Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 21 lutego 2026 18:28
  • Data zakończenia: 21 lutego 2026 18:54

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na podstawie fragmentu rysunku wykonawczego określ długość krawędzi X.

Ilustracja do pytania
A. 60 mm
B. 30 mm
C. 10 mm
D. 20 mm
Długość krawędzi X wynosi 20 mm. Widać to, gdy dokładnie przeanalizuje się wymiary całego rysunku – całość ma szerokość 70 mm, a fragment poziomy poniżej linii oznaczonej X ma wymiary 30 mm (od środka do prawej krawędzi) i 20 mm (po lewej stronie odcięcie ukośne). Oznacza to, że pozostaje odcinek 70 − 30 − 20 = 20 mm, czyli właśnie wartość X. Takie zadania bardzo dobrze uczą logicznego myślenia i analizy rysunku technicznego – trzeba czytać wymiary nie tylko tam, gdzie są podane, ale też szukać ich pośrednio przez różnice. W praktyce warsztatowej (np. w obróbce skrawaniem lub przy cięciu blach) takie proste obliczenia robi się niemal automatycznie. Moim zdaniem warto zawsze pamiętać o zasadzie: jeśli czegoś nie ma wprost wymiarowanego, to da się to wyliczyć z układu pozostałych wymiarów. W dokumentacji technicznej stosuje się wymiarowanie łańcuchowe lub współrzędne – tu mamy przykład łańcuchowego, więc każde przesunięcie w poziomie można łatwo zsumować lub odjąć. To niby drobny szczegół, ale takie rzeczy robią różnicę przy czytaniu rysunku jak zawodowiec.

Pytanie 2

Stosując zasadę stałego spadku napięcia na przewodzie zasilającym, w przypadku zwiększenia dwukrotnie odległości odbiornika od źródła zasilania należy zastosować przewód o

Ilustracja do pytania
A. cztery razy większym polu przekroju.
B. cztery razy mniejszym polu przekroju.
C. dwa razy mniejszym polu przekroju.
D. dwa razy większym polu przekroju.
W przypadku wyboru przewodu o dwa razy mniejszym polu przekroju, spadek napięcia byłby jeszcze większy przy wydłużeniu przewodu, co prowadzi do większych strat energii. To niezgodne z zasadą efektywności energetycznej, ponieważ większe straty mogą skutkować przegrzewaniem się przewodów, co jest niebezpieczne. Z kolei wybór przewodu o cztery razy większym polu przekroju jest nieekonomiczny i niepraktyczny, ponieważ przewód byłby zbyt duży i ciężki, co zwiększałoby koszty materiałów i instalacji bez rzeczywistej potrzeby. Natomiast przewód o cztery razy mniejszym przekroju to jeszcze gorszy wybór, ponieważ drastycznie zwiększyłby się spadek napięcia, co mogłoby prowadzić do niedostatecznego zasilania i uszkodzenia urządzeń podłączonych na końcu linii. Częstym błędem jest niedocenianie znaczenia odpowiedniego przekroju przewodów, który jest kluczowy dla stabilnej i bezpiecznej pracy instalacji elektrycznej. Normy takie jak PN-IEC 60364 dotyczące projektowania instalacji elektrycznych jasno wskazują, że wartość spadku napięcia powinna być utrzymywana na niskim poziomie, aby zapewnić efektywność i bezpieczeństwo systemu.

Pytanie 3

Do którego przyłącza zaworu hydraulicznego należy podłączyć zbiornik z cieczą hydrauliczną?

Ilustracja do pytania
A. B
B. P
C. T
D. A
Przyłącze T w zaworze hydraulicznym jest przeznaczone do podłączenia zbiornika z cieczą hydrauliczną. To przyłącze, zwane także portem powrotu, umożliwia odprowadzenie cieczy powracającej do zbiornika z systemu hydraulicznego, po tym jak wykonała swoje zadanie, np. przesunięcie tłoka w siłowniku. Jest to kluczowe dla utrzymania prawidłowego obiegu cieczy i zapobiegania nadmiernemu ciśnieniu w układzie. W praktyce, prawidłowe podłączenie zbiornika do przyłącza T pozwala na efektywne działanie całego systemu i uniknięcie awarii spowodowanych zbyt dużym ciśnieniem. Moim zdaniem, znajomość tego typu detali jest niezbędna dla każdego, kto chce pracować z hydrauliką, ponieważ błędne podłączenie może prowadzić do poważnych problemów. Standardy branżowe wyraźnie wskazują na konieczność stosowania się do opisanych zasad przy projektowaniu i konserwacji systemów hydraulicznych.

Pytanie 4

Do sygnalizacji położenia tłoka siłownika pneumatycznego, którego symbol graficzny pokazano na rysunku, należy zastosować czujnik

Ilustracja do pytania
A. ultradźwiękowy.
B. indukcyjny.
C. pojemnościowy.
D. magnetyczny.
Zastosowanie czujnika magnetycznego do sygnalizacji położenia tłoka siłownika pneumatycznego to bardzo trafny wybór. W praktyce przemysłowej najczęściej stosuje się siłowniki magnetyczne, gdzie na tłoku zamontowany jest magnes. Czujnik magnetyczny, zamontowany na korpusie siłownika, wykrywa obecność tego magnesu, co pozwala na precyzyjne określenie położenia tłoka. Jest to rozwiązanie powszechnie stosowane w automatyce, ponieważ czujniki magnetyczne są bezkontaktowe i odporne na zużycie mechaniczne, co wydłuża ich żywotność. Warto wspomnieć, że są one także odporne na wpływ zanieczyszczeń i mogą pracować w trudnych warunkach środowiskowych, co czyni je niezwykle wszechstronnymi. Standardy branżowe, takie jak ISO 5599 dotyczące pneumatyki, często wspominają o wykorzystaniu czujników magnetycznych w takich zastosowaniach. Moim zdaniem, takie rozwiązanie jest zarówno ekonomiczne, jak i efektywne, gdyż minimalizuje ryzyko awarii dzięki swojej prostocie i niezawodności. To podejście pozwala również na łatwe zintegrowanie z systemami automatyki, co jest niezwykle istotne w nowoczesnych zakładach produkcyjnych. Dodatkowo, czujniki magnetyczne mogą być wyposażone w różne funkcje, takie jak możliwość programowania punktów przełączania, co zwiększa ich funkcjonalność i elastyczność zastosowań.

Pytanie 5

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801 pełni w układzie przedstawionym na rysunku funkcję

Ilustracja do pytania
A. interfejsu komunikacyjnego.
B. modułu wejściowego.
C. zasilacza sterownika PLC.
D. modułu wyjściowego.
Analizując dostępne opcje, warto zastanowić się nad każdym z błędnych wyborów, aby zrozumieć, dlaczego mogą wprowadzać w błąd. Interfejs komunikacyjny to element, który umożliwia wymianę danych pomiędzy różnymi urządzeniami. W kontekście PLC, mógłby służyć do komunikacji z innymi sterownikami lub komputerem. Jednak w tym układzie ADMC-1801 pełni rolę modułu wejściowego, co czyni tę odpowiedź niepoprawną. Zasilacz sterownika PLC jest natomiast odpowiedzialny za dostarczenie odpowiedniego napięcia i prądu do urządzenia, co jest kluczowe dla jego prawidłowego działania. W diagramie nie ma wskazań, które potwierdzałyby tę funkcję dla ADMC-1801. Kolejną możliwością jest moduł wyjściowy, który steruje elementami wykonawczymi na podstawie decyzji podejmowanych przez sterownik PLC. Tego rodzaju moduły są kluczowe w procesie automatyki, lecz nie jest to rola ADMC-1801 w przedstawionym schemacie. Częstym błędem jest mylenie funkcji poszczególnych elementów systemu automatyki, co może wynikać z braku doświadczenia lub nieznajomości specyfikacji. Poprawne zrozumienie ról poszczególnych modułów jest kluczowe w projektowaniu i utrzymaniu systemów sterowania, co wpływa na efektywność i bezpieczeństwo procesów produkcyjnych.

Pytanie 6

Na którym rysunku prawidłowo przedstawiono początek sekwencji współbieżnej sieci SFC?

