Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 19 grudnia 2025 15:57
  • Data zakończenia: 19 grudnia 2025 16:06

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na etykiecie znamionowej zasilacza, który jest podłączony do układu, widnieją informacje: INPUT 100-240 VAC; OUTPUT 12 VDC. Co to oznacza w kontekście zasilania układu?

A. w zakresie od 100 do 240 VDC
B. w zakresie od 100 do 240 VAC
C. 12 VDC
D. 12 VAC
Odpowiedź '12 VDC' jest prawidłowa, ponieważ oznacza napięcie stałe, które zasilacz dostarcza do podłączonych urządzeń. W kontekście zasilaczy, oznaczenie 'OUTPUT 12 VDC' sugeruje, że napięcie wyjściowe wynosi 12 woltów w trybie prądu stałego, co jest powszechnie stosowane w wielu urządzeniach elektronicznych, takich jak kamery, routery czy systemy alarmowe. Zrozumienie napięcia wyjściowego zasilacza jest kluczowe dla zapewnienia kompatybilności z urządzeniami, które wymagają określonego napięcia do prawidłowego funkcjonowania. Przy projektowaniu układów zasilania istotne jest również przestrzeganie norm bezpieczeństwa, takich jak IEC 60950, które określają, jak powinny być skonstruowane zasilacze i jakie mają mieć zabezpieczenia. W zastosowaniach praktycznych, użycie zasilaczy o odpowiednich parametrach zapewnia nie tylko efektywność energetyczną, ale również długoterminową stabilność i niezawodność systemu.

Pytanie 2

Aby przedstawić na schemacie pneumatycznym urządzenia mechatronicznego osuszacz powietrza, należy użyć

Ilustracja do pytania
A. symbolu graficznego 2.
B. symbolu graficznego 1.
C. symbolu graficznego 3.
D. symbolu graficznego 4.
Wybór symbolu graficznego 1. lub 2. do przedstawienia osuszacza powietrza może wynikać z niepełnej wiedzy na temat standardów symboliki pneumatycznej. Symbol graficzny 1. nie jest zgodny z żadnymi powszechnie uznawanymi normami i może prowadzić do nieporozumień, gdyż nie reprezentuje osuszacza, a inne urządzenie, często mylone z komponentem, który służy do oddzielania zanieczyszczeń. W przypadku symbolu graficznego 2. sytuacja jest podobna – jego nieprawidłowe użycie może sugerować, że mamy do czynienia z innym typem urządzenia, co może wprowadzać w błąd inżynierów i techników w trakcie analizy systemu. W kontekście projektowania systemów pneumatycznych, niezgodność symbolu z normami ISO 1219 i DIN 24300 może prowadzić do poważnych błędów w interpretacji schematów, co w dłuższej perspektywie czasu może skutkować problemami związanymi z eksploatacją i utrzymaniem systemu. Kluczowe jest, aby każdy element był jasno oznaczony zgodnie z przyjętymi standardami, co pozwala na efektywną komunikację między członkami zespołu oraz ułatwia prace serwisowe. Dlatego tak ważne jest zrozumienie i stosowanie właściwych symboli graficznych, aby uniknąć typowych pułapek w myśleniu, które mogą prowadzić do nieefektywności i zwiększonego ryzyka błędów operacyjnych.

Pytanie 3

Jaki symbol literowy, zgodny z normą IEC 61131, wykorzystywany jest w oprogramowaniu sterującym dla PLC do identyfikacji jego fizycznych wejść dyskretnych?

A. Q
B. |
C. R
D. S
Symbol literowy "|" jest kluczowym elementem w standardzie IEC 61131, który definiuje sposób programowania sterowników PLC. W kontekście adresowania fizycznych wejść dyskretnych, ten symbol pełni rolę prefiksu przed numerem wejścia, co umożliwia jednoznaczne wskazanie, które z cyfrowych wejść jest używane w danym programie. Przykładowo, zapis "|X0" odnosi się do pierwszego wejścia dyskretnego, co jest zgodne z najlepszymi praktykami w branży automatyki. Taki system adresowania ułatwia programistom pracę, ponieważ pozwala na łatwe rozpoznanie, które urządzenie jest połączone z danym wejściem. Ponadto, posługiwanie się tym standardem sprzyja lepszej organizacji kodu oraz jego późniejszej konserwacji, co jest szczególnie istotne w długoterminowych projektach automatyzacji. Zrozumienie i umiejętność stosowania tego symbolu jest podstawą efektywnego programowania w kontekście automatyki przemysłowej.

Pytanie 4

Który zawór powinien być uwzględniony w systemie sterowania pneumatycznego, aby przyspieszyć prędkość wsuwu tłoczyska siłownika?

A. Zwrotnego, sterowanego
B. Szybkiego spustu
C. Z podwójnym sygnałem
D. Obiegu przełączającego
Zawór szybkiego spustu to naprawdę ważny element w układach pneumatycznych. Dzięki niemu można błyskawicznie obniżyć ciśnienie w siłowniku, co sprawia, że tłoczysko działa szybciej. To ma ogromne znaczenie w sytuacjach, gdzie wymagana jest szybkość działania. W praktyce, kiedy używa się zaworu szybkiego spustu, poprawia to wydajność procesów produkcyjnych, bo skraca czas cyklu. Na przykład w automatyzacji montażu, gdzie szybkość to podstawa, ten zawór pozwala lepiej reagować na zmieniające się warunki. Standardy branżowe, takie jak ISO 4414, mówią o tym, jak ważny jest dobór odpowiednich komponentów w układach pneumatycznych. Używając zaworu szybkiego spustu, możemy poprawić zarówno wydajność, jak i niezawodność całego systemu. I jeszcze jedno – to rozwiązanie zmniejsza ryzyko osadzania oleju w układzie, co jest istotne dla konserwacji i długości życia komponentów.

Pytanie 5

Jakiego symbolu należy użyć, pisząc program dla sterownika PLC, gdy chcemy odwołać się do 8-bitowej komórki pamięci wewnętrznej klasy M?

A. MB0
B. M0.0
C. MD0
D. MV0
Wybór innych symboli, takich jak M0.0, MD0 czy MV0, wynika z nieporozumienia dotyczącego systemu adresowania pamięci w sterownikach PLC. Oznaczenie M0.0 odnosi się do bitów w komórce pamięci, co czyni je odpowiednim dla odniesienia do pojedynczego bitu, a nie do całej 8-bitowej komórki. Z kolei MD0 odnosi się do pamięci słowo (word memory), która ma 16 bitów i nie jest tożsame z pamięcią 8-bitową, co wpływa na sposób, w jaki dane są przetwarzane. MD0 jest używana w kontekście większych jednostek danych, które wymagają innego podejścia podczas programowania. Symbol MV0 z kolei sugeruje dostęp do pamięci zmiennoprzecinkowej, co również nie jest zgodne z wymaganiami zadania. Nieporozumienie tych symboli może prowadzić do błędów w programowaniu, takich jak niepoprawne odczyty danych, co w systemach automatyki może skutkować awariami lub nieprawidłowym działaniem urządzeń. Kluczowe jest zrozumienie kontekstu zastosowania każdego symbolu oraz znajomość standardów dotyczących adresowania pamięci w PLC. Z tego względu wybór odpowiedniego symbolu jest krytyczny dla zachowania integralności danych i efektywności rozwiązań automatyzacyjnych.

Pytanie 6

Jaką linią należy zaznaczyć na rysunku technicznym miejsce urwania lub przerwania przedmiotu?

