 16 A, 20 A, 20 A, 16 A
B. 20 A, 16 A, 20 A, 16 A
C. 16 A, 20 A, 20 A, 16 A
D. 20 A, 16 A, 16 A, 20 A
Wybór innych wartości prądów znamionowych dla wyłączników instalacyjnych może prowadzić do niewłaściwej ochrony odbiorników i stwarzać ryzyko ich uszkodzenia, a nawet pożaru. Dla przykładu, zastosowanie wyłącznika o prądzie 16 A dla kuchenki elektrycznej o mocy 9,5 kW w obwodzie 3-fazowym jest błędne, ponieważ moc ta wymaga przynajmniej 20 A. Prąd znamionowy wyłączników powinien być zawsze dobrany na podstawie obliczeń mocy i zastosowanej metody ochrony. Wybór zbyt niskiego prądu znamionowego może prowadzić do częstego wyłączania się zabezpieczenia, co nie tylko jest niewygodne, ale także może doprowadzić do uszkodzenia urządzenia przez nienależyte zasilanie. Z kolei użycie wyłącznika o zbyt wysokim prądzie może nie zapewnić odpowiedniej ochrony przed przeciążeniem, co stwarza ryzyko przegrzania i uszkodzenia przewodów. W normach instalacyjnych oraz w praktyce inżynierskiej kluczowe jest przestrzeganie zasad doboru zabezpieczeń, które uwzględniają zarówno moc odbiorników, jak i ich charakterystykę. Istotne jest również, aby uwzględniać współczynniki obciążenia, które mogą wpływać na rzeczywisty pobór prądu przez urządzenia. Dlatego też właściwe zrozumienie i stosowanie tych zasad jest niezbędne dla zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jakiego zestawu narzędzi potrzebujesz do złożenia aparatury oraz wykonania połączeń elektrycznych w rozdzielnicy w mieszkaniu?

A. Szczypce monterskie uniwersalne, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
B. Szczypce monterskie uniwersalne, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
C. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
D. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
Zestaw narzędzi, który wymieniłeś, jest naprawdę ważny przy montażu aparatury elektrycznej. Szczypce do cięcia przewodów są super przydatne, bo dzięki nim możesz łatwo obciąć przewody na odpowiednią długość – to ważne, żeby wszystko wyglądało schludnie. Przyrząd do ściągania powłoki to też niezła sprawa, bo pozwala na ściągnięcie zewnętrznej izolacji, co jest niezbędne, żeby dostać się do przewodów. No i przyrząd do ściągania izolacji - bez niego trudno by było zrobić dobre i trwałe połączenia. Co do zestawu wkrętaków, to jasne, że musisz mieć zarówno płaskie, jak i krzyżowe, żeby wszystko dobrze zamocować. Pamiętaj, że poprawne korzystanie z tych narzędzi to także kwestia bezpieczeństwa, więc dobrze jest się trzymać zasad BHP. To wszystko naprawdę wpływa na bezpieczeństwo i trwałość całej instalacji.

Pytanie 11

Jaka maksymalna wartość może mieć impedancja pętli zwarcia w trójfazowym systemie elektrycznym o napięciu nominalnym 230/400 V, aby ochrona przeciwporażeniowa przy awarii izolacji była skuteczna, wiedząc, że odpowiednie szybkie wyłączenie tego obwodu ma zapewnić instalacyjny wyłącznik nadprądowy B20?

A. 4,0 Ω
B. 2,3 Ω
C. 3,8 Ω
D. 6,6 Ω
Wartość 2,3 Ω jest prawidłowa dla impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu 230/400 V, ponieważ gwarantuje wystarczająco niską impedancję, aby wyłącznik nadprądowy B20 mógł zadziałać w przypadku uszkodzenia izolacji. Zgodnie z zasadami ochrony przeciwporażeniowej, aby zapewnić skuteczną reakcję wyłącznika, impedancja pętli zwarcia powinna być niższa niż wartość krytyczna, ustalona na podstawie prądu zwarciowego, który jest niezbędny do wyzwolenia wyłącznika. W przypadku B20, przy nominalnym prądzie 20 A, minimalny prąd zwarciowy powinien wynosić co najmniej 100 A, co odpowiada maksymalnej impedancji 2,3 Ω. W praktyce oznacza to, że w przypadku wystąpienia zwarcia, wyłącznik zareaguje w odpowiednim czasie, minimalizując ryzyko porażenia prądem. Zgodnie z normą PN-IEC 60364-4-41, dobór odpowiedniej impedancji pętli zwarcia jest kluczowym elementem w projektowaniu instalacji elektrycznych.

Pytanie 12

Korzystając z zamieszczonego fragmentu instrukcji obsługi multimetru, wyznacz względny błąd pomiaru napięcia, jeżeli woltomierz wskazał 120 V.