A. Rysunek 4.
Ilustracja do odpowiedzi A
B. Rysunek 2.
Ilustracja do odpowiedzi B
C. Rysunek 3.
Ilustracja do odpowiedzi C
D. Rysunek 1.
Ilustracja do odpowiedzi D
Nie martw się, to dobry moment na naukę! Rozważmy, dlaczego pozostałe rysunki nie przedstawiają poprawnie sekwencji współbieżnej. Na Rysunku 1 widzimy, że po Kroku 1 następują Krok 2 i Krok 3, ale nie są one uruchamiane równocześnie. To oznacza, że sekwencja jest liniowa, a nie współbieżna, co nie odpowiada założeniom sieci SFC dla równoległego przetwarzania. Rysunek 2 również przedstawia liniową kontynuację po Kroku 1, co jest błędne, jeśli naszym celem jest równoległość. Podobnie jak Rysunek 1, nie zawiera on podwójnej linii, która sygnalizuje współbieżność. Rysunek 4 z kolei przedstawia bardziej złożoną strukturę, ale mimo to brakuje mu poprawnego oznaczenia równoczesnego startu Krok 2 i Krok 3. Podwójne linie występują tylko przy poszczególnych krokach, co nie jest zgodne z zasadami projektowania sieci współbieżnych. Typowym błędem prowadzącym do wyboru takich odpowiedzi jest nieznajomość standardów projektowania takich jak IEC 61131-3, które jasno definiują, jak powinny wyglądać sekwencje współbieżne. W przyszłości, zwracaj szczególną uwagę na symbole oznaczające równoległość, co pozwoli uniknąć takich pomyłek. Dobra praktyka projektowania wymaga, aby diagramy były nie tylko poprawnie wykonane technicznie, ale także przejrzyste dla innych użytkowników.

Pytanie 7

Na podstawie danych w tabeli, dobierz średnicę wiertła potrzebnego do wykonania otworu gwintowanego M5 w elemencie wykonanym z mosiądzu.

Średnice wierteł pod gwinty w różnych materiałach
Średnica gwintuŚrednica wiertła w mm
AluminiumŻeliwo, Brąz, MosiądzStal, Żeliwo ciągliwe, Stopy Zn,
32,32,42,5
3,52,72,82,9
43,13,23,3
4,53,53,63,7
54,04,14,2
5,54,34,44,5
64,74,85,0
75,75,86,0
86,46,56,7
108,18,28,4
............
A. 3,6 mm
B. 4,4 mm
C. 4,1 mm
D. 4,0 mm
Wybór średnicy wiertła na poziomie 4,1 mm dla gwintu M5 w mosiądzu jest idealny i zgodny z normami inżynierskimi. Dlaczego? Otóż, mosiądz, jako materiał o średniej twardości, wymaga odpowiedniej obróbki skrawaniem, by zapewnić trwałość i dokładność gwintu. Gwintowanie to proces, który powinien uwzględniać nie tylko średnicę gwintu nominalnego, ale także właściwości materiału, z którego jest wykonany element. Przy gwintowaniu w mosiądzu stosuje się wiertła o średnicy nieco większej niż w bardziej miękkich materiałach, takich jak aluminium. Wiertło 4,1 mm pozwala na uzyskanie odpowiedniego stosunku skrawania, co jest kluczowe, by uniknąć nadmiernego naprężenia gwintu oraz zapewnić płynność jego pracy. W praktyce, przy obróbce mosiądzu, ważne jest także chłodzenie oraz stosowanie odpowiednich płynów chłodzących, aby zminimalizować zużycie narzędzi i poprawić jakość powierzchni gwintu. Moim zdaniem, dobrze dobrane wiertło to podstawa, zarówno w amatorskiej, jak i profesjonalnej obróbce metali. Pamiętajmy, że wybór odpowiedniego narzędzia jest nie tylko kwestią precyzji, ale także efektywności i ekonomii pracy.

Pytanie 8

Który wynik pomiaru rezystancji żyły przewodu YLY 3x10 mm² o długości około 8 m wskazuje na jej ciągłość?

A. Wynik 3
Ilustracja do odpowiedzi A
B. Wynik 2
Ilustracja do odpowiedzi B
C. Wynik 4
Ilustracja do odpowiedzi C
D. Wynik 1
Ilustracja do odpowiedzi D
Poprawna odpowiedź to wynik 3. Dla przewodu YLY 3x10 mm² o długości około 8 metrów rezystancja pojedynczej żyły powinna być bardzo mała – w granicach kilku miliomów, maksymalnie kilkudziesięciu miliomów (czyli poniżej 0,1 Ω). Wartość 1,01 Ω, widoczna na zdjęciu nr 3, jest wystarczająco niska, by potwierdzić ciągłość przewodu, uwzględniając niedoskonały styk sond pomiarowych i opór przewodów pomiarowych miernika. W praktyce elektrycznej uznaje się, że wynik poniżej 1–2 Ω wskazuje na zachowaną ciągłość żyły, a wartości znacznie wyższe oznaczają przerwę lub uszkodzenie przewodu. Moim zdaniem ten pomiar wygląda wiarygodnie – w instalacjach zasilających przewody o przekroju 10 mm² mają bardzo niską rezystancję, a więc przepływ prądu nie jest ograniczany. W praktyce pomiary ciągłości wykonuje się często funkcją „brzęczyka” (test diody), ale przy większych przekrojach stosuje się pomiar rezystancji rzeczywistej, jak tu. Dobrą praktyką jest przed pomiarem zwarcie przewodów pomiarowych i zanotowanie oporu własnego, by odjąć go od wyniku. 1 Ω to zatem w tym kontekście wartość potwierdzająca, że przewód jest sprawny, a żyła ma ciągłość.

Pytanie 9

Zintegrowany interfejs komunikacyjny w sterowniku PLC przedstawionym na ilustracji to

Ilustracja do pytania
A. ETHERNET
B. USB
C. OBD II
D. RS-232
Sterownik PLC przedstawiony na ilustracji korzysta z interfejsu ETHERNET, co jest powszechnym standardem w nowoczesnych systemach automatyki przemysłowej. Ethernet umożliwia szybkie przesyłanie danych i łatwą integrację z siecią lokalną oraz Internetem. Dzięki temu możemy zdalnie monitorować i kontrolować pracę systemów, co znacznie zwiększa ich elastyczność i efektywność. W praktyce oznacza to, że można na przykład zdalnie wgrywać nowe programy, aktualizować oprogramowanie, a także diagnozować ewentualne problemy bez potrzeby fizycznego dostępu do urządzenia. Z mojego doświadczenia, Ethernet w PLC to właściwie standard. Jest też niezwykle pomocny w integracji z innymi systemami, jak SCADA, co pozwala na kompleksowe zarządzanie procesami produkcyjnymi. Warto też wspomnieć, że Ethernet w sterownikach PLC wspiera protokoły takie jak Modbus TCP/IP czy Profinet, co dodatkowo ułatwia komunikację między różnymi urządzeniami w sieci.

Pytanie 10

Do zamontowania na szynie DIN przedstawionego na rysunku sterownika wystarczy użyć

Ilustracja do pytania
A. wkrętaka płaskiego.
B. młotka.
C. nitownicy.
D. klucza nasadowego.
Do montażu sterownika na szynie DIN używa się wkrętaka płaskiego, ponieważ większość sterowników ma specjalne zatrzaski, które można regulować lub zabezpieczać za pomocą takiego narzędzia. Szyny DIN to standardowe elementy montażowe w automatyce przemysłowej, które umożliwiają szybkie i pewne mocowanie urządzeń. Wkrętak płaski jest idealny do tego zadania, ponieważ pozwala na precyzyjne operowanie zatrzaskami bez ryzyka uszkodzenia urządzenia czy szyny. W praktyce, gdy montujesz sterownik na szynie, musisz jedynie delikatnie nacisnąć na zatrzaski, umożliwiając ich prawidłowe osadzenie. To podstawowe narzędzie w skrzynce każdego elektryka czy automatyka. Dzięki temu rozwiązaniu, montaż i demontaż są szybkie i nie wymagają dużego nakładu siły. Ważne jest też, aby używać narzędzi zgodnych ze standardami bezpieczeństwa, co minimalizuje ryzyko wypadków w miejscu pracy. Szyny DIN zapewniają także porządek i estetykę w rozdzielniach elektrycznych, co jest kluczowe w utrzymaniu systemów przemysłowych w dobrym stanie.

Pytanie 11

Którego z wymienionych przyrządów pomiarowych należy użyć w celu oceny jakości istniejących połączeń elektrycznych w układzie automatyki?