A. Grubą kreską.
B. Grubą linią punktową.
C. Cienką z długą kreską oraz kropką.
D. Cienką ciągłą linią zygzakową.
Cienka ciągła zygzakowa linia jest standardem stosowanym w rysunku technicznym do oznaczania urwań i przerwań przedmiotów. W praktyce inżynieryjnej, użycie tej linii pozwala na jasne i jednoznaczne przedstawienie elementów, które nie są w pełni widoczne, co jest kluczowe w dokumentacji technicznej. Zygzakowa linia wskazuje, że dany fragment obiektu nie jest przedstawiony w całości, co może mieć znaczenie podczas produkcji czy montażu. Warto pamiętać, że zgodnie z normami ISO, stosowanie odpowiednich linii ma kluczowe znaczenie w komunikacji wizualnej w inżynierii. Umożliwia to projektantom i inżynierom lepsze zrozumienie zamysłu konstrukcyjnego oraz uniknięcie błędów w realizacji projektu. To zastosowanie podkreśla rolę standardów w procesie projektowania, gdzie nawet drobne szczegóły, jak typ linii, mogą mieć duże znaczenie dla finalnej jakości i funkcjonalności produktu.

Pytanie 7

Podczas szacowania czasu potrzebnego na realizację zadania, na początku uwzględnia się

A. ponadnormatywne przerwy w pracy
B. warunki przydzielania urlopu wypoczynkowego
C. innowacyjność metod pracy
D. normy czasochłonności wykonania zadania
Normy czasochłonności wykonania zadania są kluczowym elementem w procesie szacowania czasu realizacji zadań w projektach. W pierwszej kolejności uwzględnia się te normy, ponieważ zapewniają one obiektywne dane oparte na wcześniejszych doświadczeniach i analizach. Przykładowo, w branży produkcyjnej normy te mogą obejmować czas potrzebny na wykonanie konkretnej operacji, co pozwala na efektywne planowanie produkcji oraz alokację zasobów. W praktyce, korzystanie z norm czasochłonności umożliwia menedżerom projektów dokładniejsze prognozowanie terminów i lepsze zarządzanie ryzykiem. Warto również zaznaczyć, że normy te są zazwyczaj standaryzowane w danej branży, co pozwala na porównywanie wydajności między różnymi projektami i organizacjami, a tym samym na ciągłe doskonalenie procesów. Przykłady dobrych praktyk obejmują stosowanie norm czasochłonności w harmonogramowaniu zadań w metodzie Agile, gdzie szybkie i efektywne szacowanie czasu jest kluczowe dla sukcesu projektu.

Pytanie 8

Jaki krok powinien być wykonany po edytowaniu programu, zanim zostanie on zapisany do PLC?

A. Komparację
B. Kompensację
C. Kompilację
D. Kompresję
Kompilacja jest kluczowym procesem w programowaniu aplikacji dla sterowników PLC, ponieważ przekłada kod źródłowy na format binarny, który jest bezpośrednio wykorzystywany przez urządzenie. W trakcie kompilacji, kod jest analizowany pod kątem błędów składniowych oraz logicznych, a następnie przetwarzany na kod maszynowy. Taki proces zapewnia, że program jest zoptymalizowany i zgodny z architekturą konkretnego sterownika. Przykładowo, w przypadku programowania w języku LAD (Ladder Logic), kompilacja pozwala na przekształcenie graficznego przedstawienia logiki w zrozumiały dla PLC kod binarny, co umożliwia prawidłowe wykonanie procesu automatyzacji w zakładzie produkcyjnym. Zgodnie z najlepszymi praktykami, kompilacja powinna być przeprowadzana po każdej modyfikacji kodu, aby zminimalizować ryzyko wystąpienia błędów w działaniu systemu. Dodatkowo, wiele narzędzi programistycznych oferuje funkcjonalność automatycznej kompilacji, co znacząco ułatwia pracę programisty.

Pytanie 9

W schemacie układu hydraulicznego przyłącze rury zasilającej rozdzielacza oznaczane jest literą

A. T
B. A
C. B
D. P
Odpowiedź P jest naprawdę na miejscu. W schematach układów hydraulicznych ten symbol oznacza przyłącze zasilające rozdzielacz, co jest mega istotne. To w tym punkcie dostarczane jest ciśnienie robocze, które potrzebne jest, żeby cały układ działał jak należy. W praktyce, ogarnianie oznaczeń w takich schematach jest kluczowe dla inżynierów i techników, którzy zajmują się projektowaniem lub serwisowaniem instalacji hydraulicznych. Poza P, warto znać inne symbole, jak B dla odpływu, A i B dla wyjść roboczych czy T dla powrotu oleju do zbiornika. Wiedza o tych oznaczeniach ma ogromne znaczenie przy czytaniu i tworzeniu dokumentacji technicznej. To pomaga w zwiększeniu efektywności i bezpieczeństwa operacji hydraulicznych. Warto też trzymać się standardów, jak ISO 1219, które dotyczą symboliki hydraulicznej, bo to sprawia, że komunikacja między inżynierami jest lepsza, a współpraca w różnych działach łatwiejsza.

Pytanie 10

Na podstawie załączonego fragmentu instrukcji obsługi frezarki wskaż, która z wymienionych czynności konserwacyjnych powinna być najczęściej wykonywana dla maszyny niewyposażonej w opcjonalny układ chłodziwa wrzeciona (TSC).

CzęstośćPrace konserwacyjne wykonywane
Codziennie
  • Sprawdzić poziom chłodziwa podczas każdej ośmiogodzinnej zmiany (zwłaszcza podczas intensywnego użytkowania TSC)
  • Sprawdzić poziom oleju w zbiorniku olejowym prowadnicy
  • Usunąć wióry z osłon prowadnicy i osadnika
  • Usunąć wióry z urządzenia do wymiany narzędzi
  • Oczyścić stożek wrzeciona czystą szmatą i nasmarować lekkim olejem
Co tydzień
  • Sprawdzić filtry układu chłodziwa wrzeciona (TSC). W razie potrzeby oczyścić lub wymienić.
  • Sprawdzić prawidłowość pracy automatycznego spustu na filtrze regulatora.
  • W maszynach z opcją TSC oczyścić osadnik wiórów w zbiorniku płynu chłodzącego. Zdjąć pokrywę zbiornika i usunąć osad ze zbiornika. Odłączyć pompę chłodziwa od szafki i wyłączyć zasilanie maszyny przed rozpoczęciem pracy przy zbiorniku chłodziwa.
    Wykonywać tę czynność COMIESIĘCZNIE dla maszyn bez opcji TSC.
Co miesiąc
  • Sprawdzić poziom oleju w skrzynce przekładniowej. Dla wrzecion o stożku 40: Zdjąć osłonę otworu inspekcyjnego pod głowicą wrzeciona. Dolewać powoli olej od góry, aż zacznie kapać przez rurkę przelewową w nie miski osadnika. Dla wrzecion o stożku 50: Sprawdzić poziom oleju przez wziernik. W razie potrzeby dolać z boku skrzynki przekładniowej.
  • Sprawdzić, czy osłony prowadnicy działają prawidłowo i w razie potrzeby nasmarować je lekkim olejem.
  • Nałożyć gałkę smaru na zewnętrznej krawędzi szyn prowadnicy w urządzeniu do wymiany narzędzi i zmienić kolejno wszystkie narzędzia.
  • Sprawdzić poziom oleju SMTC we wzierniku (patrz „Kontrola poziomu oleju w mocowanym bocznie urządzeniu do wymiany narzędzi" w niniejszym rozdziale).
  • EC-400 Oczyścić podkładki ustalające na osi A i stanowisko ładowania. Wiąże się to z koniecznością zdjęcia palety.
A. Oczyszczenie osadnika wiórów w zbiorniku płynu chłodzącego.
B. Sprawdzenie prawidłowości pracy automatycznego spustu na filtrze regulatora.
C. Sprawdzenie poziomu oleju w skrzynce przekładniowej.
D. Sprawdzenie działania osłon prowadnicy.
Wybór odpowiedzi, która sugeruje inne czynności konserwacyjne, wskazuje na niezrozumienie harmonogramu konserwacji urządzeń mechanicznych. Sprawdzanie poziomu oleju w skrzynce przekładniowej jest istotnym zadaniem, ale zgodnie z instrukcją powinno być przeprowadzane co miesiąc, a nie co tydzień. Ignorowanie częstotliwości tych czynności może prowadzić do sytuacji, w której ważne elementy maszyny nie są odpowiednio monitorowane, co w dłuższej perspektywie może skutkować poważnymi awariami. Sprawdzanie działania osłon prowadnicy również jest ważne, ale jest to zadanie o niższej częstotliwości. Z kolei oczyszczanie osadnika wiórów w zbiorniku płynu chłodzącego dotyczy tylko maszyn wyposażonych w opcjonalny układ chłodziwa wrzeciona i nie ma zastosowania w kontekście maszyny, która go nie posiada. Takie nieprecyzyjne podejście do konserwacji może prowadzić do błędów w zarządzaniu zasobami i nieoptymalnego wykorzystania czasu pracy. Wiedza na temat częstotliwości poszczególnych czynności konserwacyjnych oraz ich znaczenia w kontekście wydajności maszyny jest kluczowa w codziennej pracy operatorów i techników. Dobre praktyki zakładają, że każda czynność powinna być dostosowana do specyfikacji producenta i rzeczywistych warunków pracy maszyny, co zdecydowanie poprawia efektywność operacyjną.