Instrukcja obsługi multimetru (fragment)

Uchyb pomiaru:

0,1% w.m. ±0,05% w.z. (podzakresy 100 mV, 1 V)

0,2% w.m. ±0,05% w.z. (podzakresy 10 V, 100 V, 1000 V)

gdzie w.m. oznacza wartość zmierzoną, a w.z. wartość zakresu.
A. 6,10%
B. 0,07%
C. 0,74%
D. 0,62%
Względny błąd pomiaru napięcia wynosi 0,62%, co oznacza, że pomiar wykonany za pomocą woltomierza jest dokładny w granicach tego błędu. W celu obliczenia względnego błędu, należy dodać błąd stały urządzenia do błędu procentowego, a następnie podzielić tę sumę przez wartość zmierzoną (w tym przypadku 120 V). Takie podejście jest zgodne z profesjonalnymi standardami pomiarowymi, które wskazują, jak prawidłowo oceniać błędy pomiarowe. W praktyce, stosując woltomierz, bardzo ważne jest, aby zrozumieć i obliczyć te błędy, aby zapewnić dokładność i wiarygodność pomiarów. Na przykład, w zastosowaniach inżynieryjnych, gdzie precyzyjne parametry elektryczne są krytyczne, skuteczne zarządzanie błędami pomiarowymi pozwala na optymalizację procesów produkcyjnych, a także na zapewnienie bezpieczeństwa. W związku z tym, umiejętność obliczania względnych błędów pomiarowych jest kluczowa dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 13

Jakie urządzenie jest używane do pomiaru rezystancji izolacyjnej przewodu?

A. miernik indukcyjny uziemień
B. omomierz
C. miernik obwodu zwarcia
D. megaomomierz
Megaomomierz to taki specjalny sprzęt, który używamy do sprawdzania, jak dobrze izolowane są przewody i inne części w elektryce. Działa na zasadzie pomiaru rezystancji przy użyciu wysokiego napięcia, dzięki czemu możemy wychwycić uszkodzenia izolacji, które mogą prowadzić do jakichś awarii lub nawet zagrożeń. W praktyce megaomomierz jest bardzo popularny w budownictwie i energetyce do testowania instalacji elektrycznych. Często używa się go też w serwisach, gdzie naprawiają różne urządzenia elektryczne. Są normy, takie jak IEC 60034-1 czy PN-EN 61557-1, które mówią nie tylko o tym, jak mierzyć, ale też o wymaganiach bezpieczeństwa. Dobrze jest na przykład zmierzyć izolację silników elektrycznych przed ich uruchomieniem – to ważne, żeby zapewnić, że będą działały długo i bezpiecznie.

Pytanie 14

Który łącznik elektryczny ma dwa przyciski oraz trzy terminale?

A. Krzyżowy
B. Dwubiegunowy
C. Świecznikowy
D. Schodowy
Krzyżowy łącznik instalacyjny, mimo iż jest powszechnie stosowany w instalacjach elektrycznych, nie posiada dwóch klawiszy i trzech zacisków, lecz jest używany w połączeniu z innymi łącznikami, aby umożliwić sterowanie oświetleniem z więcej niż dwóch miejsc. W praktyce, krzyżowy łącznik jest wykorzystywany w układach, gdzie już istnieją dwa lub więcej łączników schodowych, co pozwala na bardziej skomplikowane sterowanie oświetleniem, a nie jako samodzielne rozwiązanie. Schodowy łącznik, z drugiej strony, również nie odpowiada opisowi, ponieważ jego funkcją jest kontrolowanie jednego obwodu z dwóch miejsc, ale posiada tylko dwa zaciski. Użytkownicy często mylą ten typ łącznika ze świecznikowym w kontekście aplikacji, co może prowadzić do błędnych decyzji przy projektowaniu instalacji. Dwubiegunowy łącznik jest przeznaczony do kontroli obwodów elektrycznych, które wymagają rozłączania dwóch przewodów fazowych, ale także nie spełnia kryteriów podanych w pytaniu. Typowe błędy myślowe w tym przypadku polegają na utożsamianiu różnych typów łączników z ich funkcjonalnościami, co prowadzi do nieprawidłowych wniosków o ich zastosowaniu w konkretnej sytuacji.

Pytanie 15

Jakie działania są uwzględnione w procederze oględzin systemu elektrycznego w budynku mieszkalnym?

