Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 18 lutego 2026 05:08
  • Data zakończenia: 18 lutego 2026 05:20

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do tworzenia tynków zabezpieczających przed promieniowaniem rentgenowskim, wykorzystywanych w pomieszczeniach pracowni diagnostycznych, stosuje się zaprawy z dodatkiem kruszywa

A. bazaltowego
B. wapiennego
C. barytowego
D. granitowego
Odpowiedź barytowego jest poprawna, ponieważ baryt, będący siarczanem baru, charakteryzuje się wysoką gęstością, co czyni go skutecznym materiałem do ochrony przed promieniowaniem rentgenowskim. Tynki z dodatkiem barytu są powszechnie stosowane w pomieszczeniach diagnostycznych, takich jak RTG czy CT, gdzie istnieje potrzeba zabezpieczenia ścian przed przenikaniem promieniowania. Przykładem praktycznego zastosowania może być wykończenie pomieszczenia, w którym odbywają się badania radiologiczne, gdzie tynk barytowy pomaga zminimalizować promieniowanie, tym samym chroniąc personel oraz pacjentów. Zgodnie z normami bezpieczeństwa radiologicznego, takie tynki powinny spełniać określone standardy, które zapewniają odpowiedni poziom ochrony. Warto również zaznaczyć, że poza tynkami, baryt jest wykorzystywany w różnych rozwiązaniach budowlanych, takich jak płyty gipsowo-kartonowe z dodatkiem barytu, co zwiększa ich efektywność w ochronie przed promieniowaniem.

Pytanie 2

Czym jest spoiwo mineralne hydrauliczne?

A. gips hydrauliczny
B. cement hutniczy
C. wapno dolomitowe
D. wapno hydratyzowane
Wybór wapna dolomitowego jako spoiwa mineralnego hydraulicznego jest błędny, ponieważ jest to materiał, który twardnieje jedynie w obecności dwutlenku węgla, a nie pod wpływem wody. Wapno dolomitowe jest stosunkowo mało odporne na działanie wody, co ogranicza jego zastosowanie w konstrukcjach narażonych na wilgoć. Gips hydrauliczny, choć ma zdolność do twardnienia w wodzie, nie jest klasyfikowany jako spoiwo mineralne hydrauliczne w znaczeniu używanym w budownictwie, gdyż jego zastosowanie jest raczej ograniczone do tynków i wykończeń. Wapno hydratyzowane, podobnie jak wapno dolomitowe, również wymaga obecności CO2 do twardnienia, co czyni je nieodpowiednim w kontekście hydraulicznych spoiw mineralnych. Typowe błędy myślowe, które prowadzą do wyboru tych materiałów, często wynikają z niepełnego zrozumienia różnic między spoiwami hydraulicznymi a tymi, które wymagają reakcji z atmosferycznym dwutlenkiem węgla. Kluczowe jest zrozumienie, że wytrzymałość i odporność na wodę są kluczowymi cechami spoiw hydraulicznych, a wybór niewłaściwego materiału może prowadzić do poważnych problemów konstrukcyjnych.

Pytanie 3

Na której ilustracji przedstawiono kielnię przeznaczoną do wypełniania oraz wygładzania spoin?

Ilustracja do pytania
A. Na ilustracji 2.
B. Na ilustracji 3.
C. Na ilustracji 1.
D. Na ilustracji 4.
Kielnia przedstawiona na ilustracji 2. jest narzędziem o wąskim i długim ostrzu, co czyni ją idealnym do wypełniania oraz wygładzania spoin. W kontekście prac budowlanych i wykończeniowych, tego rodzaju kielnie są powszechnie stosowane do aplikacji materiałów takich jak zaprawy, gips czy inne substancje służące do wyrównywania powierzchni. Wymagania dotyczące precyzji i estetyki w tych pracach są kluczowe, dlatego wybór odpowiedniego narzędzia ma znaczenie. Kielnie z wąskim ostrzem umożliwiają precyzyjne wprowadzenie materiału w trudno dostępne miejsca oraz pozwalają na wygładzenie powierzchni, co wpływa na trwałość i wygląd finalnego efektu. Zgodnie z wytycznymi branżowymi, korzystanie z odpowiednich narzędzi zwiększa efektywność pracy i redukuje ryzyko wystąpienia błędów, takich jak pęknięcia czy nierówności. Warto również zwrócić uwagę, że kielnie o szerszym ostrzu, jak te przedstawione na innych ilustracjach, są bardziej odpowiednie do nakładania grubych warstw materiałów, co nie jest ich głównym zastosowaniem w kontekście wygładzania spoin.

Pytanie 4

Przedstawioną na ilustracji listwę stosuje się do

Ilustracja do pytania
A. mocowania termoizolacji.
B. ochrony naroży.
C. wzmocnienia ościeży.
D. wykonania boniowania.
Listwa, którą widzisz na obrazku, to typowa listwa boniarska. Tego typu elementy są często używane w architekturze do tworzenia fajnego boniowania na elewacjach budynków. Bonowanie to taka technika dekoracyjna, która polega na wydzielaniu i podkreślaniu poziomych lub pionowych linii na tynku. Dzięki temu budynek nabiera eleganckiego wyglądu. Listwy boniarskie mają swoje specyficzne kształty i otwory, które ułatwiają formowanie krawędzi. Moim zdaniem, ich zastosowanie w projektach klasycznych dodaje ogromnej wartości estetycznej. Warto też pamiętać, że bonowanie nie tylko wygląda dobrze, ale też wizualnie powiększa obiekt i maskuje drobne niedoskonałości na elewacji. Przy projektowaniu, dobrze jest zwrócić uwagę na lokalne przepisy budowlane i estetykę otoczenia, bo to bardzo wpływa na odbiór całej konstrukcji. Listwy boniarskie są więc naprawdę istotnym elementem w wielu projektach budowlanych.

Pytanie 5

Na podstawie danych zawartych w tabeli wskaż, ile wody należy użyć do przygotowania 2 m3 zaprawy wapiennej o proporcji objętościowej składników 1:3 z użyciem ciasta wapiennego.

Proporcje i ilość składników na 1 m3 zaprawy wapiennej
Stosunek objętościowy wapna do piaskuMarka zaprawy MPaCiasto wapienne m3Piasek m3Woda dm3
1 : 1,50,40,5100,76537
1 : 20,40,4300,86050
1 : 30,40,3200,960100
1 : 3,50,20,2800,980130
1 : 4,50,20,2241,010166
A. 100 dm3
B. 50 dm3
C. 200 dm3
D. 300 dm3
Odpowiedź 200 dm3 jest prawidłowa, ponieważ na podstawie danych z tabeli dotyczących proporcji objętościowych 1:3 dla zaprawy wapiennej, na 1 m3 zaprawy wymagane jest 100 dm3 wody. Przygotowując 2 m3 zaprawy, wartość ta musi zostać podwojona, co daje 200 dm3. Taki sposób obliczenia ilości wody jest zgodny z dobrymi praktykami w budownictwie, gdzie precyzyjne określenie proporcji składników ma kluczowe znaczenie dla uzyskania odpowiedniej jakości zaprawy. Użycie niewłaściwej ilości wody może prowadzić do osłabienia struktury zaprawy, a w efekcie do trwałych uszkodzeń konstrukcji. Stąd, w praktyce budowlanej, takie obliczenia są niezbędne, aby zapewnić trwałość i właściwe właściwości mechaniczne zaprawy. Wiedza na temat proporcji składników i ich wpływu na końcowy produkt jest fundamentem dla każdego specjalisty w branży budowlanej, co pozwala na optymalizację procesów budowlanych oraz minimalizację ryzyka błędów.

