Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 16:31
  • Data zakończenia: 7 grudnia 2025 16:54

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na ilustracji przedstawiono schemat do pomiaru rezystancji

Ilustracja do pytania
A. pętli zwarciowej.
B. izolacji pomiędzy zaciskami uzwojeń a korpusem silnika.
C. uzwojenia fazowego.
D. izolacji pomiędzy zaciskami uzwojeń silnika.
Poprawna odpowiedź odnosi się do pomiaru rezystancji izolacji pomiędzy zaciskami uzwojeń silnika, co jest kluczowym elementem zapewnienia bezpieczeństwa i funkcjonalności urządzeń elektrycznych. Schemat przedstawia połączenie miernika, co wskazuje na jego użycie do oceny stanu izolacji. W praktyce, regularne pomiary izolacji są niezbędne w procesach konserwacyjnych oraz w diagnostyce awarii silników elektrycznych. Zgodnie z normą IEC 60364, należy dążyć do utrzymania odpowiednich wartości rezystancji izolacji, które powinny być znacznie wyższe niż 1 MΩ, aby zapewnić bezpieczeństwo użytkowania oraz minimalizować ryzyko porażenia prądem. W przypadku stwierdzenia niskiej rezystancji, co może wskazywać na uszkodzenie izolacji, konieczne jest natychmiastowe podjęcie działań naprawczych, aby zapobiec dalszym problemom. Dobre praktyki inżynieryjne zalecają również dokumentowanie wyników pomiarów, co może być pomocne w opracowywaniu programów konserwacyjnych oraz w audytach bezpieczeństwa.

Pytanie 2

Który z przedstawionych na rysunkach elementów osprzętu należy zastosować do ułożenia dwóch przewodów DY 1,5 mm2 pod tynkiem w pomieszczeniu mieszkalnym?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Odpowiedź A jest spoko, bo jak chcesz ułożyć dwa przewody DY 1,5 mm² pod tynkiem w mieszkaniu, to musisz użyć rurki falistej o odpowiedniej średnicy. W tym przypadku rurka o średnicy 18 mm, którą masz w opcji A, jest zgodna z zasadami bezpieczeństwa i normami, które mówią, jak trzeba układać przewody elektryczne. Te przewody muszą być chronione przed uszkodzeniami, a rurki faliste świetnie się w tym sprawdzają. Z doświadczenia wiem, że takie rozwiązanie daje też większą elastyczność przy zmianach w instalacji. Zgodnie z normą PN-IEC 60364, ważne jest, żeby zapewnić wentylację i unikać przegrzewania przewodów. Dlatego rurki faliste są fajne, bo poprawiają trwałość całej instalacji. Dobrze dobrana średnica rurki jest kluczowa, żeby nie było zwarć ani innych problemów z prądem.

Pytanie 3

Jaki łącznik oznacza się na schematach przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Szeregowy.
B. Grupowy.
C. Dwubiegunowy.
D. Jednobiegunowy.
Wybrana odpowiedź to łącznik dwubiegunowy, co jest poprawne. Na schematach elektrycznych symbol ten towarzyszy elementom, które umożliwiają przewodzenie prądu w dwóch obiegach. Dwie kreski wychodzące z okręgu wskazują, że łącznik ten ma zdolność do kontrolowania przepływu energii elektrycznej w obydwu kierunkach. W praktyce, łączniki dwubiegunowe są wykorzystywane w instalacjach elektrycznych, gdzie ważne jest zarządzanie obciążeniem, na przykład w domowych systemach oświetleniowych, które wymagają wyłączenia lub włączenia obwodu z różnych miejsc. Stosowanie takich łączników pozwala na lepsze zarządzanie energią, a także zwiększa bezpieczeństwo instalacji, minimalizując ryzyko zwarć w obwodach. W standardach, takich jak PN-IEC 60669-1, określono zasady dotyczące stosowania łączników dwubiegunowych, co podkreśla ich znaczenie w nowoczesnych instalacjach elektrycznych.

Pytanie 4

Zdjęcie przedstawia

Ilustracja do pytania
A. wyłącznik krzyżowy.
B. łącznik żaluzjowy.
C. wyłącznik schodowy.
D. łącznik wielofunkcyjny.
Właściwa odpowiedź to łącznik żaluzjowy, ponieważ na zdjęciu widoczny jest element sterujący z dwoma przyciskami, które są oznaczone symbolami wskazującymi na ruch żaluzji w górę i w dół. Łącznik żaluzjowy jest stosowany w celu precyzyjnego sterowania pozycją żaluzji, co jest niezwykle przydatne w przypadku regulacji natężenia światła wpadającego do wnętrza pomieszczeń. W praktyce, umożliwia on komfortowe dostosowywanie osłony okiennej do zmieniających się warunków oświetleniowych, co przyczynia się do oszczędności energii oraz zwiększenia wygody użytkowników. Standardowe oznaczenia na łącznikach żaluzjowych są zgodne z normami branżowymi, co pozwala na ich łatwe rozpoznawanie. Przykładem zastosowania łącznika żaluzjowego może być instalacja w biurach, gdzie użytkownicy chcą mieć kontrolę nad ilością światła oraz prywatnością, a także w domach jednorodzinnych, gdzie można zautomatyzować proces otwierania i zamykania żaluzji.

Pytanie 5

Narzędzie z rysunku służy do

Ilustracja do pytania
A. zaciskania końcówek tulejkowych.
B. ściągania izolacji.
C. tworzenia oczek na przewodzie.
D. profilowania przewodów.
Narzędzie przedstawione na zdjęciu to ściągacz izolacji, który jest niezbędnym przyrządem w dziedzinie prac elektrycznych. Jego głównym zadaniem jest usuwanie izolacji z przewodów bez uszkodzenia samego przewodu, co jest kluczowe dla zapewnienia właściwego połączenia elektrycznego. Dzięki regulowanej średnicy szczęk, ściągacz izolacji może być używany do różnych grubości przewodów, co zwiększa jego uniwersalność. W praktyce, stosowanie tego narzędzia pozwala na szybkie i precyzyjne przygotowanie przewodów do dalszej obróbki, na przykład przed lutowaniem lub zaciskaniem końcówek. W branży elektrycznej, standardy dotyczące bezpieczeństwa i jakości często wymagają, aby przewody były odpowiednio przygotowane, co czyni to narzędzie niezastąpionym. Ponadto, stosowanie ściągacza pozwala na zachowanie integralności przewodu, co ma kluczowe znaczenie dla przewodności elektrycznej i bezpieczeństwa instalacji.

Pytanie 6

Narzędzie przedstawione na ilustracji przeznaczone jest

Ilustracja do pytania
A. do zaciskania końcówek tulejkowych.
B. do docinania przewodów.
C. do zaciskania końcówek oczkowych.
D. do ściągania izolacji z żył przewodów.
Odpowiedź jest prawidłowa, ponieważ narzędzie przedstawione na ilustracji to szczypce do ściągania izolacji, które są specjalistycznym narzędziem używanym w elektryce do precyzyjnego usuwania izolacji z przewodów elektrycznych. Dzięki charakterystycznemu kształtowi ostrzy oraz zastosowanemu mechanizmowi regulacji, te szczypce umożliwiają bezpieczne usuwanie izolacji bez ryzyka uszkodzenia samej żyły przewodowej. W praktyce, umiejętność prawidłowego użycia tego narzędzia jest kluczowa w instalacjach elektrycznych, gdzie niezbędne jest zachowanie integralności przewodów. Standardy branżowe, takie jak IEC 60079 lub ANSI/NFPA 70E, podkreślają znaczenie stosowania odpowiednich narzędzi do zapewnienia bezpieczeństwa i efektywności pracy. W związku z tym, znajomość i umiejętność korzystania z narzędzi do ściągania izolacji przyczynia się do jakości i bezpieczeństwa wykonania instalacji elektrycznych.