A. Nastawienie sprzętu zabezpieczającego i sygnalizacyjnego, ocena dostępności urządzeń, co umożliwia komfortową obsługę, identyfikację oraz konserwację
B. Mierzenie ciągłości przewodów ochronnych i czynnych w obwodach odbiorczych, a także ocena efektywności ochrony w razie uszkodzenia za pomocą automatycznego wyłączenia zasilania
C. Pomiar rezystancji izolacji przewodów, weryfikacja ciągłości przewodów ochronnych
D. Kontrola zabezpieczeń z użyciem SELV, PELV, separacji elektrycznej lub nieuziemionych połączeń wyrównawczych lokalnych
Odpowiedź dotycząca nastawienia urządzeń zabezpieczających i sygnalizacyjnych oraz sprawdzenia dostępności urządzeń jest prawidłowa, ponieważ wchodzą one w zakres oględzin instalacji elektrycznej w budynku mieszkalnym. W procesie oględzin kluczowe jest zapewnienie, że urządzenia zabezpieczające, takie jak wyłączniki różnicowoprądowe (RCD) i zabezpieczenia przeciążeniowe, działają zgodnie z wymaganiami norm, takich jak PN-EN 61010-1. Oprócz tego istotne jest, aby sprawdzić dostępność urządzeń, co pozwala na szybką reakcję w razie awarii. Użytkownik musi mieć możliwość łatwego dostępu do tych urządzeń w celu przeprowadzenia ewentualnych napraw lub konserwacji. Dobre praktyki branżowe sugerują regularne przeglądy tych urządzeń, aby potwierdzić ich funkcjonalność i kompletność, co z kolei zwiększa bezpieczeństwo całej instalacji. Warto również zaznaczyć, że zgodność z odpowiednimi normami i regulacjami prawnymi jest kluczowa dla zapewnienia bezpieczeństwa użytkowników budynków mieszkalnych.

Pytanie 16

Które urządzenie stosowane w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik przepięciowy.
B. Odłącznik bezpiecznikowy.
C. Rozłącznik bezpiecznikowy.
D. Wyłącznik nadmiarowoprądowy.
Rozłącznik bezpiecznikowy to kluczowe urządzenie w instalacjach elektrycznych, które pełni rolę zabezpieczającą i kontrolującą. Na przedstawionym rysunku widać charakterystyczne elementy, takie jak miejsca na wkładki bezpiecznikowe, które pozwalają na szybką wymianę zabezpieczeń w przypadku ich przepalenia. Rozłącznik bezpiecznikowy nie tylko chroni obwody elektryczne przed skutkami przeciążenia, ale także umożliwia bezpieczne odłączenie obwodu od źródła zasilania, co jest istotne w przypadku prac konserwacyjnych i naprawczych. W praktyce, zastosowanie rozłącznika bezpiecznikowego jest niezwykle istotne w budynkach mieszkalnych, przemysłowych oraz w infrastrukturze krytycznej, gdzie ciągłość zasilania i bezpieczeństwo użytkowników są priorytetem. Zgodnie z normami PN-EN 60947-3, rozłączniki te muszą spełniać określone wymagania dotyczące odporności na zwarcia, co zapewnia ich niezawodność i efektywność w ochronie instalacji.

Pytanie 17

Elektryczne połączenie, które umożliwia przesył energii elektrycznej, znajdujące się pomiędzy złączem a systemem odbiorczym w budynku, określane jest mianem

A. przyłącza napowietrznego
B. instalacji wewnętrznej
C. wewnętrznej linii zasilającej
D. przyłącza kablowego
Odpowiedź "wewnętrzna linia zasilająca" jest poprawna, ponieważ odnosi się do połączenia elektrycznego, które służy do dostarczania energii elektrycznej wewnątrz budynków. Tego rodzaju linie zasilające są kluczowe dla prawidłowego funkcjonowania instalacji elektrycznych, zapewniając stabilne i bezpieczne przesyłanie energii do urządzeń i systemów odbiorczych. W praktyce, wewnętrzne linie zasilające są projektowane zgodnie z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące bezpieczeństwa, jakości oraz efektywności energetycznej. Stosowanie odpowiednich materiałów, takich jak przewody miedziane lub aluminiowe oraz odpowiednie zabezpieczenia, takie jak wyłączniki nadprądowe, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W przypadku budynków komercyjnych, takich jak biura czy hale produkcyjne, projektowanie wewnętrznych linii zasilających wymaga szczególnej uwagi na obciążenia energetyczne oraz możliwość przyszłej rozbudowy instalacji.