Pytanie 11

W jakim trybie operacyjnym sterownik PLC wykonuje wszystkie etapy cyklu pracy?

A. START
B. TERM
C. RUN
D. STOP
Odpowiedzi takie jak STOP, TERM oraz START wskazują na nieprawidłowe zrozumienie cyklu pracy sterownika PLC. Tryb STOP jest stanem, w którym sterownik nie wykonuje żadnych operacji. W tym trybie program nie jest realizowany, co oznacza, że wszystkie sygnały wejściowe i wyjściowe są zablokowane, a brak realizacji programu może prowadzić do nieprawidłowego funkcjonowania całego systemu. Z punktu widzenia automatyki, stan STOP jest używany do serwisowania lub diagnostyki, ale nie do normalnej pracy. Tryb TERM, choć rzadziej spotykany, zazwyczaj odnosi się do fazy zakończenia działania programu, po której system nie działa, co również nie obejmuje cyklu pracy. Z kolei tryb START sugeruje, że program może być w trakcie uruchamiania, jednak nie oznacza to, że wszystkie fazy cyklu są realizowane. Często pracownicy lub inżynierowie automatyki mogą pomylić te tryby, skupiając się na ich nazwach, zamiast na funkcjonalnych aspektach. W praktyce każdy z tych trybów pełni różne role w kontekście pracy sterownika, ale tylko tryb RUN jest tym, który pozwala na aktywną realizację programu, interakcję z otoczeniem i pełne wykorzystanie możliwości sterownika PLC zgodnie z najlepszymi praktykami w zakresie automatyki przemysłowej. Zrozumienie tego rozróżnienia jest kluczowe dla efektywnej pracy w dziedzinie automatyki.

Pytanie 12

Jakim rodzajem linii oznacza się sygnały sterujące wewnętrzne na schematach pneumatycznych?

A. Ciągłą
B. Dwupunktową
C. Punktową
D. Kreskową
Wybór niektórych linii, jak punktowa, ciągła czy dwupunktowa, na schematach pneumatycznych może prowadzić do wielu nieporozumień. Punktowa linia, na przykład, często stosowana jest do oznaczania elementów pomocniczych lub nieistniejących połączeń, co wprowadza w błąd, gdy myślimy o sygnałach sterujących. Używając punktowych linii, można nieumyślnie zasugerować, że sygnał jest przerywany lub nieaktywny, co jest sprzeczne z funkcją sygnałów sterujących. Ciągła linia z kolei zazwyczaj reprezentuje fizyczne połączenia, takie jak przewody i rury, co również nie pasuje do idei sygnałów wewnętrznych. Z kolei linia dwupunktowa nie jest standardowo uznawana w przepisach dotyczących schematów pneumatycznych, co może prowadzić do dalszych nieporozumień. W skutecznym projektowaniu systemów pneumatycznych kluczowe jest stosowanie ustalonych standardów, aby zapewnić jednoznaczność i zrozumiałość schematów. Stosując nieodpowiednie oznaczenia, można łatwo wprowadzić chaos w dokumentacji technicznej, co z kolei może prowadzić do błędów w instalacji, serwisie lub późniejszej konserwacji urządzeń. W związku z tym, kluczowym jest, aby każdy technik czy inżynier był dobrze zaznajomiony z właściwymi symbolami i ich znaczeniem w kontekście nie tylko teoretycznym, ale przede wszystkim praktycznym, co podkreśla znaczenie edukacji w tej dziedzinie.

Pytanie 13

Zespół odpowiedzialny za obsługę systemu mechtronicznego zauważył nagły spadek efektywności sprężarki tłokowej oraz to, że w czasie jej pracy powietrze wydostaje się z cylindra przez filtr ssawny do atmosfery. Jakie jest prawdopodobne źródło nieprawidłowego działania tego urządzenia?

A. Wytarcie jednego z pierścieni uszczelniających tłok
B. Nieprawidłowy kierunek obrotów silnika
C. Niewłaściwie ustawiony wyłącznik ciśnieniowy
D. Awaria zaworu zwrotnego ssącego
Uszkodzenie zaworu zwrotnego ssącego jest kluczowym czynnikiem wpływającym na wydajność sprężarki tłokowej. Zawór ten odpowiada za prawidłowy kierunek przepływu powietrza do cylindra, a jego uszkodzenie może skutkować wydmuchiwanie powietrza z cylindra zamiast jego zasysania. W praktyce, w przypadku uszkodzenia zaworu, sprężarka nie jest w stanie osiągnąć zadanego ciśnienia, co prowadzi do spadku wydajności. Przykładowo, w przemyśle, gdzie sprężarki tłokowe są wykorzystywane do zasilania narzędzi pneumatycznych, brak odpowiedniego ciśnienia może spowodować opóźnienia w produkcji oraz zwiększenie kosztów operacyjnych. Zgodnie z dobrą praktyką, regularna konserwacja i kontrola stanu zaworów zwrotnych, a także ich wymiana co określony czas, są niezbędne dla zapewnienia długotrwałego i efektywnego działania systemów pneumatycznych. Tego typu podejścia są zgodne z normami bezpieczeństwa i efektywności energetycznej, jakie powinny być przestrzegane w zakładach przemysłowych.

Pytanie 14

Wskaż, jaka czynność powinna zostać zrealizowana przed przystąpieniem do konserwacji instalacji sprężonego powietrza, zaraz po wyłączeniu i odpowietrzeniu sprężarki oraz opróżnieniu zbiorników powietrza?

A. Oczyścić części odpowiednimi środkami chemicznymi
B. Wymienić uszkodzone elementy instalacji oraz wszystkie uszczelki
C. Zakryć części i otwory czystą szmatką lub taśmą klejącą
D. Otworzyć zawory odwadniaczy spustowych i upewnić się o braku ciśnienia w instalacji
Otwieranie zaworów odwadniaczy przed każdymi pracami konserwacyjnymi to mega ważna sprawa. Dzięki temu usuwamy wilgoć, która może się zbierać w zbiornikach i przewodach. A to jest kluczowe, żeby system działał sprawnie i dłużej. Jak woda lub jakieś zanieczyszczenia dostaną się do instalacji, to mogą spowodować korozję, co w efekcie może prowadzić do awarii, a nawet niebezpiecznych sytuacji, jak wybuchy. Musimy też pamiętać, że upewnienie się, że ciśnienie w instalacji jest na zero, to podstawa bezpieczeństwa. Jeśli zaczniemy działać pod ciśnieniem, to naprawdę może być bardzo niebezpiecznie dla osób obsługujących system. Standardy BHP w przemyśle mówią głośno o tym, jak ważne jest przestrzeganie procedur bezpieczeństwa, czyli regularne usuwanie wilgoci i kontrolowanie ciśnienia. Dobrze też wiedzieć, że odpowiednie zarządzanie instalacją sprężonego powietrza poprawia nie tylko bezpieczeństwo, ale też efektywność całego systemu.

Pytanie 15

Które z instrukcji dotyczących obsługi frezarki jest niewłaściwe?