Pytanie 7

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na rysunku?

Ilustracja do pytania
A. ZL-PE
B. ZL-N
C. ZL-PE RCD
D. ZL-L
Wybór innych opcji pomiarowych, takich jak ZL-PE, ZL-N, czy ZL-L, nie uwzględnia specyfiki działania urządzeń różnicowoprądowych, które są kluczowe w modernych instalacjach elektrycznych. Opcja ZL-PE, choć zawiera przewód ochronny, nie uwzględnia działania RCD, co jest istotne dla skuteczności ochrony przeciwporażeniowej. Pomiar ZL-N również jest niewłaściwy, ponieważ nie bierze pod uwagę ochrony, którą zapewnia przewód PE. W przypadku zadań związanych z analizą bezpieczeństwa instalacji, nie można ignorować wpływu urządzeń RCD, które wykrywają różnice w prądzie między przewodami fazowymi a ochronnymi, co jest kluczowe w sytuacjach awaryjnych. Odpowiedź ZL-L dotyczy pomiarów między przewodami fazowymi, co nie tylko mija się z celem w kontekście analizy impedancji pętli zwarcia, ale również pomija ważne aspekty ochrony. Te błędy myślowe mogą prowadzić do poważnych konsekwencji bezpieczeństwa, gdyż pomijają istotne elementy ochronne w instalacjach elektrycznych. Właściwe zrozumienie koncepcji pomiaru ZL-PE RCD jest kluczowe dla zapewnienia najwyższych standardów bezpieczeństwa w instalacjach elektroenergetycznych.

Pytanie 8

Z jakiego rodzaju metalu oraz w jakiej formie produkowane są żyły przewodu YDYp 4×1,5 mm2?

A. Z aluminium w formie linki
B. Z miedzi w formie linki
C. Z aluminium w formie drutu
D. Z miedzi w formie drutu
Żyły w przewodzie YDYp 4×1,5 mm² są z miedzi, co jest standardem w branży elektrycznej. Miedź jest super, bo dobrze przewodzi prąd, dlatego właśnie się ją najczęściej wybiera do instalacji elektrycznych. W przypadku YDYp, jego druciana konstrukcja daje sporo elastyczności, co ułatwia robienie instalacji, zwłaszcza tam, gdzie jest ciasno. Te przewody można spotkać w budownictwie, szczególnie przy instalacjach oświetleniowych i systemach zasilających. Zgodnie z normą PN-EN 60228, miedziane przewody mają dokładnie określone parametry, co zapewnia bezpieczeństwo i efektywność. Na przykład, YDYp 4×1,5 mm² świetnie sprawdza się w oświetleniu w domach, gdzie trzeba mieć na uwadze zabezpieczenia przed przeciążeniem i zwarciem.

Pytanie 9

Jakie są minimalne wartości napięć znamionowych, jakie powinien posiadać przewód użyty do instalacji jednofazowej w sieci 230/400 V, prowadzonej w otworach prefabrykowanych budynków?

A. 600/1000 V
B. 300/300 V
C. 300/500 V
D. 450/750 V
Odpowiedź 450/750 V jest na pewno dobra. Przewody w instalacjach jednofazowych przy 230/400 V muszą mieć odpowiednie napięcie, żeby wszystko działało bezpiecznie. Jak chodzi o przewody w budynkach, zwłaszcza te, co prowadzą przez gotowe elementy budowlane, ważne, żeby ich izolacja była przystosowana do wyższych napięć. To zmniejsza szanse na jakieś uszkodzenia. Przewody 450/750 V są zgodne z normą PN-EN 60228, która określa wymagania dla takich przewodów. Użycie przewodów o wyższym napięciu daje większą ochronę przed przebiciami i innymi problemami elektrycznymi. W praktyce są one często wykorzystywane zarówno w budownictwie mieszkalnym, jak i przemysłowym, więc można powiedzieć, że to dość uniwersalne i bezpieczne rozwiązanie.

Pytanie 10

Na izolatorach wsporczych instaluje się przewody

A. kabelkowe
B. szynowe
C. uzbrojone
D. rdzeniowe
Przewody rdzeniowe zazwyczaj odnoszą się do kabli, które mają jeden lub więcej rdzeni przewodzących, jednak nie są stosowane w kontekście izolatorów wsporczych. Ich głównym zastosowaniem są instalacje, gdzie wymagana jest większa elastyczność i mniejsze obciążenia mechaniczne, co nie jest typowe dla izolatorów wsporczych. Przewody uzbrojone z kolei są to przewody, które mają dodatkowe wzmocnienia mechaniczne, często stosowane w trudniejszych warunkach, ale również nie znajdują zastosowania w izolatorach wsporczych, które wymagają specyficznych rozwiązań. Wreszcie, przewody kabelkowe, które są wykorzystywane w instalacjach kablowych, posiadają różne osłony i są wbudowane w ziemię lub inne struktury, co również nie jest odpowiednie dla izolatorów wsporczych, które zasadniczo podtrzymują przewody w przestrzeni powietrznej. Błędem jest zatem mylenie terminologii i funkcji różnych typów przewodów, co może prowadzić do nieefektywnego projektowania oraz stosowania niewłaściwych elementów w systemach elektroenergetycznych. Właściwe zastosowanie technologii jest kluczowe dla zapewnienia nieprzerwanej i bezpiecznej dostawy energii elektrycznej.

Pytanie 11

Na której ilustracji przedstawiono przewód przeznaczony do wykonania trójfazowego przyłącza ziemnego do budynku jednorodzinnego w sieci TN-S?

Ilustracja do pytania
A. Na ilustracji 4.
B. Na ilustracji 2.
C. Na ilustracji 1.
D. Na ilustracji 3.
Ilustracja 4 przedstawia przewód czterordzeniowy, co jest zgodne z wymaganiami dotyczącymi trójfazowego przyłącza ziemnego w systemie TN-S. W tym systemie mamy do czynienia z trzema przewodami fazowymi (L1, L2, L3), jednym przewodem neutralnym (N) oraz oddzielnym przewodem ochronnym (PE). Taki układ zapewnia odpowiednią separację przewodów, co jest niezbędne dla bezpieczeństwa i efektywności instalacji elektrycznej. Przewody czterordzeniowe są powszechnie stosowane w budynkach jednorodzinnych z przyłączami trójfazowymi, ponieważ pozwalają na równomierne obciążenie faz oraz minimalizują ryzyko przeciążenia. Zgodnie z normami europejskimi, instalacje elektryczne powinny być projektowane zgodnie z zasadami bezpieczeństwa, a wybór odpowiednich przewodów jest kluczowy. Przewód czterordzeniowy na ilustracji 4 jest idealnym rozwiązaniem, ponieważ zapewnia zarówno zasilanie dla urządzeń trójfazowych, jak i ochronę przed porażeniem elektrycznym, co jest zgodne z normą PN-EN 60204-1. W praktyce, użycie takiego przewodu umożliwia również elastyczność w rozbudowie instalacji o dodatkowe urządzenia lub obwody, co jest istotnym aspektem w nowoczesnym budownictwie.

