Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 26 listopada 2025 15:33
  • Data zakończenia: 26 listopada 2025 15:48

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Jakie jest zastosowanie symetryzatora antenowego?

A. do dopasowania impedancyjnego anteny i odbiornika
B. do przesyłania sygnałów z kilku anten do jednego odbiornika
C. w celu zmiany charakterystyki kierunkowej anteny
D. aby zwiększyć zysk energetyczny anteny
Symetryzator antenowy, znany również jako transformator impedancji, jest kluczowym elementem w systemach komunikacji radiowej, który zapewnia odpowiednie dopasowanie impedancyjne między anteną a odbiornikiem. Główna funkcja symetryzatora polega na minimalizowaniu strat energii, co jest niezbędne do uzyskania optymalnej wydajności systemu. Impedancja anteny i odbiornika powinna być zgodna, aby zapewnić maksymalny transfer energii, co jest zgodne z zasadami dotyczących projektowania systemów RF (Radio Frequency). Przykładowo, w zastosowaniach takich jak radioamatorstwo, stosowanie symetryzatora może prowadzić do znacznego zwiększenia jakości sygnału i zasięgu, zwłaszcza w przypadku anten o różnej impedancji. Standardy takie jak IEC 62232 wskazują na znaczenie dopasowania impedancji w kontekście efektywności energetycznej i jakości sygnału. W praktyce, nieprawidłowe dopasowanie może skutkować odbiciem sygnału i stratami, które negatywnie wpływają na działanie całego systemu. Dlatego symetryzatory są niezbędne w profesjonalnych zastosowaniach oraz w systemach amatorskich, gdzie właściwe dopasowanie jest kluczowe dla osiągnięcia satysfakcjonujących wyników.

Pytanie 4

Kiedy w obwodzie prądu stałego rezystancja obciążenia jest taka sama jak rezystancja wewnętrzna źródła, to mówi się

A. o przerwie w obwodzie
B. o stanie nieustalonym
C. o zwarciu w obwodzie
D. o dopasowaniu energetycznym
Odpowiedź "o dopasowaniu energetycznym" jest prawidłowa, ponieważ odnosi się do sytuacji, w której rezystancja obciążenia równa jest rezystancji wewnętrznej źródła prądu. W takim przypadku osiągamy maksymalną transfer energii do obciążenia, co jest zasadą znaną jako twierdzenie o maksymalnym transferze mocy. Z praktycznego punktu widzenia oznacza to, że urządzenie podłączone do źródła będzie działać z największą efektywnością, ponieważ straty energii są minimalne. To zjawisko jest często wykorzystywane w aplikacjach audio, gdzie głośniki muszą być dobrze dopasowane do wzmacniacza, aby uzyskać optymalną jakość dźwięku. W inżynierii elektrycznej i elektronicznej, dopasowanie energetyczne jest kluczowe przy projektowaniu układów, aby zapewnić ich stabilność i wydajność. Na przykład, w sieciach telekomunikacyjnych, dopasowanie impedancji jest ważne dla minimalizacji refleksji sygnału i utraty danych. Zatem, zrozumienie tej zasady pozwala inżynierom na skuteczne projektowanie systemów elektronicznych.

Pytanie 5

Każdą funkcję logiczną da się zrealizować jedynie przy wykorzystaniu bramek

A. OR
B. EX-OR
C. NOT
D. NAND
Odpowiedź 'NAND' jest poprawna, ponieważ bramka NAND jest uniwersalną bramką logiczną, co oznacza, że może być użyta do realizacji każdej dowolnej funkcji logicznej. W praktyce, za pomocą kombinacji bramek NAND możemy skonstruować wszystkie inne podstawowe bramki, takie jak AND, OR, oraz NOT. Użycie bramki NAND do budowy logiki cyfrowej jest standardem w branży, ponieważ pozwala na uproszczenie procesu projektowania układów logicznych. Na przykład, w projektach układów scalonych, bramki NAND często dominują ze względu na ich prostą strukturę oraz mniejsze wymagania dotyczące zasilania w porównaniu do innych bramek. W zastosowaniach takich jak mikroprocesory czy układy FPGA, bramki NAND są często wykorzystywane do optymalizacji wydajności oraz redukcji kosztów produkcji. Warto zauważyć, że teoria bramek uniwersalnych jest kluczowym elementem w nauczaniu o logice cyfrowej oraz projektowaniu systemów cyfrowych, co czyni tę wiedzę niezbędną dla inżynierów i techników w tej dziedzinie.