A. watomierza.
B. megaomomierza.
C. woltomierza.
D. omomierza.
Zrozumienie roli różnych przyrządów pomiarowych w automatyce jest kluczowe. Watomierz mierzy moc czynną w obwodach elektrycznych. Jest przydatny, ale nie do oceny jakości połączeń, tylko do analizy zużycia energii. Typowym błędem jest mylenie mocy z rezystancją, co prowadzi do błędnych wniosków w diagnostyce. Z kolei woltomierz mierzy napięcie, i chociaż jest istotny dla określenia różnicy potencjałów, to nie daje pełnego obrazu jakości połączenia. Test napięcia może wykazać obecność prądu, ale nie wykryje wysokiej rezystancji na styku, która wskazywałaby na złe połączenie. Megaomomierz, często zwany miernikiem izolacji, mierzy bardzo wysokie wartości rezystancji, głównie w izolacji przewodów. Jest przydatny przy testach izolacji, ale nie w ocenie typowych połączeń przewodzących. Błąd w rozumieniu funkcji tych przyrządów wynika często z mylnego utożsamiania ich funkcji z ogólną oceną wydajności systemu. Aby poprawnie ocenić jakość połączeń elektrycznych, szczególnie w delikatnych układach automatyki, omomierz staje się niezastąpionym narzędziem. Podsumowując, każdy z przyrządów ma swoje specyficzne zastosowanie i musi być używany zgodnie z jego przeznaczeniem, co jest zgodne z dobrymi praktykami inżynierskimi, jak np. normy IEC, które jasno precyzują zastosowania omawianych urządzeń w różnych kontekstach."]

Pytanie 12

Regulator służy do utrzymywania w urządzeniach grzewczych temperatury T z zadaną histerezą H. Pomiar temperatury dokonywany jest za pomocą czujnika temperatury, zaś sterowanie elementem grzewczym odbywa się przez wyjście przekaźnikowe. Na którym wykresie czasowym przedstawiony jest prawidłowy sposób załączania wyjścia regulatora, zgodny z zamieszczonym przebiegiem temperatury?

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Problem z nieprawidłowymi odpowiedziami polega na niezrozumieniu zasady działania histerezy w układach regulacji temperatury. Wykresy, które pokazują zbyt częste przełączanie wyjścia przekaźnikowego, jak w przypadku niektórych błędnych odpowiedzi, wskazują na brak zastosowania właściwej histerezy. Jeśli wyjście włącza się i wyłącza zbyt szybko, powoduje to nadmierne zużycie elementów przekaźnikowych oraz zwiększone zużycie energii. Taki mechanizm nie jest efektywny, ani praktyczny w rzeczywistych zastosowaniach, jak systemy HVAC czy przemysłowe piece grzewcze. Typowym błędem jest myślenie, że im szybciej system reaguje, tym lepiej, podczas gdy w rzeczywistości prowadzi to do niepożądanych oscylacji w systemie. Brak właściwej histerezy może także prowadzić do niestabilności temperaturowej, co jest niekorzystne dla delikatnych procesów technologicznych. Dlatego tak ważne jest, aby zrozumieć, jak histereza działa jako element buforujący, stabilizujący cały proces regulacji. W systemach automatyki przemysłowej, takich jak sterowniki PLC, właściwe zaimplementowanie histerezy jest kluczem do efektywnego i trwałego działania systemu regulacji temperatury. Z mojego doświadczenia, często spotyka się błędne założenie, że mniejsza histereza oznacza lepszą kontrolę, podczas gdy w rzeczywistości optymalny dobór histerezy to kompromis między efektywnością a stabilnością.

Pytanie 13

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. wzmacniacza operacyjnego.
B. separatora.
C. przepływomierza.
D. przetwornika pomiarowego.
Przetwornik pomiarowy to urządzenie niezbędne w systemach automatyki i pomiarów, które przekształca jedną formę sygnału w inną. Może to być np. zamiana sygnału analogowego na cyfrowy lub przetwarzanie wielkości fizycznej, jak temperatura, na sygnał elektryczny. Moim zdaniem, to kluczowy element, który pozwala na integrację i automatyzację procesów przemysłowych. Przetworniki są powszechnie stosowane w systemach monitoringu i kontroli, gdzie precyzyjne dane są nieodzowne dla optymalizacji procesów. W praktyce, przy wyborze przetwornika, warto zwrócić uwagę na jego dokładność, zakres pomiarowy oraz kompatybilność z innymi elementami systemu. Przykładowo, w przemyśle chemicznym, przetwornik może mierzyć stężenie substancji i przekazywać te dane do systemu zarządzania produkcją. Standardy takie jak IEC i ANSI definiują wytyczne dotyczące konstrukcji i działania przetworników, co zapewnia ich niezawodność i bezpieczeństwo w różnych aplikacjach. Z tego powodu, prawidłowe zrozumienie funkcji i specyfikacji przetworników jest kluczowe dla specjalistów zajmujących się projektowaniem systemów pomiarowych.

Pytanie 14

Przedstawione na rysunku narzędzie służy do

Ilustracja do pytania
A. ściągania izolacji kabli koncentrycznych.
B. obcinania przewodów koncentrycznych.
C. zaciskania tulejek .
D. oznaczania przewodów.
To narzędzie, które widzisz, jest przeznaczone do obcinania przewodów koncentrycznych. Przewody koncentryczne są szeroko stosowane w telekomunikacji i przesyłaniu sygnałów wideo. Ich specyficzna budowa, czyli centralna żyła przewodząca otoczona izolacją, ekranem z przewodzącej plecionki i zewnętrzną osłoną, wymaga precyzyjnego cięcia. Użycie odpowiedniego narzędzia, takiego jak te, które widzisz, gwarantuje czyste i równe cięcie bez uszkodzenia ekranu lub centralnej żyły. Technicy cenią sobie te narzędzia za możliwość pracy w trudno dostępnych miejscach i szybkość działania. Dodatkowo takie obcinarki są zaprojektowane tak, by minimalizować ryzyko zmiażdżenia przewodu, co jest kluczowe dla utrzymania integralności sygnału. Moim zdaniem, każdy kto zajmuje się instalacjami RTV powinien mieć przy sobie takie narzędzie, bo ułatwia ono życie na co dzień. W branży to po prostu standardowa praktyka, by korzystać z dedykowanych narzędzi do określonych rodzajów kabli.

Pytanie 15

Podczas montażu został nacięty przewód zasilający 3-fazowy silnik hydroforu. Uszkodzeniu uległy izolacja zewnętrzna oraz izolacja żyły N niepodłączonej do silnika. Które zdanie poprawnie określa możliwość użytkowania tak uszkodzonej instalacji?

Ilustracja do pytania
A. Można tę instalację eksploatować pod warunkiem, że nie ma wycieku wody z hydroforu.
B. Ta instalacja nie może być eksploatowana.
C. Mimo tego uszkodzenia instalacja może być normalnie eksploatowana.
D. Eksploatacja tej instalacji jest możliwa, ale przy uszkodzonym przewodzie trzeba umieścić tabliczkę ostrzegawczą.
Taka instalacja nie może być eksploatowana. Nawet jeśli uszkodzenie dotyczy tylko izolacji zewnętrznej i nieużywanej żyły N, przepisy jasno zabraniają użytkowania przewodów z naruszoną izolacją. Zgodnie z normą PN-EN 50110-1 oraz zasadami eksploatacji urządzeń elektrycznych, każdy przewód musi mieć pełną, nienaruszoną izolację, gwarantującą ochronę przed porażeniem i zwarciem. W tym przypadku przewód jest nacięty – odsłonięty metalowy rdzeń może stanowić zagrożenie porażeniem, a także doprowadzić do zwarcia między żyłami. W praktyce zawodowej taki przewód należy niezwłocznie wymienić lub odciąć uszkodzony odcinek i wykonać nowe połączenie zgodne z normami. Moim zdaniem nie warto ryzykować – nawet najmniejsze nacięcie może w dłuższym czasie prowadzić do przegrzewania, utleniania i awarii całej instalacji, szczególnie w środowisku wilgotnym, jak przy hydroforze.