Pytanie 6

Do wykonywania prac na elewacjach wysokich budynków powinny być stosowane rusztowania

A. ruchome
B. kozłowe
C. samojezdne
D. wiszące
Rusztowania wiszące są specjalistycznymi konstrukcjami, które są szczególnie przydatne w robótkach elewacyjnych na budynkach wysokich. Umożliwiają one pracownikom swobodne poruszanie się wzdłuż elewacji, a ich konstrukcja pozwala na łatwe dostosowanie się do kształtów oraz wymagań budynku. Dzięki swoim właściwościom, rusztowania te minimalizują potrzebę zajmowania przestrzeni na gruncie, co jest istotne w gęsto zabudowanych obszarach miejskich. W praktyce, rusztowania wiszące są często wykorzystywane podczas malowania, czyszczenia elewacji, a także przy przeprowadzaniu prac remontowych, co pozwala na zwiększenie efektywności i bezpieczeństwa pracy. Warto również zwrócić uwagę, że zgodnie z normami PN-EN 12810 oraz PN-EN 12811, rusztowania muszą być odpowiednio zaprojektowane i użytkowane, aby zapewnić ich stabilność i bezpieczeństwo. Dobrze zaplanowane rusztowanie wiszące, z zastosowaniem odpowiednich mechanizmów blokujących, jest kluczowym elementem w zapewnieniu bezpieczeństwa pracowników na wysokości.

Pytanie 7

Na zdjęciu przedstawiono lico muru w wiązaniu

Ilustracja do pytania
A. polskim.
B. amerykańskim.
C. weneckim.
D. pospolitym.
Na tym zdjęciu widzimy lico muru w wiązaniu polskim. To jedna z najpopularniejszych metod układania cegieł, szczególnie w budownictwie murowanym. W tym wiązaniu cegły są układane naprzemiennie - jedne leżą dłuższymi bokami, a inne krótszymi. Dzięki temu mur jest nie tylko ładny, ale też mocniejszy i stabilniejszy. Możemy to zauważyć w wielu tradycyjnych budynkach, jak domy jednorodzinne czy kościoły, gdzie ważny jest zarówno wygląd, jak i trwałość konstrukcji. Warto też wiedzieć, że to wiązanie dobrze radzi sobie z różnymi obciążeniami, więc świetnie nadaje się do mniejszych budynków czy ścianek działowych. Dobrze jest znać różne rodzaje wiązań, bo to klucz do zapewnienia solidności i bezpieczeństwa budowli, szczególnie dla architektów i inżynierów.

Pytanie 8

Gładź tynków zewnętrznych można uzyskać z mieszanki

A. wapiennej
B. cementowo-wapiennej
C. wapienno-gipsowej
D. anhydrytowej
Wybór innych zapraw, takich jak wapienne, anhydrytowe czy wapienno-gipsowe, nie jest odpowiedni do gładzi tynków zewnętrznych. Zaprawa wapienna, choć ma swoje zalety, nie oferuje wystarczającej wytrzymałości mechanicznej i odporności na czynniki atmosferyczne w porównaniu do zaprawy cementowo-wapiennej. Wapno ma tendencję do łuszczenia się i kruszenia pod wpływem deszczu i wiatru, co sprawia, że nie nadaje się do stosowania jako główna warstwa wykończeniowa na elewacjach. Z kolei zaprawa anhydrytowa, będąca materiałem na bazie siarczanu wapnia, jest stosunkowo nowym rozwiązaniem, które znajduje swoje miejsce w budownictwie wnętrz, ale nie sprawdza się w warunkach zewnętrznych, ponieważ może ulegać degradacji pod wpływem wilgoci. Ostatnią z analizowanych opcji, zaprawa wapienno-gipsowa, nie jest również zalecana do zastosowań zewnętrznych, gdyż gips, mimo że jest materiałem łatwym w obróbce, ma niską odporność na wodę, co prowadzi do jego szybkiego zniszczenia pod wpływem deszczu. W przypadku gładzi tynków zewnętrznych kluczowe jest, aby materiał charakteryzował się odpowiednią odpornością na warunki atmosferyczne oraz zdolnością do regulacji wilgotności, dlatego zaprawa cementowo-wapienna jest najbardziej rekomendowaną opcją w tej dziedzinie.

Pytanie 9

Wykonanie zbrojenia wieńca stropu powinno odbywać się

A. tylko na zewnętrznej ścianie budynku, na której opiera się strop
B. wyłącznie na dwóch przeciwnych ścianach nośnych budynku, które wspierają strop
C. na wszystkich ścianach nośnych wokół całego stropu
D. jedynie na ścianach osłonowych budynku
Zbrojenie wieńca stropu jest kluczowym elementem konstrukcyjnym, który ma za zadanie zapewnienie odpowiedniej nośności i stabilności całej konstrukcji budynku. Właściwe rozłożenie zbrojenia na wszystkich ścianach nośnych dookoła stropu jest zgodne z zasadami inżynierii budowlanej oraz standardami, które podkreślają konieczność wzmocnienia miejsc, gdzie przenoszone są obciążenia. Zbrojenie na wszystkich ścianach nośnych ma na celu równomierne rozłożenie sił działających na strop, co minimalizuje ryzyko powstania pęknięć i uszkodzeń w konstrukcji. Przykładem zastosowania tej zasady może być budowa budynków wielokondygnacyjnych, gdzie stropy przenoszą znaczące obciążenia z wyższych pięter. W takich przypadkach stosowanie zbrojenia na wszystkich ścianach nośnych jest niezbędne dla zapewnienia stabilności konstrukcji na całej wysokości budynku. Dobrą praktyką jest również projektowanie zbrojenia w oparciu o normy PN-EN 1992-1-1, które określają wymagania dotyczące projektowania konstrukcji betonowych, w tym zbrojenia wieńców stropowych.

Pytanie 10

Jak powinny wyglądać spoiny w murach z kanałami dymowymi?

A. niekompletne i nierówno wykończone od wnętrza kanału
B. niekompletne i równo wykończone od wnętrza kanału
C. kompletne i równo wykończone od wnętrza kanału
D. kompletne i nierówno wykończone od wnętrza kanału
Spoiny w murach z kanałami dymowymi powinny być pełne i gładko wyrównane od wnętrza kanału, co jest zgodne z zasadami dobrych praktyk budowlanych oraz normami technicznymi. Pełne spoiny zapewniają odpowiednią szczelność, co jest kluczowe w kontekście odprowadzania spalin i dymu. Gładkie wyrównanie spoin zapobiega osadzaniu się zanieczyszczeń oraz minimalizuje ryzyko tworzenia się miejsc, w których może dochodzić do gromadzenia się sadzy, co z kolei mogłoby prowadzić do zatorów w kominie. Przykładem zastosowania tych zasad jest budowa systemów kominowych w domach jednorodzinnych, gdzie odpowiednie wykonanie spoin wpływa na bezpieczeństwo użytkowania pieców oraz efektowność odprowadzania spalin. W kontekście norm, odpowiednie dokumenty, takie jak PN-EN 12056 dotyczące systemów kominowych, podkreślają znaczenie pełnych i gładkich połączeń w zachowaniu bezpieczeństwa i trwałości konstrukcji kominowych.

Pytanie 11

Ile cegieł potrzeba do wymurowania ściany o grubości 25 cm, której widok przedstawiono na rysunku, jeżeli nakłady na 1 m2 ściany o grubości 1 cegły (25 cm) wynoszą 92,7 szt?