Pytanie 6

Ile maksymalnie urządzeń można podłączyć do Multiswitcha 9/8 w systemie telewizyjnym?

A. 2 anteny satelitarne z konwerterami quatro i 8 odbiorników
B. 2 anteny satelitarne z konwerterami single oraz 8 odbiorników
C. 1 antenę satelitarną z konwerterem single oraz 8 odbiorników
D. 1 antenę satelitarną z konwerterem quatro i 8 odbiorników
Wybór konwertera single dla multiswitcha 9/8 ogranicza znacząco jego funkcjonalność. Konwertery single pozwalają na przesył sygnału tylko z jednej anteny do jednego odbiornika, co uniemożliwia jednoczesne korzystanie z więcej niż jednej anteny w systemie. W rezultacie podłączenie jednej anteny satelitarnej z konwerterem single do multiswitcha i 8 odbiorników jest podejściem nieefektywnym, ponieważ tylko jeden odbiornik może korzystać z sygnału, co sprawia, że reszta odbiorników jest nieużyteczna. Dodatkowo, konwertery quatro są przystosowane do jednoczesnego odbioru z wielu źródeł sygnału, co jest kluczowe w zastosowaniach, gdzie liczba odbiorników jest duża. Z kolei wykorzystanie konwerterów quatro w przypadku multiswitcha 9/8 otwiera możliwości dla dwóch anten, co pozwala na większą elastyczność i zapewnia możliwość odbioru wielu programów jednocześnie. Dlatego połączenie dwóch anten z konwerterami quatro z multiswitchem 9/8, które może obsługiwać 8 odbiorników, jest rozwiązaniem zgodnym z najlepszymi praktykami w branży, które pozwala na pełne wykorzystanie potencjału systemu telewizyjnego.

Pytanie 7

Jakie urządzenia należy wykorzystać do strojenia toru pośredniej częstotliwości w radiowych odbiornikach?

A. multimetr cyfrowy
B. mostek pomiarowy
C. miernik magnetoelektryczny
D. wobulator i oscyloskop
Wobulator i oscyloskop to naprawdę ważne sprzęty, gdy mówimy o strojeniu toru pośredniej częstotliwości w radiu. Wobulator generuje różne sygnały, co jest super przydatne do testowania i dostrajania obwodów. Działa to na zasadzie modulacji sygnału, więc można bardzo precyzyjnie ustawić częstotliwość odbioru. Oscyloskop natomiast to narzędzie, które pozwala nam widzieć sygnały elektroniczne na bieżąco. Dzięki temu inżynierowie mogą dostrzegać problemy z jakością sygnału, na przykład szumy czy zniekształcenia. Weźmy na przykład sytuację, kiedy stroimy tor pośredniej częstotliwości – wobulator może wprowadzić sygnał o znanej częstotliwości, a oscyloskop pokazuje, czy odbiornik to dobrze demoduluje. Takie podejście jest naprawdę zgodne z tym, co robią specjaliści w branży i podkreśla, jak ważna jest dokładna analiza sygnałów podczas strojenia.

Pytanie 8

Na diagramie blokowym struktury wewnętrznej mikroprocesora symbol ALU oznacza

A. zewnętrzną pamięć operacyjną
B. mikroprocesor wykonany w technologii krzemowo-aluminiowej
C. jednostkę arytmetyczno-logiczną
D. rejestr akumulatora
Odpowiedź 'jednostka arytmetyczno-logiczna' (ALU) jest prawidłowa, ponieważ ALU stanowi kluczowy komponent mikroprocesora odpowiedzialny za wykonywanie operacji arytmetycznych, takich jak dodawanie i odejmowanie, oraz operacji logicznych, takich jak AND, OR i NOT. ALU przyjmuje dane wejściowe, wykonuje na nich odpowiednie operacje, a następnie zwraca wyniki. Przykładowo, w procesach obliczeniowych, takich jak obliczanie wartości matematycznych lub przetwarzanie logiki warunkowej w programach, ALU odgrywa nieodzowną rolę. Standardy projektowania mikroprocesorów, takie jak architektura von Neumanna, uwzględniają ALU jako centralny element, co podkreśla jego znaczenie w nowoczesnych systemach komputerowych. Również w kontekście programowania niskopoziomowego, zrozumienie działania ALU pozwala na efektywniejsze pisanie kodu maszynowego i optymalizację algorytmów obliczeniowych.