A. Śruby mocujące narzędzia oraz imadła maszynowe i dociski śrubowe należy dociskać ręcznie, unikając używania przedłużek do kluczy
B. W trakcie obróbki materiałów odpryskowych i pylących należy nosić okulary ochronne oraz półmaski przeciwpyłowe
C. Należy zakładać i stabilizować narzędzia w rękawicach roboczych
D. Należy chłodzić obrabiany element podczas obróbki za pomocą mokrych szmat
Chłodzenie obrabianego elementu podczas obróbki przy pomocy specjalnych płynów chłodzących jest kluczowym elementem zapewniającym prawidłowe działanie frezarki. Podczas intensywnej obróbki mechanicznej, temperatura narzędzia oraz obrabianego materiału może osiągnąć bardzo wysokie wartości, co prowadzi do ich uszkodzenia, zniekształceń, a nawet przyspieszonego zużywania się narzędzi. Użycie odpowiednich płynów chłodzących, które mają za zadanie nie tylko obniżenie temperatury, ale także usuwanie wiórów oraz zanieczyszczeń, jest zgodne z najlepszymi praktykami w branży. Warto pamiętać, że chłodzenie mokrymi szmatkami jest niewystarczające, ponieważ nie zapewnia odpowiedniej penetracji w obszary robocze, co może prowadzić do powstawania punktów przegrzewania. Aby uzyskać najlepsze rezultaty, należy stosować płyny chłodzące zgodne z normami ISO, które posiadają odpowiednie właściwości smarne i chłodzące oraz są bezpieczne dla zdrowia operatora.

Pytanie 16

Który z wymienionych programów jest przeznaczony do tworzenia kodów NC dla obrabiarek numerycznych?

A. Solid Edge
B. hwentor
C. IntelliCAD
D. Edgecam
Wybór takich programów jak hwentor, IntelliCAD czy Solid Edge do generowania kodów NC dla obrabiarek numerycznych jest w sumie nietrafiony, bo te programy do czego innego służą. hwentor, to narzędzie, które nie jest zbyt popularne w obróbce skrawaniem i nie nadaje się do generowania kodów NC. IntelliCAD to program do rysunków CAD i nie ma w sobie funkcji CAM, więc nie stworzy ścieżek narzędziowych potrzebnych do obróbki na CNC. Solid Edge to też CAD, głównie do modelowania 3D i symulacji, a jego CAM jest, powiedzmy, dość ograniczone i nie dorasta do pięt takim rozwiązaniom jak Edgecam. Ważne jest, żeby rozumieć różnice między tymi programami a specjalistycznym oprogramowaniem CAM. Ludzie często mylą funkcje CAD i CAM, co prowadzi do bałaganu przy wyborze narzędzi produkcyjnych. CAD służy do projektowania, a CAM do przetwarzania tych projektów w instrukcje dla maszyn. Więc trzeba dobrze dobierać oprogramowanie do swoich potrzeb, to według mnie klucz do sukcesu.

Pytanie 17

Zanieczyszczony element filtra oleju doprowadził do znacznego obniżenia efektywności układu smarowania. Co należy w takim przypadku zrobić?

A. przedmuchać wkład filtra przy użyciu sprężonego powietrza
B. wymienić wkład lub filtr
C. usunąć zanieczyszczenia z wkładu filtra za pomocą szczotki drucianej
D. wyczyścić wkład filtra za pomocą wody destylowanej
Wymiana wkładu lub filtru oleju jest kluczowym krokiem w utrzymaniu prawidłowej wydajności układu smarowania silnika. Zanieczyszczenia gromadzące się w filtrze mogą prowadzić do poważnych problemów, takich jak zatarcie silnika, które może być wynikiem niewłaściwego smarowania. Wymieniając wkład, eliminujemy wszelkie zanieczyszczenia, co przywraca odpowiedni przepływ oleju i zapewnia jego skuteczną dystrybucję do wszystkich elementów silnika. Zgodnie z najlepszymi praktykami branżowymi, filtry oleju powinny być wymieniane zgodnie z harmonogramem ustalonym przez producenta pojazdu lub co określoną ilość przejechanych kilometrów, co zwykle wynosi od 10 000 do 15 000 km. Regularna wymiana oleju i filtrów nie tylko zwiększa wydajność silnika, ale także prolonguje jego żywotność, co jest kluczowe dla ekonomiki eksploatacji pojazdu. Dodatkowo, stosowanie wysokiej jakości filtrów uznawanych przez renomowane marki wpływa na efektywność i zabezpieczenie silnika przed uszkodzeniami.

Pytanie 18

Podczas wymiany uszkodzonego kondensatora, można użyć zamiennika o

A. niższej wartości pojemności
B. wyższej wartości pojemności
C. wyższej wartości napięcia nominalnego
D. niższej wartości napięcia nominalnego
Wybór zamiennika kondensatora o mniejszej wartości napięcia nominalnego jest poważnym błędem, który może prowadzić do katastrofalnych skutków w działaniu układu elektronicznego. Wyższe napięcia mogą szybko zniszczyć kondensator o niższej wartości, co skutkuje nie tylko awarią samego kondensatora, ale także uszkodzeniem innych komponentów w układzie. Użytkownicy często mylą pojęcia związane z napięciem i pojemnością; mogą myśleć, że kondensator o niższej wartości napięcia będzie działał poprawnie, jeśli nie osiągnie on teoretycznie maksymalnego napięcia roboczego, co jest błędne. Oprócz tego, wybór kondensatora o mniejszej wartości pojemności, w odpowiedzi na pytanie, może prowadzić do nieprawidłowego działania obwodu, ponieważ zmienia to jego charakterystykę czasową i pojemnościową. W praktyce, błędne podejście do doboru kondensatorów często wynika z braku zrozumienia podstawowych zasad działania tych elementów. Konsekwencje mogą być poważne, od zwiększonej awaryjności układów aż po całkowitą utratę funkcjonalności. Standardy branżowe, takie jak IEC 61076, jasno określają, jakie wartości powinny być stosowane w różnych aplikacjach, a ich ignorowanie prowadzi do nieprzewidywalnych rezultatów i potencjalnych zagrożeń.

Pytanie 19

Jaki symbol literowy zgodny z normą IEC 61131 jest używany w oprogramowaniu sterującym dla PLC do wskazywania jego fizycznych dyskretnych wejść?

A. Q
B. S
C. I
D. R
Odpowiedź "I" jest poprawna, ponieważ zgodnie z normą IEC 61131, symbol "I" reprezentuje fizyczne wejścia dyskretne w programach sterujących PLC. Norma ta definiuje standardy dla programowalnych kontrolerów logicznych, a użycie odpowiednich symboli jest kluczowe dla zrozumienia i utrzymania systemów automatyki. Przykładowo, w praktyce inżynieryjnej, aby oznaczyć sensory, które generują sygnały cyfrowe, takie jak przyciski czy przełączniki, wykorzystuje się symbol "I". To pozwala na skuteczne adresowanie tych wejść w programie, co ma fundamentalne znaczenie dla poprawnego działania systemu. Używanie standardów IEC 61131 zapewnia spójność w projektowaniu i dokumentacji systemów automatyki, co jest niezbędne do prawidłowej integracji różnych urządzeń i komponentów w złożonych instalacjach przemysłowych. Przykładem może być system automatyzacji w fabryce, gdzie różne sensory są podłączone do PLC, a ich identyfikacja poprzez symbol "I" umożliwia łatwe śledzenie i diagnostykę w przypadku awarii.

Pytanie 20

Jakie urządzenie napędowe ma następujące parametry: średnica tłoka – 42 mm, średnica tłoczyska – 32 mm, skok tłoka – 150 mm, ciśnienie nominalne – 24 MPa, maksymalna prędkość tłoka – 10 m/s, częstotliwość pracy – 10 Hz?