Pytanie 16

Przetwornik przedstawiony na rysunkach to

Ilustracja do pytania
A. zadajnik cyfrowo-analogowy.
B. analogowo-cyfrowy konwerter USB.
C. przetwornica napięcia.
D. przetwornik PWM.
Odpowiedź jest prawidłowa, ponieważ pokazany na rysunku układ to faktycznie analogowo-cyfrowy konwerter USB. To urządzenie działa jako pomost między sygnałami analogowymi a cyfrowymi, co jest kluczowe w wielu zastosowaniach przemysłowych i naukowych. W praktyce, takie konwertery są używane do przetwarzania sygnałów z czujników analogowych, takich jak termometry czy czujniki ciśnienia, na dane cyfrowe, które mogą być analizowane przez komputer. Standard USB zapewnia łatwość integracji z systemami komputerowymi oraz szeroką kompatybilność. Moim zdaniem, to niezbędne narzędzie w laboratoriach i przemyśle, gdzie precyzyjne pomiary są kluczowe. Dodatkowo, izolacja galwaniczna widoczna na schemacie chroni sprzęt przed różnicami potencjałów, co jest zgodne z dobrymi praktykami inżynierskimi. Dzięki temu, urządzenie można bezpiecznie używać w trudnych warunkach przemysłowych, gdzie mogą wystąpić zakłócenia elektromagnetyczne. Warto też wspomnieć, że taki konwerter umożliwia jednoczesne monitorowanie wielu kanałów pomiarowych, co znacząco zwiększa jego funkcjonalność.

Pytanie 17

Do pomiaru ciśnienia cieczy w układach hydraulicznych stosuje się

A. barometry.
B. manometry.
C. areometry.
D. higrometry.
Manometry to podstawowe narzędzia stosowane w hydraulice do pomiaru ciśnienia cieczy. Działają na zasadzie równowagi sił w układzie zamkniętym, co pozwala na dokładne określenie wartości ciśnienia. Są niezwykle powszechne w wielu branżach, od przemysłu petrochemicznego po produkcję maszyn. Praktyczne zastosowania manometrów obejmują monitorowanie ciśnienia w układach chłodniczych, instalacjach wodociągowych czy systemach pneumatycznych. Warto wiedzieć, że manometry są kluczowym elementem bezpieczeństwa w zakładach przemysłowych, ponieważ pozwalają na szybkie wykrycie nieprawidłowości, które mogą prowadzić do awarii lub wypadków. Standardowe praktyki branżowe zalecają regularną kalibrację manometrów, aby zapewnić ich dokładność i niezawodność. Istnieją różne rodzaje manometrów, takie jak manometry mechaniczne czy cyfrowe, które mogą być stosowane w zależności od specyfiki aplikacji. Ważne jest, by wybierać odpowiednie manometry zgodnie z zakresem ciśnienia i medium, z którym będą pracować. Stosowanie manometrów to nie tylko kwestia pomiaru, ale również dbałości o bezpieczeństwo i efektywność procesów.

Pytanie 18

Przedstawione na ilustracjach narzędzia służą do

Ilustracja do pytania
A. zaciskania wtyków RJ-45.
B. zaciskania wtyków RJ-11.
C. zaciskania tulejek.
D. ściągania izolacji.
Narzędzia przedstawione na ilustracjach to profesjonalne ściągacze izolacji, które są niezbędne w pracy każdego elektryka. Ściąganie izolacji to proces usuwania powłoki zewnętrznej przewodów, aby móc odsłonić rdzeń miedziany lub aluminiowy, co umożliwia dalsze prace, takie jak lutowanie czy zaciskanie końcówek. Prawidłowe ściągnięcie izolacji jest kluczowe, aby uniknąć uszkodzenia przewodów i zapewnić bezpieczne połączenia elektryczne. Ściągacze izolacji automatyczne, takie jak te pokazane na zdjęciu, umożliwiają szybkie i precyzyjne zdejmowanie izolacji z przewodów o różnych średnicach bez konieczności ręcznego dostosowywania narzędzia. Z mojego doświadczenia, korzystanie z takich narzędzi znacznie skraca czas pracy i minimalizuje ryzyko błędów, które mogą prowadzić do awarii systemu. Zgodnie z dobrymi praktykami branżowymi, zawsze warto używać dedykowanych narzędzi do każdej operacji, aby zapewnić ich trwałość i niezawodność, co w efekcie zwiększa bezpieczeństwo całego systemu.

Pytanie 19

Które piny przetwornika pomiarowego należy podłączyć z odbiornikami sygnału?

Ilustracja do pytania
A. 2 i 4.
B. 3 i 4.
C. 1 i 4.
D. 2 i 3.
Pozostałe odpowiedzi mogą wydawać się kuszące, ale warto zrozumieć dlaczego są mylne. Pin 1, oznaczony jako plus, to często zasilanie, ale nie służy do bezpośredniego przesyłania sygnałów do odbiorników. Podłączanie pinów 1 i 4 lub 1 i 3 do odbiorników może prowadzić do błędów w obwodzie, ponieważ nie będziesz miał pewności, czy sygnał jest prawidłowy czy to tylko zasilanie. Pin 3 to zazwyczaj minus lub wspólny, co również nie jest bezpośrednio używane do przesyłania sygnałów, ale raczej do zamykania obwodu zasilania. Typowe błędy w takich sytuacjach wynikają z niepełnego zrozumienia funkcji, jakie pełnią poszczególne piny. Z mojego doświadczenia, dobrym podejściem jest zawsze dokładne zapoznanie się ze schematem i upewnienie się, które piny pełnią rolę sygnałową, a które są przeznaczone do zasilania. Uważajmy też na standardy i dobre praktyki, które zalecają użycie oznaczeń NC i NO w kontekście sygnałów, aby uniknąć nieporozumień.

Pytanie 20

Na podstawie tabeli wskaż jakie powinno być ustawienie sekcji przełącznika, by było możliwe sterowanie za pomocą sygnału prądowego o wartości z przedziału 0 ÷ 20 mA.

Sekcja przełącznika
1234
Sygnał sterujący0 ÷ 5 VOFFONOFFOFF
0 ÷ 10 VOFFOFFOFFOFF
0 ÷ 20 mAONOFFOFFOFF
4 ÷ 20 mAONONONON
Rodzaj odbiornikarezystancyjny----
rezystancyjno-indukcyjny
(0,7 ≤ cos φ ≤ 0,9)
----
A. 1 – OFF, 2 – OFF, 3 – OFF, 4 – OFF
B. 1 – OFF, 2 – ON, 3 – OFF, 4 – OFF
C. 1 – ON, 2 – OFF, 3 – OFF, 4 – OFF
D. 1 – ON, 2 – ON, 3 – ON, 4 – ON
Odpowiedź 2 jest prawidłowa, ponieważ dla sygnału sterującego o zakresie 0 ÷ 20 mA ustawienie sekcji przełącznika powinno być w pozycji: 1 – ON, 2 – OFF, 3 – OFF, 4 – OFF. Tabela jasno to wskazuje. Ta konkretna kombinacja ustawień przełącznika pozwala na poprawne odczytywanie i interpretację sygnału prądowego o podanym zakresie. W praktyce, sygnały 0–20 mA są szeroko stosowane w systemach automatyki przemysłowej, ponieważ są mniej podatne na zakłócenia i mogą być przesyłane na większe odległości bez znaczącej utraty jakości. Standard 0–20 mA, a także podobny 4–20 mA, jest jednym z najstarszych i najczęściej używanych protokołów w przemyśle. Przykładowo, w układach kontroli temperatury sygnał 0–20 mA może być użyty do sterowania zaworem regulacyjnym na podstawie odczytów z czujnika temperatury. Ważne jest również, aby pamiętać o odpowiednim kalibrowaniu czujników i urządzeń, aby zapewnić precyzyjne pomiary i sterowanie. Dobrą praktyką jest regularne sprawdzanie zgodności urządzeń z wymaganiami technicznymi i normami, co zapewnia niezawodność i bezpieczeństwo systemu.