Pytanie 9

Do podłączenia elementów systemu alarmowego używa się kabla

A. YTDY
B. OMY
C. YTKSY
D. UTP
Przewód YTDY jest odpowiedni do łączenia elementów systemu alarmowego ze względu na swoje właściwości. Posiada on podwójne ekranowanie, co zapewnia wysoką odporność na zakłócenia elektromagnetyczne, co jest kluczowe w systemach zabezpieczeń, gdzie jakość sygnału jest kluczowa dla prawidłowego działania. Dzięki zastosowaniu odpowiedniej izolacji przewodów, YTDY skutecznie minimalizuje ryzyko fałszywych alarmów spowodowanych zakłóceniami z innych urządzeń. W praktyce, zastosowanie tego typu przewodów w instalacjach alarmowych pozwala na długodystansowe połączenia, co jest istotne w większych obiektach. Przewody YTDY są również zgodne z normami branżowymi, co czyni je preferowanym wyborem w projektowaniu i wykonawstwie systemów alarmowych. Dzięki zastosowaniu tego typu przewodów, instalacje stają się bardziej niezawodne i efektywne.

Pytanie 10

Zidentyfikowanie usterek w urządzeniach elektronicznych powinno rozpocząć się od weryfikacji

A. elementów biernych
B. bezpieczników
C. tranzystorów
D. diod zabezpieczających
Zaczynając lokalizację uszkodzeń w sprzęcie elektronicznym od sprawdzenia bezpieczników, postępujesz zgodnie z najlepszymi praktykami diagnostyki elektronicznej. Bezpieczniki są pierwszą linią obrony w obwodach elektrycznych, mając na celu ochronę przed przeciążeniem i zwarciem, co może prowadzić do uszkodzenia innych komponentów. Sprawdzenie stanu bezpieczników jest kluczowe, ponieważ uszkodzony bezpiecznik może oznaczać, że obwód był przeciążany lub że wystąpiło zwarcie, co może wskazywać na bardziej poważny problem w urządzeniu. Po zidentyfikowaniu i wymianie uszkodzonego bezpiecznika, zaleca się dalsze testowanie obwodów, aby zlokalizować źródło problemu. W praktyce, często stosuje się multimetr do pomiaru ciągłości obwodu bezpiecznika, co jest szybkim i skutecznym sposobem na określenie jego stanu. Dobrą praktyką jest również prowadzenie dokumentacji dotyczącej stanu i wymiany bezpieczników, co może być pomocne przy przyszłych naprawach oraz w analizie awarii.

Pytanie 11

Kąty odpowiedzialne za określenie kierunku ustawienia anteny satelitarnej to

A. elewacji, konwertera, azymutu
B. azymutu, elewacji, transpondera
C. azymutu, konwertera, transpondera
D. elewacji, konwertera, transpondera
Kierunek ustawienia anteny satelitarnej jest kluczowym elementem w procesie odbioru sygnału. Właściwe ustawienie anteny zależy od trzech głównych kątów: elewacji, azymutu oraz kąta konwertera. Kąt elewacji określa, pod jakim kątem antena powinna być skierowana w górę, co jest kluczowe dla odbioru sygnałów z satelitów znajdujących się na odpowiedniej wysokości nad horyzontem. Natomiast kąt azymutu definiuje, w którym kierunku, w poziomie, antena powinna być skierowana, aby była skierowana bezpośrednio w stronę satelity. Kąt konwertera, z kolei, odnosi się do ustawienia konwertera LNB znajdującego się na końcu anteny, co jest niezbędne do efektywnego odbioru i konwersji sygnału. Użycie tych trzech kątów pozwala na precyzyjne ustawienie anteny, co skutkuje poprawą jakości sygnału oraz stabilnością połączenia. W praktyce, aby ustawić antenę, można skorzystać z narzędzi takich jak mierniki sygnału satelitarnego, które pomagają w dokładnym pomiarze i dostrojeniu anteny. Zgodnie z dobrą praktyką, podczas instalacji anteny warto również zwrócić uwagę na lokalne przeszkody, które mogą wpływać na jakość sygnału.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

W przypadku łączenia urządzeń audio na dużą odległość, jakie kable powinny być wykorzystane?