Pytanie 18

Minimalny czas działania oświetlenia ewakuacyjnego powinien wynosić przynajmniej

A. 3 godziny
B. 2 godziny
C. 1 godzinę
D. 4 godziny
Chociaż krótszy czas działania oświetlenia ewakuacyjnego, jak 1 godzina, może wydawać się w porządku w niektórych sytuacjach, to jednak nie spełnia norm i nie bierze pod uwagę różnych zagrożeń, które mogą się zdarzyć w krytycznych momentach. Gdy ewakuacja zajmie więcej czasu, może być naprawdę niebezpiecznie, zwłaszcza w dużych obiektach, gdzie ludzie mogą być rozproszeni na różnych piętrach. Z kolei, wydłużenie tego czasu do 3 czy 4 godzin, mimo że brzmi lepiej, nie jest wymagane przepisami i może prowadzić do marnotrawienia zasobów i wyższych kosztów związanych z utrzymywaniem oświetlenia ewakuacyjnego. Czasami można spotkać się z błędnym myśleniem, że wystarczy jedynie zaświecić drogę ewakuacyjną. Kluczowe jest, by system oświetlenia dawał stabilne i jasne światło przez cały czas ewakuacji. To można osiągnąć tylko dzięki dobrym rozwiązaniom technicznym i regularnemu serwisowi, żeby mieć pewność, że wszystko działa. Bezpieczeństwo osób opuszczających budynek w kryzysowych sytuacjach jest absolutnie priorytetowe, a czas działania oświetlenia ewakuacyjnego jest jednym z kluczowych elementów, które to bezpieczeństwo zapewniają.

Pytanie 19

Jakie z podanych powodów może wywołać nagłe rozłączenie pracującego silnika szeregowego prądu stałego?

A. Zerwanie połączenia wału silnika z maszyną napędzającą
B. Przerwa w obwodzie wzbudzenia
C. Uszkodzenie łożysk silnika
D. Zwarcie międzyzwojowe w uzwojeniu twornika
Zerwanie połączenia wału silnika z maszyną napędzaną jest jedną z najczęstszych przyczyn nagłego rozbiegania się silnika szeregowego prądu stałego. W przypadku, gdy wał silnika nie jest połączony z obciążeniem, silnik nie ma przeciwdziałającego momentu obrotowego. Silniki szeregowe są zaprojektowane do pracy pod obciążeniem, co wpływa na ich charakterystykę pracy. Gdy obciążenie jest nagle usunięte, prędkość obrotowa silnika wzrasta, co prowadzi do zjawiska nazywanego rozbiegiem. W praktyce, w przypadku rozbiegu, silnik może osiągnąć niebezpieczne prędkości, co może prowadzić do uszkodzenia wewnętrznych komponentów silnika, a także do niebezpiecznych sytuacji w systemie napędowym. Dlatego w projektowaniu systemów napędowych, zaleca się stosowanie odpowiednich zabezpieczeń, takich jak systemy przeciążeniowe oraz czujniki, które monitorują stan pracy silnika i mogą automatycznie odłączyć zasilanie w przypadku wykrycia anomalii. Zastosowanie takich rozwiązań przyczynia się do zwiększenia bezpieczeństwa i niezawodności systemów opartych na silnikach szeregowych prądu stałego.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jakie narzędzie powinno być wykorzystane do wykonania kilku połączeń w nowej instalacji elektrycznej na listwach zaciskowych śrubowych?

A. Klucza imbusowego
B. Wiertarki udarowej z wiertłem widiowym
C. Wkrętarki akumulatorowej z odpowiednim bitem
D. Klucza nasadowego
Wkrętarka akumulatorowa z dopasowanym bitem to narzędzie idealne do wykonywania wielu połączeń w listwach zaciskowych śrubowych. Dzięki swojej konstrukcji i możliwości łatwej wymiany bitów, wkrętarka umożliwia szybkie i efektywne dokręcanie śrub, co jest kluczowe w instalacjach elektrycznych, gdzie często zachodzi potrzeba wielokrotnego podłączania i odłączania przewodów. Standardy branżowe, takie jak normy IEC 60364 dotyczące instalacji elektrycznych, podkreślają konieczność stosowania odpowiednich narzędzi do zapewnienia bezpieczeństwa i jakości wykonania połączeń. Wkrętarka akumulatorowa pozwala również na pracę w trudno dostępnych miejscach, co zwiększa jej funkcjonalność. Przykładem zastosowania może być instalacja oświetlenia, gdzie konieczne jest podłączenie wielu przewodów do jednego punktu, a użycie wkrętarki znacznie przyspiesza ten proces, zmniejszając ryzyko uszkodzenia elementów oraz poprawiając komfort pracy.

Pytanie 25

Przed dokonaniem pomiarów rezystancji izolacyjnej obwodu oświetleniowego, oprócz odłączenia zasilania, co jeszcze należy zrobić?

A. zamontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
B. wymontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
C. zamontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
D. wymontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
Zamontowanie źródeł światła oraz otwieranie łączników instalacyjnych przed pomiarem rezystancji izolacji obwodu oświetleniowego jest nieodpowiednim działaniem, które może prowadzić do wielu problemów technicznych. Po pierwsze, pozostawienie źródeł światła w obwodzie może skutkować ich uszkodzeniem, gdyż wiele z nich nie jest przystosowanych do wytrzymywania napięcia testowego, które może być znacznie wyższe niż nominalne wartości robocze. Przykładowo, podczas testu rezystancji izolacji przy użyciu napięcia 500V, nieodpowiednio zabezpieczone źródła światła mogą ulec uszkodzeniu, co wiąże się z dodatkowymi kosztami naprawy lub wymiany. Podobnie, otwarcie łączników instalacyjnych może prowadzić do nieprzewidywalnych sytuacji, w których obwód może nie być całkowicie odłączony, co może spowodować powstanie niebezpiecznych warunków pracy. Zgodnie z zasadami BHP oraz wytycznymi dotyczącymi pomiarów elektrycznych, istotne jest, aby zawsze upewnić się, że obwód jest w pełni odłączony przed przystąpieniem do jakichkolwiek testów. Nieprzestrzeganie tych zasad może prowadzić do poważnych zagrożeń dla personelu oraz uszkodzeń sprzętu, co jest nieakceptowalne w profesjonalnych instalacjach elektrycznych.

Pytanie 26

Jakie urządzenie, oprócz lutownicy, jest kluczowe podczas naprawy przeciętego przewodu LY poprzez połączenie lutowane?

A. Zagniatarka
B. Nóż monterski
C. Szczypce boczne
D. Płaskoszczypce
Obcinaczki boczne, zagniatarka oraz płaskoszczypce to narzędzia, które mają swoje specyficzne zastosowania, ale nie są wystarczające do naprawy przeciętego przewodu poprzez lutowanie. Obcinaczki boczne służą głównie do cięcia przewodów, co jest przydatne w przypadku eliminowania uszkodzonych odcinków, jednak nie pomagają w przygotowaniu końców przewodów do lutowania. Przy lutowaniu konieczne jest, aby końcówki były gładkie i odpowiednio odizolowane, co wymaga użycia innego narzędzia. Z kolei zagniatarka jest narzędziem przeznaczonym do łączenia przewodów poprzez zaciśnięcie końcówek, co nie ma zastosowania w przypadku naprawy poprzez lutowanie. Płaskoszczypce mogą być użyte do trzymania lub formowania przewodów, ale nie są one wystarczające do ich właściwego przygotowania do lutowania. Typowym błędem myślowym jest założenie, że narzędzia wielofunkcyjne mogą zastąpić specjalistyczne narzędzia, takie jak nóż monterski. Każde narzędzie ma swoje ściśle określone zastosowanie i dla uzyskania optymalnych efektów w naprawach elektrycznych kluczowe jest korzystanie z odpowiedniego zestawu narzędzi. W branży, standardy bezpieczeństwa i jakości pracy wymagają, aby korzystać z narzędzi, które są przeznaczone do konkretnych zadań, a nie improwizować z narzędziami, które nie spełniają tej funkcji.

Pytanie 27

Który z poniższych przewodów powinien być użyty do zasilania ruchomego odbiornika w II klasie ochronności z sieci jednofazowej?

A. H03VVH2-F 2×0,75
B. H03VV-F 3×0,75
C. H05VV-K 3×1,5
D. H05VV-U 2×1,5
Odpowiedź H03VVH2-F 2×0,75 jest poprawna, ponieważ ten przewód jest przeznaczony do zasilania ruchomych odbiorników w systemach o napięciu do 300/500 V. Jego konstrukcja z podwójną izolacją zapewnia odpowiedni poziom bezpieczeństwa, co jest kluczowe dla urządzeń wykonanych w II klasie ochronności. W II klasie ochronności nie jest wymagane stosowanie przewodów z uziemieniem, co czyni H03VVH2-F idealnym rozwiązaniem. Przewód ten charakteryzuje się także elastycznością, co ułatwia jego stosowanie w aplikacjach ruchomych, takich jak elektronarzędzia czy sprzęt AGD. W praktyce stosuje się go często w sytuacjach, gdzie urządzenie może być przemieszczane, a także w warunkach, w których mobilność i elastyczność przewodu są kluczowe. Zgodnie z normą PN-EN 50525-2-21, przewody te powinny spełniać określone wymagania dotyczące odporności na działanie czynników zewnętrznych, co czyni je odpowiednimi do użytku w różnych środowiskach.

Pytanie 28

Która z wymienionych list czynności opisuje w jakiej kolejności demontuje się elementy stojana silnika indukcyjnego z uzwojeniem wsypywanym w celu jego przezwojenia?