Ilustracja do pytania
A. 927 szt.
B. 93 szt.
C. 1113 szt.
D. 939 szt.
Aby poprawnie obliczyć liczbę cegieł potrzebnych do wymurowania ściany, kluczowe jest zrozumienie, jak oblicza się powierzchnię oraz jak odwzorować to na ilości materiału budowlanego. W tym przypadku, wiedząc, że 1 m² ściany o grubości 25 cm wymaga 92,7 cegieł, przystąpiliśmy do obliczenia całkowitej powierzchni netto, która wynosi 10 m². Mnożąc tę wartość przez ilość cegieł na 1 m², otrzymujemy 927 cegieł, co jest kluczowe dla prawidłowego wykonania prac budowlanych. Zrozumienie tego procesu jest niezbędne dla każdego, kto zajmuje się budową, ponieważ precyzyjne obliczenia materiałowe wpływają na koszty projektu oraz jego terminowość. W praktyce, przy planowaniu budowy, warto także uwzględnić straty materiałowe, co może zwiększyć wymaganą ilość cegieł. Dlatego znajomość takich obliczeń oraz ich zastosowanie w praktyce jest nie tylko przydatne, ale wręcz niezbędne w branży budowlanej.

Pytanie 12

Na podstawie danych zawartych w tabeli określ maksymalną odległość, w której należy wykonać szczeliny dylatacyjne w ścianie jednowarstwowej wymurowanej z pustaków ceramicznych, o spoinach pionowych niewypełnionych.

Rodzaj muruOdległości Ld między szczelinami dylatacyjnymi (w metrach) w ścianach
szczelinowychjedno- lub dwuwarstwowych o spoinach pionowych
warstwa zewnętrznawarstwa wewnętrznawypełnionychniewypełnionych
Z elementów ceramicznych12403025
Z innych elementów murowych8302520
A. 30 metrów.
B. 25 metrów.
C. 20 metrów.
D. 12 metrów.
Wybór odpowiedzi 25 metrów jako maksymalnej odległości, w której należy wykonać szczeliny dylatacyjne w ścianie jednowarstwowej wymurowanej z pustaków ceramicznych, jest zgodny z danymi zawartymi w tabeli. Zgodnie z normami budowlanymi, dylatacje są niezbędne w konstrukcjach, aby zminimalizować ryzyko pęknięć wynikających z rozszerzalności cieplnej materiałów. W przypadku ścian z pustaków ceramicznych, które mają spoiny pionowe niewypełnione, odległość 25 metrów to standardowy parametr, który zapewnia odpowiednią elastyczność konstrukcji oraz umożliwia neutralizację naprężeń. Przykładowo, w praktyce budowlanej zastosowanie dylatacji co 25 metrów jest efektywnym rozwiązaniem, które jest stosowane w projektach budowlanych zarówno dla budynków mieszkalnych, jak i komercyjnych. Dodatkowo, warto zwrócić uwagę na zalecenia w normach PN-EN 1996-1-1, które podkreślają znaczenie takiego rozkładu dylatacji w kontekście trwałości i bezpieczeństwa konstrukcji.

Pytanie 13

Jakie materiały budowlane przedstawiają oznaczenia na rysunku?

Ilustracja do pytania
A. Szkło.
B. Izolacja akustyczna.
C. Izolacja termiczna.
D. Izolacja przeciwwilgociowa.
Izolacja akustyczna, przeciwwilgociowa i termiczna są różnymi rodzajami materiałów budowlanych, które mają swoje specyficzne funkcje, jednak w tym kontekście, ich identyfikacja może prowadzić do nieporozumień. Izolacja akustyczna, na przykład, ma na celu redukcję hałasu i poprawę komfortu akustycznego w budynku. Często stosowane materiały to wełna mineralna czy płyty z gipsu akustycznego, które różnią się zarówno budową, jak i zastosowaniem od izolacji przeciwwilgociowej. Izolacja przeciwwilgociowa natomiast, jak wskazuje rysunek, jest kluczowa dla ochrony przed penetracją wody z gruntu lub opadów atmosferycznych. Zrozumienie różnic między tymi typami izolacji jest kluczowe dla prawidłowego projektowania i budowy obiektów. Izolacja termiczna, z kolei, koncentruje się na ograniczaniu strat ciepła, co jest szczególnie istotne w kontekście efektywności energetycznej budynków. Wiele osób mylnie identyfikuje symbole związane z różnymi rodzajami izolacji, co może prowadzić do niewłaściwego doboru materiałów. Właściwe zrozumienie rysunków technicznych jest kluczowe dla uniknięcia błędów, które mogą wpłynąć na trwałość oraz komfort użytkowania budynku.

Pytanie 14

Na rysunku przedstawiono ścianę

Ilustracja do pytania
A. fundamentową wykonaną na ławie żelbetowej.
B. fundamentową wykonaną na ławie betonowej.
C. piwniczną wykonaną na ławie betonowej.
D. piwniczną wykonaną na ławie żelbetowej.
Wybór niewłaściwej odpowiedzi może wynikać z nieporozumień dotyczących klasyfikacji rodzajów ścian fundamentowych oraz zastosowanych materiałów. Odpowiedzi wskazujące na ścianę piwniczną są błędne, ponieważ ściana przedstawiona na rysunku nie pełni funkcji ściany piwnicznej, która zazwyczaj jest projektowana z uwzględnieniem dodatkowych obciążeń, takich jak ciśnienie wody gruntowej. Ponadto, odpowiedzi związane z ławą betonową zamiast żelbetowej, pomijają kluczowy aspekt wytrzymałości. Ławy betonowe, które nie zawierają zbrojenia, są bardziej podatne na pęknięcia i nie wytrzymują dużych obciążeń, co czyni je mniej odpowiednimi do tworzenia fundamentów budynków. Normy budowlane, takie jak PN-EN 1992, wskazują na konieczność stosowania żelbetu w miejscach, gdzie występują duże siły działające na fundamenty. Zrozumienie tych koncepcji jest kluczowe dla poprawnej analizy i wyboru odpowiednich rozwiązań konstrukcyjnych, a pominięcie ich może prowadzić do poważnych błędów projektowych oraz zagrożeń dla stabilności budynku.

Pytanie 15

Oblicz wydatki na rozbiórkę kamiennej ławy fundamentowej o wymiarach 1,2 x 0,6 x 10 m, przy założeniu, że koszt rozbiórki 1 m fundamentów kamiennych wynosi 350 zł?

A. 420 zł
B. 2520 zł
C. 2100 zł
D. 210 zł
Aby obliczyć koszt rozbiórki kamiennej ławy fundamentowej, musimy najpierw określić objętość rozbieranego materiału. Wymiary ławy fundamentowej wynoszą 1,2 m szerokości, 0,6 m wysokości i 10 m długości. Obliczamy objętość, stosując wzór: V = długość x szerokość x wysokość. W naszym przypadku będzie to: V = 10 m x 1,2 m x 0,6 m = 7,2 m³. Koszt rozbiórki 1 m³ fundamentów kamiennych wynosi 350 zł, więc całkowity koszt rozbiórki będzie równy: 7,2 m³ x 350 zł/m³ = 2520 zł. W praktyce, znajomość metod obliczania kosztów prac budowlanych jest kluczowa dla efektywnego zarządzania budową oraz budżetowania projektów. Oprócz tego, warto wziąć pod uwagę dodatkowe koszty związane z wywozem gruzu oraz ewentualnymi pracami związanymi z zabezpieczeniem terenu. Zastosowanie tej wiedzy w praktyce umożliwia lepsze planowanie i minimalizację kosztów związanych z pracami budowlanymi.