Pytanie 12

Jakie zmiany w parametrach obwodu elektrycznego wiążą się z zamianą przewodu typu ADYt 3×2,5 na przewód typu YDYt 3×2,5?

A. Obniżenie wartości prądu dopuszczalnego długotrwale oraz obniżenie rezystancji izolacji
B. Zwiększenie wartości prądu dopuszczalnego długotrwale oraz wzrost rezystancji izolacji
C. Obniżenie wartości prądu dopuszczalnego długotrwale oraz wzrost rezystancji izolacji
D. Zwiększenie wartości prądu dopuszczalnego długotrwale oraz obniżenie rezystancji izolacji
Wprowadzenie przewodu YDYt 3×2,5 zamiast ADYt 3×2,5 wiąże się z koniecznością zrozumienia różnic w ich konstrukcji i zastosowaniu. Przewody ADYt, będące przewodami aluminiowymi, mają ograniczone właściwości mechaniczne i elektryczne w porównaniu do ich miedziowych odpowiedników. Zmniejszenie wartości prądu dopuszczalnego długotrwale, jak sugerują niektóre odpowiedzi, jest wynikiem mylnego pojmowania właściwości materiałów. Przewody YDYt, wykonane z miedzi, mają znacznie lepsze przewodnictwo elektryczne, co oznacza, że mogą przewodzić większe prądy bez ryzyka przegrzania. Wartości rezystancji izolacji są także kluczowe przy ocenie jakości przewodu; błędne założenie, że wymiana na przewód YDYt zmniejsza tę rezystancję, jest niezgodne z rzeczywistością. Wyższa rezystancja izolacji w przewodach YDYt przyczynia się do ich większej niezawodności i odporności na czynniki atmosferyczne. Ponadto, w praktyce stosowanie przewodów miedziowych w miejscach o dużym obciążeniu prądowym jest normą, a ich zastosowanie w instalacjach elektrycznych zgodnych z normami IEC oraz PN zwiększa bezpieczeństwo i efektywność energetyczną. Zatem, przy wyborze przewodów elektrycznych, kluczowe jest zrozumienie ich specyfikacji oraz warunków, w jakich będą eksploatowane, aby uniknąć nieporozumień związanych z ich parametrami.

Pytanie 13

Którym symbolem oznacza się, przedstawiony na rysunku, przewód do wykonania instalacji oświetleniowej wtynkowej?

Ilustracja do pytania
A. YDYp
B. YDYtżo
C. OMYp
D. SMYp
Odpowiedź "YDYtżo" jest poprawna, ponieważ symbol ten wskazuje na przewód, który jest przeznaczony do instalacji wtynkowej. W szczególności, litera "t" w symbolu oznacza, że przewód jest przystosowany do montażu w ścianach, co jest kluczowe w kontekście instalacji oświetleniowych wtynkowych. Dodatkowo, końcówka "żo" oznacza, że przewód jest wyposażony w żyłę ochronną, co jest istotne z punktu widzenia bezpieczeństwa użytkowników oraz zgodności z normami dotyczącymi instalacji elektrycznych. W praktyce, wykorzystanie przewodów oznaczonych tym symbolem w instalacjach oświetleniowych wtynkowych zapewnia odpowiednią ochronę przed porażeniem prądem oraz zabezpieczenie przed uszkodzeniami mechanicznymi, co jest zgodne z normą PN-IEC 60364. W kontekście projektowania systemów oświetleniowych warto zwrócić uwagę na odpowiedni dobór przewodów oraz ich oznaczenie, co ma kluczowe znaczenie dla bezpieczeństwa i funkcjonalności instalacji.

Pytanie 14

Jakie zakresy powinien mieć multimetr woltomierza, wykorzystywanego do konserwacji systemu sterującego bramą garażową, jeśli brama jest napędzana silnikami prądu stałego, zasilanymi napięciem 24 V, a system sterujący otrzymuje zasilanie z sieci 230 V?

A. AC 500 V i DC 50 V
B. DC 500 V i AC 50 V
C. DC 500 V i AC 100 V
D. AC 500 V i DC 10 V
Wybór zakresów AC 500 V i DC 50 V dla multimetru używanego do prac konserwacyjnych w systemie sterowania bramą garażową jest uzasadniony ze względu na specyfikę zasilania urządzeń. Zasilanie silników prądu stałego o napięciu 24 V wymaga, by woltomierz mierzył napięcia stałe w zakresie do 50 V, co jest wystarczające dla takich zastosowań. Z kolei, zasilanie układu sterowania z sieci 230 V wymaga pomiaru napięcia zmiennego, dlatego górny zakres 500 V w AC jest konieczny dla zapewnienia bezpieczeństwa i dokładności pomiarów. W praktyce, tego typu pomiar może być użyty do diagnozowania i konserwacji obwodów sterujących, co jest kluczowe w zapewnieniu ich prawidłowej pracy. Używając multimetru o odpowiednich zakresach, technicy mogą swobodnie sprawdzać zarówno napięcia niskie, jak i wysokie bez ryzyka uszkodzenia urządzenia, co jest zgodne z zasadami dobrych praktyk branżowych oraz normami bezpieczeństwa.

Pytanie 15

W oprawie oświetleniowej pokazanej na zdjęciu została zamontowana żarówka

Ilustracja do pytania
A. żarowa.
B. halogenowa.
C. sodowa.
D. rtęciowa.
Żarówka halogenowa, którą rozpoznajemy na zdjęciu, charakteryzuje się specyficzną budową i właściwościami, które czynią ją popularnym wyborem w oświetleniu. Jej mała bańka zawiera gaz halogenowy, który zwiększa efektywność energetyczną źródła światła oraz wydłuża jego żywotność w porównaniu do tradycyjnych żarówek żarowych. Warto zauważyć, że halogeny emitują światło o wysokiej jakości, co sprawia, że są często stosowane w zastosowaniach wymagających precyzyjnego oświetlenia, takich jak oświetlenie wystawowe czy architektoniczne. Ponadto, ich zdolność do renderowania kolorów oraz natychmiastowego osiągania pełnej jasności sprawia, że są idealnym rozwiązaniem dla pomieszczeń, które potrzebują szybkiej zmiany oświetlenia. W branży oświetleniowej halogeny rekomendowane są zgodnie z normami EN 60598, które definiują bezpieczne użytkowanie i właściwe zastosowanie tych źródeł światła.

Pytanie 16

Silnika klatkowego, którego fragment tabliczki znamionowej przedstawiono na ilustracji, nie należy zasilać napięciem międzyfazowym o wysokości

Ilustracja do pytania
A. 230 V, gdy jego uzwojenia skojarzy się w trójkąt.
B. 230 V, gdy jego uzwojenia skojarzy się w gwiazdę.
C. 400 V, gdy jego uzwojenia skojarzy się w trójkąt.
D. 400 V, gdy jego uzwojenia skojarzy się w gwiazdę.
Odpowiedź 400 V, gdy jego uzwojenia skojarzy się w trójkąt jest poprawna, ponieważ w przypadku silników klatkowych, tabliczka znamionowa dostarcza istotnych informacji na temat dopuszczalnych warunków zasilania. W sytuacji, gdy uzwojenia są połączone w trójkąt (Δ), zasilanie napięciem 400 V może prowadzić do uszkodzenia silnika, gdyż jest to napięcie przeznaczone do połączenia w gwiazdę (Y). Warto zauważyć, że przy połączeniu w gwiazdę, napięcie zasilające wynosi 400 V, natomiast przy połączeniu w trójkąt napięcie to wynosi 230 V, co oznacza, że silnik musi być zasilany odpowiednim napięciem, aby pracować bezawaryjnie. Przestrzeganie tych zasad jest kluczowe, aby uniknąć przegrzania uzwojeń oraz innych poważnych uszkodzeń, które mogą prowadzić do znacznych kosztów napraw oraz przestojów w pracy maszyn. Dlatego ważne jest, aby technicy i inżynierowie dobrze rozumieli różnice w połączeniach uzwojeń i ich wpływ na parametry pracy silników.

