Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 9 grudnia 2025 14:30
  • Data zakończenia: 9 grudnia 2025 14:40

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaki rodzaj dysków jest podłączany do złącza IDE na płycie głównej komputera?

A. SSD
B. FLASH
C. SCSI
D. ATA
Wybrane odpowiedzi, takie jak SSD, SCSI i FLASH, nie są zgodne z wymaganiami związanymi z gniazdem IDE. SSD (Solid State Drive) to nowoczesny typ pamięci masowej, który używa technologii flash, a jego interfejsy komunikacyjne, takie jak SATA lub NVMe, różnią się od tradycyjnego interfejsu IDE. SSD nie jest bezpośrednio podłączany do gniazda IDE, co sprawia, że ta odpowiedź jest niepoprawna. SCSI (Small Computer System Interface) to kolejne złącze, które różni się od IDE i jest często stosowane w serwerach oraz stacjach roboczych do podłączania dysków twardych oraz innych urządzeń. SCSI wymaga specjalnych kontrolerów oraz kabli, co czyni je bardziej skomplikowanym w użyciu w porównaniu do prostoty interfejsu ATA. Z kolei technologia FLASH odnosi się do rodzaju pamięci, a nie do interfejsu dyskowego. Choć pamięci flash mogą być używane w różnych zastosowaniach, ich połączenie z gniazdem IDE nie jest standardowe ani praktyczne. Typowe błędy myślowe prowadzące do takich wniosków często wynikają z nieporozumień dotyczących różnicy między typem pamięci a interfejsem komunikacyjnym. Wiedza o tych różnicach jest ważna dla skutecznego wyboru odpowiednich komponentów w budowie komputerów oraz w rozwiązywaniu problemów z kompatybilnością sprzętową.

Pytanie 2

Które stwierdzenie opisuje profil tymczasowy użytkownika?

A. Jest generowany przy pierwszym logowaniu do komputera i przechowywany na lokalnym dysku twardym
B. Jest tworzony przez administratora systemu i zapisywany na serwerze, tylko administrator systemu ma prawo wprowadzać w nim zmiany
C. Po wylogowaniu się użytkownika, zmiany dokonane przez niego w ustawieniach pulpitu oraz w plikach nie będą zachowane
D. Umożliwia używanie dowolnego komputera w sieci z ustawieniami i danymi użytkownika przechowywanymi na serwerze
Wszystkie odpowiedzi, które zakładają, że profil tymczasowy użytkownika może przechowywać zmiany po wylogowaniu, są błędne. Profil tymczasowy jest zaprojektowany tak, aby użytkownik mógł korzystać z komputera bez wpływania na system lub inne profile użytkowników. Odpowiedzi sugerujące, że profil tymczasowy przechowuje dane na serwerze lub na lokalnym dysku, są mylące i nie oddają rzeczywistego charakteru tego typu profilu. Użytkownicy mylą pojęcia związane z profilem tymczasowym i profilami stałymi. Profil stały, tworzony przez administratora, rzeczywiście może przechowywać ustawienia i dane na serwerze, co umożliwia użytkownikowi dostęp do tych samych danych i ustawień niezależnie od miejsca logowania. Ludzie często utożsamiają profil tymczasowy z technologią chmurową, zakładając, że dane są automatycznie synchronizowane między urządzeniami, co nie jest prawdą. Takie myślenie prowadzi do nieporozumień w przypadku zarządzania użytkownikami i ich danymi. W rzeczywistości, zastosowanie profilu tymczasowego w praktyce ma na celu nie tylko uproszczenie zarządzania danymi użytkowników, ale również zwiększenie bezpieczeństwa systemu operacyjnego poprzez unikanie nieautoryzowanych zmian. To ważne, aby zrozumieć, jak różne rodzaje profili wpływają na zarządzanie użytkownikami i jakie są ich konsekwencje w kontekście bezpieczeństwa systemu.

Pytanie 3

Który układ mikroprocesora jest odpowiedzialny między innymi za pobieranie rozkazów z pamięci oraz generowanie sygnałów sterujących?

A. IU
B. FPU
C. ALU
D. EU
Na pierwszy rzut oka wybór ALU wydaje się logiczny, bo to bardzo znany element mikroprocesora i kojarzy się z wykonywaniem operacji. Jednak ALU – Arithmetic Logic Unit – odpowiada głównie za realizowanie operacji arytmetycznych i logicznych, takich jak dodawanie, odejmowanie czy porównania bitowe. To taki "kalkulator" mikroprocesora, ale nie zarządza pobieraniem rozkazów ani nie generuje sygnałów sterujących dla innych jednostek. FPU, czyli Floating Point Unit, to wyspecjalizowana jednostka do operacji na liczbach zmiennoprzecinkowych. Bez niej bardziej zaawansowane obliczenia matematyczne wykonywałyby się bardzo wolno, jednak FPU w ogóle nie zajmuje się cyklem rozkazowym czy sterowaniem procesorem. Z kolei EU (Execution Unit) to trochę ogólne pojęcie – czasem odnosi się do jednostek wykonawczych, które faktycznie realizują instrukcje, ale nie one decydują o tym, którą instrukcję pobrać i kiedy to nastąpi. Najczęstszym błędem przy tego typu pytaniach jest utożsamianie jednostki wykonawczej z jednostką sterującą, a to dwa zupełnie różne byty! W polskich materiałach edukacyjnych często spotyka się uproszczenie, że "procesor wykonuje rozkazy", przez co niektórzy myślą, że to właśnie ALU, FPU czy EU są "mózgiem" całej operacji. A to IU, jednostka sterująca, jest tym centrum decyzyjnym – to ona pobiera rozkazy z pamięci, dekoduje je i wydaje polecenia pozostałym układom. Moim zdaniem dobrze jest raz a porządnie rozróżnić te funkcje, bo potem – przy projektowaniu prostych układów w FPGA albo analizie wydajności procesora – łatwo się pogubić. W praktyce, gdybyśmy zabrali z CPU IU, procesor przestałby w ogóle działać, bo żaden inny układ nie przejąłby jej obowiązków sterowania cyklem rozkazowym. To taka trochę niewidzialna ręka całego systemu, o której niestety często się zapomina, skupiając uwagę na bardziej "medialnych" jednostkach jak ALU czy FPU.

Pytanie 4

Jaki typ routingu jest najbardziej odpowiedni w złożonych, szybko ewoluujących sieciach?

A. Statyczny
B. Lokalny
C. Zewnętrzny
D. Dynamiczny
Wybór innego typu routingu, takiego jak lokalny, statyczny czy zewnętrzny, może wynikać z mylnych założeń dotyczących zarządzania sieciami. Routing lokalny jest ograniczony do małych, jednorodnych środowisk, co sprawia, że jego zastosowanie w większych sieciach byłoby nieefektywne i nieadekwatne. Z kolei routing statyczny, mimo że oferuje prostotę i przewidywalność, nie jest w stanie dostosować się do zmieniających się warunków. Wprowadzanie ręcznych zmian w tabelach routingu w przypadku awarii łączy lub zmiany topologii może prowadzić do długotrwałych przerw w dostępności usług, a także zwiększa ryzyko błędów ludzkich. Zastosowanie routingu zewnętrznego, polegającego na wymianie informacji między różnymi systemami autonomicznymi, może być użyteczne w niektórych scenariuszach, ale nie sprawdzi się w kontekście szybko zmieniających się warunków, które wymagają natychmiastowej reakcji. W związku z tym, brak elastyczności i automatyzacji w podejściu do routingu statycznego i lokalnego może prowadzić do nieefektywnego wykorzystywania zasobów oraz zwiększonego ryzyka awarii. W praktyce, dla wielu organizacji, które rozwijają swoje sieci i potrzebują szybkich reakcji na zmiany, wybór routingu dynamicznego okazuje się być najbardziej optymalnym rozwiązaniem, co jest potwierdzone przez zastosowanie w wielu nowoczesnych infrastrukturach sieciowych.

Pytanie 5

Jak powinno być usytuowanie gniazd komputerowych RJ45 względem powierzchni biurowej zgodnie z normą PN-EN 50174?