A. niesymetryczne (unbalanced)
B. sygnalizacyjne YKSwXs
C. symetryczne (balanced)
D. sygnalizacyjne YKSY
Kable symetryczne, znane również jako kable zbalansowane, są kluczowym elementem w połączeniach urządzeń akustycznych na większe odległości. Główna zaleta tych kabli polega na ich zdolności do redukcji zakłóceń elektromagnetycznych, co jest szczególnie ważne w kontekście długich tras sygnałowych. Dzięki zastosowaniu dwóch przewodów sygnałowych, które przesyłają sygnał w przeciwnych fazach, kable symetryczne eliminują wpływ zakłóceń zewnętrznych, co zapewnia czystość dźwięku i stabilność sygnału. Przykładem zastosowania mogą być instalacje nagłośnieniowe na koncertach, gdzie kable symetryczne są powszechnie używane do łączenia mikrofonów z mikserami audio, zwłaszcza w przypadku dużych odległości. W branży audio stosuje się standardy takie jak AES/EBU i XLR, które są typowymi złączami dla kabli symetrycznych. W praktyce, wybór kabli symetrycznych jest zgodny z najlepszymi praktykami, które zalecają ich stosowanie wszędzie tam, gdzie jakość sygnału i odporność na zakłócenia są kluczowe dla sukcesu technicznego występu lub nagrania.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Parametry takie jak wzmocnienie mocy, moc wyjściowa, pasmo przenoszenia oraz współczynnik efektywności energetycznej odnoszą się do

A. filtra
B. wzmacniacza
C. generatora
D. zasilacza
Wzmocnienie mocy, moc wyjściowa, pasmo przenoszenia oraz współczynnik sprawności energetycznej to kluczowe parametry wzmacniaczy. Wzmacniacze są urządzeniami elektrycznymi, których podstawowym zadaniem jest zwiększenie amplitudy sygnału elektrycznego. Wzmocnienie mocy odnosi się do zdolności wzmacniacza do podnoszenia mocy sygnału, co jest niezbędne w aplikacjach audio, telekomunikacyjnych czy radiowych. Moc wyjściowa określa, ile energii wzmacniacz może dostarczyć do obciążenia, co ma kluczowe znaczenie dla zapewnienia odpowiedniej jakości dźwięku lub sygnału. Pasmo przenoszenia natomiast definiuje zakres częstotliwości, w jakim wzmacniacz może efektywnie działać, co jest istotne w kontekście reprodukcji dźwięku czy przesyłania danych. Współczynnik sprawności energetycznej mierzy, jak efektywnie wzmacniacz przekształca moc zasilania na moc wyjściową, co jest istotne dla ograniczenia strat energii i poprawy wydajności systemu. Przykładem zastosowania wzmacniacza może być system audio, gdzie poprawne zgranie tych parametrów decyduje o jakości dźwięku i jego mocy. Zgodnie z normami branżowymi, jak np. normy IEC, ważne jest, aby wzmacniacze były projektowane z uwzględnieniem tych parametrów, aby spełniały wymagania użytkowników i zapewniały niezawodność w działaniu.

Pytanie 20

Sprawdzanie działania elektronicznego wzmacniacza akustycznego nie obejmuje

A. pomiaru parametrów
B. kontroli temperatury elementów
C. uaktualniania oprogramowania
D. znajdowania anomalii w działaniu urządzenia
Odpowiedź "uaktualnianie oprogramowania" jest poprawna, ponieważ testowanie elektronicznego wzmacniacza akustycznego koncentruje się głównie na aspektach związanych z jego wydajnością i funkcjonalnością w kontekście audio. W procesie testowania, kluczowe jest przeprowadzenie pomiaru parametrów, takich jak zniekształcenia harmoniczne, pasmo przenoszenia, czy moc wyjściowa, co pozwala na ocenę jakości dźwięku generowanego przez wzmacniacz. Kontrola temperatury elementów jest również istotna, aby zapewnić, że urządzenie nie przegrzewa się podczas pracy, co mogłoby prowadzić do uszkodzeń lub obniżenia jakości dźwięku. Dodatkowo, identyfikacja anomalii w działaniu urządzenia jest kluczowa w utrzymaniu jakości i niezawodności sprzętu. Uaktualnianie oprogramowania może być istotne w kontekście poprawy funkcjonalności, ale nie jest to kluczowy element testowania samego wzmacniacza akustycznego. Przykłady dobrych praktyk w tej dziedzinie obejmują korzystanie z analizatorów widma i oscyloskopów do dokładnej analizy parametrów akustycznych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Aby dostosować wartość temperatury w danym obiekcie, należy użyć