Pytanie 17

Przed włożeniem uzwojenia do żłobków silnika indukcyjnego należy

A. pokryć je olejem elektroizolacyjnym
B. wyłożyć je izolacją żłobkową
C. wstawić w nie kliny ochronne
D. pokryć je lakierem elektroizolacyjnym
Wyłożenie uzwojenia w żłobkach silnika indukcyjnego izolacją żłobkową jest kluczowym krokiem w zapewnieniu prawidłowej funkcjonalności oraz bezpieczeństwa urządzenia. Izolacja żłobkowa chroni uzwojenie przed wilgocią, zanieczyszczeniami oraz mechanicznymi uszkodzeniami, co ma szczególne znaczenie w przypadku silników pracujących w trudnych warunkach. Dobrze dobrana izolacja skutecznie zapobiega także przebiciom elektrycznym, co może prowadzić do awarii lub uszkodzenia elementów silnika. W praktyce, zastosowanie izolacji żłobkowej zgodnie z normami, takimi jak IEC 60034, zapewnia długotrwałą i niezawodną pracę silnika. Dodatkowo, dobór odpowiednich materiałów izolacyjnych, takich jak żywice epoksydowe czy włókna szklane, wpływa na parametry termiczne i elektryczne silnika, co przyczynia się do optymalizacji jego wydajności oraz efektywności energetycznej.

Pytanie 18

Do której czynności należy użyć narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Zaciskania końcówek tulejkowych.
B. Zaciskania końcówek oczkowych.
C. Docinania przewodu.
D. Ściągania izolacji z przewodu.
Narzędzie przedstawione na zdjęciu to szczypce do ściągania izolacji, które są kluczowe w procesie przygotowywania przewodów elektrycznych do dalszego wykorzystania. Ich głównym przeznaczeniem jest usunięcie izolacyjnej warstwy zewnętrznej z przewodów, co umożliwia ich prawidłowe podłączenie do gniazd, wtyczek lub innych elementów instalacji elektrycznej. Użycie tych szczypiec zapewnia dokładność oraz minimalizuje ryzyko uszkodzenia samego przewodu, co jest szczególnie ważne w kontekście standardów bezpieczeństwa przy instalacjach elektrycznych. Przykładem praktycznego zastosowania jest przygotowanie przewodów do montażu gniazdka elektrycznego, gdzie odpowiednie ściągnięcie izolacji jest niezbędne do zapewnienia solidnych połączeń elektrycznych. Dobrze wykonane połączenie nie tylko zwiększa efektywność przesyłu energii, ale również zmniejsza ryzyko wystąpienia awarii czy zwarć. W branży elektrycznej, przestrzeganie dobrych praktyk przy używaniu tego rodzaju narzędzi jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji.

Pytanie 19

Jaki zakres pomiarowy oraz rodzaj napięcia trzeba ustawić na woltomierzu, aby zmierzyć napięcie zasilające obwód gniazd wtyczkowych w budynku mieszkalnym?

A. 500 V DC
B. 500 V AC
C. 200 V AC
D. 200 V DC
Odpowiedź 500 V AC jest prawidłowa, ponieważ w budynkach mieszkalnych napięcie zasilające gniazdka wtyczkowe wynosi zazwyczaj 230 V w systemie prądu przemiennego (AC). Ustawienie woltomierza na zakres 500 V AC umożliwia pomiar napięcia z dużym marginesem bezpieczeństwa, co jest zgodne z dobrymi praktykami pomiarowymi. Użycie takiego zakresu zapewnia dokładne i bezpieczne pomiary bez ryzyka uszkodzenia urządzenia. Warto zauważyć, że pomiar napięcia AC jest istotny, gdyż instalacje elektryczne w budynkach mieszkalnych są projektowane na prąd przemienny, a nie stały (DC). W praktyce, przed rozpoczęciem pomiarów, zawsze należy upewnić się, że woltomierz jest odpowiednio skalibrowany i spełnia normy bezpieczeństwa, takie jak IEC 61010, które dotyczą sprzętu pomiarowego w obszarze niskiego napięcia.

Pytanie 20

W jakiej kolejności należy włączać styczniki w układzie przedstawionym na schemacie, aby przeprowadzić prawidłowy rozruch silnika, przy zamkniętym wyłączniku Q1?

Ilustracja do pytania
A. Najpierw K1M i K41M, następnie wyłączyć K41M, a włączyć K42M
B. Najpierw K1M i K42M, następnie wyłączyć K42M, a włączyć K41M
C. W odstępach czasu kolejno: K41M, K42M, K1M
D. W odstępach czasu kolejno: K1M, K42M, K41M
Wybór innej odpowiedzi, która sugeruje inną kolejność włączania styczników w układzie, zawiera poważne błędy koncepcyjne, które mogą prowadzić do nieprawidłowego działania silnika i potencjalnego uszkodzenia systemu. Na przykład, jeżeli stycznik K1M zostanie włączony jako pierwszy, a K41M nie zostanie aktywowany, silnik zacznie pracować w pełnym obciążeniu bez wcześniejszego zmniejszenia prądu rozruchowego. Taki proces może prowadzić do nadmiernego prądu, co z kolei zwiększa ryzyko przegrzania i uszkodzenia uzwojeń silnika. Włączenie stycznika K42M przed K41M nie tylko nie jest zgodne z zasadami bezpieczeństwa, ale także może prowadzić do nieprawidłowego działania silnika w trybie gwiazdy, co neguje jego zalety. W kontekście dobrych praktyk, stosowanie się do ustalonej sekwencji włączania styczników jest kluczowe dla zapewnienia długotrwałej i bezawaryjnej pracy układów elektrycznych. Niewłaściwe podejście do rozruchu silnika może skutkować poważnymi konsekwencjami finansowymi i operacyjnymi, dlatego tak ważne jest przestrzeganie ustalonych procedur, które opierają się na zasadzie minimalizacji ryzyka i maksymalizacji efektywności działania całego układu.

Pytanie 21

Minimalna akceptowalna wartość rezystancji izolacji dla przewodów instalacji przeznaczonej na napięcie znamionowe nieprzekraczające 500 V, w tym FELV, wynosi

A. 0,5 MΩ
B. 2,0 MΩ
C. 1,5 MΩ
D. 1,0 MΩ
Odpowiedź 1,0 MΩ jest poprawna, ponieważ zgodnie z normami dotyczącymi izolacji przewodów, minimalna wymagana wartość rezystancji izolacji dla instalacji na napięcie znamionowe do 500 V, w tym dla systemów FELV, powinna wynosić co najmniej 1,0 MΩ. Wysoka wartość rezystancji izolacji jest kluczowa dla zapewnienia bezpieczeństwa operacyjnego instalacji, minimalizując ryzyko porażenia prądem oraz uszkodzenia sprzętu spowodowanego przebiciem. Przykładowo, w praktyce, przeprowadzanie regularnych pomiarów rezystancji izolacji w instalacjach elektrycznych może pomóc w wczesnym wykryciu problemów, takich jak degradacja izolacji z powodu starzenia, wilgoci czy uszkodzeń mechanicznych. Wartości poniżej 1,0 MΩ mogą wskazywać na konieczność wymiany przewodów lub przeprowadzenia naprawy. Dobre praktyki branżowe zalecają, aby przed oddaniem do użytku nowej instalacji przeprowadzić pomiary rezystancji izolacji oraz regularnie je kontrolować, aby zapewnić, że nie spadnie poniżej tej wartości.