A. Gniazdo komputerowe 1 x RJ45 na 20 m2 powierzchni biura
B. Gniazdo komputerowe 1 x RJ45 na 10 m2 powierzchni biura
C. Gniazdo komputerowe 2 x RJ45 na 10 m2 powierzchni biura
D. Gniazdo komputerowe 2 x RJ45 na 20 m2 powierzchni biura
Wybór zbyt małej liczby gniazd komputerowych, jak w odpowiedziach dotyczących 1 x RJ45 na 10 m2 czy 20 m2, jest nieadekwatny w kontekście aktualnych potrzeb biur. Współczesne miejsca pracy wymagają większej liczby punktów dostępowych, aby umożliwić płynne korzystanie z technologii oraz wszechstronność w organizacji stanowisk pracy. Odpowiedzi te nie uwzględniają rosnącego zapotrzebowania na łączność, szczególnie w kontekście wzrastającej liczby urządzeń peryferyjnych. W praktyce, umiejscowienie jednego gniazda na większej powierzchni, jak 20 m2, ogranicza elastyczność użytkowników i może prowadzić do przeciążenia infrastruktury sieciowej. Ponadto, koncepcja, która sugeruje używanie jednego gniazda na 20 m2, nie jest zgodna z najlepszymi praktykami w zakresie projektowania sieci komputerowych, które zalecają większą gęstość gniazd w celu zapewnienia optymalnej wydajności i komfortu pracy. Oparcie się na takich mniejszych liczbach gniazd może prowadzić do nadmiernego uzależnienia od urządzeń sieciowych, takich jak switch'e, co niewłaściwie wpływa na rozplanowanie przestrzeni biurowej oraz użytkowników.

Pytanie 6

Który z trybów nie jest dostępny dla narzędzia powiększenia w systemie Windows?

A. Lupy
B. Pełnoekranowy
C. Płynny
D. Zadokowany
Odpowiedzi wskazujące na dostępność trybów takich jak pełnoekranowy, zadokowany czy lupy mogą wynikać z nieporozumienia dotyczącego funkcjonalności narzędzia lupa w systemie Windows. Tryb pełnoekranowy rzeczywiście istnieje i umożliwia użytkownikom maksymalizację obszaru roboczego, co jest niezwykle istotne w kontekście pracy z niewielkimi detalami w dokumentach lub obrazach. Przy użyciu tego trybu, użytkownicy mogą lepiej skoncentrować się na szczegółach, które są dla nich istotne. Z kolei tryb zadokowany, który umieszcza narzędzie lupa w wybranej części ekranu, jest przydatny dla osób, które chcą mieć stały dostęp do powiększenia, nie tracąc przy tym widoku na inne aplikacje. Wbudowane opcje lupy w systemie Windows są zgodne z dobrymi praktykami dostępu do technologii, zapewniając wsparcie dla osób z problemami wzrokowymi. Typowym błędem jest założenie, że wszystkie tryby są dostępne jednocześnie, co prowadzi do nieporozumień. Warto zrozumieć, że każde narzędzie ma swoje ograniczenia i specyfikacje, a brak trybu płynnego w narzędziu lupa w Windows podkreśla konieczność świadomego korzystania z dostępnych opcji, aby maksymalizować ich efektywność. Zrozumienie tych aspektów jest kluczowe dla efektywnego wykorzystania narzędzi dostępnych w systemach operacyjnych i wspiera użytkowników w codziennych zadaniach.

Pytanie 7

Jaką minimalną ilość pamięci RAM powinien posiadać komputer, aby możliwe było zainstalowanie 32-bitowego systemu operacyjnego Windows 7 i praca w trybie graficznym?

A. 256 MB
B. 2 GB
C. 512 MB
D. 1 GB
Zainstalowanie 32-bitowego Windows 7 wymaga przynajmniej 1 GB RAM. To jest tak, bo tyle pamięci wystarczy, żeby system działał w miarę płynnie i pozwalał na korzystanie z podstawowych funkcji. Windows 7 w wersji 32-bitowej opiera się na architekturze x86, co oznacza, że teoretycznie może wykorzystać do 4 GB RAM, ale praktycznie do codziennych zadań, takich jak przeglądanie netu czy pisanie dokumentów, 1 GB to wystarczająca ilość. Oczywiście, jak masz uruchomionych kilka aplikacji w tle, to dodatkowa pamięć może bardzo pomóc w płynności działania systemu. Warto pamiętać, że jeżeli planujesz używać komputera do gier lub bardziej wymagających programów, to najlepiej mieć przynajmniej 2 GB RAM, żeby nie było problemów z wydajnością.

Pytanie 8

Jakie urządzenie pozwoli na połączenie kabla światłowodowego zastosowanego w okablowaniu pionowym sieci z przełącznikiem, który ma jedynie złącza RJ45?

A. Regenerator
B. Router
C. Konwerter mediów
D. Modem
Ruter, modem i regenerator to urządzenia, które spełniają różne funkcje w zakresie komunikacji sieciowej, ale żadne z nich nie jest odpowiednie do bezpośredniej konwersji sygnału ze światłowodu na sygnał elektryczny, co jest kluczowe w omawianym kontekście. Ruter przede wszystkim zarządza ruchem danych w sieci, kierując pakiety do odpowiednich adresów IP, ale nie ma zdolności przekształcania sygnałów optycznych na elektryczne. Z kolei modem, który jest przeznaczony do konwersji sygnałów cyfrowych na analogowe i vice versa, także nie radzi sobie z bezpośrednim połączeniem światłowodu z urządzeniami miedzianymi. Regenerator, natomiast, jest używany do wzmacniania sygnału w długodystansowych połączeniach optycznych, ale nie dokonuje konwersji typów kabli. Często powodem wyboru niewłaściwych odpowiedzi jest niepełne zrozumienie roli, jaką każde z tych urządzeń odgrywa w infrastrukturze sieciowej. W praktyce, kluczowe jest zrozumienie, że światłowody i kable miedziane to różne technologie, które wymagają odpowiednich rozwiązań, aby mogły współpracować. W przypadku potrzeby połączenia tych dwóch typów kabli, konwerter mediów staje się jedyną sensowną opcją, a wybór innych urządzeń prowadzi do braku możliwości komunikacji między składnikami sieci.

Pytanie 9

Jakie narzędzie pozwala na zarządzanie menadżerem rozruchu w systemach Windows od wersji Vista?

A. AFFS
B. GRUB
C. LILO
D. BCDEDIT
Inne narzędzia, jak GRUB, LILO czy AFFS, działają w innych systemach operacyjnych, więc nie nadają się do Windows. GRUB to popularny bootloader w Linuxie, który radzi sobie z wieloma systemami. Ale w Windowsie? Bez szans. Podobnie LILO, który jest już trochę stary i też działa tylko w Linuxie. A AFFS to system plików dla Amigi, więc w świecie Windowsa to w ogóle nie ma sensu. Często ludzie mylą te narzędzia i zakładają, że każde z nich można używać zamiennie, co zazwyczaj kończy się problemami. Dlatego ważne, żeby wiedzieć, co do czego służy, bo każda z tych aplikacji miała swoje wymagania i działają w konkretnych systemach.

Pytanie 10

Aby aktywować tryb awaryjny w systemach z rodziny Windows, w trakcie uruchamiania komputera trzeba nacisnąć klawisz

A. F7
B. F1
C. F8
D. F10
Klawisz F8 jest odpowiedzialny za uruchamianie trybu awaryjnego w systemach operacyjnych Windows, szczególnie w wersjach do Windows 7. Umożliwia on użytkownikom załadowanie minimalnej wersji systemu, co jest szczególnie pomocne w diagnostyce i naprawie problemów z systemem. Tryb awaryjny uruchamia system z ograniczoną liczbą sterowników i funkcji, co pozwala na łatwiejsze zidentyfikowanie problemów, takich jak konflikty oprogramowania czy błędy sterowników. Użytkownicy mogą w nim również uruchomić narzędzia takie jak 'Przywracanie systemu' lub 'Zarządzanie urządzeniami', co zwiększa szansę na skuteczne naprawienie problemów. Warto zaznaczyć, że w systemach nowszych, takich jak Windows 8 i 10, dostęp do trybu awaryjnego uzyskuje się nieco inaczej, głównie poprzez menu rozruchowe. Niemniej jednak, znajomość klawisza F8 jest istotna dla użytkowników starszych systemów, którzy mogą napotkać problemy z działaniem systemu.