1odcięcie połączeń czołowychodcięcie połączeń czołowychusunięcie izolacji żłobkowejusunięcie uzwojenia
2usunięcie izolacji żłobkowejusunięcie uzwojeniaodcięcie połączeń czołowychodcięcie połączeń czołowych
3usunięcie uzwojeniausunięcie izolacji żłobkowejusunięcie uzwojeniausunięcie izolacji żłobkowej
ABCD
A. A.
B. B.
C. C.
D. D.
Wybór niewłaściwej odpowiedzi często wynika z niepełnego zrozumienia procesu demontażu stojana silnika indukcyjnego. Wiele osób może pomylić kolejność czynności, co prowadzi do nieprawidłowych praktyk. Na przykład, jeśli demontaż rozpoczyna się od usunięcia uzwojenia przed odcięciem połączeń czołowych, naraża to technika na niebezpieczeństwo, ponieważ może dojść do niezamierzonego kontaktu z prądem. Kolejnym częstym błędem jest pomijanie etapu odcięcia zasilania, co jest kluczowe dla zapewnienia bezpieczeństwa. Bezpieczeństwo przy pracy z urządzeniami elektrycznymi powinno być zawsze na pierwszym miejscu. Ważne jest, aby również zrozumieć, że niewłaściwa kolejność demontażu może prowadzić do uszkodzenia elementów silnika, co z kolei zwiększa koszty naprawy i przestojów w pracy. Każda z tych czynności ma swoje uzasadnienie w kontekście mechaniki oraz elektryki i jest zgodna z obowiązującymi normami i standardami bezpieczeństwa, takimi jak normy IEC (Międzynarodowej Komisji Elektrotechnicznej). Dlatego kluczowe jest, aby przed przystąpieniem do demontażu, każdy technik był dokładnie przeszkolony w zakresie procedur demontażu i był świadomy zagrożeń związanych z niewłaściwym postępowaniem.

Pytanie 29

Na podstawie przedstawionych na rysunku zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania wskaż wartość napięcia akumulatora o pojemności C = 100 Ah, który przez 30 minut był obciążony prądem o wartości 60 A.

Ilustracja do pytania
A. 11,3 V
B. 11,0 V
C. 12,4 V
D. 12,0 V
Wybór napięcia 11,0 V, 11,3 V lub 12,4 V jako odpowiedzi na postawione pytanie może wynikać z nieporozumień związanych z dynamiką rozładowania akumulatorów oraz ich charakterystyką. Napięcie akumulatora w trakcie rozładowania zmienia się, a jego wartość końcowa jest zależna od wielu czynników, w tym od wartości prądu i czasu rozładowania. Odpowiedzi 11,0 V oraz 11,3 V są zbyt niskie, co może sugerować, że nie uwzględniono rzeczywistego zachowania akumulatora w opisanym czasie i przy danym obciążeniu. Natomiast odpowiedź 12,4 V może wydawać się kusząca, lecz w rzeczywistości jest zbyt wysoka, co wskazuje na brak uwzględnienia prawidłowego spadku napięcia, typowego dla akumulatorów poddanych dużym obciążeniom. Ponadto, niektóre osoby mogą błędnie interpretować wykresy lub nie dostrzegać, że napięcie nie tylko zależy od pojemności, ale również od charakterystyki chemicznej użytego akumulatora oraz warunków jego pracy. Kluczowym błędem jest także pomijanie faktu, że w trakcie rozładowania przy dużym prądzie akumulator nie jest w stanie utrzymać nominalnego napięcia, co prowadzi do zaniżenia prognozowanej wartości. Dlatego niezwykle ważne jest, aby przy takich analizach zawsze odnosić się do danych wykresów oraz zrozumieć, jak różne czynniki wpływają na wydajność i żywotność akumulatorów.

Pytanie 30

W trakcie korzystania z instalacji elektrycznej często dochodzi do zadziałania wyłącznika różnicowoprądowego. Jakie mogą być przyczyny tej usterki?

A. Użycie wyłącznika o zbyt długim czasie reakcji
B. Częściowe zwarcie w instalacji elektrycznej pomiędzy przewodem L a PE
C. Zwarcie w instalacji elektrycznej pomiędzy przewodem L a N
D. Wykorzystywanie urządzeń o zbyt dużej mocy
Długi czas działania wyłącznika nie jest główną przyczyną częstego zadziałania RCD. Wyłączniki różnicowoprądowe są tak skonstruowane, żeby działały w określonym czasie, kiedy wykryją problemy z prądem upływowym. Więc długi czas zadziałania bardziej może dotyczyć innych zabezpieczeń, jak wyłączniki nadprądowe, które mają swoje własne parametry. Zwarcie między przewodem L a N w ogóle nie powoduje zadziałania RCD, bo nie wytwarza prądu upływowego do ziemi, co jest kluczowe do aktywacji RCD. Również używanie urządzeń o zbyt dużej mocy nie ma związku, bo RCD nie reaguje na przeciążenie, tylko na różnice w prądzie. Często błędne rozumowanie prowadzi do mylenia funkcji różnych zabezpieczeń elektrycznych i braku połączenia między rodzajem zwarcia a reakcją RCD, co może prowadzić do niewłaściwej diagnostyki i realnych zagrożeń.