Pytanie 22

Jaka powinna być minimalna liczba przewodów w miejscach X oraz Y na schemacie instalacji, aby po jej wykonaniu możliwe było załączanie oświetlenia ze wszystkich łączników?

Ilustracja do pytania
A. X - 4 szt., Y - 4 szt.
B. X - 5 szt., Y - 4 szt.
C. X - 5 szt., Y - 5 szt.
D. X - 4 szt., Y - 5 szt.
Błędne odpowiedzi opierają się na nieprawidłowym zrozumieniu struktury połączeń w instalacjach oświetleniowych. Odpowiedzi, które proponują mniejszą liczbę przewodów, nie uwzględniają podstawowych zasad działania łączników schodowych i krzyżowych, co prowadzi do niewłaściwej koncepcji ich funkcji. W przypadku łączników schodowych, aby zapewnić prawidłowe działanie, zawsze należy zastosować odpowiednią ilość przewodów. W miejscu X, zbyt mała liczba przewodów, jak np. 3, znacznie ograniczyłaby możliwości sterowania oświetleniem, co jest kluczowe w instalacjach, gdzie oświetlenie jest zdalnie kontrolowane z różnych punktów. W miejscu Y, błędna liczba przewodów także zakłada, że można ograniczyć połączenia, co prowadzi do ryzyka awarii systemu lub jego całkowitego braku funkcjonalności. Wiele osób myli pojęcie liczby przewodów potrzebnych do połączeń z ilością łączników, co jest typowym błędem myślowym. Aby poprawnie zrozumieć, ile przewodów jest potrzebnych w danym układzie, należy uwzględnić nie tylko samą liczbę łączników, ale także rodzaj połączeń oraz ich role w instalacji. Zastosowanie nieodpowiedniej liczby przewodów może prowadzić do poważnych problemów, takich jak niemożność włączania lub wyłączania oświetlenia z różnych punktów, co jest sprzeczne z oczekiwaniami użytkowników oraz normami branżowymi, które nakładają obowiązki na projektantów instalacji elektrycznych.

Pytanie 23

Który z wymienionych parametrów można zmierzyć przedstawionym przyrządem?

Ilustracja do pytania
A. Rezystancję izolacji.
B. Czas wyłączenia wyłącznika nadprądowego.
C. Rezystancję uziemienia.
D. Impedancję pętli zwarcia.
Zrozumienie różnicy między różnymi pomiarami elektrycznymi jest kluczowe dla prawidłowego funkcjonowania instalacji elektrycznych. Wybór rezystancji uziemienia jako odpowiedzi jest błędny, ponieważ chociaż niektóre mierniki wielofunkcyjne mogą mieć możliwość pomiaru tego parametru, nie jest to funkcja, która jest standardowo dostępna w każdym modelu. Rezystancja uziemienia jest pomiarem, który ocenia skuteczność systemu uziemiającego, a jego niewłaściwe pomiary mogą prowadzić do wadliwego funkcjonowania ochrony przeciwporażeniowej. Kolejnym błędnym wyborem jest rezystancja izolacji, która mierzy integralność izolacji elektrycznej, a jej pomiar wymaga innych technik oraz odpowiednich testerów izolacji, które są zaprojektowane specjalnie do tego celu. Użytkownicy często mylą te dwa pojęcia, co może wynikać z braku wiedzy na temat specyfiki funkcji różnych przyrządów. Czas wyłączenia wyłącznika nadprądowego również nie jest mierzony przez standardowy miernik wielofunkcyjny. Jest to proces, który zwykle wymaga bardziej zaawansowanego sprzętu testowego, w tym analizatorów jakości energii elektrycznej. Właściwe rozumienie tych zasad jest niezbędne dla zapewnienia bezpieczeństwa i skuteczności instalacji elektrycznych, a także do przestrzegania norm i standardów branżowych. W przypadku błędnych odpowiedzi istotne jest, aby przyjąć podejście analityczne i przyjrzeć się, dlaczego takie wybory mogą być mylne, co pomoże uniknąć podobnych pomyłek w przyszłości.

Pytanie 24

Jakim kolorem oznaczona jest wkładka topikowa, której wartość prądu znamionowego wynosi 20 A?

A. żółty
B. czerwony
C. niebieski
D. szary
Wkładki topikowe, jako elementy zabezpieczające w obwodach elektrycznych, są klasyfikowane według wartości prądu znamionowego, co znajduje swoje odzwierciedlenie w kolorach obudowy. W przypadku wkładki o prądzie znamionowym 20 A stosuje się kolor niebieski, co jest zgodne z normami określającymi oznaczenia kolorystyczne. W praktyce, znajomość tych norm jest kluczowa dla właściwego doboru zabezpieczeń w instalacjach elektrycznych. Użycie wkładek topikowych o odpowiednich wartościach jest istotne, aby zminimalizować ryzyko przegrzania oraz uszkodzeń instalacji. Przykładowo, w przypadku awarii lub zwarcia, wkładka o odpowiednim prądzie znamionowym zadziała w odpowiednim czasie, co zapewnia bezpieczeństwo użytkowania urządzeń elektrycznych. Warto zaznaczyć, że standardy międzynarodowe, takie jak IEC 60269, precyzują klasyfikację wkładek topikowych, co potwierdza ich istotną rolę w zapewnieniu bezpieczeństwa w obwodach elektrycznych.

Pytanie 25

Które urządzenie stosowane w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Rozłącznik bezpiecznikowy.
B. Wyłącznik nadmiarowoprądowy.
C. Wyłącznik przepięciowy.
D. Odłącznik bezpiecznikowy.
Rozłącznik bezpiecznikowy to kluczowe urządzenie w instalacjach elektrycznych, które pełni rolę zabezpieczającą i kontrolującą. Na przedstawionym rysunku widać charakterystyczne elementy, takie jak miejsca na wkładki bezpiecznikowe, które pozwalają na szybką wymianę zabezpieczeń w przypadku ich przepalenia. Rozłącznik bezpiecznikowy nie tylko chroni obwody elektryczne przed skutkami przeciążenia, ale także umożliwia bezpieczne odłączenie obwodu od źródła zasilania, co jest istotne w przypadku prac konserwacyjnych i naprawczych. W praktyce, zastosowanie rozłącznika bezpiecznikowego jest niezwykle istotne w budynkach mieszkalnych, przemysłowych oraz w infrastrukturze krytycznej, gdzie ciągłość zasilania i bezpieczeństwo użytkowników są priorytetem. Zgodnie z normami PN-EN 60947-3, rozłączniki te muszą spełniać określone wymagania dotyczące odporności na zwarcia, co zapewnia ich niezawodność i efektywność w ochronie instalacji.