Pytanie 11

W systemie Windows, gdzie można ustalić wymagania dotyczące złożoności hasła?

A. zasadach zabezpieczeń lokalnych
B. autostarcie
C. BIOS-ie
D. panelu sterowania
Odpowiedź 'zasady zabezpieczeń lokalnych' jest prawidłowa, ponieważ to w tym miejscu w systemie Windows można określić wymagania dotyczące złożoności haseł. Ustawienia te pozwalają na definiowanie polityki dotyczącej haseł, co jest kluczowe dla zapewnienia bezpieczeństwa systemu. Użytkownicy mogą ustawić takie wymagania, jak minimalna długość hasła, konieczność użycia znaków specjalnych, cyfr oraz wielkich liter. Przykładowo, w środowiskach korporacyjnych, gdzie bezpieczeństwo informacji jest priorytetem, organizacje mogą wdrożyć polityki wymuszające skomplikowane hasła, aby zmniejszyć ryzyko nieautoryzowanego dostępu. Takie praktyki są zgodne z najlepszymi standardami, jak NIST SP 800-63, które zalecają stosowanie złożonych haseł w celu ochrony danych. Dobrze skonfigurowane zasady zabezpieczeń lokalnych są fundamentem solidnej architektury bezpieczeństwa w każdej organizacji.

Pytanie 12

Wskaż ilustrację obrazującą typowy materiał eksploatacyjny używany w drukarkach żelowych?

Ilustracja do pytania
A. B
B. C
C. D
D. A
Rysunek A przedstawia wkłady atramentowe używane w tradycyjnych drukarkach atramentowych. Drukarki te wykorzystują płynny atrament, który jest mniej lepki niż atrament żelowy, co może prowadzić do rozmazywania się wydruków, szczególnie na papierze o gorszej jakości. Choć atramentowe drukarki są popularne, szczególnie w zastosowaniach domowych, nie oferują one tych samych korzyści, co drukarki żelowe, szczególnie w kontekście szybkości schnięcia i trwałości wydruków. Rysunek B przedstawia taśmę barwiącą, która jest używana w drukarkach igłowych. Technologia ta, choć nadal wykorzystywana w niektórych specjalistycznych zastosowaniach, takich jak drukowanie faktur czy etykiet, nie ma zastosowania w kontekście drukarek żelowych. Drukarki igłowe operują mechanizmem uderzeniowym, który nie jest związany z nowoczesną technologią żelowego atramentu. Rysunek D natomiast pokazuje filament do drukarek 3D, które używają technologii druku addytywnego, polegającej na nakładaniu warstw materiału do tworzenia trójwymiarowych obiektów. Filamenty te, najczęściej wykonane z polimerów takich jak PLA czy ABS, nie mają związku z drukiem dokumentów w technologii żelowej. Często błędnym założeniem jest, że wszystkie materiały eksploatacyjne mają podobne zastosowanie, jednak różne technologie drukowania wymagają specyficznych materiałów, co jest kluczowe dla ich efektywności i jakości wydruków. Wybór niewłaściwego materiału eksploatacyjnego może prowadzić do nieoptymalnej pracy urządzenia i obniżenia jakości wydruków, dlatego istotne jest, by rozumieć specyfikę i zastosowanie każdej z technologii drukowania.

Pytanie 13

Klawiatura w układzie QWERTY, która pozwala na wpisywanie znaków typowych dla języka polskiego, jest znana jako klawiatura

A. diakrytyczna
B. maszynistki
C. polska
D. programisty
Odpowiedź 'programisty' jest poprawna, ponieważ klawiatura QWERTY, która umożliwia wprowadzanie polskich znaków diakrytycznych, określana jest jako klawiatura programisty. W praktyce oznacza to, że ta odmiana klawiatury została zaprojektowana z myślą o ułatwieniu pisania kodu oraz wprowadzaniu tekstu w języku polskim, co jest kluczowe dla programistów pracujących w środowiskach, gdzie użycie znaków takich jak ą, ć, ę, ł, ń, ó, ś, ź, ż jest niezbędne. Aby skorzystać z tej klawiatury, użytkownicy mogą na przykład łatwo wprowadzać polskie znaki bez konieczności korzystania z dodatkowych skrótów czy aplikacji. To znacznie przyspiesza pracę oraz minimalizuje ryzyko błędów typograficznych, co jest szczególnie istotne w branży IT, gdzie precyzja i efektywność są kluczowe. Klawiatura ta jest zgodna z normami i standardami ergonomii, co sprawia, że jest wygodna w użyciu przez dłuższy czas.

Pytanie 14

Zastosowanie symulacji stanów logicznych w obwodach cyfrowych pozwala na

A. impulsator
B. sonda logiczna
C. kalibrator
D. sonometr
Chociaż sonda logiczna, kalibrator i sonometr mają swoje zastosowania w dziedzinie elektroniki, nie są one narzędziami przeznaczonymi do symulowania stanów logicznych obwodów cyfrowych. Sonda logiczna jest używana do monitorowania sygnałów w obwodach, co pozwala na analizę ich stanu, jednak nie generuje sygnałów. Jej funkcją jest obserwacja, a nie aktywne wprowadzanie stanów, co czyni ją narzędziem diagnostycznym, a nie symulacyjnym. Kalibrator, z drugiej strony, służy do dokładnej kalibracji i pomiaru parametrów sygnałów, takich jak napięcie czy częstotliwość, ale nie jest zaprojektowany do symulacji stanów logicznych. Słabe zrozumienie roli tych narzędzi prowadzi do błędnych wniosków, stąd często myli się je z impulsatorem. Sonometr, choć jest przydatnym narzędziem w pomiarach akustycznych, nie ma zastosowania w kontekście analizy obwodów cyfrowych, co dodatkowo podkreśla różnice w funkcjonalności tych urządzeń. Niezrozumienie funkcjonalności impulsatora oraz roli pozostałych narzędzi w testowaniu układów cyfrowych może prowadzić do nieefektywnego projektowania oraz wdrażania systemów elektronicznych. Kluczowe jest, aby inżynierowie mieli jasność co do zastosowania każdego z tych narzędzi w celu osiągnięcia optymalnych rezultatów w pracy z obwodami cyfrowymi.

Pytanie 15

Jaka jest maksymalna liczba komputerów, które mogą być zaadresowane w podsieci z adresem 192.168.1.0/25?

A. 254
B. 126
C. 62
D. 510
Podane odpowiedzi, takie jak 62, 254 oraz 510, bazują na błędnej interpretacji zasad adresowania IP w kontekście maski podsieci. Odpowiedź 62 może wynikać z mylnego obliczenia, które uwzględnia tylko część dostępnych adresów, najprawdopodobniej z przyjęciem nieprawidłowej maski. Taka liczba adresów nie uwzględnia w pełni możliwości podsieci /25. Z kolei odpowiedź 254 często odnosi się do podsieci /24, gdzie zarezerwowane są dwa adresy, ale przy masce /25, ta liczba jest zawężona. Z kolei 510 przekracza techniczne możliwości podsieci, ponieważ nie ma tylu dostępnych adresów w konfiguracji /25. Typowym błędem w analizie liczby dostępnych adresów jest pominięcie faktu, że dwa adresy są zawsze rezerwowane: jeden dla adresu sieci, a drugi dla adresu rozgłoszeniowego, co często prowadzi do nieporozumień. Przy projektowaniu sieci ważne jest zrozumienie, że efektywne zarządzanie adresami IP wymaga precyzyjnej znajomości zasad dotyczących podsieci. Ignorowanie tych zasad może prowadzić do problemów z zarządzaniem siecią, takich jak konflikty adresów, niemożność poprawnego routingu lub zbyt mała liczba dostępnych adresów dla urządzeń w danej podsieci.