A. termostatu
B. termopary
C. termowizora
D. termometru
Termostat to urządzenie, które automatycznie reguluje temperaturę w danym obiekcie, zapewniając odpowiednie warunki do funkcjonowania lub przechowywania określonych materiałów. Działa na zasadzie pomiaru temperatury otoczenia i aktywacji grzania lub chłodzenia w zależności od ustawionych parametrów. Przykładem zastosowania termostatu może być system klimatyzacji w budynkach, gdzie termostat monitoruje temperaturę wewnętrzną i dostosowuje działanie klimatyzacji, aby utrzymać komfortowe warunki. W przemyśle, termostaty są używane w piecach, chłodniach czy inny urządzeniach wymagających precyzyjnej kontroli temperatury. Normy dotyczące instalacji i użycia termostatów w różnych aplikacjach, takie jak ISO 9001, zapewniają, że urządzenia te działają zgodnie z wymaganiami jakościowymi, co jest kluczowe dla zachowania efektywności i bezpieczeństwa procesów technologicznych.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jakie elementy urządzeń elektronicznych opisuje termin LCD?

A. Wyświetlaczy ciekłokrystalicznych
B. Barier podczerwieni
C. Czujników zbliżeniowych
D. Sygnalizatorów akustycznych
Wyświetlacze ciekłokrystaliczne, znane również jako LCD (ang. Liquid Crystal Display), to technologie wykorzystywane do wyświetlania informacji w urządzeniach elektronicznych, takich jak telewizory, monitory komputerowe, smartfony oraz wiele innych. LCDs działają na zasadzie modulacji światła przez ciekłe kryształy, co pozwala na uzyskanie wyraźnego obrazu przy stosunkowo niskim zużyciu energii. Przykładowo, w telewizorach LCD stosowane są podświetlenia LED, które w połączeniu z matrycą ciekłokrystaliczną tworzą obraz o wysokiej jakości. Zastosowanie LCD w codziennych urządzeniach elektronicznych uczyniło je standardem w branży, zwłaszcza w kontekście wysokiej rozdzielczości i efektywności energetycznej. Standardy takie jak ISO 9241 dotyczące ergonomii wyświetlaczy potwierdzają efektywność LCD w kontekście komfortu użytkowania. Ponadto, w ostatnich latach technologia LCD została znacznie rozwinięta, wprowadzając innowacje takie jak technologie IPS, które poprawiają kąty widzenia oraz odwzorowanie kolorów.

Pytanie 25

Jakie urządzenia wykorzystuje się do pomiaru mocy czynnej?

A. watomierze
B. wariometry
C. waromierze
D. woltomierze
Watomierz jest urządzeniem pomiarowym, które służy do pomiaru mocy czynnej w obwodach elektrycznych. Moc czynna, mierzona w watach (W), to ta część mocy, która jest rzeczywiście wykorzystywana do wykonania pracy, w przeciwieństwie do mocy biernej, która nie ma wpływu na wykonanie pracy, a jedynie oscyluje w obwodzie. Watomierze działają na zasadzie pomiaru napięcia, prądu oraz kąta fazowego między nimi, co pozwala na dokładne określenie mocy czynnej. W zastosowaniach przemysłowych, gdzie monitorowanie zużycia energii jest kluczowe dla efektywności energetycznej, watomierze stanowią nieocenione narzędzie. Standardowe watomierze mogą być wykorzystywane w różnych instalacjach elektrycznych, zarówno w domowych, jak i przemysłowych, co sprawia, że ich znajomość oraz umiejętność ich zastosowania są niezbędne dla inżynierów i techników. Dobre praktyki w zakresie pomiarów mocy zawsze uwzględniają wykorzystanie watomierzy, które są kalibrowane zgodnie z normami międzynarodowymi, co zapewnia ich dokładność i powtarzalność wyników.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Wysokie napięcia w punktach przejściowych, w gniazdach abonenckich, na stacji głównej telewizji kablowej oraz na wejściu urządzenia abonenckiego mogą się pojawić w wyniku