Pytanie 16

Przedstawiony na rysunku sprzęt służy do

Ilustracja do pytania
A. odkurzania powierzchni muru przed tynkowaniem.
B. nakrapiania tynków.
C. suszenia tynków.
D. zmywania tynków kamyczkowych.
Ważne jest, żeby dobrze rozumieć, do czego służy agregat tynkarski. Jak ktoś sugeruje inne funkcje tego sprzętu, to może popełnić poważne błędy w pracach budowlanych. Proces suszenia tynków niestety nie ma nic wspólnego z używaniem agregatu, bo to się dzieje dopiero po nałożeniu tynku. Nakrapianie tynków to pierwszy krok zanim tynki będą wysychać. Chociaż zmywanie tynków kamyczkowych może wydawać się na miejscu, to w rzeczywistości potrzebne są do tego inne narzędzia. Odkurzanie ścian przed tynkowaniem ma sens, ale do tego wystarczą podstawowe rzeczy jak odkurzacz budowlany czy szczotka, a nie agregat. Dlatego tak ważne jest zrozumienie, jak działają różne narzędzia budowlane - to pozwoli uniknąć kosztownych błędów i zapewnić lepszą jakość pracy.

Pytanie 17

Jeśli w murowanym obiekcie długość filarka międzyokiennego z zastosowaniem cegły ceramicznej pełnej wynosi 90 cm, to oznacza, że konieczne jest wymurowanie filarka o długości

A. 2,5 cegły
B. 3,5 cegły
C. 3,0 cegły
D. 4,0 cegły
Długość filarka międzyokiennego wynosząca 90 cm przekłada się na ilość cegieł potrzebnych do jego wymurowania. Cegła ceramiczna pełna standardowo ma wymiary 25 cm x 12 cm x 6,5 cm. Aby obliczyć liczbę cegieł potrzebnych do uzyskania filarka o długości 90 cm, należy podzielić długość filarka przez długość cegły. W tym przypadku 90 cm / 25 cm = 3,6. Jednak należy uwzględnić również spoiny, które są nieodłącznym elementem murowania. Przyjęcie wartości spoiny może prowadzić do zaokrąglenia, co w praktyce w tym przypadku daje wynik 3,5 cegły. Takie obliczenia są kluczowe w praktyce budowlanej, aby uniknąć błędów w obliczeniach, co może prowadzić do niedoboru materiałów lub nadmiernych kosztów. Zastosowanie standardów budowlanych, które określają minimalne grubości spoin, pozwala na dokładniejsze planowanie i oszacowanie potrzebnych materiałów.

Pytanie 18

Które nadproże przedstawiono na rysunku?

Ilustracja do pytania
A. Z prefabrykowanych kształtek typu "U".
B. Monolityczne żelbetowe.
C. Sklepione murowane z cegieł.
D. Z prefabrykowanych belek "Porotherm".
Odpowiedź "Z prefabrykowanych belek 'Porotherm'" jest poprawna, ponieważ na przedstawionym rysunku rzeczywiście widać nadproże wykonane z prefabrykowanych belek ceramicznych tej marki. Prefabrykowane belki 'Porotherm' charakteryzują się specyficzną budową, która umożliwia łatwe wkomponowanie ich w konstrukcje budowlane. W porównaniu do tradycyjnych rozwiązań, takich jak nadproża żelbetowe czy murowane, prefabrykowane belki oferują szereg korzyści. Wykorzystanie takich elementów pozwala na znaczną redukcję czasu i kosztów budowy, ponieważ są one gotowe do użycia i eliminują potrzebę skomplikowanej obróbki na miejscu. Dodatkowo, w przypadku belek 'Porotherm', ich odpowiednia wentylacja i ciepłochronność wpływają na efektywność energetyczną budynku, co jest zgodne z aktualnymi standardami budownictwa pasywnego i energooszczędnego. Stosując te prefabrykaty, projektanci mogą również lepiej zarządzać obciążeniami i wymiarowaniem otworów w murze, co jest kluczowe dla bezpieczeństwa i stabilności całej konstrukcji.

Pytanie 19

Na rysunku przedstawiony jest rzut i przekrój ściany, w której znajduje się

Ilustracja do pytania
A. otwór.
B. pilaster.
C. bruzda.
D. wnęka.
Poprawna odpowiedź to "wnęka", ponieważ na rysunku rzeczywiście przedstawione jest zagłębienie w ścianie, które jest charakterystyczne dla tego terminu. Wnęki są powszechnie stosowane w architekturze i budownictwie, aby estetycznie wkomponować różne elementy, takie jak półki, oświetlenie czy dekoracje. W praktyce, wnęki mogą być wykorzystywane do przechowywania przedmiotów, co pozwala na oszczędność miejsca w pomieszczeniach. Na przykład, w nowoczesnych wnętrzach wykonuje się wnęki w ścianach, aby umieścić tam telewizory czy kominki, co nadaje im subtelny i elegancki wygląd. Przestrzeganie zasad projektowania wnęk, takich jak odpowiednia głębokość i szerokość, ma kluczowe znaczenie dla ich funkcjonalności oraz estetyki. Warto także zaznaczyć, że wnęki powinny być zaplanowane na etapie projektowania budynku, aby zapewnić ich odpowiednie rozmieszczenie oraz integrację z innymi elementami architektonicznymi.

Pytanie 20

Jakie typy rusztowań powinno się użyć do przeprowadzania drobnych napraw tynków zewnętrznych w budynkach wysokich?

A. Wiszące
B. Modułowe
C. Ramowe
D. Stojakowe
Wybór rusztowania ramowego czy modułowego do drobnych napraw na wysokich budynkach nie jest najlepszym pomysłem. Rusztowania ramowe są stabilne, ale potrzebują sporo miejsca na dole, co w miastach może być sporym problemem. Zajmowanie tego miejsca może zakłócać codzienne życie, a to raczej nie jest fajne. Z kolei rusztowania modułowe są bardziej elastyczne, ale trudniejsze w montażu i demontażu, co wydłuża czas pracy. A przy prostych naprawach to może być zbędne. Rusztowania stojakowe, choć przy niższych budynkach dają radę, to przy wysokich elewacjach mogą być niewystarczające. Ryzyko upadku i problem z dotarciem do wyższych miejsc to poważna sprawa. Dlatego, ważne jest, żeby dobrze przemyśleć, jakie rusztowanie wybrać, biorąc pod uwagę miejsce i rodzaj pracy.

Pytanie 21

Określ, na podstawie danych zawartych w tabeli, dopuszczalną ilość ziaren o wymiarach 2-5 mm w piasku do zapraw murarskich.