Pytanie 16

Na ilustracji przedstawiono sieć komputerową w danej topologii

Ilustracja do pytania
A. magistrali
B. gwiazdy
C. mieszanej
D. pierścienia
Topologia pierścienia jest jednym z podstawowych rodzajów organizacji sieci komputerowych. Charakteryzuje się tym że każde urządzenie jest połączone z dwoma innymi tworząc zamknięty krąg. Dane przesyłane są w jednym kierunku co minimalizuje ryzyko kolizji pakietów. Ta topologia jest efektywna pod względem zarządzania ruchem sieciowym i pozwala na łatwe skalowanie. Dzięki temu można ją znaleźć w zastosowaniach wymagających wysokiej niezawodności takich jak przemysłowe sieci automatyki. W praktyce często stosuje się protokół Token Ring w którym dane przesyłane są za pomocą specjalnego tokena. Umożliwia to równomierne rozłożenie obciążenia sieciowego oraz zapobiega monopolizowaniu łącza przez jedno urządzenie. Choć topologia pierścienia może być bardziej skomplikowana w implementacji niż inne topologie jak gwiazda jej stabilność i przewidywalność działania czynią ją atrakcyjną w specyficznych zastosowaniach. Dodatkowo dzięki fizycznej strukturze pierścienia łatwo można identyfikować i izolować problemy w sieci co jest cenne w środowiskach wymagających ciągłości działania. Standardy ISO i IEEE opisują szczegółowe wytyczne dotyczące implementacji tego typu sieci co pozwala na zachowanie kompatybilności z innymi systemami oraz poprawę bezpieczeństwa i wydajności działania.

Pytanie 17

Podaj polecenie w systemie Linux, które umożliwia określenie aktualnego katalogu użytkownika.

A. path
B. cls
C. mkdir
D. pwd
Odpowiedź 'pwd' (print working directory) jest poprawna, ponieważ jest to polecenie w systemie Linux, które wyświetla bieżący katalog roboczy użytkownika. Umożliwia ono użytkownikowi łatwe zlokalizowanie, w jakim katalogu się znajduje, co jest kluczowe w administracji systemem oraz podczas pracy z plikami i folderami. Na przykład, wykonując polecenie 'pwd' w terminalu, użytkownik otrzyma pełną ścieżkę do katalogu, w którym aktualnie pracuje, co jest niezwykle pomocne w kontekście skryptów lub programowania, gdzie dostęp do odpowiednich katalogów jest często wymagany. Dobre praktyki w zarządzaniu systemem operacyjnym obejmują regularne sprawdzanie bieżącego katalogu roboczego, aby uniknąć nieporozumień związanych z lokalizacją plików. Ponadto, polecenie to jest często używane w połączeniu z innymi komendami, takimi jak 'cd' (zmiana katalogu) i 'ls' (listowanie plików), co czyni je istotnym narzędziem w codziennej pracy w systemach opartych na Unixie.

Pytanie 18

Zaprezentowane właściwości karty sieciowej sugerują, że karta

Kod ProducentaWN-370USB
InterfejsUSB
Zgodność ze standardemIEEE 802.11 b/g/n
Ilość wyjść1 szt.
ZabezpieczeniaWEP 64/128, WPA, WPA2
Wymiary49(L) x 26(W) x 10(H) mm
A. nie oferuje szyfrowania danych
B. działa w standardzie c
C. działa w sieciach bezprzewodowych
D. działa w sieciach przewodowych z wykorzystaniem gniazda USB
Karta sieciowa podana w pytaniu działa w standardzie IEEE 802.11 b/g/n co wyraźnie wskazuje że jest to karta przeznaczona do komunikacji bezprzewodowej. Standard IEEE 802.11 jest powszechnie stosowany w sieciach Wi-Fi i obejmuje różne warianty jak b g n gdzie każdy z nich różni się zakresem prędkości i zasięgiem. Na przykład tryb n oferuje wyższe prędkości i lepszy zasięg w porównaniu do starszych wersji b i g. Karta ta łączy się z urządzeniem poprzez port USB co jest powszechnym sposobem podłączania kart sieciowych zwłaszcza w laptopach i komputerach stacjonarnych które nie mają wbudowanego modułu Wi-Fi. Praktyczne zastosowanie kart bezprzewodowych obejmuje dostęp do internetu w miejscach publicznych takich jak kawiarnie czy lotniska jak również w sieciach domowych i biurowych gdzie unika się konieczności prowadzenia kabli. Przy wyborze kart sieciowych warto zwrócić uwagę na obsługiwane standardy i zabezpieczenia takie jak WEP WPA i WPA2 które są kluczowe dla bezpieczeństwa danych przesyłanych przez sieć.

Pytanie 19

Użytkownicy dysków SSD powinni unikać wykonywania następujących działań konserwacyjnych

A. Usuwania kurzu z wnętrza jednostki centralnej
B. Defragmentacji dysku
C. Regularnego tworzenia kopii zapasowych danych
D. Regularnego sprawdzania dysku przy użyciu programu antywirusowego
Defragmentacja dysku jest procesem, który polega na reorganizacji danych na nośniku, aby zwiększyć wydajność dostępu do plików. Jednak w przypadku dysków SSD (Solid State Drive) jest to zbędne i wręcz szkodliwe. Dyski SSD działają na zasadzie pamięci flash, gdzie dane są przechowywane w komórkach pamięci. Ich architektura eliminuje problem fragmentacji, ponieważ odczyt i zapis danych nie zależy od fizycznej lokalizacji plików na nośniku. Dodatkowo, proces defragmentacji generuje zbędne cykle zapisu, co skraca żywotność dysków SSD. Zaleca się zamiast tego wykorzystywanie technologii TRIM, która optymalizuje zarządzanie przestrzenią na dysku. Na przykład, użytkownicy mogą ustawić automatyczne aktualizacje oprogramowania systemowego, które obsługują TRIM, co pozwala na optymalizację wydajności SSD bez konieczności ręcznej defragmentacji. W branży IT uznaje się, że najlepszym podejściem do konserwacji SSD jest unikanie defragmentacji, co jest zgodne z zaleceniami producentów tych nośników.

Pytanie 20

W sieci lokalnej, aby chronić urządzenia sieciowe przed przepięciami oraz różnicami napięć, które mogą wystąpić w trakcie burzy lub innych wyładowań atmosferycznych, należy zastosować

A. urządzenie typu NetProtector
B. przełącznik
C. ruter
D. sprzętową zaporę sieciową
Urządzenie typu NetProtector jest kluczowym elementem ochrony sieci LAN przed skutkami przepięć i różnic potencjałów, które mogą wystąpić w wyniku wyładowań atmosferycznych. Te urządzenia, znane również jako ograniczniki przepięć, są zaprojektowane do odprowadzania nadmiaru energii do ziemi, chroniąc w ten sposób wrażliwe sprzęty sieciowe, takie jak routery, przełączniki, serwery i inne urządzenia końcowe. Przykładowo, w przypadku burzy, kiedy może dojść do pojawienia się przepięć, NetProtektor działa jako pierwsza linia obrony, minimalizując ryzyko uszkodzeń. W praktyce, wdrażanie takich urządzeń jest rekomendowane przez organizacje zajmujące się standardami bezpieczeństwa, takie jak IEC (Międzynarodowa Komisja Elektrotechniczna) oraz NFPA (Krajowe Stowarzyszenie Ochrony Przeciwpożarowej). Dobrą praktyką jest zainstalowanie NetProtectora na każdym etapie sieci, a także regularne przeprowadzanie ich konserwacji i wymiany, aby zapewnić stałą ochronę.

Pytanie 21

Jakie polecenie w systemie Windows należy użyć, aby ustalić liczbę ruterów pośrednich znajdujących się pomiędzy hostem źródłowym a celem?