Pytanie 21

Na podstawie przedstawionej listy kontrolnej procedury postępowania uruchomieniowego przed załączeniem układu regulacji opartym na sterowniku PLC należy w pierwszej kolejności sprawdzić

Ilustracja do pytania
A. kolejność podłączeń elementów wyjściowych do sterownika.
B. prawidłowość podłączeń przewodów ochronnych w układzie.
C. kolejność podłączeń elementów wejściowych do sterownika.
D. położenie przełącznika trybu pracy sterownika PLC.
Podczas analizy kolejności podłączeń elementów wejściowych i wyjściowych sterownika PLC można łatwo zgubić się w szczegółach. Wielu początkujących inżynierów koncentruje się na tych aspektach zbyt wcześnie, co jest typowym błędem myślowym. Oczywiście, położenie przełącznika trybu pracy sterownika jest istotne, szczególnie w kontekście programowania i testowania systemu, ale nie jest to pierwsza czynność, którą należy sprawdzać przed załączeniem układu regulacji. Istotniejsze jest zabezpieczenie sprzętu i osób, które go obsługują. Skupienie się najpierw na elementach wejściowych i wyjściowych, choć ważne, nie powinno poprzedzać upewnienia się, że wszystkie przewody ochronne są prawidłowo podłączone. Często uważa się, że samo ustawienie przełącznika w pozycji STOP rozwiązuje problem bezpieczeństwa. To jednak złudzenie, bo bez właściwie podłączonych przewodów ochronnych, jakakolwiek awaria może prowadzić do tragicznych konsekwencji. W rzeczywistości, pomyłki te wynikają z pomijania fundamentalnych zasad bezpieczeństwa i zbytniego zaufania do mechanicznych zabezpieczeń sterownika, które nie zastąpią fizycznego bezpieczeństwa instalacji.

Pytanie 22

Jaka jest właściwa kolejność czynności przy wymianie elektropneumatycznego zaworu kulowego?

  1. Wyłączyć media zasilające.
  2. Za pomocą klucza maszynowego odkręcić zawór kulowy.
  3. Zainstalować nowy zawór.
  4. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu.
  5. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu.
  6. Włączyć media zasilające.
A.
  1. Wyłączyć media zasilające.
  2. Za pomocą klucza maszynowego odkręcić zawór kulowy.
  3. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu.
  4. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu.
  5. Zainstalować nowy zawór.
  6. Włączyć media zasilające.
B.
  1. Wyłączyć media zasilające.
  2. Odłączyć przewody elektryczne i pneumatyczne od demontowanego zaworu.
  3. Podłączyć przewody elektryczne i pneumatyczne do montowanego zaworu.
  4. Za pomocą klucza maszynowego odkręcić zawór kulowy.
  5. Zainstalować nowy zawór.
  6. Włączyć media zasilające.
C.
  1. Wyłączyć media zasilające.
  2. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu.
  3. Za pomocą klucza maszynowego odkręcić zawór kulowy.
  4. Zainstalować nowy zawór.
  5. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu.
  6. Włączyć media zasilające.
D.
A. 1. Wyłączyć media zasilające. 2. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu. 3. Za pomocą klucza maszynowego odkręcić zawór kulowy. 4. Zainstalować nowy zawór. 5. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu. 6. Włączyć media zasilające.
B. 1. Wyłączyć media zasilające. 2. Za pomocą klucza maszynowego odkręcić zawór kulowy. 3. Zainstalować nowy zawór. 4. Odłączyć przewody elektryczne i pneumatyczne od demontowanego zaworu. 5. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu. 6. Włączyć media zasilające.
C. 1. Wyłączyć media zasilające. 2. Za pomocą klucza maszynowego odkręcić zawór kulowy. 3. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu. 4. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu. 5. Zainstalować nowy zawór. 6. Włączyć media zasilające.
D. 1. Wyłączyć media zasilające. 2. Odłączyć przewody elektryczne i pneumatyczne od demontowanego zaworu. 3. Podłączyć przewody elektryczne i pneumatyczne do montowanego zaworu. 4. Za pomocą klucza maszynowego odkręcić zawór kulowy. 5. Zainstalować nowy zawór. 6. Włączyć media zasilające.
Analizując błędne odpowiedzi, zauważamy kilka typowych błędów, które mogą prowadzić do poważnych problemów podczas wymiany elektropneumatycznego zaworu kulowego. Po pierwsze, w niektórych odpowiedziach pominięto krok odłączenia przewodów elektrycznych i pneumatycznych przed odkręceniem zaworu kulowego. Jest to poważny błąd, ponieważ pozostawienie podłączonych przewodów podczas demontażu może prowadzić do uszkodzenia instalacji, a nawet porażenia prądem. Kolejność czynności ma znaczenie, ponieważ zapewnia, że żadna część systemu nie jest pod napięciem ani ciśnieniem, co mogłoby stanowić zagrożenie. Kolejnym często spotykanym błędem jest odwrotny montaż zaworu przed podłączeniem przewodów. Taka sekwencja może powodować problemy z prawidłowym dopasowaniem elementów i utrudniać dostęp do połączeń, co z kolei może wpłynąć na szczelność i niezawodność całego układu. Dobre praktyki w branży nakazują, aby zawsze najpierw odłączyć i podłączyć przewody, zanim zajmiemy się mechanicznym montażem lub demontażem. Warto także pamiętać o przestrzeganiu zasady wyłączania i włączania zasilania mediów jako pierwszego i ostatniego kroku, co jest kluczowe dla bezpieczeństwa pracy. Właściwa sekwencja czynności zgodna z przyjętymi standardami przemysłowymi nie tylko zapewnia bezpieczeństwo, ale także optymalizuje czas i efektywność pracy, minimalizując ryzyko nieplanowanych przestojów i uszkodzeń systemu.

Pytanie 23

Na rysunku przedstawiono program sterowniczy realizujący funkcję logiczną

Ilustracja do pytania
A. XNOR
B. OR
C. NAND
D. AND
Na rysunku przedstawiono konfigurację wejść zwierających, co może wprowadzać błąd w rozumieniu, czy mamy do czynienia z funkcją typu OR, AND, XNOR czy NAND. Często można pomylić funkcje OR i AND z funkcją NAND, nie rozumiejąc, że różnica tkwi w obecności operacji NOT na końcu działania. Funkcja OR zakłada, że wyjście jest prawdziwe, gdy przynajmniej jedno z wejść jest prawdziwe, co w tym przypadku nie ma miejsca, ponieważ struktura logiczna wymaga, aby oba wejścia były fałszywe dla uzyskania wyjścia prawdziwego. Funkcja AND działa odwrotnie, dając wyjście prawdziwe jedynie, gdy oba wejścia są prawdziwe. Z kolei XNOR, jako odmiana XOR, daje wynik prawdziwy, gdy oba wejścia są takie same, co nie pasuje do przedstawionego schematu. Typowym błędem jest niezrozumienie, że bramka NAND jest de facto negacją bramki AND, co oznacza, że wyjście jest fałszywe tylko wtedy, gdy wszystkie wejścia są prawdziwe. Brak zrozumienia tych podstawowych różnic może prowadzić do niepoprawnego zastosowania logiki w systemach sterujących, co w konsekwencji może skutkować wadliwym działaniem systemu lub nawet jego uszkodzeniem.

Pytanie 24

Na rysunku przedstawiono schemat blokowy regulatora

Ilustracja do pytania
A. PID
B. P
C. PI
D. PD
Regulator PID, czyli Proporcjonalno-Całkująco-Różniczkujący, to jeden z najczęściej stosowanych regulatorów w przemyśle. Schemat, który właśnie widzisz, przedstawia wszystkie trzy elementy składowe tego regulatora: składową proporcjonalną, całkującą i różniczkującą. K_p odpowiada za reakcję proporcjonalną, która jest proporcjonalna do bieżącego błędu. Element 1/T_i s to część całkująca, która sumuje błędy w czasie, co pomaga zredukować błąd ustalony. T_d s to składowa różniczkująca, która przewiduje przyszłe błędy na podstawie tempa zmian. W praktyce PID jest niezastąpiony tam, gdzie wymagana jest precyzyjna kontrola – w systemach HVAC, w automatyce przemysłowej, a nawet w robotyce. Dobór właściwych parametrów K_p, T_i, T_d jest kluczowy i często wymaga tuningu metodą Zieglera-Nicholsa lub metodą prób i błędów. Moim zdaniem, każda osoba zajmująca się automatyką powinna dobrze znać zastosowanie i działanie regulatorów PID.

Pytanie 25

Na podstawie opisu zamieszczonego na obudowie urządzenia określ jego rodzaj.