Pytanie 31

Aby zmierzyć wartości elektryczne o stałym przebiegu, należy zastosować miernik o budowie

A. ferrodynamicznym
B. elektrodynamicznym
C. elektromagnetycznym
D. magnetoelektrycznym
Miernik o ustroju magnetoelektrycznym jest szczególnie odpowiedni do pomiaru wielkości elektrycznych o przebiegu stałym, ponieważ jego działanie opiera się na interakcji pola magnetycznego z prądem elektrycznym, co pozwala na dokładne i stabilne odczyty. W urządzeniach tych zastosowane są magnesy trwałe oraz ruchome cewki, co zapewnia wysoką czułość i precyzję pomiaru. Przykładem zastosowania mierników magnetoelektrycznych są laboratoria badawcze oraz instalacje przemysłowe, gdzie wymagane są dokładne pomiary prądu stałego, na przykład podczas testowania elementów elektronicznych. Standardy branżowe, takie jak IEC 61010, podkreślają istotność stosowania odpowiednich technik pomiarowych, co sprawia, że wybór miernika magnetoelektrycznego jest zgodny z dobrymi praktykami w zakresie bezpieczeństwa i dokładności pomiarów. Dodatkowo, mierniki te są często wykorzystywane w sprzęcie pomiarowym, takim jak multimetry, które są niezbędne w codziennej pracy inżynierów i techników w różnych branżach.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakie czynności nie są częścią przeglądów instalacji elektrycznej?

A. przyjęcia do eksploatacji
B. pomiarów napięcia oraz rezystancji izolacji
C. przeprowadzania konserwacji i napraw
D. oględzin
Odpowiedzi dotyczące pomiarów napięć i rezystancji izolacji, konserwacji i napraw oraz oględzin wskazują na istotne aspekty przeglądów instalacji elektrycznej. Przeglądy te mają na celu ocenę stanu technicznego instalacji oraz wykrywanie potencjalnych problemów, które mogą zagrażać bezpieczeństwu użytkowania. Pomiar napięć jest kluczowy, ponieważ pozwala na ocenę poprawności działania instalacji oraz identyfikację ewentualnych spadków napięcia, które mogą wpływać na efektywność działania urządzeń elektrycznych. Rezystancja izolacji jest równie ważna, gdyż niska wartość tego parametru może wskazywać na uszkodzenia izolacji, co z kolei zwiększa ryzyko porażenia prądem elektrycznym. Konserwacja i naprawa instalacji to działania, które są integralną częścią jej eksploatacji, zapewniającą długoterminowe działanie oraz bezpieczeństwo. Oględziny wizualne pozwalają na szybką identyfikację uszkodzeń, co jest kluczowe dla zapobiegania poważniejszym awariom. Często pojawia się mylne przekonanie, że przyjęcie do eksploatacji jest częścią rutynowych przeglądów, podczas gdy w rzeczywistości jest to oddzielny proces związany z zakończeniem budowy i uruchomieniem nowej instalacji. Różnice te są kluczowe dla zrozumienia cyklu życia instalacji elektrycznej oraz dla zapewnienia, że wszystkie działania są wykonywane zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 34

W jakich okolicznościach instalacja elektryczna nie wymaga konserwacji ani naprawy?

A. Kiedy zostanie zauważone uszkodzenie instalacji elektrycznej
B. Gdy użytkowanie instalacji stwarza zagrożenie dla bezpieczeństwa personelu lub otoczenia
C. Gdy stan techniczny instalacji jest niedostateczny lub wartości jej parametrów są poza zakresem określonym w instrukcji eksploatacji
D. Kiedy prowadzone są prace konserwacyjne w obiekcie, na przykład malowanie ścian
Odpowiedź wskazująca, że instalacja elektryczna nie musi być poddawana konserwacji w przypadku przeprowadzania prac konserwacyjnych, takich jak malowanie ścian, jest prawidłowa, ponieważ w tym kontekście nie zachodzi ryzyko uszkodzenia instalacji ani zagrożenie dla bezpieczeństwa. W rzeczywistości, prace konserwacyjne są często planowane i wykonywane w sposób, który minimalizuje ryzyko dla istniejącej instalacji. Przykładowo, przed rozpoczęciem malowania należy zabezpieczyć gniazdka elektryczne i kable, co pozwala na bezpieczne i zgodne z normami ISO i PN wykonywanie takich prac. Dobrą praktyką jest również przeprowadzenie przeglądu stanu instalacji przed rozpoczęciem jakichkolwiek działań konserwacyjnych, aby upewnić się, że nie ma ukrytych usterek, które mogłyby wpłynąć na bezpieczeństwo. Ostatecznie, przestrzeganie regularnych harmonogramów konserwacji i inspekcji jest kluczowe dla utrzymania bezpieczeństwa oraz wydajności instalacji elektrycznych.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jakie są minimalne wartości napięć znamionowych, jakie powinien posiadać przewód użyty do instalacji jednofazowej w sieci 230/400 V, prowadzonej w otworach prefabrykowanych budynków?