A. Siłownik pneumatyczny
B. Silnik pneumatyczny
C. Silnik hydrauliczny
D. Siłownik hydrauliczny
Siłownik hydrauliczny, który charakteryzuje się parametrami podanymi w pytaniu, jest urządzeniem wykorzystywanym w różnych zastosowaniach przemysłowych, gdzie wymagane są duże siły oraz precyzyjna kontrola ruchu. Średnica tłoka wynosząca 42 mm oraz ciśnienie nominalne na poziomie 24 MPa wskazują na znaczną moc, którą może generować ten siłownik. Skok tłoka wynoszący 150 mm oraz maksymalna prędkość tłoka 10 m/s sugerują, że jest to urządzenie przeznaczone do dynamicznego i efektywnego działania, co jest typowe dla aplikacji w automatyzacji procesów. Siłowniki hydrauliczne są powszechnie stosowane w maszynach budowlanych, systemach podnoszenia oraz w przemysłowych liniach produkcyjnych, gdzie wymagane jest przenoszenie ciężkich ładunków z dużą precyzją. W branży hydraulicznej standardy ISO 4413 oraz ISO 9001 podkreślają znaczenie jakości i bezpieczeństwa w projektowaniu i użytkowaniu takich urządzeń. Dobrze zaprojektowany siłownik hydrauliczny nie tylko zwiększa efektywność operacyjną, ale również zapewnia długotrwałą niezawodność i mniejsze ryzyko awarii.

Pytanie 21

Jakiej z wymienionych funkcji nie może realizować pracownik obsługujący prasę hydrauliczną, która jest sterowana przy pomocy sterownika PLC?

A. Modernizować urządzenia
B. Konfigurować parametrów urządzenia
C. Inicjować programu sterującego
D. Weryfikować stanu osłon urządzenia
Modernizacja sprzętu, jak na przykład pras hydraulicznych z PLC, to złożony proces, który wymaga sporej wiedzy technicznej i odpowiednich uprawnień. Operator maszyny skupia się głównie na jej obsłudze, a nie na wprowadzaniu większych zmian konstrukcyjnych. Wiesz, że według norm bezpieczeństwa, modyfikacje powinny być przeprowadzane przez osoby z odpowiednimi kwalifikacjami? Na przykład, zmiany w parametrach hydraulicznych czy wymiana kluczowych części to rzeczy, które wymagają dokładnych analiz, a do tego operatorzy nie są przeszkoleni. To oni uruchamiają programy sterujące, ustawiają parametry i monitorują stan osłon. Dbają o codzienną eksploatację maszyny, co przekłada się na bezpieczeństwo i efektywność pracy. Dlatego stwierdzenie "Modernizować urządzenia." jest jak najbardziej słuszne, bo w końcu to nie jest zadanie dla każdego.

Pytanie 22

Dwuwejściowa bramka NOR, w której wejścia zostały połączone, jest tożsame z bramką

A. NAND
B. AND
C. NOT
D. OR
Wybór odpowiedzi, która nie jest zgodna z rzeczywistością działania bramki NOR, może wynikać z błędnych założeń dotyczących logiki bramek. Odpowiedzi takie jak OR, AND, i NAND mają własne unikalne właściwości, które różnią się od zachowania bramki NOR. Bramka OR na przykład zwraca wynik prawdziwy, gdy przynajmniej jedno z wejść jest prawdziwe, co jest sprzeczne z definicją bramki NOR. W kontekście bram AND, te działają w odwrotny sposób, zwracając wynik prawdziwy tylko wtedy, gdy wszystkie wejścia są prawdziwe. Odpowiedź NAND, będąca negacją AND, również nie jest równoważna bramce NOR. Kluczowym błędem myślowym jest mylenie negacji z operacjami logicznymi. Aby zrozumieć różnice, warto przyjrzeć się tabelom prawdy dla każdej z bramek, co pozwoli dostrzec, że bramka NOR jest jedyną, która przy połączeniu wejść daje wynik odpowiadający funkcji NOT. W praktyce, takie pomyłki mogą prowadzić do niewłaściwego projektowania układów cyfrowych, co może skutkować błędami logicznymi w systemach. Zrozumienie podstawowych właściwości bramek logicznych i ich zastosowań jest kluczowe w inżynierii elektronicznej i projektowaniu układów cyfrowych.

Pytanie 23

Jedną z metod umożliwiających identyfikację nieprawidłowości w pracy urządzeń oraz instalacji mechatronicznych o dużej mocy jest technologia obrazowania w podczerwieni. Który z wymienionych instrumentów jest stosowany w takich badaniach?

A. Tester kabli
B. Termometr elektroniczny
C. Oscyloskop cyfrowy
D. Kamera termograficzna
Kamera termowizyjna to zaawansowane narzędzie, które wykorzystuje technologię obrazowania w podczerwieni do analizy rozkładu temperatury na powierzchniach obiektów. Dzięki temu możliwe jest wykrywanie nieprawidłowości w działaniu urządzeń mechatronicznych dużej mocy, takich jak silniki, transformatory czy układy chłodzenia. Przykładowo, w przemyśle energetycznym kamery termowizyjne są wykorzystywane do monitorowania stanu transformatorów, co pozwala na wczesne wykrycie przegrzewania się komponentów i tym samym zapobiegnięcie awariom. Technologia ta znajduje zastosowanie również w diagnostyce budynków, gdzie pozwala na identyfikację strat ciepła i nieszczelności. Warto podkreślić, że zgodnie z normami branżowymi, regularne używanie kamer termograficznych powinno być częścią strategii zarządzania utrzymaniem ruchu, co znacząco podnosi efektywność operacyjną oraz bezpieczeństwo systemów mechatronicznych.

Pytanie 24

W procesie automatyzacji produkcji, jaką rolę pełni czujnik indukcyjny?

A. Pomiar temperatury
B. Detekcja obecności metalowych obiektów
C. Monitorowanie wilgotności
D. Kontrola poziomu płynów
Czujnik indukcyjny to niezwykle ważny element w automatyzacji produkcji, szczególnie w branżach, gdzie kluczowe jest wykrywanie obecności metalowych obiektów. Działa na zasadzie zmiany pola elektromagnetycznego w momencie, gdy obiekt metalowy zbliża się do czujnika. Taki mechanizm działania pozwala na skuteczną detekcję metali bez konieczności fizycznego kontaktu z obiektem, co jest nieocenione w aplikacjach, gdzie kontakt może być niebezpieczny lub niewygodny. Przykłady zastosowań obejmują linie montażowe, gdzie czujniki indukcyjne kontrolują obecność metalowych części, czy systemy bezpieczeństwa, gdzie monitorują obecność metalowych elementów w krytycznych punktach systemu. Czujniki te charakteryzują się również dużą trwałością i odpornością na warunki środowiskowe, co czyni je niezastąpionymi w trudnych warunkach przemysłowych. Dzięki swojej precyzji i niezawodności, czujniki indukcyjne są powszechnie stosowane w różnych gałęziach przemysłu, od motoryzacyjnego po spożywczy, zapewniając efektywność i bezpieczeństwo procesów technologicznych.

Pytanie 25

Którą funkcję logiczną realizuje program napisany w języku listy instrukcji?

LD%I0.1
AND%I0.2
STN%Q0.1
A. NAND
B. XOR
C. OR
D. NOR
Program napisany w języku listy instrukcji realizuje funkcję NAND, co oznacza, że najpierw łączy dwa sygnały wejściowe za pomocą bramki AND, a następnie neguje wynik tej operacji. Funkcja NAND jest jedną z podstawowych funkcji logicznych, która jest niezwykle użyteczna w projektowaniu systemów cyfrowych. Przykładem zastosowania funkcji NAND jest implementacja układów pamięci oraz różnych rodzajów flip-flopów, które są kluczowe w architekturze komputerów. W praktyce, zarówno w projektowaniu sprzętu, jak i w programowaniu, znajomość funkcji logicznych, w tym NAND, jest niezbędna do efektywnego tworzenia algorytmów i struktur danych. Użycie NAND umożliwia implementację wszystkich innych funkcji logicznych, co czyni ją uniwersalnym narzędziem w inżynierii cyfrowej. Warto również zauważyć, że w kontekście standardów branżowych, takich jak IEEE, projektanci układów cyfrowych często korzystają z funkcji NAND, aby uprościć skomplikowane logiki, co jest zgodne z najlepszymi praktykami w tej dziedzinie.