A. ipconfig
B. routeprint
C. tracert
D. arp
Aby zrozumieć, dlaczego inne polecenia nie działają tak jak 'tracert', musisz przyjrzeć się, co one właściwie robią. Na przykład, komenda 'arp' pokazuje tablicę ARP, która mapuje adresy IP na adresy MAC. To jest przydatne w małych sieciach, ale nie powie ci nic o trasie pakietów w Internecie. Czasem ludzie mogą pomyśleć, że 'arp' śledzi trasę, ale to całkowicie błędne. Działa tylko w sieci lokalnej. Z kolei 'ipconfig' pokazuje, jakie masz ustawienia interfejsów sieciowych, takie jak adresy IP czy maski podsieci. To też jest przydatne, ale nie ukazuje trasy pakietów przez ruterów. Może to prowadzić do złych wniosków, że da ci wgląd w trasę. Na koniec, 'route print' pokazuje lokalną tabelę routingu, co pomaga zrozumieć, jakie trasy są dostępne, lecz również nie obrazuje rzeczywistej trasy do celu. Wiele osób myli te funkcje z funkcją śledzenia trasy, co jest błędem.

Pytanie 22

Narzędziem systemu Windows, służącym do sprawdzenia wpływu poszczególnych procesów i usług na wydajność procesora oraz tego, w jakim stopniu generują one obciążenie pamięci czy dysku, jest

A. cleanmgr
B. credwiz
C. dcomcnfg
D. resmon
Wybór innego narzędzia niż 'resmon' może wynikać z mylenia jego funkcji z typowymi zadaniami administracyjnymi Windows. Przykładowo, 'credwiz' to narzędzie Kreatora Kopii Zapasowej i Przywracania Haseł, które w zasadzie służy tylko do eksportu i importu poświadczeń – nie ma żadnego związku z analizą wydajności, monitorowaniem procesora czy obciążenia pamięci. Często można się pomylić, bo niektóre narzędzia systemowe mają niejasne nazwy, ale credwiz zupełnie nie nadaje się do diagnostyki wydajności. Równie mylący może być 'cleanmgr', który pełni funkcję Oczyszczania dysku. Tutaj chodzi wyłącznie o usuwanie niepotrzebnych plików (np. tempów, plików z kosza), by zwolnić miejsce na dysku – nie daje on żadnej informacji o tym, które procesy czy usługi obciążają system. Zdarza się, że użytkownicy myślą, iż skoro cleanmgr wpływa na „porządek” na dysku, to musi coś mieć wspólnego z wydajnością, ale to zupełnie inne zagadnienie. Co do 'dcomcnfg', jest to narzędzie służące do konfiguracji komponentów DCOM oraz usług COM+, więc właściwie dotyczy tylko ustawień komunikacji międzyprocesowej lub rozproszonych aplikacji, co jest dosyć specjalistycznym zagadnieniem. Z mojego doświadczenia, najczęstszy błąd to wrzucanie wszystkich narzędzi administracyjnych do jednego worka i zakładanie, że każde z nich może pomóc w analizie wydajności systemu. Kluczowe jest wybranie właściwego narzędzia do konkretnego zadania – w tym przypadku tylko 'resmon' pozwala rzeczywiście zobaczyć, jak poszczególne procesy i usługi wpływają na wykorzystanie procesora, pamięci czy dysku. W branży IT to podstawa: dobre rozumienie narzędzi, ich zastosowania i ograniczeń zawsze przyspiesza rozwiązywanie problemów – tego warto się trzymać.

Pytanie 23

W programie Explorator systemu Windows, naciśnięcie klawisza F5 zazwyczaj powoduje wykonanie następującej operacji:

A. kopiowania
B. uruchamiania drukowania zrzutu ekranowego
C. otwierania okna wyszukiwania
D. odświeżania zawartości bieżącego okna
Klawisz F5 w programie Explorator systemu Windows jest standardowo przypisany do czynności odświeżania zawartości bieżącego okna. Oznacza to, że naciśnięcie tego klawisza spowoduje ponowne załadowanie aktualnych danych wyświetlanych w folderze lub na stronie internetowej. Ta funkcjonalność jest szczególnie przydatna w sytuacjach, gdy chcemy upewnić się, że widzimy najnowsze informacje, na przykład po dodaniu lub usunięciu plików. W praktyce, odświeżanie okna pozwala na szybkie sprawdzenie zmian w zawartości, co jest nieocenione w codziennej pracy z plikami i folderami. Warto zaznaczyć, że jest to zgodne z ogólnym standardem interakcji użytkownika w systemach operacyjnych, gdzie klawisz F5 jest powszechnie używany do odświeżania. W kontekście dobrych praktyk, znajomość skrótów klawiaturowych, takich jak F5, przyczynia się do zwiększenia efektywności pracy i oszczędności czasu, stanowiąc istotny element przeszkolenia użytkowników w zakresie obsługi systemu Windows.

Pytanie 24

Czytnik w napędzie optycznym, który jest zanieczyszczony, należy wyczyścić

A. spirytusem
B. rozpuszczalnikiem ftalowym
C. benzyną ekstrakcyjną
D. izopropanolem
Izopropanol jest doskonałym środkiem czyszczącym do usuwania zanieczyszczeń z czytników w napędach optycznych, ponieważ ma doskonałe właściwości rozpuszczające i szybko odparowuje, co minimalizuje ryzyko pozostawienia resztek na powierzchni optycznej. Dzięki temu zmniejsza się ryzyko uszkodzenia elementów optycznych, takich jak soczewki, które są wrażliwe na skrajne substancje chemiczne. Izopropanol jest również bezpieczniejszy w użyciu niż wiele innych rozpuszczalników, ponieważ nie jest toksyczny w takich stężeniach, które są stosowane do czyszczenia. Dobrą praktyką jest stosowanie izopropanolu o stężeniu co najmniej 70%, co zapewnia skuteczne usunięcie zanieczyszczeń, jak kurz czy odciski palców. Warto również pamiętać, aby nie stosować nadmiaru środka czyszczącego, co mogłoby prowadzić do zalania elementów elektronicznych. Użycie izopropanolu, jako zgodne z obowiązującymi standardami czyszczenia sprzętu elektronicznego, jest rekomendowane przez producentów sprzętu oraz specjalistów w tej dziedzinie, co czyni go najlepszym wyborem do czyszczenia czytników w napędach optycznych.

Pytanie 25

Który rodzaj złącza nie występuje w instalacjach światłowodowych?

A. MTRJ
B. GG45
C. FC
D. SC
Złącza SC, FC i MTRJ są powszechnie używane w okablowaniu światłowodowym, co może prowadzić do nieporozumień w zakresie ich zastosowania. Złącze SC, znane z prostego mechanizmu zatrzaskowego, umożliwia szybkie i łatwe podłączanie oraz odłączanie kabli, co jest korzystne w dynamicznych środowiskach telekomunikacyjnych. FC, z kolei, jest złączem z ferrulą, które zapewnia doskonałe połączenie i minimalizuje straty sygnału, co czyni je idealnym rozwiązaniem w zastosowaniach wymagających wysokiej wydajności. MTRJ, dzięki możliwości podłączenia dwóch włókien w jednym złączu, jest niezwykle praktyczne przy instalacjach, gdzie przestrzeń jest ograniczona. Wybierając złącza do systemów światłowodowych, ważne jest, aby kierować się standardami branżowymi, które definiują parametry techniczne i wymogi dotyczące wydajności. Typowe błędy myślowe, które mogą prowadzić do błędnych odpowiedzi, obejmują mylenie zastosowań różnych typów złącz i nieznajomość ich specyfikacji. Złącza te są projektowane z myślą o różnych technologiach i powinny być stosowane zgodnie z przeznaczeniem, aby zminimalizować straty sygnału i zapewnić optymalną wydajność sieci. Dlatego ważne jest, aby dobrze zrozumieć, które złącza są odpowiednie dla okablowania światłowodowego, a które można stosować tylko w systemach opartych na kablach miedzianych.

Pytanie 26

Na schemacie przedstawiono podstawowe informacje dotyczące ustawień karty sieciowej. Do jakiej klasy należy adres IP przypisany do tej karty?