Pytanie 26

W układzie przedstawionym na rysunku, po podłączeniu odbiornika, zadziałał wyłącznik różnicowoprądowy. Przyczyną tego jest

Ilustracja do pytania
A. nieprawidłowe połączenie przewodu neutralnego i ochronnego.
B. dotyk bezpośredni przewodu pod napięciem.
C. pojawienie się napięcia na części metalowej normalnie nie przewodzącej.
D. zwarcie między przewodem neutralnym i ochronnym.
Nieprawidłowe połączenie przewodu neutralnego (N) z przewodem ochronnym (PE) jest kluczowym czynnikiem, który spowodował zadziałanie wyłącznika różnicowoprądowego. W momencie, gdy te dwa przewody są połączone, wyłącznik różnicowoprądowy wykrywa różnicę w prądzie, co prowadzi do jego zadziałania w celu ochrony użytkowników przed porażeniem prądem. Przykładowo, w przypadku instalacji elektrycznych w budynkach mieszkalnych, zaleca się stosowanie wyłączników różnicowoprądowych w obwodach zasilających gniazda, co zwiększa bezpieczeństwo użytkowników. W praktyce, aby zapewnić prawidłowe działanie wyłączników, konieczne jest przestrzeganie standardów, takich jak norma PN-EN 61008-1, która określa wymagania dla różnicowoprądowych wyłączników nadprądowych. Dobre praktyki obejmują regularne testowanie tych urządzeń, aby upewnić się, że działają prawidłowo i mogą skutecznie chronić przed zagrożeniami elektrycznymi.

Pytanie 27

Którego z przedstawionych przyrządów pomiarowych należy użyć w celu wyznaczenia tras ułożenia przewodów elektrycznych w instalacjach podtynkowych?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Odpowiedź D. jest poprawna, ponieważ detektor przewodów elektrycznych to specjalistyczne narzędzie, które umożliwia lokalizację przewodów w ścianach oraz innych elementach budowlanych. W przypadku instalacji podtynkowych, gdzie przewody są ukryte, kluczowe jest precyzyjne określenie ich położenia, aby uniknąć uszkodzeń podczas prac remontowych czy budowlanych. Detektory te działają na zasadzie wykrywania pola elektromagnetycznego emitowanego przez przewody, co pozwala na ich skuteczną lokalizację bez potrzeby przeprowadzania skomplikowanych badań. Dzięki zastosowaniu detektorów, można również zminimalizować ryzyko uszkodzenia istniejących instalacji. W branży elektrycznej stosowanie tego typu przyrządów jest zgodne z zasadami bezpieczeństwa oraz dobrymi praktykami, co podkreśla ich znaczenie w planowaniu i realizacji instalacji elektrycznych.

Pytanie 28

Jakie urządzenie AGD oznaczamy w dokumentacji elektrycznej przedstawionym na rysunku symbolem?

Ilustracja do pytania
A. Zmywarkę do naczyń.
B. Grzejnik elektryczny
C. Pralkę elektryczną.
D. Kuchenkę elektryczną.
Kuchenki elektryczne, pralki i grzejniki, wszystkie mają swoje symbole w dokumentach elektrycznych według normy PN-EN 60617. Ale zmywarki do naczyń często są mylone z innymi urządzeniami. Na przykład kuchenki mają inny symbol, bo mówią o gotowaniu, a nie myciu naczyń. Pralki też mają swoje symbole, które odnoszą się do prania, więc to w ogóle nie to samo. Grzejniki za to są związane z ogrzewaniem, co nie ma nic wspólnego z myciem. Chyba to trochę wynika z tego, że nie każdy zna się na różnicach w symbolach lub po prostu nie zwraca na to uwagi. Ważne jest, by umieć rozpoznać te symbole, bo błędy w dokumentacji mogą prowadzić do naprawdę poważnych problemów, a tego nikt nie chce. Dlatego lepiej zrozumieć te symbole i wiedzieć, jak ich używać.

Pytanie 29

Przeglądy instalacji elektrycznej w budynkach mieszkalnych powinny być przeprowadzane nie rzadziej niż co

A. 10 lat
B. 5 lat
C. 1 rok
D. 2 lata
Przeglądy mieszkaniowej instalacji elektrycznej należy wykonywać nie rzadziej niż co 5 lat, zgodnie z obowiązującymi normami i przepisami prawa, w tym z ustawą Prawo budowlane oraz normami PN-IEC 60364. Regularne przeglądy są kluczowe dla zapewnienia bezpieczeństwa użytkowania instalacji elektrycznych oraz zapobiegania pożarom i porażeniom prądem. W ramach takiego przeglądu oceniana jest nie tylko stan techniczny przewodów i osprzętu elektrycznego, ale także zgodność z aktualnymi przepisami. Przykład: jeśli w ciągu 5 lat nie zrealizujesz przeglądu, możesz być narażony na ryzyko awarii instalacji, co może prowadzić do poważnych konsekwencji. Dobrą praktyką jest dokumentowanie wykonanych przeglądów oraz przechowywanie protokołów w celu ułatwienia ewentualnych kontroli oraz zapewnienia, że instalacja jest w dobrym stanie przez cały okres jej użytkowania.

Pytanie 30

Na podstawie przedstawionej tabeli obciążalności długotrwałej przewodów dobierz przekrój żył przewodu czterożyłowego ułożonego na ścianie, na uchwytach, zasilającego oporowy piec trójfazowy o prądzie znamionowym 36 A w sieci o napięciu 230/400 V.

Ilustracja do pytania
A. 4 mm2
B. 6 mm2
C. 10 mm2
D. 2,5 mm2
Wybór przekroju przewodu jest kluczowym zagadnieniem w projektowaniu instalacji elektrycznych, a niewłaściwe podejście do tego tematu może prowadzić do poważnych konsekwencji. Wiele osób może pomylić przekroje żył, myśląc, że im mniejszy przekrój, tym mniejsze straty energii lub łatwiejsza instalacja. Takie podejście jest błędne, ponieważ niewłaściwie wybrany przekrój przewodu może skutkować przegrzewaniem, co z kolei może prowadzić do uszkodzenia przewodów, a nawet pożaru. Na przykład, wybór 10 mm² dla obciążenia 36 A może wydawać się nadmiernym zabezpieczeniem, jednak warto uwzględnić, że nie jest to zgodne z zasadami doboru, które nakazują stosować najbliższą większą wartość w odniesieniu do aktualnego obciążenia. Zastosowanie 4 mm² byłoby niewystarczające, ponieważ nie pokrywałoby minimalnych wymagań dla obciążenia 36 A. Z kolei 2,5 mm² jest zdecydowanie zbyt małym przekrojem, co stwarzałoby ryzyko przegrzewania i uszkodzenia instalacji. Dlatego zasadniczym błędem jest ignorowanie tabel obciążalności, które są niezbędne do bezpiecznego i efektywnego projektowania instalacji elektrycznych. W przemyśle elektrycznym przestrzeganie norm i standardów, takich jak PN-IEC 60364, jest kluczowe dla zapewnienia bezpieczeństwa i efektywności energetycznej. Zrozumienie tych zasad jest kluczowe dla każdego, kto pracuje z instalacjami elektrycznymi i chce uniknąć potencjalnie niebezpiecznych sytuacji.

Pytanie 31

Jaką z wymienionych czynności należy wykonać podczas inspekcji działającego transformatora?