Pytanie 26

Jaki program jest wykorzystywany do generowania rysunków trójwymiarowych?

A. PCschematic
B. AutoCAD
C. FluidSim
D. STEP 7
AutoCAD to jeden z najpopularniejszych programów do projektowania, który umożliwia tworzenie zarówno rysunków 2D, jak i 3D. Jego funkcjonalność obejmuje szeroki zakres narzędzi, które wspierają projektantów w tworzeniu skomplikowanych modeli trójwymiarowych. Dzięki możliwości pracy w trzech wymiarach, AutoCAD jest wykorzystywany w wielu branżach, takich jak architektura, inżynieria mechaniczna czy projektowanie wnętrz. Przykładowo, architekci mogą tworzyć realistyczne wizualizacje budynków, co ułatwia prezentację projektów klientom oraz wprowadzenie ewentualnych poprawek na etapie koncepcyjnym. Dodatkowo, AutoCAD wspiera współpracę z innymi programami CAD, co jest zgodne z najlepszymi praktykami w branży projektowej. Umożliwia to integrację z innymi danymi i modelami, co znacznie usprawnia proces projektowania.

Pytanie 27

Czujnik rozpoznaje elementy z tworzywa sztucznego

A. pojemnościowy
B. magnetyczny
C. indukcyjny
D. piezoelektryczny
Czujnik pojemnościowy jest idealnym narzędziem do wykrywania elementów wykonanych z tworzyw sztucznych ze względu na sposób, w jaki działa. Zasada działania czujnika pojemnościowego opiera się na pomiarze zmian pojemności kondensatora, który składa się z dwóch elektrod oddzielonych dielektrykiem. Kiedy tworzywo sztuczne znajduje się między elektrodami, jego obecność wpływa na wartość pojemności, co jest wykrywane przez czujnik. Przykładem zastosowania czujników pojemnościowych są systemy automatyzacji przemysłowej, gdzie monitorują one obecność i poziom różnych materiałów w procesach produkcyjnych. W praktyce, czujniki te są wykorzystywane na przykład w liniach produkcyjnych do detekcji plastikowych pojemników lub elementów, co pozwala na automatyczne sortowanie i kontrolę jakości. Standardy takie jak IEC 60947-5-2 definiują wymagania dotyczące czujników wykrywających różne materiały, co potwierdza ich znaczenie w branży. Warto również zauważyć, że czujniki pojemnościowe są bardziej uniwersalne w porównaniu do innych typów czujników, co czyni je niezastąpionym narzędziem w nowoczesnej automatyce.

Pytanie 28

Zakres działań eksploatacyjnych dla urządzenia mechatronicznego powinien być określony na podstawie

A. protokółu przekazania urządzenia do eksploatacji
B. dokumentacji techniczno-ruchowej urządzenia
C. karty gwarancyjnej
D. dowodu zakupu urządzenia
Wybór odpowiedzi, które wskazują na kartę gwarancyjną, dokument zakupu czy protokół przekazania, jest nieuzasadniony, ponieważ te dokumenty nie zawierają szczegółowych informacji dotyczących eksploatacji urządzenia mechatronicznego. Karta gwarancyjna ma na celu zapewnienie ochrony przed wadami produkcyjnymi, ale nie dostarcza informacji o tym, jak właściwie używać i utrzymywać urządzenie. Z kolei dokument zakupu zazwyczaj zawiera jedynie informacje o cenie i dacie zakupu, co nie ma bezpośredniego wpływu na proces eksploatacji. Protokół przekazania, natomiast, często dotyczy formalności związanych z przyjęciem urządzenia, lecz nie zawiera wskazówek dotyczących jego użytkowania. Użytkownicy często popełniają błąd, zakładając, że te dokumenty są wystarczające do ustalenia zasadności prac eksploatacyjnych, co może prowadzić do niepoprawnej obsługi urządzenia, zwiększając ryzyko awarii oraz obniżając efektywność operacyjną. Niezrozumienie różnic pomiędzy tymi dokumentami a dokumentacją techniczno-ruchową skutkuje nieodpowiednim podejściem do eksploatacji, co w konsekwencji może prowadzić do poważnych problemów technicznych. Właściwa wiedza na temat tego, jakie dokumenty są kluczowe w kontekście eksploatacji, jest niezbędna dla każdego operatora urządzeń mechatronicznych, aby zapewnić ich prawidłowe funkcjonowanie i bezpieczeństwo użytkowania.

Pytanie 29

Jakiej z wymienionych funkcji nie realizuje system SCADA?

A. Zwalczanie i usuwanie wirusów komputerowych
B. Zbieranie danych
C. Prezentacja danych
D. Archiwizacja danych
Oprogramowanie SCADA (Supervisory Control and Data Acquisition) jest kluczowym elementem w zarządzaniu systemami przemysłowymi. Jego podstawowe funkcje obejmują zbieranie danych z różnych czujników i urządzeń, wizualizację tych danych w postaci graficznej, a także archiwizację informacji, co pozwala na późniejszą analizę wydajności i diagnostykę. SCADA umożliwia operatorom monitorowanie procesów w czasie rzeczywistym, co jest istotne dla utrzymania wydajności produkcji oraz bezpieczeństwa operacji. Na przykład, w zakładach chemicznych oprogramowanie SCADA zbiera dane dotyczące temperatury, ciśnienia czy poziomu substancji, które są następnie wizualizowane na panelach operatorskich. Dzięki archiwizacji danych, inżynierowie mogą analizować trendów i podejmować decyzje na podstawie historycznych danych. Standardy takie jak ISA-95 i IEC 61512 definiują ramy dla implementacji systemów SCADA, podkreślając ich rolę w automatyzacji procesów przemysłowych. W związku z tym, zrozumienie, że SCADA nie zajmuje się zwalczaniem wirusów komputerowych, jest kluczowe dla prawidłowego zastosowania tej technologii w praktyce.

Pytanie 30

Który z wymienionych kwalifikatorów działań, wykorzystywanych w metodzie SFC, może być pominięty w opisie bloku akcji, nie wpływając na sposób realizacji przypisanego w nim działania?

A. N
B. D
C. S
D. R
Kwalifikator "N" w metodzie SFC (Sequential Function Chart) oznacza brak kwalifikatora, co oznacza, że nie ma dodatkowego opisu dla danego działania. Jego pominięcie nie wpływa na sposób realizacji bloku akcji, ponieważ nie dodaje on żadnych warunków ani szczegółów, które musiałyby być brane pod uwagę w procesie wykonawczym. W praktyce, stosowanie kwalifikatorów w SFC jest kluczowe dla zapewnienia przejrzystości i zrozumiałości diagramów, jednak w przypadku "N" mamy do czynienia z sytuacją, w której blok akcji działa w taki sam sposób, niezależnie od tego, czy ten kwalifikator jest obecny, czy nie. W branży automatyki przemysłowej, znajomość i umiejętność stosowania kwalifikatorów w SFC jest niezbędna do efektywnego modelowania procesów, co pozwala na łatwiejszą analizę i optymalizację działań. Na przykład, w przypadku zautomatyzowanego procesu pakowania, kwalifikatory mogą pomóc w określeniu, kiedy maszyna powinna przejść do kolejnego etapu, a ich odpowiednie stosowanie zapewnia płynność całej operacji.

Pytanie 31

Jakie typy silników są wykorzystywane w drukarkach atramentowych do ruchu głowicy?