A. zmiany częstotliwości sygnału
B. tłumienia impulsów napięcia
C. zjawiska indukcji
D. wyrównywania potencjałów połączeń
Zjawisko indukcji elektromagnetycznej jest kluczowym fenomenem w systemach elektrycznych i telekomunikacyjnych. Powstaje ono, gdy zmienne pole magnetyczne wytwarza napięcie w przewodniku. W kontekście wysokich napięć w telekomunikacji, zjawisko to może prowadzić do niepożądanych efektów, jak na przykład powstawanie wysokich napięć w punktach przejściowych i gniazdach. Praktyczne zastosowanie tej wiedzy leży w projektowaniu odpowiednich układów zabezpieczeń, takich jak transformatory separacyjne, które minimalizują ryzyko indukcji. Warto również wspomnieć o standardach, takich jak IEC 61000, które dotyczą kompatybilności elektromagnetycznej (EMC) i zalecają odpowiednie metody ochrony urządzeń przed skutkami indukcji. Dobrze zaprojektowane systemy kablowe uwzględniają zjawisko indukcji, stosując odpowiednie materiały izolacyjne oraz prowadząc przewody w sposób zminimalizowany w kontekście potencjalnych źródeł zakłóceń.

Pytanie 28

Jakie mogą być skutki dotknięcia podzespołów podczas regulacji układu elektronicznego na płytce drukowanej, oznaczonej symbolem przedstawionym na rysunku?

A. Poparzenie palców dłoni.
B. Uszkodzenie układu na skutek wyładowania elektrostatycznego.
C. Zatarcie napisów identyfikujących nazwę i serię układu.
D. Zwiększenie rezystancji wejściowej układu.
Dotknięcie podzespołów na płytce drukowanej bez odpowiednich środków ochrony może prowadzić do uszkodzenia układów elektronicznych z powodu wyładowań elektrostatycznych (ESD). Wyładowania te mogą być spowodowane różnicą potencjałów między osobą a podzespołem, co prowadzi do przeskoku ładunku elektrycznego. Standardy, takie jak IEC 61340-5-1, określają zasady ochrony przed ESD, w tym zalecają stosowanie bransolety antystatycznej, mat antystatycznych oraz odpowiedniego uziemienia. Przykładem praktycznego zastosowania tej wiedzy jest praca w laboratoriach elektroniki, gdzie każdy technik powinien być świadomy ryzyka ESD i stosować środki ochrony, aby zminimalizować możliwość uszkodzenia wrażliwych komponentów. Należy pamiętać, że niektóre układy, takie jak układy scalone, są szczególnie wrażliwe na ESD, co może prowadzić do nieodwracalnych uszkodzeń, wpływając na funkcjonalność i wydajność całego urządzenia.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Podczas wykonywania montażu kabla krosowego w złączach gniazd należy unikać rozkręcania par przewodów na długości przekraczającej 13 mm, ponieważ

A. może to prowadzić do obniżenia odporności na zakłócenia
B. dojdzie do zmniejszenia impedancji kabla
C. kabel będzie generował silniejsze pole elektromagnetyczne
D. zwiększy się impedancja kabla
Rozkręcenie par przewodów na odcinku większym niż 13 mm może prowadzić do znaczącego obniżenia odporności na zakłócenia elektromagnetyczne. W instalacjach sieciowych, takich jak Ethernet, kluczowe jest zachowanie odpowiedniej struktury kabla, co zapobiega zjawiskom takim jak crosstalk, czyli wzajemne zakłócanie się sygnałów w sąsiadujących parach. Standardy, takie jak TIA/EIA-568, podkreślają znaczenie zachowania odpowiedniego skręcenia i ograniczenia rozkręcenia par, aby zapewnić optymalną wydajność sieci. Praktyczne przykłady zastosowania tej zasady można znaleźć w lokalnych sieciach komputerowych, gdzie nieprawidłowe skręcenie może prowadzić do spadku szybkości transferu danych oraz zwiększenia błędów transmisji. Dlatego istotne jest, aby technicy przestrzegali tych zasad podczas montażu kabli, co przyczyni się do długoterminowej stabilności i wydajności sieci.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Podstawowym celem korytek kablowych jest