Tabela. Uziarnienie i dopuszczalne zanieczyszczenia piasku

Rodzaj cechyPiasek do
zapraw
murarskich
wyprawgładzibetonu
dopuszczalna ilość w % w stosunku do masy
Pyły mineralne poniżej 0,05 mm
(części ilaste i muły)
853
Zanieczyszczenia obce, np. gruz,
ziemia, muszle itp.
0,25ślady0,5
Ziarna większe od 2 mm, ale
nieprzekraczające 5 mm
20100-
Związki siarki rozpuszczalne
w wodzie w przeliczeniu na SO3
1
A. 10%
B. 0,5%
C. 20%
D. 0,25%
Dopuszczalna ilość ziaren o wymiarach 2-5 mm w piasku do zapraw murarskich wynosi 20% masy, co jest zgodne z normami budowlanymi oraz wytycznymi dotyczącymi materiałów budowlanych. W kontekście stosowania zapraw murarskich, odpowiednia frakcja ziaren w piasku ma kluczowe znaczenie dla uzyskania właściwych parametrów wytrzymałościowych oraz trwałości konstrukcji. Ziarna o takich wymiarach przyczyniają się do poprawy struktury zaprawy, umożliwiając lepsze wypełnienie przestrzeni międzycząsteczkowych oraz zapewniając odpowiednie właściwości plastyczne. Należy również pamiętać, że przewidywana ilość ziaren większych niż 2 mm jest istotna w kontekście zagęszczania i kompozycji zapraw. Uwzględnienie tej proporcji pozwala na osiągnięcie optymalnej przyczepności zaprawy do elementów konstrukcyjnych, co jest zgodne z rekomendacjami Polskiej Normy PN-EN 998-1 dotyczącej zapraw murarskich. W praktyce, podczas mieszania zaprawy warto kontrolować proporcje, aby zapewnić jej odpowiednie właściwości mechaniczne oraz długowieczność. Wydajność zaprawy uzależniona jest również od innych czynników, takich jak rodzaj cementu czy dodatki mineralne, co należy brać pod uwagę w projektowaniu mieszanek budowlanych.

Pytanie 22

Na rysunku przedstawiono

Ilustracja do pytania
A. mieszarkę korytową do wykonywania zapraw.
B. betoniarkę z koszem zasypowym.
C. węzeł betoniarski.
D. stanowisko produkcji wyrobów betonowych.
Na rysunku przedstawiono węzeł betoniarski, który odgrywa kluczową rolę w procesie produkcji betonu. Węzeł ten składa się z różnych komponentów, takich jak zasieki do składowania kruszyw, silos do magazynowania cementu oraz mieszalnik, który łączy wszystkie składniki w odpowiednich proporcjach. Przykładowo, podczas budowy dużych obiektów, takich jak mosty czy hale przemysłowe, węzeł betoniarski zapewnia efektywne i szybkie dostarczanie betonu na plac budowy, co zwiększa efektywność prac. W branży budowlanej, zgodnie z normami PN-EN 206 oraz PN-EN 8500, ważne jest, aby produkcja betonu odbywała się w kontrolowanych warunkach, co zapewnia węzeł betoniarski. Umożliwia on również dostosowanie receptur betonu do specyficznych wymagań projektu, co jest niezbędne w przypadku zastosowań specjalistycznych, takich jak beton o wysokiej wytrzymałości na ściskanie.

Pytanie 23

Jaki jest minimalny czas, po którym można zaczynać budowę muru na zaprawie cementowo-wapiennej, nad świeżo wykonaną kondygnacją?

A. 7 dni
B. 3 dni
C. 5 dni
D. 10 dni
Czas, po którym można wznosić mur na zaprawie cementowo-wapiennej, jest ściśle związany z jej procesem wiązania i twardnienia. Odpowiedzi sugerujące dłuższe okresy, takie jak 7, 10 dni, a nawet 3 dni, opierają się na niepełnym zrozumieniu procesu budowlanego oraz specyfiki materiałów. W przypadku zaprawy cementowo-wapiennej, zbyt długi czas oczekiwania na rozpoczęcie budowy murów może być nieefektywny z punktu widzenia harmonogramu robót budowlanych. Z drugiej strony, zbyt krótki czas, jak sugerują odpowiedzi 3 dni, może prowadzić do problemów z wytrzymałością konstrukcji. W praktyce budowlanej, każdy materiał ma swoje specyficzne wymagania dotyczące czasu utwardzania, które powinny być respektowane, aby zapewnić trwałość i bezpieczeństwo budowy. Zastosowanie niewłaściwego czasu oczekiwania prowadzi często do typowych błędów, takich jak pęknięcia w murach, które mogą powstać na skutek niepełnej reakcji chemicznej w zaprawie. Kluczowe jest również uwzględnienie zmiennych warunków otoczenia, które mogą wpływać na czas wiązania, co pokazuje, że nie każdy materiał zachowuje się w ten sam sposób w różnych warunkach. Dlatego też, znajomość standardów dotyczących czasu technologicznego jest niezbędna dla każdego, kto pracuje w branży budowlanej.

Pytanie 24

W jakim wiązaniu wykonany jest fragment muru przedstawiony na rysunku?

Ilustracja do pytania
A. Pierścieniowym.
B. Polskim.
C. Pospolitym.
D. Krzyżykowym.
Wybranie innego rodzaju wiązania, jak krzyżykowe, pospolite czy pierścieniowe, trochę pokazuje, że mogłeś nie do końca zrozumieć, jak układa się cegły w murze. Wiązanie krzyżykowe polega na układaniu cegieł w krzyż, a to nie do końca trzyma stabilność konstrukcji. To może prowadzić do różnych problemów, jak pęknięcia. Z kolei wiązanie pospolite, które też nie jest tu dobre, korzysta z cegieł o jednakowych wymiarach, więc efekty estetyczne mogą być gorsze. A wiązanie pierścieniowe? To już w ogóle rzadko spotykane w tradycyjnym budownictwie, bo tworzy okręgi. Kluczowy błąd w twoim wyborze to brak zrozumienia zasady naprzemiennego układania cegieł, co jest naprawdę ważne dla trwałej konstrukcji. Dobrze, że próbujesz, ale pamiętaj, że właściwy wybór wiązania ma duże znaczenie dla jakości budowli.

Pytanie 25

Do przygotowywania zapraw tynkarskich, bez wcześniejszych badań dotyczących składu i właściwości, można wykorzystać wodę

A. ze zbiorników podziemnych
B. z rzek i jezior
C. odzyskaną z produkcji betonu
D. z wodociągu
Woda z wodociągu to najlepsza opcja, jeśli chodzi o przygotowanie zaprawy tynkarskiej. Ma odpowiednie parametry, zarówno chemiczne jak i mikrobiologiczne, dzięki czemu nadaje się do budownictwa. Co ciekawe, regularnie ją badają, więc mamy pewność, że nie ma w niej żadnych szkodliwych substancji, które mogłyby zaszkodzić jakości tynków. Poza tym, są normy budowlane, jak PN-EN 1008, które jasno mówią, że woda do betonu musi być czysta i w ogóle bez zanieczyszczeń. W praktyce oznacza to, że używając wody z wodociągu, dostajemy lepszą stabilność i jednorodność zaprawy, co jest ważne przy dalszych etapach budowy. Dobrze też mieć na uwadze, że korzystanie z tej wody zmniejsza ryzyko problemów takich jak pęknięcia czy osypywanie się tynków, co mogłoby później kosztować nas naprawy.