A. Silniki liniowe
B. Silniki krokowe
C. Silniki indukcyjne klatkowe
D. Silniki indukcyjne synchroniczne
Wybór innych typów silników, takich jak indukcyjne synchroniczne, indukcyjne klatkowe czy liniowe, w przypadku drukarek atramentowych prowadzi do istotnych problemów związanych z precyzją i kontrolą ruchu. Silniki indukcyjne synchroniczne, mimo że oferują wysoką wydajność, nie zapewniają odpowiedniej precyzji niezbędnej do dokładnego pozycjonowania głowicy. Ich zastosowanie w drukarstwie mogłoby skutkować niewłaściwym nałożeniem atramentu, co wpłynęłoby negatywnie na jakość wydruku. Z kolei silniki indukcyjne klatkowe, które są bardziej powszechne w zastosowaniach przemysłowych, nie oferują wystarczającej kontroli nad pozycjonowaniem w małych krokach, co jest kluczowe w druku atramentowym. W przypadku silników liniowych, które mogą zapewniać dużą prędkość, również brak precyzyjnej kontroli ruchu sprawia, że nie są one odpowiednie do tego typu aplikacji. Typowe błędy myślowe prowadzące do takich wniosków mogą obejmować przekonanie, że silniki o wyższej mocy zawsze są lepsze, co w kontekście precyzyjnego druku jest błędne. Właściwe zrozumienie wymagań technologicznych druku atramentowego oraz charakterystyki dostępnych silników jest kluczowe do wyboru odpowiedniego rozwiązania, co potwierdzają standardy branżowe i najlepsze praktyki w tej dziedzinie.

Pytanie 32

Jakim napięciem powinien być zasilany cyfrowy mikroprocesorowy regulator DCRK 12 przeznaczony do kompensacji współczynnikamocy w układach napędów elektrycznych, o danych znamionowychzamieszczonych w tabeli?

Ilość stopni regulacji12
Regulacja współczynnika mocy0,8 ind. – 0,8 pojem.
Napięcie zasilania i kontroli Ue380...415V, 50/60Hz
Roboczy zakres działania Ue- 15% ... +10% Ue
Wejście pomiarowe prądu5 A
Typ pomiaru napięcia i prąduRMS
Ilość wyjść przekaźnikowych12
Maksymalny prąd załączenia12 A
A. 400 V DC
B. 400 V AC
C. 230 V DC
D. 230 V AC
Wybór niewłaściwego napięcia zasilania, jak 230 V AC, 230 V DC lub 400 V DC, świadczy o niepełnym zrozumieniu specyfiki zasilania urządzeń przemysłowych. Napięcie 230 V AC to standard stosowany w instalacjach domowych i nie odpowiada wymaganiom regulatorów takich jak DCRK 12, które są zaprojektowane do działania w wyższych zakresach napięcia, typowych dla aplikacji przemysłowych. Zastosowanie napięcia 230 V w tych warunkach mogłoby prowadzić do niewystarczającej mocy do odpowiedniej pracy regulatora, co z kolei skutkowałoby niesatysfakcjonującą kompensacją współczynnika mocy oraz obniżeniem efektywności systemu. Napięcie 400 V DC również nie jest odpowiednie, ponieważ regulator DCRK 12 działa na prądzie przemiennym (AC) i nie może funkcjonować przy prądzie stałym (DC), co prowadziłoby do uszkodzenia urządzenia. Zrozumienie różnicy między zasilaniem AC a DC jest kluczowe w kontekście projektowania i eksploatacji systemów elektrycznych, w przeciwnym razie istnieje ryzyko poważnych uszkodzeń sprzętu oraz strat energetycznych. W branży przemysłowej, gdzie bezpieczeństwo i niezawodność są kluczowe, niezwykle istotne jest, aby stosować się do norm i standardów dotyczących napięcia zasilania, aby zapewnić prawidłowe funkcjonowanie i trwałość urządzeń.

Pytanie 33

Szczelność systemu pneumatycznego weryfikuje się poprzez pomiar

A. spadku ciśnienia w systemie w ustalonym czasie
B. ilości powietrza potrzebnego do utrzymania stałego poziomu ciśnienia
C. zmiany maksymalnej siły wytwarzanej przez siłownik
D. zmiany maksymalnej prędkości siłownika
Szczelność układu pneumatycznego sprawdza się poprzez pomiar spadku ciśnienia w określonym czasie, co jest kluczowym aspektem diagnostyki i konserwacji systemów pneumatycznych. W przypadku, gdy układ jest szczelny, ciśnienie powinno pozostawać na stałym poziomie. Jeżeli jednak ciśnienie zaczyna spadać, oznacza to, że gdzieś w układzie występuje wyciek lub nieszczelność. W praktyce, technicy często wykorzystują manometry oraz różne czujniki ciśnienia do monitorowania tego parametru. Standardy branżowe, takie jak ISO 8573, podkreślają znaczenie dokładnego pomiaru ciśnienia i jego stabilności w zachowaniu właściwych warunków pracy układów pneumatycznych. Dodatkowo, regularne testowanie szczelności jest zalecane w celu minimalizacji strat energii oraz zwiększenia efektywności operacyjnej systemów, co przekłada się na redukcję kosztów eksploatacji. Warto również pamiętać, że nieszczelności mogą prowadzić do uszkodzenia komponentów systemu, co podkreśla znaczenie precyzyjnego i regularnego monitorowania ciśnienia.

Pytanie 34

Konserwacja układu stycznikowo-przekaźnikowego nie obejmuje

A. usuwania kurzu
B. sprawdzania dokręcenia śrub zacisków
C. dokonywania regulacji
D. oceny zużycia styków
Wybór regulacji zamiast konserwacji mógł być spowodowany tym, że łatwo pomylić te dwie kwestie. Konserwacja przecież ma na celu utrzymanie sprzętu w dobrym stanie, a to przez różne czynności, takie jak kontrola śrub czy czyszczenie. Regulacje to zupełnie inna sprawa, bo robi się je przeważnie podczas instalacji lub w razie potrzeby zmiany ustawień układu w zależności od warunków. Często ludzie nie rozróżniają, co jest konserwacją, a co regulacją, co prowadzi do pomyłek. W praktyce, skupienie na regulacjach może nas odciągnąć od naprawdę ważnych działań, jak kontrola stanu komponentów. Na przykład, jeśli nie będziemy dbać o czystość styków, to możemy narazić się na poważne problemy. Warto też zapamiętać, że regulacje wymagają specjalistycznej wiedzy, więc nie są to sprawy podstawowe w konserwacji. Dlatego znajomość właściwych procedur konserwacyjnych i ich znaczenia jest naprawdę ważna, żeby nasze układy stycznikowo-przekaźnikowe działały bez zarzutu przez długi czas.

Pytanie 35

Gdzie można znaleźć informacje na temat wymagań oraz częstotliwości realizacji prac konserwacyjnych dla konkretnego urządzenia mechatronicznego?

A. Na dokumencie gwarancyjnym
B. W kartach danych handlowych
C. W instrukcji obsługi
D. Na tabliczce identyfikacyjnej
Wytyczne dotyczące konserwacji urządzeń mechatronicznych są niezwykle istotne dla ich prawidłowego funkcjonowania. Karty informacji handlowej, tabliczki znamionowe oraz karty gwarancyjne, mimo że zawierają pewne użyteczne informacje, nie są właściwymi źródłami dotyczących zakresu i częstotliwości prac konserwacyjnych. Karty informacji handlowej zazwyczaj skupiają się na danych technicznych, takich jak parametry wydajności czy specyfikacje. Nie dostarczają one jednak szczegółowych instrukcji dotyczących konserwacji, co może prowadzić do pomijania istotnych aspektów utrzymania urządzenia. Tabliczki znamionowe mają na celu identyfikację urządzenia, podając jego model oraz parametry techniczne, ale również nie zawierają informacji na temat wymagań konserwacyjnych. Karty gwarancyjne natomiast koncentrują się przede wszystkim na warunkach gwarancji i odpowiedzialności producenta w przypadku awarii, co również nie obejmuje szczegółowych wskazówek dotyczących konserwacji. Użytkownicy często popełniają błąd, sądząc, że jakiekolwiek dokumenty związane z urządzeniem mogą być wystarczające do określenia zasad konserwacji. W rzeczywistości, ignorowanie właściwych źródeł informacji, takich jak instrukcje obsługi, może prowadzić do niewłaściwej eksploatacji i zwiększonego ryzyka awarii, co w dłuższej perspektywie zwiększa koszty eksploatacji oraz może powodować przestoje w produkcji. Zrozumienie, gdzie szukać odpowiednich informacji, jest kluczowe dla efektywnego zarządzania urządzeniami mechatronicznymi.