A. powiększenie odległości przewodów od ściany
B. prowadzenie i maskowanie przewodów
C. obniżenie rezystancji izolacji przewodów
D. zwiększenie efektywności chłodzenia przewodów
Głównym zadaniem korytek kablowych jest prowadzenie i maskowanie przewodów, co odgrywa kluczową rolę w organizacji instalacji elektrycznych. Korytka kablowe nie tylko umożliwiają estetyczne ukrycie przewodów, ale również zabezpieczają je przed uszkodzeniami mechanicznymi oraz wpływem czynników zewnętrznych, takich jak wilgoć czy zanieczyszczenia. Dzięki zastosowaniu korytek kablowych, możliwe jest także znaczne uproszczenie procesu montażu i konserwacji instalacji, gdyż przewody są zgromadzone w jednym miejscu. W praktyce, korytka kablowe są wykorzystywane w biurach, halach produkcyjnych czy budynkach użyteczności publicznej, gdzie estetyka i porządek w instalacjach elektrycznych mają istotne znaczenie. Zgodnie z normą PN-EN 50085, stosowanie korytek kablowych powinno być dostosowane do rodzaju przewodów oraz warunków montażu, co pozwala na zapewnienie bezpieczeństwa i niezawodności instalacji. Warto również zauważyć, że odpowiednio zainstalowane korytka kablowe ułatwiają identyfikację przyczyn ewentualnych awarii oraz ich szybką naprawę.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Który z parametrów kamery wskazuje na jej efektywność w warunkach słabego oświetlenia?

A. Kąt widzenia kamery
B. Czułość
C. Typ mocowania obiektywu
D. Rozdzielczość
Czułość kamery, nazywana również ISO, określa jej zdolność do rejestrowania obrazu w warunkach niskiego oświetlenia. Im wyższa czułość, tym kamera lepiej radzi sobie z uchwyceniem detali w ciemniejszych scenach. Przykładem jej zastosowania jest monitoring w nocy, gdzie kamery o wysokiej czułości mogą wykrywać ruch i rejestrować obraz w praktycznie całkowitej ciemności. W kontekście standardów branżowych, czułość kamery często mierzy się w jednostkach ISO, a kamery o wartościach ISO powyżej 1600 są uznawane za odpowiednie do pracy w trudnych warunkach oświetleniowych. Dobrze dobrana czułość ma kluczowe znaczenie dla jakości obrazu, ponieważ zbyt wysoka czułość może prowadzić do zjawiska szumów, co negatywnie wpływa na klarowność obrazu. Wybór kamery o odpowiedniej czułości jest zatem kluczowy dla zapewnienia skutecznego monitoringu w różnych warunkach oświetleniowych.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Który sposób reperacji uszkodzonego kabla antenowego zapewni odpowiednią jakość przesyłu sygnału?

A. Połączenie kabla przy użyciu kostki do przewodów elektrycznych
B. Połączenie przewodu za pomocą tulejek zaciskowych
C. Zainstalowanie w miejscu uszkodzenia złączki typu F
D. Zlutowanie oraz zaizolowanie kabla w miejscu uszkodzenia
Zainstalowanie w miejscu uszkodzenia złączki typu F to najlepszy sposób na naprawę przerwanego kabla antenowego, gdyż złączki te są standardem w transmisji sygnału telewizyjnego i radiowego. Gwarantują one niskie straty sygnału oraz stabilne połączenie. Złączki typu F są zaprojektowane z myślą o minimalizacji refleksji sygnału, co jest kluczowe dla zachowania jakości odbioru. Przykładowo, gdy stosujemy złączkę F, zapobiegamy niepożądanym zakłóceniom, które mogą wystąpić przy innych metodach łączenia kabli. W instalacjach antenowych, standardem jest używanie kabli koncentrycznych, a zastosowanie złączek typu F pozwala na łatwe połączenie z urządzeniami, takimi jak dekodery czy telewizory. Warto również pamiętać o regularnym sprawdzaniu stanu połączeń i wymianie uszkodzonych elementów, co jest zgodne z najlepszymi praktykami utrzymania instalacji RTV.