Pytanie 26

Aby zrealizować izolację termiczną ścian, należy wykorzystać

A. wełnę mineralną, emulsję asfaltową
B. wełnę mineralną, masy bitumiczne
C. styropian, papę
D. styropian, wełnę mineralną
Izolacja cieplna ścian jest kluczowym elementem skutecznego zarządzania energią w budynków. Wybór odpowiednich materiałów izolacyjnych, takich jak styropian i wełna mineralna, wynika z ich doskonałych właściwości termoizolacyjnych. Styropian, znany z niskiego współczynnika przewodzenia ciepła, jest lekki, łatwy w obróbce i stosunkowo tani. Jego zastosowanie w izolacji ścian zewnętrznych pozwala na znaczną redukcję strat ciepła, co przekłada się na niższe koszty ogrzewania. Wełna mineralna z kolei charakteryzuje się nie tylko dobrą izolacyjnością termiczną, ale również akustyczną, a także odpornością na ogień. Dzięki tym właściwościom, stosowanie obu materiałów w połączeniu pozwala na stworzenie kompleksowego systemu izolacji, który nie tylko poprawia komfort cieplny, ale także spełnia wymagania norm budowlanych i standardów efektywności energetycznej, takich jak np. normy PN-EN 13162 dla styropianu. W praktyce, użycie tych materiałów może być różnorodne, od prostych ścian jednowarstwowych po bardziej skomplikowane systemy ociepleń budynków wielokondygnacyjnych.

Pytanie 27

Na podstawie danych zamieszczonych w tablicy z KNR 2-02 oblicz, ile zaprawy potrzeba do wymurowania czterech prostokątnych filarów o wymiarach 38×38 cm i wysokości 3,0 m każdy, na zaprawie cementowo-wapiennej.

Słupy i filary międzyokienne z cegieł budowlanych pełnych
Nakłady na 1 mTabela 0124 (fragment)
Lp.Wyszczególnienie
rodzaje materiałów i maszyn
Jednostki
miary,
oznaczenia
literowe
Słupy i filary prostokątne na zaprawie
wapiennej lub cementowo-wapiennej
o wymiarach w cegłach
1×11×1½1½×1½1½×22×22×2½2½×2½
ace01020304050607
20Cegły budowlane pełneszt.26,0039,0065,0081,30105,10131,30170,70
21Zaprawa0,0140,0230,0370,0490,0690,0870,098
70Wyciągim-g0,100,150,250,430,430,530,67
A. 0,828 m3
B. 0,444 m3
C. 0,276 m3
D. 0,588 m3
Poprawna odpowiedź to 0,444 m3, co wynika z obliczenia objętości zaprawy potrzebnej do wymurowania czterech prostokątnych filarów o wymiarach 38×38 cm i wysokości 3,0 m. Aby obliczyć objętość jednego filaru, należy zastosować wzór na objętość prostopadłościanu: V = a × b × h, gdzie a i b to wymiary podstawy, a h to wysokość. W naszym przypadku mamy: V = 0,38 m × 0,38 m × 3,0 m = 0,432 m3 dla jednego filaru. Mnożąc przez cztery filary, otrzymujemy 0,432 m3 × 4 = 1,728 m3. Ponieważ jest to objętość samego muru, musimy uwzględnić również zaprawę. Przyjmuje się, że zaprawa cementowo-wapienna zajmuje około 10% całkowitej objętości muru. W związku z tym, 1,728 m3 × 0,10 = 0,1728 m3 zaprawy. Dlatego całkowita objętość zaprawy potrzebna do wymurowania czterech filarów wynosi 1,728 m3 + 0,1728 m3 = 1,9008 m3 do obliczeń zaokrąglamy do 0,444 m3. Takie obliczenia są istotne w praktyce budowlanej oraz przy projektowaniu konstrukcji betonu i zaprawy, ponieważ zapewniają odpowiednie proporcje materiałowe i ich efektywne wykorzystanie.

Pytanie 28

Podczas wykonywania tynków gipsowych kolejną czynnością po wstępnym wyrównaniu zaprawy łatą tynkarską typu H jest "piórowanie", czyli wstępne gładzenie powierzchni tynku. Na której ilustracji przedstawiono tę czynność?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 1.
C. Na ilustracji 2.
D. Na ilustracji 4.
Wybór niewłaściwej ilustracji może wynikać z nieporozumienia dotyczącego technik tynkarskich oraz etapu, na którym znajduje się proces tynkowania. Na ilustracjach 1 i 2 można zaobserwować czynności związane z nakładaniem zaprawy tynkarskiej, co jest pierwszym krokiem w procesie tynkowania. Nakładanie tynku polega na aplikacji zaprawy na powierzchnię ściany, co jest zupełnie inną czynnością niż piórowanie. Ponadto, ilustracja 4 przedstawia końcowe wygładzanie tynku, które ma miejsce po piórowaniu. Wiele osób może mylić te etapy, sądząc, że wszystkie czynności związane z gładzeniem są równoważne, co jest błędem. Prawidłowe zrozumienie poszczególnych etapów tynkowania jest kluczowe dla osiągnięcia wysokiej jakości wykończenia. Często zdarza się, że pomijane są istotne różnice między tymi technikami, co prowadzi do błędnych decyzji. Aby skutecznie piórować, należy najpierw odpowiednio nałożyć tynk, a następnie, gdy jego powierzchnia jest jeszcze wilgotna, przystąpić do procesu wygładzania. Bez tej wiedzy, łatwo jest popełnić błąd, co może wpłynąć na ostateczny efekt estetyczny oraz trwałość wykończenia.

Pytanie 29

Oblicz wydatki na demontaż kamiennej ławy fundamentowej o wymiarach 1,2 × 0,6 m oraz długości 15 m, jeżeli koszt rozbiórki 1 m3 takich fundamentów wynosi 400,00 zł?

A. 6 000,00 zł
B. 4 320,00 zł
C. 480,00 zł
D. 240,00 zł
Aby obliczyć koszt rozbiórki kamiennej ławy fundamentowej, najpierw musimy ustalić objętość fundamentu. Ława ma przekrój 1,2 m × 0,6 m i długość 15 m, więc objętość V można obliczyć ze wzoru: V = długość × szerokość × wysokość. W naszym przypadku: V = 15 m × 1,2 m × 0,6 m = 10,8 m³. Koszt rozbiórki 1 m³ wynosi 400,00 zł, więc całkowity koszt rozbiórki to: 10,8 m³ × 400,00 zł/m³ = 4 320,00 zł. Tego typu obliczenia są kluczowe w branży budowlanej, szczególnie przy planowaniu budżetów na projekty budowlane i demontażowe. Znajomość jednostkowych kosztów robocizny oraz materiałów budowlanych pozwala na efektywne zarządzanie kosztami oraz optymalizację wydatków. W praktyce, takie obliczenia powinny być zawsze weryfikowane w kontekście aktualnych cen i stawek rynkowych, które mogą się różnić w zależności od lokalizacji i specyfiki projektu.

Pytanie 30

Nominalna grubość spoin poziomych wynosi 12 mm (-2 mm; +5 mm), a spoin pionowych 10 mm (±5 mm). Na którym rysunku przedstawiono grubość spoin niezgodna z dopuszczalną?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Wybór innej odpowiedzi może wynikać z kilku typowych błędów myślowych oraz nieporozumień dotyczących tolerancji oraz zakresów grubości spoin. Na przykład, niektórzy mogą myśleć, że pokrewieństwo między tolerancją a nominalną wartością oznacza, iż mniejsze różnice nie mają znaczenia. To podejście jest błędne, ponieważ każda spoinę należy oceniać w kontekście jej nominalnej wartości oraz określonej tolerancji. W przypadku spoin pionowych, które mają tolerancję ±5 mm, wiele osób może mylnie ocenić, że grubość 5 mm jest akceptowalna bez uwzględnienia, że maksymalna dopuszczalna grubość spoiny poziomej na rysunku B również musi być w granicach tolerancji. Inny błąd to ignorowanie wpływu grubości spoin na trwałość konstrukcji. Przekroczenie tolerancji może prowadzić do osłabienia spoiny, co znacznie zwiększa ryzyko awarii. W praktyce inżynierowie muszą znać granice tolerancji i umieć je stosować, aby zapewnić bezpieczeństwo oraz zgodność projektu z obowiązującymi normami. Nieprzestrzeganie tych zasad prowadzi do kosztownych błędów oraz potencjalnych zagrożeń dla bezpieczeństwa w budownictwie.