Pytanie 36

Projektowana maszyna manipulacyjna posiada kinematykę typu PPP (TTT). Każdy z jej członów ma zakres ruchu wynoszący 1 m. Oznacza to, że efektor manipulacyjny będzie zdolny do realizacji operacji technologicznych w przestrzeni o wymiarach

A. 1 m × 2 m × 1 m
B. 2 m × 1 m × 1 m
C. 1 m × 1 m × 1 m
D. 1 m × 1 m × 2 m
Odpowiedź 2 jest prawidłowa, ponieważ każdy z trzech członów maszyny manipulacyjnej typu PPP (TTT) umożliwia ruch w jednym wymiarze przestrzeni. Zasięg każdego członu wynosi 1 m, co oznacza, że efektor końcowy ma możliwość poruszania się w przestrzeni o wymiarach 1 m w każdym z kierunków. Wynikowy zasięg manipulacyjny to sześcian o boku 1 m, co idealnie odpowiada podanym wymiarom 1 m × 1 m × 1 m. W praktyce, maszyny tego rodzaju są szeroko stosowane w automatyzacji procesów produkcyjnych i montażowych, gdzie precyzyjne manipulowanie obiektami w ograniczonej przestrzeni jest kluczowe. Tego rodzaju manipulatory znajdują zastosowanie w robotyce przemysłowej, np. przy montażu delikatnych komponentów elektronicznych. Istotne jest, aby inżynierowie projektujący takie maszyny brali pod uwagę zasięg ruchu przy planowaniu operacji, co pozwala na efektywniejsze i bardziej precyzyjne działania w zakładach produkcyjnych.

Pytanie 37

Z wykonywanego przez sterownik PLC programu wynika, że pojawienie się stanu wysokiego na wejściu I0.1 (S3) sterownika spowoduje uaktywnienie wyjścia Q0.1 (H2) z opóźnieniem czasowym równym

Ilustracja do pytania
A. 5 sekund.
B. 1 sekunda.
C. 3 sekundy.
D. 2 sekundy.
Wybierając inne czasy opóźnienia, można popaść w pułapki związane z błędnym rozumieniem działania bloków czasowych w programie sterownika PLC. Na przykład, odpowiedź wskazująca na 1 sekundę wynika z nieprawidłowego odczytu schematu, gdzie czas opóźnienia został zrozumiany jako krótszy, niż rzeczywisty. Z kolei 3 sekundy i 5 sekund mogą być mylnie interpretowane jako czasy potrzebne do aktywacji wyjścia Q0.1, kiedy w rzeczywistości, tylko blok T2 z ustawionym czasem 2 sekundy efektywnie wpływa na to wyjście. Często błędy w analizie wynikają z braku ścisłego odniesienia do diagramów blokowych oraz z niewłaściwego zrozumienia, jakie funkcje pełnią poszczególne elementy programu. Warto pamiętać, że w kontekście programowania PLC, opóźnienia czasowe są kluczowe dla synchronizacji działań w systemach automatyki. Niezrozumienie tych zależności może prowadzić do poważnych problemów w działaniu zautomatyzowanych systemów, co podkreśla znaczenie dokładnej analizy schematów oraz umiejętności przekształcania wymagań funkcjonalnych w odpowiednią logikę programową.

Pytanie 38

Jakiego czujnika powinno się użyć w systemie pomiarowym do określenia naprężeń mechanicznych?

A. Rotametr
B. Wiskozymetr
C. Tensometr
D. Pirometr
Tensometr jest kluczowym elementem w układzie pomiarowym służącym do monitorowania naprężeń mechanicznych. Jego działanie opiera się na efekcie piezorezystywnym, który polega na zmianie rezystancji elektrycznej w odpowiedzi na odkształcenie materiału. Dzięki temu, tensometry są szeroko stosowane w inżynierii mechanicznej, budownictwie oraz w badaniach materiałowych. Na przykład, w konstrukcjach mostów czy budynków, tensometry mogą być umieszczane w strategicznych miejscach, aby na bieżąco monitorować naprężenia i zapobiegać ewentualnym uszkodzeniom. Zastosowanie tensometrów w praktyce wymaga przemyślanej kalibracji oraz umiejętności interpretacji danych pomiarowych. Warto również zauważyć, że zgodnie z normami PN-EN ISO 7500-1 i PN-EN 10002-1, właściwe pomiary naprężeń są niezbędne do oceny jakości materiałów oraz bezpieczeństwa konstrukcji.

Pytanie 39

Jakie działania regulacyjne powinny zostać przeprowadzone w napędzie mechatronicznym opartym na przemienniku częstotliwości oraz silniku indukcyjnym, aby zwiększyć prędkość obrotową wirnika bez zmiany wartości poślizgu?

A. Proporcjonalnie zmniejszyć wartość częstotliwości oraz napięcia zasilającego
B. Proporcjonalnie zwiększyć wartość częstotliwości oraz napięcia zasilającego
C. Obniżyć wartość częstotliwości napięcia zasilającego
D. Zwiększyć wartość napięcia zasilającego
Zwiększenie proporcjonalnie wartości częstotliwości i napięcia zasilającego jest kluczowe dla poprawnej regulacji prędkości wirowania wirnika silnika indukcyjnego. Prędkość synchroniczna, a więc i prędkość wirowania, jest bezpośrednio związana z częstotliwością zasilania, co oznacza, że zwiększenie częstotliwości prowadzi do wzrostu prędkości obrotowej. Jednocześnie, aby nie zmieniać wartości poślizgu, co jest istotnym parametrem w pracy silnika, należy równocześnie zwiększyć napięcie zasilające. W przeciwnym razie, przy wyższej częstotliwości, reaktancja indukcyjna silnika wzrasta, co może prowadzić do spadku prądu w uzwojeniu i tym samym zmniejszenia momentu obrotowego. Proporcjonalne zwiększenie napięcia zasilającego pozwala na kompensację tych zmian, co jest zgodne z najlepszymi praktykami w inżynierii mechatronicznej. Na przykład, w zastosowaniach przemysłowych, takich jak przekładnie w maszynach CNC, odpowiednia regulacja tych parametrów jest kluczowa dla zapewnienia stabilności i efektywności pracy systemu.

Pytanie 40

W systemie hydraulicznym maksymalne ciśnienie robocze płynu wynosi 20 MPa. Jaki powinien być minimalny zakres pomiarowy manometru zamontowanego w tym systemie?

A. 0÷25 barów
B. 0÷10 barów
C. 0÷160 barów
D. 0÷250 barów
Wybór zakresu pomiarowego 0÷250 barów dla manometru zainstalowanego w układzie hydraulicznym, w którym maksymalne ciśnienie robocze wynosi 20 MPa, jest poprawny z kilku powodów. Po pierwsze, manometr powinien mieć zakres pomiarowy wyższy niż maksymalne ciśnienie, aby zapewnić dokładność i bezpieczeństwo pomiaru. Wybierając manometr o zakresie 0÷250 barów, uzyskujemy rezerwę bezpieczeństwa wynoszącą 5 MPa, co jest zgodne z praktykami branżowymi, gdzie standardem jest posiadanie co najmniej 25% zapasu nad maksymalne ciśnienie robocze. Takie podejście minimalizuje ryzyko przekroczenia zakresu pomiarowego i potencjalnych uszkodzeń urządzenia. Przykładowo, w przemyśle budowlanym i motoryzacyjnym, gdzie ciśnienia robocze mogą się szybko zmieniać, dobór odpowiedniego manometru jest kluczowy dla bezpieczeństwa i efektywności procesów. Ponadto, manometry z wyższymi zakresami pomiarowymi są bardziej odporne na uszkodzenia mechaniczne oraz lepiej radzą sobie z wysokimi impulsami ciśnienia, co jest istotne w dynamicznych układach hydraulicznych.