Ilustracja do pytania
A. Zasilacz 230 V AC / 24 V DC
B. Przetwornica akumulatorowa 2x24 V / 230 V AC
C. Obiektowy separator napięć 24 V DC
D. Przetwornica napięcia 2x24 V DC / 230 V AC
Świetnie, że wybrałeś zasilacz 230 V AC / 24 V DC! Urządzenie pokazane na zdjęciu to typowy zasilacz, który przekształca napięcie przemienne 230 V na napięcie stałe 24 V. To jest kluczowe w wielu zastosowaniach przemysłowych i domowych, gdzie potrzebne jest stabilne napięcie stałe. Zasilacze te znajdują zastosowanie w systemach automatyki, sterowania, a także w urządzeniach telekomunikacyjnych. Są one zgodne z wieloma normami bezpieczeństwa, co zapewnia niezawodność w działaniu. Stosowanie zasilaczy zamiast przetwornic czy separatorów jest uzasadnione, gdy potrzebujemy jedynie obniżyć napięcie i przekształcić je na stałe. Z mojego doświadczenia wynika, że ważne jest również zwrócenie uwagi na parametry takie jak wydajność prądowa - w tym przypadku 6A, co jest odpowiednie dla wielu urządzeń o średnim poborze mocy. Dlatego zawsze warto sprawdzić dokładnie parametry przed zakupem, aby upewnić się, że zasilacz spełnia wszystkie wymagania techniczne.

Pytanie 26

Według której zasady należy w układzie sterowania zaprojektować działanie umożliwiające wyłączenie zautomatyzowanego systemu sterowanego przez sterownik PLC?

A. Zasady blokady sygnałów wyjściowych.
B. Zasady przerwy roboczej - podanie stanu 0 na wejście sterownika.
C. Zasady blokady programowej sygnałów wejściowych.
D. Zasady prądu roboczego - podanie stanu 1 na wejście sterownika.
Zasady blokady sygnałów wyjściowych oraz blokady programowej sygnałów wejściowych to częste błędy koncepcyjne, gdy myślimy o wyłączaniu systemów sterowania. Pierwsza z nich sugeruje, że można po prostu zablokować sygnały na wyjściu, ale to nie rozwiązuje problemu potencjalnych awarii sterownika lub innych komponentów systemu. Blokowanie sygnałów wyjściowych może jedynie zatrzymać działanie siłowników czy innych wykonawczych elementów, ale nie gwarantuje, że system faktycznie przestanie działać w bezpieczny sposób. Podobnie zasady blokady programowej sygnałów wejściowych mogą wprowadzać fałszywe poczucie bezpieczeństwa – nawet jeśli blokujemy niektóre sygnały, to sterownik PLC może nadal operować na pozostałych danych, co może prowadzić do niekontrolowanych działań. Zasady prądu roboczego, które sugerują podanie stanu 1 na wejście, również są mylące. W sytuacjach awaryjnych wymagamy, aby system automatycznie przechodził w stan bezpieczny, co oznacza, że powinien przyjąć stan 0 jako domyślne ustawienie. W praktyce, błędne założenie, że podanie stanu 1 rozwiąże problem, może prowadzić do zwiększenia ryzyka awarii. Często spotykanym błędem jest niedocenianie potrzeby implementacji procedur fail-safe, które są fundamentem w projektowaniu systemów zautomatyzowanych, zwłaszcza tam, gdzie stawiamy na minimalizację ryzyka dla zdrowia i mienia. W kontekście standardów i dobrych praktyk unikanie przełączania systemu w stan aktywny w krytycznych momentach jest kluczowe dla zapewnienia bezpieczeństwa operacyjnego.

Pytanie 27

Przedstawione na rysunku narzędzie służy do

Ilustracja do pytania
A. cięcia przewodów pneumatycznych.
B. ściągania izolacji.
C. zaciskania tulejek.
D. oznaczania przewodów.
Narzędzie, które widzisz, jest specjalistycznym przyrządem do cięcia przewodów pneumatycznych. Tego typu narzędzia są zaprojektowane tak, aby zapewnić czyste i precyzyjne cięcie, co jest kluczowe w systemach pneumatycznych. Niedokładnie przycięty wąż może prowadzić do nieszczelności lub trudności z montażem w złączkach. W praktyce, zastosowanie narzędzia do cięcia przewodów pneumatycznych jest nie tylko wygodne, ale również zapewnia, że cięcie nie uszkadza struktury przewodu. Moim zdaniem, to narzędzie jest niezastąpione w warsztatach, gdzie często pracuje się z instalacjami pneumatycznymi. Warto również zwrócić uwagę, że tego typu narzędzia są zgodne z branżowymi standardami, które zalecają używanie narzędzi dostosowanych do specyficznego typu przewodów. Standardowe nożyce mogą nie zapewniać takiej samej precyzji, a co za tym idzie, mogą prowadzić do problemów eksploatacyjnych. Dobre praktyki mówią, że użycie właściwego narzędzia zwiększa bezpieczeństwo i wydajność pracy.

Pytanie 28

Który z czujników należy zastosować przy wytłaczarce, jeśli wymagany jest zasięg działania 0,8 ÷ 0,9 mm oraz zmiany temperatury od 0 do +90 °C?

Ilustracja do pytania
A. Czujnik 1.
B. Czujnik 2.
C. Czujnik 4.
D. Czujnik 3.
Czujnik 2 jest idealnym wyborem do wytłaczarki, ponieważ spełnia kluczowe wymogi dotyczące zakresu pracy i temperatury. Zasięg działania tego czujnika wynosi od 0 do 1,6 mm, co doskonale pokrywa wymagany zakres 0,8 ÷ 0,9 mm. To ważne, aby czujnik mógł precyzyjnie wykrywać zmiany w tej specyficznej odległości, zapewniając optymalne działanie maszyny. Dodatkowo, czujnik ten działa w zakresie temperatur od -20 do +110°C, co w pełni obejmuje wymagany zakres 0 do +90°C. Dzięki temu niezawodnie funkcjonuje w różnych warunkach pracy, co jest kluczowe w dynamicznym środowisku przemysłowym. Warto zauważyć, że czujnik ten ma obudowę IP67, co zapewnia dobrą odporność na pył i wodę, co jest często nieuniknione w środowisku produkcyjnym. W praktyce oznacza to, że czujnik ten jest odporny na trudne warunki pracy, co zwiększa jego trwałość i niezawodność. W branży stosowanie czujników o odpowiednich parametrach jest kluczowe, aby uniknąć przestojów i nieplanowanych napraw, które mogą być kosztowne.

Pytanie 29

Wskaż oznaczenie literowe gwintu metrycznego.

A. Tr
B. M
C. S
D. W
Gwinty metryczne to jedne z najczęściej stosowanych gwintów w przemyśle, zarówno w Polsce, jak i na świecie. Oznacza się je literą 'M', co pochodzi od 'metryczny'. Podstawową cechą gwintu metrycznego jest jego kształt: trójkątny profil z kątem wierzchołkowym 60°, który zapewnia dobre właściwości mechaniczne, takie jak wytrzymałość i trwałość. Gwinty te są normowane według standardu ISO, co ułatwia ich szerokie zastosowanie w produkcji masowej i umożliwia wymienność elementów. Przykładowo, śruby z gwintem metrycznym są używane w motoryzacji, budownictwie czy elektronice, gdzie precyzja i niezawodność są kluczowe. Warto też wspomnieć, że gwinty metryczne mogą być dostępne w różnych podziałkach, takich jak drobnozwojowe czy zwykłe, co pozwala na ich dopasowanie do specyficznych potrzeb projektowych. Dodatkowo, wybór gwintu metrycznego może wpływać na łatwość montażu i demontażu elementów konstrukcyjnych, co jest istotne w kontekście konserwacji i serwisu. Moim zdaniem, znajomość tych systemów jest niezbędna dla każdego inżyniera mechanika czy technika budowlanego, bo to podstawa w pracy z elementami złącznymi.

Pytanie 30

Na rysunku przedstawiono diagram działania jednego z bloków funkcjonalnych sterownika PLC. Jest to

Ilustracja do pytania
A. blok timera opóźniającego wyłączenie TOF
B. blok timera opóźniającego załączenie TON
C. blok licznika impulsów zliczającego w górę CTU
D. blok licznika impulsów zliczającego w dół CTD
Analizując inne dostępne opcje, warto skupić się na błędnych koncepcjach związanych z działaniem timerów i liczników. Timer opóźniający załączenie (TON) jest często używany w aplikacjach, gdzie po otrzymaniu sygnału wejściowego chcemy uzyskać opóźnione załączenie wyjścia. Na wykresie jednak nie obserwujemy charakterystycznego dla TON stałego przyrostu wartości w miarę upływu czasu. Podobnie, timer opóźniający wyłączenie (TOF) działa na zasadzie opóźnionego wyłączenia sygnału wyjściowego po zaniku sygnału wejściowego. Tutaj również, brak charakterystycznego zachowania pokazującego wyłączenie po upływie określonego czasu dyskwalifikuje TOF. Licznik impulsów zliczający w górę (CTU) z kolei zwiększa wartość CV przy każdym kolejnym impulsie, co jest odwrotnością tego, co widzimy na wykresie. Typowym błędem jest mylenie tych funkcji z powodu podobnych nazw i zastosowań, jednak kluczowe różnice w ich działaniu mają istotne znaczenie w projektowaniu systemów automatyki. Zrozumienie tych różnic jest kluczowe dla prawidłowego projektowania i implementacji systemów sterowania.