A. Weryfikacja poziomu oleju w olejowskazie konserwatora
B. Obsługa przełącznika zaczepów
C. Czyszczenie izolatorów
D. Serwis styków oraz połączeń śrubowych
Sprawdzenie poziomu oleju w olejowskazie konserwatora jest kluczowym elementem oględzin pracującego transformatora, ponieważ poziom oleju wpływa na prawidłowe działanie urządzenia. Olej w transformatorze pełni kilka istotnych funkcji, takich jak izolacja elektryczna oraz chłodzenie. W trakcie eksploatacji transformatorów, obniżony poziom oleju może prowadzić do przegrzewania się rdzenia oraz uzwojeń, co w konsekwencji może skutkować uszkodzeniem sprzętu. Zgodnie z normami i dobrymi praktykami branżowymi, regularne sprawdzanie poziomu oleju powinno być przeprowadzane w określonych odstępach czasowych lub przed rozpoczęciem eksploatacji. Przykładem może być stosowanie olejowskazów, które umożliwiają wizualną kontrolę poziomu oleju bez konieczności demontażu urządzenia. Warto również pamiętać o konieczności monitorowania jakości oleju oraz okresowym jego badaniu, co pozwala na wczesne wykrycie ewentualnych zanieczyszczeń czy degradacji, a tym samym na podjęcie działań prewencyjnych.

Pytanie 32

Którego z przedstawionych narzędzi należy użyć do zamontowania zworek w tabliczce silnikowej?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Wybór klucza oczkowego, oznaczonego jako 'C.', do montażu zworek w tabliczce silnikowej jest uzasadniony. Klucz oczkowy jest narzędziem, które idealnie pasuje do standardowych nakrętek stosowanych w takich aplikacjach. Użycie klucza o odpowiednim rozmiarze zapewnia pewny chwyt i minimalizuje ryzyko uszkodzenia nakrętek. W praktyce, przy montażu zworek, klucz oczkowy umożliwia łatwe i precyzyjne dokręcanie, co jest kluczowe dla zapewnienia prawidłowego działania silnika oraz bezpieczeństwa całego układu elektrycznego. Warto zauważyć, że nienałożenie odpowiedniej siły na nakrętki może prowadzić do ich poluzowania się w trakcie eksploatacji, co z kolei może powodować awarie lub uszkodzenia. Korzystając z dobrze dobranego narzędzia, zgodnego z wytycznymi producenta, możemy również zwiększyć efektywność prac i zmniejszyć ryzyko wystąpienia problemów eksploatacyjnych. Dlatego też, znajomość i umiejętność stosowania właściwych narzędzi jest kluczowa w pracy z instalacjami elektrycznymi.

Pytanie 33

Jakie jest wymagane napięcie testowe przy pomiarze rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V?

A. 1000 V
B. 250V
C. 750V
D. 500V
Wybór napięcia probierczego w testach rezystancji izolacji obwodów elektrycznych jest kluczowym aspektem zapewniającym bezpieczeństwo i niezawodność systemów. Odpowiedzi takie jak 750 V, 250 V oraz 1000 V mogą wydawać się na pierwszy rzut oka logiczne, ale w rzeczywistości mogą prowadzić do nieprawidłowych wniosków i problemów w praktyce. Użycie 750 V jest zbyt wysokie dla wielu instalacji o napięciu roboczym 230/400 V, co może skutkować uszkodzeniem izolacji, a tym samym zagrażać bezpieczeństwu użytkowników. Z kolei napięcie 250 V jest niewystarczające do skutecznego przeprowadzenia testu, co może nie ujawnić rzeczywistych problemów z izolacją, takich jak niewidoczne uszkodzenia czy degradacja materiału. Napięcie 1000 V, choć stosowane w niektórych aplikacjach, również nie jest zalecane dla instalacji o niższych wartościach napięcia roboczego, ponieważ może prowadzić do fałszywych wyników, które nie odzwierciedlają stanu faktycznego. Kluczowe znaczenie ma stosowanie odpowiednich norm, jak PN-EN 61557-2, które określają, że dla instalacji 230/400 V optymalnym napięciem probierczym jest 500 V. Wybór niewłaściwego napięcia może prowadzić do nieprawidłowych ocen stanu izolacji, co w konsekwencji zwiększa ryzyko awarii oraz zagrożenia dla bezpieczeństwa.

Pytanie 34

W instalacji elektrycznej, której schemat przedstawiono na rysunku błędnie podłączono

Ilustracja do pytania
A. łącznik.
B. żyrandol.
C. przewody zasilające.
D. przewód ochronny.
Wybór łącznika jako błędnie podłączonego elementu jest poprawny, ponieważ łącznik powinien być zawsze podłączony w obwodzie fazowym (L) w celu prawidłowej kontroli zasilania. W sytuacji, gdy łącznik przerywa obwód neutralny (N), mamy do czynienia z poważnym zagrożeniem dla bezpieczeństwa użytkowników. Zgodnie z normami PN-IEC 60364, instalacje elektryczne powinny być projektowane oraz wykonywane w sposób zapewniający ich bezpieczeństwo, co obejmuje również właściwe podłączenie łączników. Praktyka poprawnego stosowania łączników w instalacjach elektrycznych polega na tym, że przy włączonym obwodzie fazowym, możliwe jest odcięcie zasilania i tym samym zapewnienie bezpieczeństwa podczas konserwacji urządzeń. Dobrą praktyką jest również stosowanie łączników, które posiadają oznaczenia wskazujące ich położenie w obwodzie, co ułatwia identyfikację w razie awarii. Podczas projektowania instalacji, należy także uwzględnić odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, aby minimalizować ryzyko porażenia prądem. Dlatego poprawne podłączenie łącznika jest kluczowe dla ogólnego bezpieczeństwa instalacji elektrycznej.

Pytanie 35

Dokonując oględzin powykonawczych zabezpieczeń w instalacji elektrycznej przedstawionej na schemacie można stwierdzić, że zamieniono miejscami bezpieczniki

Ilustracja do pytania
A. B1 z B2
B. B2 z B4
C. B3 z B2
D. B1 z B4
Odpowiedź B1 z B2 jest prawidłowa, ponieważ analiza schematu instalacji elektrycznej wyraźnie wskazuje na zamianę miejscami tych dwóch bezpieczników. Bezpiecznik B1, który ma wartość nominalną 10A, powinien być umieszczony na początku instalacji, gdzie jego zadaniem jest ochrona całego obwodu przed przeciążeniem. Z kolei bezpiecznik B2, o wartości 25A, jest przeznaczony do zabezpieczania obwodów o większym poborze mocy. Przełożenie tych miejsc prowadzi do nieodpowiedniego zabezpieczenia, co jest sprzeczne z normami bezpieczeństwa, takimi jak PN-IEC 60364, które wymagają, aby zabezpieczenia były dobierane na podstawie charakterystyki obwodów oraz urządzeń, które mają chronić. Właściwe umiejscowienie bezpieczników jest kluczowe dla zachowania bezpieczeństwa użytkowników oraz ochrony instalacji. W praktyce, niewłaściwe dobranie wartości bezpieczników może prowadzić do ich nadmiernego przepalania lub wręcz do uszkodzenia urządzeń podłączonych do instalacji, co generuje dodatkowe koszty napraw i obniża komfort użytkowania.

Pytanie 36

Na podstawie rysunku montażowego określ, na jakiej wysokości od podłogi należy zamontować dolną krawędź rozdzielnicy.