Ilustracja do pytania
A. Klasa C
B. Klasa B
C. Klasa A
D. Klasa D
Adres IP 192.168.56.1 należy do klasy C co wynika z jego pierwszego oktetu który mieści się w zakresie od 192 do 223 Adresy klasy C są szeroko stosowane w małych sieciach lokalnych ze względu na możliwość posiadania do 254 hostów w jednej podsieci co jest idealne dla wielu przedsiębiorstw i organizacji o umiarkowanej wielkości Klasa C jest częścią standardowego modelu klasowego IP opracowanego w celu uproszczenia rozdzielania adresów IP Przez wyznaczenie większej liczby adresów sieciowych z mniejszą liczbą hostów Klasa C odpowiada na potrzeby mniejszych sieci co jest korzystne dla firm które nie potrzebują dużego zakresu adresów IP Dodatkowo adresy z puli 192.168.x.x są częścią zarezerwowanej przestrzeni adresowej dla sieci prywatnych co oznacza że nie są routowane w Internecie Zgodność z tym standardem zapewnia stosowanie odpowiednich praktyk zarządzania adresacją IP oraz bezpieczeństwa sieciowego dzięki czemu sieci prywatne mogą być bezpiecznie używane bez ryzyka kolizji z publicznymi adresami IP

Pytanie 27

Jaki zapis w systemie binarnym odpowiada liczbie 91 w systemie szesnastkowym?

A. 10001011
B. 10011001
C. 10001001
D. 10010001
Liczba 91 w systemie szesnastkowym to 5B. Aby zamienić tę liczbę na system binarny, najpierw przekształcamy każdy znak szesnastkowy na odpowiadający mu zapis binarny. Znak '5' w systemie szesnastkowym odpowiada binarnemu '0101', a 'B' (które w systemie dziesiętnym jest liczbą 11) odpowiada binarnemu '1011'. Zatem, 5B w systemie binarnym to połączenie tych dwóch reprezentacji, co daje nam 0101 1011. Po usunięciu wiodących zer uzyskujemy 1001001, co jest równe 91 w systemie dziesiętnym. Warto zauważyć, że różne systemy reprezentacji liczb mają swoje zastosowania, na przykład w programowaniu, transmisji danych czy przechowywaniu informacji. Zrozumienie konwersji między systemami liczbowymi jest kluczowe w dziedzinach takich jak informatyka, inżynieria oprogramowania czy elektronika. Dobrze jest również znać zasady konwersji, aby uniknąć błędów w obliczeniach oraz przy projektowaniu systemów komputerowych.

Pytanie 28

Okablowanie strukturalne klasyfikuje się jako część infrastruktury

A. pasywnej
B. dalekosiężnej
C. terytorialnej
D. aktywnej
Okablowanie strukturalne jest kluczowym elementem infrastruktury pasywnej w systemach telekomunikacyjnych. W odróżnieniu od infrastruktury aktywnej, która obejmuje urządzenia elektroniczne takie jak przełączniki i routery, infrastruktura pasywna dotyczy komponentów, które nie wymagają zasilania ani aktywnego zarządzania. Okablowanie strukturalne, które obejmuje kable miedziane, światłowodowe oraz elementy takie jak gniazdka, związki oraz paneli krosowniczych, jest projektowane zgodnie z międzynarodowymi standardami, takimi jak ISO/IEC 11801 oraz ANSI/TIA-568. Te standardy definiują normy dotyczące instalacji, wydajności i testowania systemów okablowania. Przykładem zastosowania okablowania strukturalnego jest zapewnienie szybkiej i niezawodnej łączności w biurach oraz centrach danych, gdzie poprawne projektowanie i instalacja systemu okablowania mają kluczowe znaczenie dla efektywności operacyjnej. Dobre praktyki inżynieryjne w tej dziedzinie obejmują staranne planowanie topologii sieci oraz przestrzeganie zasad dotyczących długości kabli i zakłóceń elektromagnetycznych, co przekłada się na wysoką jakość sygnału i minimalizację błędów transmisji.

Pytanie 29

Jakie jest najwyższe możliwe tempo odczytu płyt CD-R w urządzeniu o oznaczeniu x48?

A. 480 kB/s
B. 10000 kB/s
C. 4800 kB/s
D. 7200 kB/s
Nieprawidłowe odpowiedzi wynikają z błędnego zrozumienia prędkości odczytu napędów CD. Odpowiedź 10000 kB/s sugeruje, że napęd mógłby odczytywać dane znacznie szybciej niż to możliwe w standardzie x48. Warto zauważyć, że prędkość odczytu jest definiowana w odniesieniu do bazowej prędkości 150 kB/s, co oznacza, że prędkości powyżej 7200 kB/s są niemożliwe do osiągnięcia w przypadku standardowych napędów CD. Odpowiedź 4800 kB/s odnosi się do prędkości x32 (32 x 150 kB/s), co również jest błędne w kontekście oznaczenia x48. Odpowiedź 480 kB/s jest kolejnym zrozumieniem prędkości, które odpowiada prędkości x3, co również nie ma związku z napędem x48. Typowe błędy myślowe, które prowadzą do takich niepoprawnych wniosków, to zakładanie, że prędkości są sumowane lub mnożone w sposób niezgodny z przyjętymi standardami. Użytkownicy muszą być świadomi, że oznaczenia takie jak x48 nie odnoszą się do bezpośrednich wartości transferu, ale są mnożnikami bazowej prędkości, co wymaga znajomości podstawowych zasad dotyczących technologii CD oraz standardów branżowych.

Pytanie 30

W systemie Linux Ubuntu Server, aby przeprowadzić instalację serwera DHCP, należy wykorzystać polecenie

A. sudo apt-get install isc-dhcp-server
B. sudo service isc-dhcp-server install
C. sudo apt-get isc-dhcp-server start
D. sudo service isc-dhcp-server start
Wszystkie inne odpowiedzi zawierają błędne koncepcje związane z instalacją serwera DHCP w systemie Ubuntu. Na przykład, polecenie 'sudo service isc-dhcp-server install' jest niepoprawne, ponieważ 'service' jest używane do zarządzania już zainstalowanymi usługami, a nie do ich instalacji. W rzeczywistości, aby zainstalować oprogramowanie, należy użyć APT, jak w poprawnej odpowiedzi, a nie menedżera usług. Dodatkowo, polecenie 'sudo service isc-dhcp-server start' również nie jest poprawne w kontekście instalacji, ponieważ to polecenie tylko uruchamia usługę DHCP, która musi być wcześniej zainstalowana. Bez wcześniejszej instalacji, polecenie to zakończy się błędem. Ponadto, odpowiedź 'sudo apt-get isc-dhcp-server start' jest syntaktycznie błędna, ponieważ 'apt-get' nie obsługuje komendy 'start'; ta komenda nie pełni funkcji zarządzania usługami. Zamiast tego, do zarządzania usługami używa się 'systemctl' lub 'service', po wcześniejszej instalacji. Typowe błędy myślowe, które prowadzą do takich niepoprawnych wniosków, to mylenie procesu instalacji z zarządzaniem usługami oraz niewłaściwe zrozumienie roli menedżera pakietów w systemach opartych na Debianie, takich jak Ubuntu. Wiedza o poprawnych komendach i ich kontekście jest kluczowa dla efektywnego zarządzania systemem operacyjnym.

Pytanie 31

Dysk z systemem plików FAT32, na którym regularnie przeprowadza się działania usuwania starych plików oraz dodawania nowych plików, doświadcza

A. fragmentacji
B. kolokacji
C. relokacji
D. defragmentacji
Fragmentacja to proces, w którym dane są rozproszone w różnych lokalizacjach na dysku, co może wystąpić w systemie plików FAT32 podczas częstego kasowania starych plików i zapisywania nowych. Kiedy plik jest usuwany, przestrzeń, którą zajmował, staje się dostępna do zapisania nowych danych. Jednak w systemie plików FAT32, nowo zapisane pliki mogą nie zawsze zajmować sąsiadującą przestrzeń, co prowadzi do rozdzielenia części pliku w różnych lokalizacjach. Przykładowo, jeśli masz plik o wielkości 10 MB, a przestrzeń na dysku jest podzielona na fragmenty o wielkości 5 MB, to zapisując ten plik, system może umieścić jego części w różnych miejscach, co skutkuje fragmentacją. Efektem tego procesu jest spowolnienie wydajności dysku, ponieważ głowica dysku musi przemieszczać się pomiędzy różnymi fragmentami, aby odczytać cały plik. Aby zaradzić fragmentacji, regularne defragmentowanie dysku jest zalecane, co pozwala na uporządkowanie danych i poprawę szybkości dostępu do plików.