Pytanie 31

Na rysunku przedstawiono

Ilustracja do pytania
A. zadajnik cyfrowo-analogowy.
B. przetwornik PWM.
C. separator sygnałów USB.
D. elektroniczny czujnik ciśnienia.
Na zdjęciu widać elektroniczny czujnik ciśnienia, czyli nowoczesne urządzenie pomiarowe stosowane do monitorowania i regulacji ciśnienia w układach hydraulicznych, pneumatycznych i procesowych. W odróżnieniu od klasycznych manometrów wskazówkowych, ten typ czujnika przetwarza ciśnienie medium (np. powietrza, oleju, wody) na sygnał elektryczny – zwykle 4–20 mA lub 0–10 V – który może być przesyłany do sterownika PLC lub systemu SCADA. Wbudowany wyświetlacz cyfrowy pozwala jednocześnie na lokalny odczyt wartości, co ułatwia diagnostykę. Moim zdaniem to świetny przykład integracji pomiaru i automatyki w jednym module – prosty w montażu, odporny na drgania i temperaturę. Takie czujniki są zgodne z normami przemysłowymi (np. EN 837, IEC 60529) i często mają funkcje progowe (OUT1, OUT2) pozwalające sterować urządzeniami bezpośrednio, np. pompą czy zaworem. W praktyce spotyka się je w systemach sprężonego powietrza, instalacjach chłodniczych, a także w procesach technologicznych, gdzie precyzja i niezawodność są kluczowe. Dobry montaż wymaga uszczelnienia gwintu (np. taśmą PTFE) i kalibracji zgodnie z zakresem roboczym. To sprzęt łączący analogowy pomiar z cyfrową kontrolą – bardzo typowy dla współczesnej automatyki.

Pytanie 32

Jakie napięcie wskazuje woltomierz, jeżeli nastawiono zakres Uₘₐₓ = 5 V?

Ilustracja do pytania
A. 1,50 V
B. 15,00 V
C. 6,00 V
D. 0,15 V
W tym przypadku częstym błędem jest odczytanie wartości 30 na skali jako 30 V, bez uwzględnienia rzeczywistego zakresu pomiarowego. Jednak na tarczy wyraźnie widnieje informacja, że Umax = 5 V, a skala jest wyskalowana od 0 do 100 jednostek procentowych. Oznacza to, że pełne wychylenie odpowiada 5 V, a wskazanie 30 oznacza 30% tej wartości. Prawidłowe obliczenie to więc 30/100 × 5 V = 1,5 V. Gdyby ktoś potraktował skalę jako rzeczywiste wolty, wynik byłby błędny o rząd wielkości. Podobny błąd zdarza się przy miernikach z wieloma zakresami, gdy użytkownik nie uwzględni ustawionej czułości przyrządu. W praktyce laboratoryjnej zawsze należy sprawdzić zarówno pozycję przełącznika zakresu, jak i oznaczenie Umax na obudowie – dopiero wtedy można poprawnie odczytać wartość napięcia. Warto też pamiętać, że analogowe mierniki tego typu są bardzo czułe i odczyt wykonuje się patrząc prosto na skalę, by uniknąć błędu paralaksy.

Pytanie 33

Który przyrząd pomiarowy należy zastosować do pomiaru amplitudy, częstotliwości i kształtu sygnałów w montowanych urządzeniach automatyki przemysłowej?

A. Oscyloskop.
B. Mostek RLC.
C. Częstotliwościomierz.
D. Multimetr.
Oscyloskop to naprawdę niezastąpione narzędzie w dziedzinie automatyki przemysłowej, szczególnie gdy chodzi o analizę sygnałów elektrycznych. Jest to urządzenie, które pozwala nam precyzyjnie zobaczyć, jak wygląda sygnał w czasie rzeczywistym. Możemy mierzyć zarówno amplitudę, jak i częstotliwość oraz kształt sygnału, co jest kluczowe przy diagnozowaniu układów elektronicznych. W praktyce oznacza to, że możemy dokładnie zidentyfikować, czy na przykład sygnały sterujące w maszynach przemysłowych działają poprawnie. Użycie oscyloskopu pozwala na szybkie wykrywanie zakłóceń i innych problemów w sieci elektrycznej, co jest nieocenione w utrzymaniu ciągłości pracy. Co więcej, oscyloskopy są standardem w laboratoriach i serwisach elektronicznych, co świadczy o ich uniwersalności i niezawodności. Moim zdaniem, kto raz dobrze opanuje pracę z oscyloskopem, zawsze znajdzie zastosowanie dla tego urządzenia. Dodatkowo, nowoczesne oscyloskopy cyfrowe oferują funkcje, które pozwalają na jeszcze bardziej szczegółową analizę sygnałów, takie jak zapis danych i ich szczegółowa analiza na komputerze. Bez tego przyrządu trudno wyobrazić sobie skuteczne diagnozowanie i naprawę skomplikowanych systemów automatyki przemysłowej.

Pytanie 34

Która z wymienionych funkcji programowych sterownika PLC służy do realizacji działania odejmowania?

A. MUL
B. ADD
C. DIV
D. SUB
Funkcje dostępne w sterownikach PLC są kluczowe dla realizacji różnorodnych zadań automatyzacji. Zaczynając od DIV, odpowiada ona za dzielenie. To działanie jest często wykorzystywane w procesach przemysłowych, gdzie konieczne jest obliczanie średnich wartości czy proporcji. Niemniej jednak, nie jest to działanie odpowiedzialne za odejmowanie. Zamieszanie może wynikać z podobieństwa skrótów lub funkcjonalności związanych z podstawowymi działaniami arytmetycznymi, ale każda z tych funkcji ma swoje konkretne zastosowanie. ADD to funkcja dodawania, która z kolei sumuje wartości. Używa się jej często do akumulacji danych, czyli np. sumowania ilości wyprodukowanych sztuk. Podobnie jak w przypadku DIV, nie odpowiada ona za wykonanie odejmowania. MUL, czyli mnożenie, pozwala na zwiększanie wartości poprzez wielokrotność. Jest to przydatne np. w obliczeniach skalujących. Wszystkie te funkcje mają swoje miejsce w programowaniu PLC, ale żadna z nich nie realizuje odejmowania. Błędne przypisanie funkcji do nieodpowiedniego działania może wynikać z nieuwagi lub pomylenia skrótów. Kluczem jest zrozumienie ich specyfiki i zastosowań. Zrozumienie różnic między tymi podstawowymi działaniami jest fundamentalne dla efektywnego programowania PLC i unikania błędów logicznych w projektach.

Pytanie 35

Aby dokręcić nakrętkę z określonym momentem obrotowym, należy zastosować klucz

A. dynamometryczny.
B. udarowy.
C. przegubowy.
D. grzechotkowy.
Klucz dynamometryczny to narzędzie, które pozwala na precyzyjne dokręcenie śruby czy nakrętki z określonym momentem obrotowym. Jego główną zaletą jest to, że umożliwia osiągnięcie dokładnie takiej siły dokręcania, jakiej potrzebujesz, co jest kluczowe w wielu zastosowaniach technicznych, np. w motoryzacji czy przemyśle lotniczym. Użycie klucza dynamometrycznego zapobiega przekręceniu, a co za tym idzie, uszkodzeniu elementów, co mogłoby prowadzić do poważnych awarii. Moment obrotowy jest mierzony w niutonometrach (Nm) i jest to standard przyjęty w branży. Przykładowo, dokręcając głowicę silnika, bardzo ważne jest, aby siła była równomiernie rozłożona na wszystkie śruby, co zapewnia prawidłowe funkcjonowanie silnika. Z mojego doświadczenia wynika, że posiadając wysokiej jakości klucz dynamometryczny, można uniknąć wielu błędów, które często pojawiają się przy używaniu innych narzędzi. Ważne jest też, aby regularnie kalibrować klucz dynamometryczny, co zapewnia jego dokładność i niezawodność. To narzędzie jest często stosowane w warsztatach samochodowych, gdzie specyfikacje producenta wymagają precyzyjnego dokręcania elementów. Pamiętaj, że ignorowanie momentu dokręcania może skutkować niebezpieczeństwem dla użytkownika bądź osób postronnych.