A. 300/300 V
B. 450/750 V
C. 600/1000 V
D. 300/500 V
Odpowiedź 450/750 V jest na pewno dobra. Przewody w instalacjach jednofazowych przy 230/400 V muszą mieć odpowiednie napięcie, żeby wszystko działało bezpiecznie. Jak chodzi o przewody w budynkach, zwłaszcza te, co prowadzą przez gotowe elementy budowlane, ważne, żeby ich izolacja była przystosowana do wyższych napięć. To zmniejsza szanse na jakieś uszkodzenia. Przewody 450/750 V są zgodne z normą PN-EN 60228, która określa wymagania dla takich przewodów. Użycie przewodów o wyższym napięciu daje większą ochronę przed przebiciami i innymi problemami elektrycznymi. W praktyce są one często wykorzystywane zarówno w budownictwie mieszkalnym, jak i przemysłowym, więc można powiedzieć, że to dość uniwersalne i bezpieczne rozwiązanie.

Pytanie 38

Na które końce uzwojenia pracującego silnika prądu stałego doprowadza się napięcie elektryczne za pomocą szczotek?

A. Twornika
B. Kompensacyjnego
C. Wzbudzenia
D. Komutacyjnego
Poprawna odpowiedź to "twornika". W silniku prądu stałego, to uzwojenie twornika jest kluczowym elementem, przez który przepływa prąd elektryczny dostarczany przez szczotki. Twornik jest odpowiedzialny za generowanie momentu obrotowego, który napędza wirnik silnika. W praktyce oznacza to, że odpowiedni przepływ prądu w uzwojeniu twornika wpływa na wydajność i moc silnika. W standardach branżowych, takich jak IEC 60034 dotyczący silników elektrycznych, podkreśla się znaczenie poprawnego podłączenia szczotek do uzwojeń twornika, aby zapewnić optymalną pracę i minimalizować straty energii. W zastosowaniach przemysłowych, silniki prądu stałego z odpowiednio skonstruowanym układem twornika są szeroko wykorzystywane w napędach, robotyce oraz w systemach automatyki, gdzie stabilność i kontrola prędkości obrotowej są istotne.

Pytanie 39

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Napina sprężynę mechanizmu
B. Identyfikuje przeciążenia
C. Zatrzymuje łuk elektryczny
D. Rozpoznaje zwarcia
Wyzwalacz elektromagnetyczny w wyłączniku nadprądowym pełni kluczową rolę w detekcji zwarć w obwodach elektrycznych. Jego działanie opiera się na zasadzie pomiaru prądu płynącego przez obwód. W momencie wystąpienia zwarcia, prąd znacznie wzrasta, co prowadzi do aktywacji wyzwalacza. Przykładowo, w przypadku zwarcia doziemnego, występujące wartości prądu mogą przekroczyć normalne poziomy, co wyzwala mechanizm odłączający obwód i zabezpieczający instalację przed uszkodzeniami. Tego typu rozwiązania są zgodne z normami IEC 60947-2, które określają wymagania dotyczące sprzętu niskonapięciowego. Poprawne działanie wyzwalacza elektromagnetycznego jest zatem niezbędne dla zapewnienia bezpieczeństwa w instalacjach elektrycznych, minimalizując ryzyko pożaru czy uszkodzenia urządzeń. W praktyce, wyłączniki nadprądowe z wyzwalaczami elektromagnetycznymi są powszechnie stosowane w domach, biurach oraz przemysłowych środowiskach pracy, gdzie ochrona przed skutkami zwarć jest kluczowa.

Pytanie 40

Jeśli do pomiaru napięcia w sieci 230 V zastosowano miernik analogowy o dokładności 0,5 i zakresie 300 V, jakie będą wskazania tego miernika?

A. 230 V (±1,50 V)
B. 230 V (±1,30 V)
C. 230 V (±1,40 V)
D. 230 V (±1,20 V)
Pomiar napięcia sieciowego o wartości 230 V za pomocą miernika analogowego o klasie dokładności 0,5 w zakresie 300 V daje wskazania w formacie 230 V (±1,50 V). Klasa dokładności 0,5 oznacza, że maksymalny błąd pomiarowy wynosi 0,5% wartości wskazania. W przypadku napięcia 230 V, obliczamy błąd jako 0,5% z 230 V, co daje 1,15 V. Z uwagi na standardowe zaokrąglanie, zaokrąglamy do najbliższego wyższego błędu, co daje nam 1,50 V. W praktyce, taki parametr może stać się kluczowy w instalacjach elektrycznych, gdzie precyzyjne pomiary napięcia są niezbędne do zapewnienia bezpieczeństwa i efektywności działania urządzeń. Użycie mierników o odpowiednich klasach dokładności i zakresach pomiarowych jest zgodne z normami IEC 61010, które regulują wymogi dotyczące bezpieczeństwa i dokładności przyrządów pomiarowych.