Pytanie 32

Jaką rolę pełni komponent wskazany strzałką na schemacie chipsetu płyty głównej?

Ilustracja do pytania
A. Umożliwia korzystanie z pamięci DDR3-800 oraz DDR2-800 w trybie DUAL Channel
B. Pozwala na podłączenie i używanie pamięci DDR 400 w trybie DUAL Channel w celu zapewnienia kompatybilności z DUAL Channel DDR2 800
C. Umożliwia wykorzystanie magistrali o szerokości 128 bitów do transferu danych między pamięcią RAM a kontrolerem pamięci
D. Pozwala na wykorzystanie standardowych pamięci DDR SDRAM
Nieprawidłowe odpowiedzi wynikają z różnych nieporozumień dotyczących specyfikacji i funkcji chipsetów płyty głównej. W pierwszej kolejności ważne jest zrozumienie roli dual channel w kontekście pamięci RAM. Technologia ta polega na jednoczesnym użyciu dwóch kanałów pamięci co pozwala na podwojenie szerokości magistrali z 64 do 128 bitów. Tym samym błędne jest przekonanie że pozwala ona na zgodność z innymi standardami jak DDR2 800 i DDR3 800 gdyż te standardy różnią się specyfikacją techniczną napięciem i architekturą. Kolejny błąd to przypuszczenie że chipset umożliwia korzystanie z pamięci DDR3 wraz z DDR2 co jest technicznie niemożliwe z powodu różnych wymagań tych pamięci w kontekście kontrolerów i gniazd na płycie głównej. Ostatecznie mylne jest twierdzenie że chipset pozwala na wykorzystanie typowych pamięci DDR SDRAM. Ten standard pamięci jest znacznie starszy i niekompatybilny z nowoczesnymi chipsetami które obsługują DDR2 i DDR3. Typowym błędem myślowym jest tu ogólne założenie że nowsze płyty główne są w stanie obsłużyć wszystkie starsze standardy co jest często fizycznie niemożliwe bez dedykowanych kontrolerów pamięci. Edukacja w zakresie specyfikacji technicznych i ich zgodności jest kluczowa dla zrozumienia funkcjonowania nowoczesnych systemów komputerowych.

Pytanie 33

Do umożliwienia komunikacji pomiędzy sieciami VLAN, wykorzystuje się

A. Router
B. Modem
C. Punkt dostępowy
D. Koncentrator
Router jest urządzeniem, które umożliwia komunikację między różnymi sieciami, w tym sieciami VLAN. VLAN, czyli Virtual Local Area Network, to technologia, która pozwala na segregację ruchu sieciowego w obrębie tej samej fizycznej sieci. Aby dane mogły być wymieniane między różnymi VLAN-ami, konieczne jest użycie routera, który zajmuje się przesyłaniem pakietów danych między tymi odrębnymi segmentami sieci. Router jest w stanie analizować adresy IP oraz inne informacje w nagłówkach pakietów, co pozwala na ich prawidłowe kierowanie. Przykładowo, w dużych organizacjach, gdzie różne działy mogą mieć swoje VLAN-y (np. dział finansowy i IT), router umożliwia tym działom wymianę informacji, przy jednoczesnym zachowaniu bezpieczeństwa i segregacji danych. Stosowanie routerów w kontekście VLAN-ów jest zgodne z dobrą praktyką w projektowaniu rozbudowanych architektur sieciowych, co podkreśla znaczenie tych urządzeń w zwiększaniu efektywności i bezpieczeństwa komunikacji sieciowej.

Pytanie 34

Interfejs UDMA to interfejs

A. szeregowy, który służy do wymiany danych pomiędzy pamięcią RAM a dyskami twardymi.
B. szeregowy, używany do podłączania urządzeń wejścia.
C. równoległy, który został zastąpiony przez interfejs SATA.
D. równoległy, wykorzystywany między innymi do podłączania kina domowego do komputera.
Interfejs UDMA (Ultra Direct Memory Access) to rozwiązanie, które przez dłuższy czas było standardem w komputerach klasy PC, zwłaszcza do podłączania dysków twardych i napędów optycznych przy użyciu taśm ATA/IDE. UDMA to interfejs równoległy – dane przesyłane były wieloma przewodami jednocześnie, co w tamtym czasie pozwalało na osiągnięcie całkiem sporych prędkości transferu, nawet do 133 MB/s w wersji UDMA 6 (Ultra ATA/133). Jednak wraz z rozwojem technologii, pojawiły się szeregowe interfejsy takie jak SATA, które są mniej podatne na zakłócenia elektromagnetyczne i umożliwiają wygodniejsze prowadzenie przewodów oraz wyższe prędkości. Moim zdaniem warto znać historię UDMA, a nawet czasem spotyka się jeszcze starsze komputery lub sprzęt przemysłowy z tym interfejsem – wtedy wiedza o nim jest bardzo przydatna przy serwisie. W praktyce UDMA wymagał stosowania 80-żyłowych taśm, gdzie połowa przewodów była wykorzystywana do uziemienia i ochrony sygnału. To pokazuje, jak równoległość przesyłu wymuszała dodatkowe zabiegi techniczne. Dla porównania, SATA, który go zastąpił, przesyła dane tylko dwoma przewodami (plus masa), co jest dużo prostsze. No i jeszcze jedno – UDMA był typowo używany właśnie do dysków ATA, a jego obsługa wymagała wsparcia zarówno ze strony płyty głównej, jak i systemu operacyjnego. W skrócie: UDMA to interfejs równoległy, który dziś już praktycznie całkiem ustąpił szeregowej magistrali SATA. Warto o tym pamiętać, bo czasem można się jeszcze z nim spotkać, np. podczas modernizacji starszych maszyn.

Pytanie 35

Jakie oprogramowanie należy zainstalować, aby serwer Windows mógł obsługiwać usługi katalogowe?

A. usługi zarządzania prawami
B. rolę serwera DHCP
C. rolę serwera Web
D. kontroler domeny
Kontroler domeny jest kluczowym elementem infrastruktury sieciowej opartej na systemach Windows, który zarządza usługami katalogowymi w sieci. Głównym zadaniem kontrolera domeny jest przechowywanie informacji o członkach domeny, w tym komputerach i użytkownikach, oraz zarządzanie ich uwierzytelnianiem i autoryzacją. Dzięki Active Directory, które jest głównym komponentem usługi katalogowej, administratorzy mogą zarządzać dostępem do zasobów sieciowych, co jest niezbędne w każdej organizacji. Przykładem zastosowania kontrolera domeny w praktyce może być sytuacja, gdy pracownik loguje się do swojego komputera w sieci korporacyjnej; kontroler domeny weryfikuje jego dane uwierzytelniające i przyznaje dostęp do odpowiednich zasobów. Zgodnie z najlepszymi praktykami, w większych organizacjach zaleca się posiadanie co najmniej dwóch kontrolerów domeny dla zapewnienia redundancji i zwiększonej dostępności usług. Dzięki temu organizacja może zminimalizować ryzyko utraty dostępu do krytycznych zasobów w przypadku awarii jednego z kontrolerów.

Pytanie 36

Układ cyfrowy wykonujący operację logiczną koniunkcji opiera się na bramce logicznej

A. OR
B. NOT
C. AND
D. EX-OR
Bramka AND to taki podstawowy element w układach cyfrowych, który działa na zasadzie, że wyjście jest wysokie (1), jeśli wszystkie sygnały wejściowe też są wysokie (1). W praktyce używa się jej w różnych projektach inżynieryjnych, na przykład w budowie procesorów czy systemów alarmowych. Działa to tak, że w systemie alarmowym, żeby alarm się włączył, muszą działać wszystkie czujniki, na przykład czujnik ruchu i czujnik dymu. Ogólnie rzecz biorąc, rozumienie bramek logicznych, jak AND, OR, NOT, jest kluczowe, kiedy projektujesz bardziej skomplikowane układy. Bez dobrego zrozumienia tych podstawowych elementów, ciężko robić coś bardziej zaawansowanego. Więc to jest naprawdę istotne dla każdego, kto chce się zajmować elektroniką i automatyką.