Pytanie 37

Telewizor nie odbiera żadnych sygnałów z zewnętrznej anteny w transmisji naziemnej, ale poprawnie prezentuje obraz z tunera satelitarnego podłączonego do niego za pomocą przewodu EUROSCART oraz z kamery VHS-C. Wymienione objawy sugerują, że uszkodzony jest moduł

A. wielkiej i pośredniej częstotliwości
B. separatora impulsów
C. odchylania poziomego i pionowego
D. wzmacniacza wizji
Muszę powiedzieć, że rozważanie uszkodzenia wzmacniacza wizji, separatora impulsów czy układów odchylania poziomego i pionowego nie do końca ma sens w tej sytuacji. Każdy z tych elementów ma swoją rolę, ale nie jest bezpośrednio odpowiedzialny za odbieranie sygnału z anteny. Wzmacniacz wizji wzmacnia sygnał obrazu, ale skoro telewizor działa z innych źródeł, to raczej nie on jest winowajcą. Separator impulsów oddziela sygnały wideo, ale to nie jest główny problem, bo tu chodzi o brak sygnału z anteny, a nie o jego separację. No i te układy odchylania odpowiadają za wyświetlanie obrazu, ale też nie są tu kluczowe. Czasami ludzie mylą funkcje tych komponentów z tym, co naprawdę odpowiada za odbiór sygnału. Trzeba pamiętać, że uszkodzenie modułu wielkiej i pośredniej częstotliwości wpływa bezpośrednio na odbiór sygnałów z anteny, to jest kluczowe w tym przypadku.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Założenie opaski uziemiającej na nadgarstek jest niezbędne przed rozpoczęciem wymiany

A. sygnalizatora akustycznego w systemie alarmowym
B. procesora w komputerze PC
C. rozgałęźnika sygnału w sieci telewizji kablowej
D. bezpiecznika topikowego w zasilaczu
Założenie opaski uziemiającej na rękę przed wymianą procesora w komputerze PC jest kluczowym krokiem w celu zapewnienia bezpieczeństwa oraz ochrony delikatnych komponentów. Uziemienie ma na celu zminimalizowanie ryzyka wystąpienia wyładowań elektrostatycznych (ESD), które mogą uszkodzić wrażliwe obwody elektroniczne procesora. Procesory są szczególnie wrażliwe na takie zjawiska, a ich uszkodzenia mogą prowadzić do poważnych problemów z funkcjonowaniem systemu komputerowego. Zgodnie z najlepszymi praktykami w zakresie serwisowania sprzętu, zawsze należy stosować środki ochrony elektrostatycznej, takie jak opaski uziemiające, maty antyelektrostatyczne oraz unikać dotykania styków procesora. Przykładem może być sytuacja, w której użytkownik wymienia procesor w swoim komputerze stacjonarnym; przy użyciu opaski uziemiającej zapewnia sobie i sprzętowi maksymalne bezpieczeństwo, co jest zgodne z normami IEC 61340-5-1 dotyczącymi ochrony przed ESD.

Pytanie 40

Jakie urządzenie powinno być użyte wraz z konwerterem satelitarnym typu Quattro do rozprowadzania sygnałów telewizji satelitarnej z jednej anteny do wielu odbiorników TV-SAT?

A. Wzmacniacz
B. Multiswitch
C. Modulator
D. Tuner
Multiswitch jest urządzeniem, które umożliwia dystrybucję sygnału telewizyjnego satelitarnego z jednej anteny do wielu odbiorników telewizyjnych. W przypadku konwerterów typu Quattro, które dostarczają sygnały w czterech pasmach (V/H i Częstotliwości Niskie/Wysokie), multiswitch rozdziela sygnały z konwertera na wiele wyjść, co umożliwia podłączenie kilku tunerów satelitarnych. Umożliwia to jednoczesne oglądanie różnych programów telewizyjnych przez różne odbiorniki. Przykładem zastosowania jest instalacja w budynku wielorodzinnym, gdzie jeden zestaw antenowy i multiswitch pozwalają na obsługę kilku mieszkań. Zgodnie z normami instalacji telewizyjnych, multiswitch powinien być wybierany zgodnie z liczbą odbiorników oraz typem konwertera, co zapewnia optymalne parametry jakości sygnału.