Pytanie 36

Określ, który blok funkcyjny musi być użyty w programie sterującym urządzeniem służącym do pakowania określonej liczby zabawek do kartonu.

A. Timer TON.
B. Regulator PID.
C. Licznik dwukierunkowy.
D. Multiplekser analogowy.
Wybór licznika dwukierunkowego jako odpowiedniego bloku funkcyjnego do sterowania urządzeniem pakującym zabawki do kartonu jest jak najbardziej trafiony. Licznik dwukierunkowy to rodzaj licznika, który potrafi zarówno zwiększać, jak i zmniejszać swoją wartość, w zależności od sygnałów wejściowych. Jest to niezwykle przydatne w sytuacjach, gdzie musimy kontrolować precyzyjne ilości - na przykład liczbę zabawek, które mają zostać zapakowane do jednego kartonu. W praktyce, licznik dwukierunkowy można skonfigurować tak, aby zwiększał swoją wartość o jeden za każdym razem, gdy zabawka jest umieszczana w kartonie, a zmniejszał, gdy coś idzie nie tak i trzeba zabawkę usunąć. Dzięki temu mamy pełną kontrolę nad procesem pakowania i zapewniamy, że w każdym kartonie znajdzie się dokładnie tyle zabawek, ile potrzeba. Takie podejście jest zgodne z dobrymi praktykami inżynierskimi, gdzie dąży się do dokładności i precyzji w procesach produkcyjnych. Warto także podkreślić, że liczniki tego typu są szeroko stosowane w automatyce przemysłowej i stanowią podstawowy element wielu systemów kontrolnych, szczególnie tam, gdzie istotna jest możliwość reagowania na zmieniające się warunki procesu.

Pytanie 37

Wzrost wartości częstotliwości wyjściowej przemiennika częstotliwości zasilającego silnik indukcyjny prądu przemiennego powoduje

A. spadek rezystancji uzwojeń silnika.
B. spadek prędkości obrotowej wału silnika.
C. wzrost rezystancji uzwojeń silnika.
D. wzrost prędkości obrotowej wału silnika.
Silnik indukcyjny prądu przemiennego jest niezwykle popularnym wyborem w aplikacjach przemysłowych z powodu swojej prostoty i niezawodności. Wzrost wartości częstotliwości wyjściowej przemiennika częstotliwości, który zasila taki silnik, prowadzi do wzrostu prędkości obrotowej wału silnika. Wynika to z fundamentalnej zależności między częstotliwością zasilania a prędkością obrotową, którą opisuje wzór n = (120 * f) / p, gdzie n to prędkość obrotowa w obr./min, f to częstotliwość zasilania w Hz, a p to liczba biegunów silnika. Zwiększając częstotliwość, zwiększamy także prędkość obrotową, co jest niezwykle użyteczne w aplikacjach wymagających zmiennej prędkości, takich jak wentylatory czy pompy. W praktyce, przemienniki częstotliwości pozwalają na płynne sterowanie prędkością obrotową bez konieczności zmiany konstrukcji samego silnika. To podejście jest zgodne z dobrymi praktykami branżowymi, które promują efektywność energetyczną i elastyczność zastosowań. Dodatkowo, regulacja prędkości za pomocą przemienników częstotliwości może przyczynić się do redukcji zużycia energii oraz przedłużenia żywotności sprzętu, co czyni je kluczowym elementem w nowoczesnych systemach automatyki przemysłowej.

Pytanie 38

Do pomiaru średnicy otworu φ 50 z dokładnością do 0,01 mm należy użyć

A. przymiaru kreskowego.
B. czujnika zegarowego.
C. średnicówki mikrometrycznej.
D. głębokościomierza.
Średnicówka mikrometryczna to narzędzie, które idealnie nadaje się do pomiaru średnicy otworu z wysoką precyzją, nawet do 0,01 mm. Dlaczego właśnie ten przyrząd? Średnicówki mikrometryczne są zaprojektowane do wykonywania niezwykle dokładnych pomiarów wewnętrznych, co czyni je nieocenionymi w przemyśle maszynowym, gdzie precyzja jest kluczowa. Dzięki swojej budowie, która obejmuje śrubę mikrometryczną, można uzyskać dokładność i powtarzalność pomiarów, co jest niezbędne w produkcji seryjnej czy przy kontroli jakości. Przykłady zastosowania średnicówki mikrometrycznej to choćby kontrola jakości otworów w elementach silników spalinowych czy w produkcji elementów hydraulicznych, gdzie każda odchyłka od normy może prowadzić do awarii całego systemu. Z mojego doświadczenia, posługiwanie się średnicówką wymaga pewnej wprawy, ale kiedy już opanujesz tę umiejętność, otwierają się przed tobą szerokie możliwości. Ważne jest również, by pamiętać o regularnej kalibracji tego instrumentu, zgodnie z wymaganiami norm ISO, co zapewnia zachowanie dokładności i niezawodności pomiarów.

Pytanie 39

Urządzenie 1-fazowe jest oznaczone symbolem. W celu podłączenia do sieci niezbędne będzie podpięcie do niego przewodów

Ilustracja do pytania
A. L, N, PE
B. L, PE
C. L, N
D. N, PE
Często można się pomylić, myśląc, że wszystkie urządzenia wymagają podłączenia przewodu ochronnego PE. Jednak w przypadku urządzeń oznaczonych symbolem podwójnej izolacji, nie jest to konieczne. Przewód ochronny PE stosuje się, by zabezpieczać przed porażeniem w przypadku awarii izolacji, ale urządzenia z podwójną izolacją już taką ochronę zapewniają z założenia. Tym samym połączenie L i PE czy N i PE jest zbędne. Warto wiedzieć, że urządzenia 1-fazowe działają prawidłowo i bezpiecznie przy połączeniu przewodów L i N. To wynika ze standardów branżowych, które mówią, że takie urządzenia same w sobie są zabezpieczone przed niebezpieczeństwami, które mogłyby wynikać z awarii mechanicznej lub elektrycznej. Właściwe odczytanie symboli oraz zrozumienie zastosowania izolacji to klucz do prawidłowego montażu i użytkowania urządzeń elektrycznych. Pomimo że czasem wydaje się logiczne podłączenie większej liczby przewodów, praktyka pokazuje, że jest to nie tylko zbędne, ale również może prowadzić do niepotrzebnych komplikacji w instalacji.

Pytanie 40

Który zawór rozdzielający należy zamontować w układzie elektropneumatycznym przedstawionym na rysunku?

Liczba cewek1212
Typ zaworu4/24/35/25/2
Biegunowość zasilaniadowolnadowolnadowolnadowolna
Zawór1234
Ilustracja do pytania
A. 2
B. 3
C. 1
D. 4
Wybór zaworu numer 4 jest właściwy, ponieważ w układzie elektropneumatycznym przedstawionym na schemacie wymagane jest użycie zaworu typu 5/2 z dwiema cewkami. Tego typu zawory pozwalają na precyzyjne sterowanie ruchem siłownika, co jest kluczowe w systemach, które wymagają dwukierunkowego działania. Zawory 5/2 z dwiema cewkami stosuje się w bardziej zaawansowanych aplikacjach, gdzie potrzeba większej kontroli nad siłownikiem. Dwie cewki umożliwiają przełączanie pomiędzy dwoma stanami roboczymi, co jest istotne w kontekście pracy z zaawansowanymi systemami automatyki. Z mojego doświadczenia, takie rozwiązanie jest standardem w branży przemysłowej, szczególnie tam, gdzie liczy się niezawodność i precyzja działania. Dodatkowo, zawory te pozwalają na łatwe przełączanie biegunowości, co zwiększa ich uniwersalność. W praktyce, zastosowanie tego typu zaworu w układach pneumatycznych zwiększa efektywność i bezpieczeństwo pracy, minimalizując jednocześnie ryzyko awarii. To także zgodne z dobrymi praktykami inżynierskimi, które zalecają użycie zaworów 5/2 w systemach wymagających niezawodnego sterowania kierunkiem przepływu powietrza.