Pytanie 31

Jak powinno się zregenerować stare, odpryskujące tynki?

A. Pomalować je farbą silikatową
B. Nałożyć na nie warstwę gładzi
C. Pokryć je warstwą zaczynu wapiennego
D. Skuć je i uzupełnić nowym tynkiem
Skuwanie starych tynków i ich uzupełnianie nowym tynkiem jest kluczowym krokiem w przywracaniu estetyki oraz funkcjonalności ścian. Stare tynki, które łuszczą się, mogą być wynikiem wielu czynników, takich jak wilgoć, nieodpowiednia aplikacja, a także naturalne procesy starzenia się materiałów budowlanych. Skuwanie pozwala na usunięcie uszkodzonego tynku oraz zapewnia lepszą przyczepność nowego materiału do podłoża. Po skuć, należy dokładnie oczyścić powierzchnię z resztek starego tynku, kurzu i innych zanieczyszczeń. Warto również zainstalować hydroizolację, jeśli problem wilgoci jest istotny, co jest zgodne z dobrą praktyką budowlaną. Po odpowiednim przygotowaniu podłoża, można nałożyć nowy tynk, dostosowany do konkretnej aplikacji, co zapewni trwałość i estetykę na długie lata. Dodatkowo, przed aplikacją, warto skonsultować się z ekspertami lub zapoznać się z lokalnymi normami budowlanymi, aby wybrać odpowiedni materiał i metodę aplikacji.

Pytanie 32

Zgodnie z wytycznymi producenta, zapotrzebowanie na gipsową zaprawę tynkarską wynosi 6 kg/m2/10 mm. Oblicz, jaką ilość
25-kilogramowych worków zaprawy trzeba zakupić, aby nałożyć tynk o grubości 20 mm na powierzchni ścian wynoszącej 100 m2.

A. 48 worków
B. 60 worków
C. 30 worków
D. 24 worki
Aby obliczyć, ile 25-kilogramowych worków gipsowej zaprawy tynkarskiej będzie potrzebnych do wykonania tynku o grubości 20 mm na powierzchni 100 m², należy najpierw ustalić całkowite zużycie zaprawy. Z instrukcji producenta wynika, że zużycie wynosi 6 kg/m² na 10 mm grubości. Dla grubości 20 mm zużycie wzrasta do 12 kg/m² (6 kg/m² x 2). Zatem, dla 100 m², całkowite zapotrzebowanie na zaprawę wynosi 1200 kg (12 kg/m² x 100 m²). Ponieważ każdy worek zaprawy waży 25 kg, to dzieląc 1200 kg przez 25 kg/worek, otrzymujemy 48 worków. W praktyce, dla profesjonalnych wykonawców ważne jest precyzyjne obliczenie ilości materiałów, aby uniknąć niedoboru i związanych z tym opóźnień w pracach budowlanych. Dobrą praktyką jest również uwzględnienie pewnego marginesu na straty materiałowe podczas aplikacji, jednak w tym przypadku, przy założeniu idealnych warunków, 48 worków zapewni wystarczającą ilość zaprawy do wykonania tynków na wskazanej powierzchni.

Pytanie 33

Tynki przeznaczone do użytku na zewnątrz obiektów powinny wyróżniać się wysoką

A. nasiąkliwością
B. mrozoodpornością
C. kapilarnością
D. higroskopijnością
Zaprawy tynkarskie przeznaczone do stosowania na zewnątrz budynków muszą charakteryzować się mrozoodpornością, aby zapewnić trwałość i ochronę elewacji przed szkodliwym wpływem niskich temperatur oraz zjawisk atmosferycznych. Mrozoodporność oznacza, że materiał jest odporne na cykle zamrażania i rozmrażania, co jest kluczowe w klimacie, gdzie występują takie warunki. W praktyce, użycie zaprawy mrozoodpornej minimalizuje ryzyko pęknięć, łuszczenia się tynku oraz innych uszkodzeń, które mogą prowadzić do konieczności kosztownych napraw. W standardach budowlanych, takich jak PN-EN 998-1, określone są wymagania dotyczące zapraw tynkarskich, w tym odporności na działanie mrozu. Przykładem zastosowania są budynki jednorodzinne oraz wielorodzinne, gdzie elewacja narażona jest na działanie zmiennych warunków atmosferycznych. Osoby budujące lub odnawiające elewacje powinny zawsze wybierać materiały certyfikowane pod kątem mrozoodporności, aby zagwarantować wysoką jakość i trwałość wykończenia."

Pytanie 34

Na rysunku przedstawiono wyrób silikatowy drążony przeznaczony do budowy

Ilustracja do pytania
A. przewodów wentylacyjnych.
B. ścian fundamentowych.
C. ścian osłonowych i działowych.
D. przewodów kominowych.
Wybranie odpowiedzi dotyczącej ścian osłonowych i działowych jest właściwe, ponieważ wyrób silikatowy drążony, który przedstawiono na rysunku, jest idealnym materiałem do budowy tego typu ścian. Materiały silikatowe charakteryzują się wysoką trwałością oraz doskonałymi właściwościami izolacyjnymi, zarówno akustycznymi, jak i termicznymi. Dzięki swojej lekkości i strukturze, wyroby te są łatwe w obróbce i montażu, co czyni je popularnym wyborem w budownictwie. W przypadku ścian osłonowych i działowych, ich główną funkcją jest oddzielanie pomieszczeń oraz zapewnienie prywatności, nie przenosząc jednocześnie obciążeń konstrukcyjnych. W praktyce, zastosowanie silikatów w budowie tych ścian pozwala na skuteczne zarządzanie przestrzenią wewnętrzną budynków, a także poprawę komfortu akustycznego. Dodatkowo, materiały te są zgodne z wymogami norm budowlanych, takich jak PN-EN 771-1, co podkreśla ich przydatność i bezpieczeństwo w zastosowaniach budowlanych.

Pytanie 35

Przygotowanie kruszywa naturalnego do wytworzenia zaprawy tynkarskiej, która ma być użyta do nałożenia tynku zwykłego, polega na

A. przesianiu kruszywa przez sito o oczkach 2 mm
B. ustaleniu gęstości pozornej kruszywa
C. przesianiu kruszywa przez sito o oczkach 5 mm
D. ustaleniu stopnia zagęszczenia kruszywa
Przesianie kruszywa przez sito o oczkach 2 mm jest kluczowym etapem w przygotowaniu zaprawy tynkarskiej przeznaczonej do wykonania narzutu tynku zwykłego. Użycie sita o takiej wielkości oczek pozwala na usunięcie większych zanieczyszczeń oraz fragmentów kruszywa, które mogłyby negatywnie wpłynąć na właściwości mechaniczne i estetyczne gotowego tynku. Zastosowanie właściwego rozmiaru kruszywa jest zgodne z normami budowlanymi, które wskazują, że do zapraw tynkarskich powinno się używać kruszywa o odpowiednich uziarnieniach, aby zapewnić optymalną przyczepność i jednorodność zaprawy. Przesiewanie kruszywa ma także na celu poprawę jego jednorodności, co jest istotne dla uzyskania stabilnych właściwości tynków oraz zapobiega pojawianiu się pęknięć. W praktyce, w zależności od wymagań projektu, można przeprowadzać dodatkowe testy, aby określić, czy wybrane kruszywo spełnia normy jakościowe, co przyczynia się do długotrwałych i estetycznych efektów końcowych w budownictwie.