Pytanie 37

Symbole i oznaczenia znajdujące się na zamieszczonej tabliczce znamionowej podzespołu informują między innymi o tym, że produkt jest

Ilustracja do pytania
A. wykonany z aluminium i w pełni nadaje się do recyklingu.
B. szkodliwy dla środowiska i nie może być wyrzucany wraz z innymi odpadami.
C. przyjazny dla środowiska na etapie produkcji, użytkowania i utylizacji.
D. niebezpieczny i może emitować nadmierny hałas podczas pracy zestawu komputerowego.
Odpowiedź jest prawidłowa, bo na tabliczce znamionowej wyraźnie widać symbol przekreślonego kosza na śmieci. To jest jedno z najważniejszych oznaczeń, jakie można spotkać na sprzęcie elektronicznym czy elektrycznym. Symbol ten, zgodnie z dyrektywą WEEE (Waste Electrical and Electronic Equipment Directive), oznacza, że produktu nie wolno wyrzucać razem z innymi odpadami komunalnymi. Wynika to z faktu, że urządzenie może zawierać substancje szkodliwe dla środowiska, takie jak metale ciężkie (np. ołów, rtęć, kadm) czy komponenty trudne do rozkładu. W praktyce oznacza to, że taki sprzęt należy oddać do specjalnego punktu zbiórki elektroodpadów. Moim zdaniem, to mega ważna wiedza, bo nie chodzi tylko o przestrzeganie prawa, ale o odpowiedzialność ekologiczną. W branży IT i elektroniki to już właściwie standard – firmy często nawet pomagają klientom w utylizacji starego sprzętu, bo to też wpływa na ich wizerunek. Co ciekawe, niektóre podzespoły po recyklingu mogą być ponownie wykorzystane, ale tylko wtedy, gdy trafią do właściwych punktów zbiórki. Jeśli ktoś się tym interesuje, warto poczytać więcej o oznaczeniach WEEE i RoHS, które określają też, jakich substancji nie można używać w produkcji takiego sprzętu. W skrócie – nie wyrzucaj sprzętu elektronicznego do zwykłego kosza, bo to szkodzi środowisku i grozi karą.

Pytanie 38

Które z poniższych stwierdzeń dotyczących konta użytkownika Active Directory w systemie Windows jest prawdziwe?

A. Nazwa logowania użytkownika może zawierać mniej niż 21 znaków
B. Nazwa logowania użytkownika nie może mieć długości większej niż 100 bajtów
C. Nazwa logowania użytkownika może mieć długość przekraczającą 100 bajtów
D. Nazwa logowania użytkownika powinna mieć nie więcej niż 20 znaków
Odpowiedzi sugerujące, że nazwa logowania użytkownika w Active Directory musi mieć mniej niż 20 lub 21 znaków, są błędne. W rzeczywistości, Active Directory nie wprowadza takiego ograniczenia, co jest kluczowe dla zrozumienia elastyczności systemu. Użytkownicy mogą być wprowadzani do systemu z bardziej złożonymi i dłuższymi nazwami, co jest szczególnie istotne w dużych organizacjach, gdzie unikalne identyfikatory są często niezbędne. Utrzymywanie krótszych nazw logowania może prowadzić do zamieszania i niejednoznaczności, zwłaszcza gdy w danej organizacji pracuje wiele osób o podobnych imionach i nazwiskach. Ponadto, nieprawdziwe jest stwierdzenie, że nazwa logowania nie może mieć długości większej niż 100 bajtów. W rzeczywistości, Active Directory pozwala na dłuższe nazwy, co wspiera różnorodność i unikalność kont użytkowników. Błędne koncepcje związane z długością nazw logowania mogą prowadzić do problemów z integracją systemów oraz zwiększać ryzyko błędów przy logowaniu. Użytkownicy muszą być świadomi właściwych praktyk, aby zminimalizować nieporozumienia i poprawić bezpieczeństwo systemów.

Pytanie 39

Jak należy rozmieszczać gniazda komputerowe RJ45 w odniesieniu do przestrzeni biurowej zgodnie z normą PN-EN 50174?

A. Gniazdo komputerowe 2 x RJ45 na 20 m2 powierzchni biura
B. Gniazdo komputerowe 2 x RJ45 na 10 m2 powierzchni biura
C. Gniazdo komputerowe 1 x RJ45 na 20 m2 powierzchni biura
D. Gniazdo komputerowe 1 x RJ45 na 10 m2 powierzchni biura
Wybrane odpowiedzi, które sugerują, że na 10 m2 powierzchni biura powinno przypadać jedno gniazdo RJ45 lub że na 20 m2 wystarczą dwa gniazda, są niezgodne z wymogami normy PN-EN 50174, która jednoznacznie określa minimalne standardy dotyczące infrastruktury telekomunikacyjnej. Ograniczenie liczby gniazd do jednego na 10 m2 może prowadzić do niedoboru punktów dostępu, co w praktyce może skutkować przeciążeniem sieci oraz ograniczoną funkcjonalnością biura. Użytkownicy mogą napotkać trudności w podłączaniu różnych urządzeń, co z kolei obniża efektywność pracy oraz zwiększa frustrację. Innym problemem jest wskazanie na 2 gniazda na 20 m2, które również nie spełnia standardów, gdyż norma sugeruje wyższą gęstość gniazd na mniejszą powierzchnię. To podejście może wynikać z niewłaściwej interpretacji potrzeb związanych z infrastrukturą IT w biurze. Współczesne biura wymagają elastyczności oraz efektywności, a zbyt mała liczba gniazd może negatywnie wpłynąć na realizację tych wymagań. Warto zwrócić uwagę, że rozmieszczenie gniazd powinno być planowane z uwzględnieniem przyszłych potrzeb oraz rozwoju technologii, co czyni te błędne odpowiedzi nie tylko niezgodnymi z normami, ale także nieprzemyślanymi w kontekście długoterminowego użytkowania.

Pytanie 40

Dane przedstawione na ilustracji są rezultatem działania komendy

Ilustracja do pytania
A. nslookup
B. ipconfig
C. tracert
D. ping
Polecenie ping jest podstawowym narzędziem diagnostycznym służącym do sprawdzania dostępności hosta w sieci oraz mierzenia czasu odpowiedzi. Jednak w przeciwieństwie do tracert nie dostarcza informacji o trasie jaką pakiety pokonują do celu. Ping jest często używany do szybkiego sprawdzenia czy dany host jest osiągalny oraz do oceny jakości połączenia lecz nie pozwala na analizę poszczególnych węzłów sieciowych. Polecenie ipconfig jest narzędziem stosowanym do wyświetlania konfiguracji sieciowej komputera w systemach Windows. Pozwala ono uzyskać informacje o adresie IP masce podsieci i bramie domyślnej co jest przydatne w lokalnej konfiguracji sieci ale nie ma związku z trasowaniem pakietów przez sieć. Natomiast nslookup jest narzędziem służącym do sprawdzania nazw domenowych i ich przypisanych adresów IP co jest przydatne szczególnie przy diagnozowaniu problemów z DNS. Chociaż wszystkie te narzędzia są istotne dla administratorów sieci do różnych celów tracert jest wyjątkowe w kontekście analizy trasy pakietów i identyfikacji problematycznych węzłów w sieci. Zrozumienie różnic między tymi narzędziami pozwala na ich efektywne zastosowanie w praktyce i unikanie błędów diagnostycznych co jest kluczowe w utrzymaniu prawidłowego funkcjonowania sieci komputerowych. Dzięki świadomej nawigacji po dostępnych narzędziach możliwe jest szybkie i precyzyjne identyfikowanie problemów co minimalizuje ryzyko długotrwałych przestojów w sieci oraz zwiększa jej wydajność i niezawodność. Dlatego tak istotne jest aby znać specyfikę każdego narzędzia i umieć je zastosować w odpowiednim kontekście diagnostycznym i administracyjnym.