Ilustracja do pytania
A. 1,5 m
B. 0,80 m
C. 1,4 m
D. 0,90 m
Zgodnie z rysunkiem montażowym, dolna krawędź rozdzielnicy powinna być zamontowana na wysokości 1500 mm (1,5 m) od podłogi. Taki wymiar jest zgodny z normami branżowymi, które określają ergonomiczne i bezpieczne wysokości montażu rozdzielnic elektrycznych. Wysokość ta zapewnia wygodny dostęp do urządzeń oraz pozwala na swobodne prowadzenie prac serwisowych. Dodatkowo, montaż na tej wysokości minimalizuje ryzyko przypadkowego kontaktu z wodą oraz zanieczyszczeniami, co jest istotne w kontekście bezpieczeństwa elektrycznego. W praktyce, takie umiejscowienie rozdzielnicy ułatwia również korzystanie z niej w warunkach przemysłowych lub w budynkach użyteczności publicznej, gdzie użytkownicy mogą być różnego wzrostu. Warto pamiętać, że zgodność z obowiązującymi standardami oraz zasadami BHP jest kluczowym aspektem każdego projektu instalacji elektrycznych.

Pytanie 37

Który zestaw oznaczeń literowych barw izolacji żył jest właściwy dla przewodu przedstawionego na ilustracji?

Ilustracja do pytania
A. BN, BK, GY
B. BK, BU, GY
C. BU, GY, GNYE
D. BN, BK, GNYE
Wybranie odpowiedzi "BN, BK, GY" jest poprawne, ponieważ zgodnie z polskimi normami dotyczącymi oznaczeń kolorystycznych przewodów elektrycznych, brązowy (BN) jest kolorem przewodu fazowego, czarny (BK) to przewód neutralny, a żółto-zielony (GY) identyfikuje przewód ochronny. Ta kolorystyka ma kluczowe znaczenie dla bezpieczeństwa i poprawnego działania instalacji elektrycznych. Praktyczne przykłady zastosowania tych zasad można znaleźć w projektach instalacji w budynkach mieszkalnych i przemysłowych, gdzie właściwe oznaczenie przewodów pomoże uniknąć błędów podczas montażu oraz konserwacji. Użycie odpowiednich kolorów pozwala na szybką identyfikację funkcji każdego przewodu, co jest niezbędne w przypadku awarii czy modernizacji. Współczesne standardy, takie jak PN-IEC 60446, podkreślają wagę przestrzegania tych norm w celu zapewnienia bezpieczeństwa osób pracujących z instalacjami elektrycznymi oraz zapobiegania ryzyku porażenia prądem.

Pytanie 38

Jakie narzędzia, poza przymiaru kreskowego i młotka, należy wybrać do instalacji sztywnych rur elektroinstalacyjnych z PVC?

A. Cęgi do izolacji, pion, piła do cięcia, obcinaczki
B. Cęgi do izolacji, obcinaczki, wkrętarka, płaskoszczypce
C. Wiertarka, płaskoszczypce, pion, poziomica
D. Wiertarka, piła do cięcia, poziomica, wkrętarka
Wybór zestawu zawierającego wiertarkę, piłę do cięcia, poziomicę i wkrętarkę jest kluczowy dla prawidłowego montażu elektroinstalacyjnych rur sztywnych z PVC. Wiertarka jest niezbędna do wykonywania otworów w różnorodnych materiałach, co jest istotne podczas tworzenia połączeń i montażu w uchwytach. Piła do cięcia zapewnia dokładne i równe cięcia rur, co jest kluczowe dla szczelności i estetyki instalacji. Poziomica pozwala na precyzyjne ustawienie rur w osi poziomej, co jest podstawą dla uniknięcia problemów z odpływem i estetyką instalacji. Wkrętarka, z kolei, jest używana do mocowania różnych elementów, takich jak uchwyty i złącza, co pozwala na stabilne i bezpieczne wykonanie całej instalacji. Te narzędzia są zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie precyzji i jakości wykonania w instalacjach elektrycznych.

Pytanie 39

Jakiej z wymienionych czynności nie przeprowadza się w trakcie oględzin urządzenia napędowego z silnikiem elektrycznym podczas pracy?

A. Oceny stanu przewodów ochronnych oraz ich podłączenia
B. Sprawdzenia działania systemów chłodzenia
C. Sprawdzenia szczotek i szczotkotrzymaczy
D. Kontroli stanu osłon elementów wirujących
Podczas analizy działań związanych z oględzinami urządzenia napędowego z silnikiem elektrycznym, ważne jest zrozumienie, że wiele czynności może być wykonanych w czasie pracy, a inne wymagają zatrzymania silnika. Kontrola stanu osłon części wirujących, sprawdzenie działania układów chłodzenia oraz ocena stanu przewodów ochronnych i ich podłączenia to czynności, które można przeprowadzić bez konieczności zatrzymywania maszyny. Osłony mają kluczowe znaczenie w zapewnieniu bezpieczeństwa, zapobiegając kontaktowi z ruchomymi częściami silnika, co jest zgodne z zasadami BHP oraz standardami ochrony. Kontrola układów chłodzenia jest niezbędna dla zapewnienia prawidłowego funkcjonowania silników elektrycznych, ponieważ ich przegrzanie może prowadzić do awarii. Sporadyczne sprawdzanie przewodów ochronnych oraz ich podłączenia jest istotne z punktu widzenia ochrony elektrycznej, co jest podkreślone w normach PN-IEC 60364, dotyczących instalacji elektrycznych. Ignorowanie tych czynności może prowadzić do poważnych usterek technicznych lub zagrożeń dla zdrowia i życia operatorów. Wiele osób myli te aspekty, myśląc, że wszystkie kontrole można przeprowadzić wyłącznie w czasie postoju urządzenia. To błędne podejście może skutkować ignorowaniem potencjalnych zagrożeń, które mogłyby być zidentyfikowane podczas działania. Dlatego istotne jest, aby operatorzy byli dobrze przeszkoleni i świadomi, które czynności mogą być bezpiecznie wykonane w trakcie użytkowania, a które wymagają zatrzymania urządzenia.

Pytanie 40

Jakie jest główne przeznaczenie przekaźnika w instalacjach elektrycznych?

A. Ochrona przed przeciążeniami
B. Zdalne sterowanie obwodami elektrycznymi
C. Kontrola temperatury przewodów
D. Zmniejszenie zużycia energii
Przekaźnik to bardzo wszechstronne urządzenie stosowane w instalacjach elektrycznych głównie do zdalnego sterowania obwodami elektrycznymi. Działa na zasadzie elektromagnetycznego przełącznika, który pozwala na kontrolowanie dużych prądów za pomocą małego sygnału elektrycznego. To właśnie ta funkcja umożliwia automatyzację wielu procesów w instalacjach. Przekaźniki są kluczowe w systemach sterowania, gdzie pozwalają na włączanie i wyłączanie obwodów bez konieczności fizycznego kontaktu, co zwiększa bezpieczeństwo i efektywność operacyjną. W praktyce, przekaźniki są używane w wielu aplikacjach, takich jak automatyka domowa, układy sterowania maszynami czy systemy zabezpieczeń. Ponadto, ich zastosowanie jest standardem w systemach, gdzie konieczna jest szybka reakcja na zmianę stanu, np. w przypadku awarii lub nadmiernego obciążenia. Ich niezawodność i łatwość w integracji sprawiają, że są nieodzownym elementem współczesnych systemów elektrycznych.