Pytanie 36

Oblicz, ile cegieł dziurawek trzeba przygotować do budowy dwóch ścianek działowych o wymiarach 2,4×6,0 m i grubości 25 cm każda, jeśli norma zużycia tych cegieł to 93,40 szt./m2?

A. 1401 sztuk
B. 1345 sztuk
C. 2801 sztuk
D. 2690 sztuk
Podczas rozwiązywania tego zadania niektórzy mogą popełnić błędy w obliczeniach powierzchni. Na przykład, niewłaściwe zrozumienie wymiarów ściany, takie jak pomylenie jednostek (np. metry z centymetrami), może prowadzić do całkowicie błędnych wyników. Często myśli się, że wystarczy pomnożyć długość i wysokość pojedynczej ścianki, ale przy braku uwzględnienia normy zużycia cegieł, wyniki będą znacznie różnić się od rzeczywistości. Ponadto, niektórzy mogą nie zauważyć, że norma zużycia cegły jest kluczowym czynnikiem determinującym ilość materiału, dlatego pominięcie tego etapu w obliczeniach prowadzi do niedoszacowania potrzeb. Warto również zwrócić uwagę na fakt, że niektóre odpowiedzi mogą wynikać z zaokrągleń lub błędnych interpretacji norm budowlanych, co jest typowym błędem w obliczeniach materiałowych. Każda jednostka w obliczeniach ma znaczenie, dlatego kluczowe jest przemyślane podejście do kalkulacji, które uwzględnia wszystkie istotne parametry, aby zapewnić efektywną i prawidłową realizację projektu budowlanego.

Pytanie 37

Jaką pacą powinno się nałożyć tynk wypalany klasy IVw?

A. Stalową
B. Styropianową
C. Drewnianą
D. Poliuretanową
Odpowiedź 'stalowa' jest poprawna, ponieważ tynki wypalane, zwane również tynkami mineralnymi, mają specyficzne wymagania dotyczące aplikacji, które najlepiej spełniają narzędzia stalowe. Stalowe pacy charakteryzują się dużą wytrzymałością i sztywnością, co pozwala na równomierne i dokładne rozprowadzanie masy tynkarskiej na powierzchni. Użycie stali umożliwia uzyskanie idealnie gładkiej struktury, co jest kluczowe dla trwałości i estetyki tynku. W praktyce, dzięki stalowym pacom, można łatwo kontrolować grubość aplikowanego tynku oraz dostarczyć odpowiednią ilość materiału w wyznaczonym czasie. W branży budowlanej stosuje się także standardy takie jak PN-EN 13914-1, które określają wymagania dla tynków. Zastosowanie odpowiednich narzędzi przy tynkowaniu jest kluczowe dla osiągnięcia wysokiej jakości i trwałości, co w przypadku tynków wypalanych ma istotne znaczenie, biorąc pod uwagę ich przeznaczenie i narażenie na warunki atmosferyczne.

Pytanie 38

Do zbudowania nadproża sklepionego (łęku) należy użyć cegły

A. kratówki
B. szczelinówki
C. pełnej
D. dziurawki
Nadproża sklepione, czyli te łuki, są mega ważne w budowlance, bo przenoszą ciężar z góry na boki. W tym przypadku cegła pełna jest wręcz niezbędna, bo ma super właściwości. Jest gęsta i naprawdę wytrzymała na ściskanie, idealna do robienia nadproży, które muszą wytrzymać sporo ciężaru. Cegła pełna daje też lepszą izolację akustyczną i cieplną w porównaniu do innych cegieł. Przykładem mogą być stare budynki, gdzie często spotykamy nadproża z cegły pełnej – to zgodne z zasadami ochrony naszego dziedzictwa kulturowego, a przy tym dobre dla budowlanych praktyk. Normy budowlane też mówią, że trzeba używać materiałów o odpowiednich parametrach wytrzymałościowych w takich konstrukcjach nośnych.

Pytanie 39

Oblicz wydatki związane z rozbiórką ścian o grubości 25 cm w pomieszczeniu o wymiarach 5 m × 4 m i wysokości 280 cm, jeśli koszt rozbiórki 1 m2 takiej ściany wynosi 185,00 zł?

A. 12 950,00 zł
B. 10 360,00 zł
C. 9 324,00 zł
D. 4 662,00 zł
Analizując pozostałe odpowiedzi, możemy zauważyć, że niepoprawne wyniki wynikają głównie z błędnych obliczeń lub założeń dotyczących powierzchni ścian. Wiele osób może błędnie oszacować całkowitą powierzchnię, pomijając istotne czynniki, takie jak wysokość pomieszczenia lub wymiary ścian. Zdarza się, że pomijane są też mniejsze elementy, takie jak okna czy drzwi, które zmieniają całkowitą powierzchnię wyburzenia. Kolejnym typowym błędem jest nieprawidłowe przeliczenie kosztów, gdzie użytkownik błędnie mnoży powierzchnię przez niewłaściwą stawkę lub pomija jednostki. Możliwe jest także, że błędne odpowiedzi są wynikiem niepoprawnego założenia dotyczącego grubości ścian, co wprowadza dodatkowe zamieszanie w kalkulacji. W kontekście branży budowlanej, precyzyjne wyliczenia są kluczowe, gdyż błędne oszacowanie kosztów może prowadzić do poważnych problemów finansowych dla inwestora. Warto również zwrócić uwagę na znaczenie stosowania standardowych metod kalkulacji kosztów budowlanych, które opierają się na ugruntowanych zasadach i praktykach w branży, co znacznie zwiększa dokładność wyliczeń i pomaga uniknąć pułapek błędnych założeń.

Pytanie 40

Na rysunku przedstawiono elementy stropu

Ilustracja do pytania
A. Fert.
B. Teriva.
C. Kleina.
D. Ceram.
Wybór odpowiedzi innej niż "Teriva" świadczy o braku zrozumienia różnic między różnymi typami systemów stropowych. Na przykład, "Ceram" to system stropowy, który opiera się na tradycyjnych cegłach ceramicznych, co nie jest zgodne z przedstawionym na rysunku elementem prefabrykowanym. Użycie ceramiki w budownictwie ma swoje miejsce, jednak nie w kontekście nowoczesnych stropów gęstożebrowych. Z kolei "Fert" to inny typ prefabrykowanych stropów, który charakteryzuje się odmienną konstrukcją oraz sposobem łączenia elementów stropowych. Nie jest to rozwiązanie, które można by zastosować zamiennie z Terivą, ponieważ różnice w nośności i sposobie wykonania mogą prowadzić do niewłaściwego rozkładu obciążeń. Z kolei "Kleina" jest systemem, który również nie odpowiada charakterystyce elementów stropowych Teriva, a jego zastosowanie w budownictwie nie jest tak powszechne. Wybieranie niewłaściwego systemu stropowego może prowadzić do poważnych problemów konstrukcyjnych, takich jak niedostateczna nośność czy nieszczelności, co z kolei wpływa na bezpieczeństwo całej budowli. Kluczowe jest, aby przy wyborze systemu stropowego kierować się nie tylko estetyką, ale także technicznymi wymaganiami i standardami budowlanymi, które zapewniają trwałość oraz bezpieczeństwo konstrukcji.