Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 8 grudnia 2025 12:23
  • Data zakończenia: 8 grudnia 2025 12:46

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Powstanie napięcia na obudowie urządzenia AGD zasilanego z sieci TN-S jest rezultatem braku działania

A. wyłącznika nadprądowego
B. odłącznika
C. rozłącznika
D. wyłącznika różnicowoprądowego
Czasem pojawienie się napięcia na obudowie AGD może być mylone z innymi zabezpieczeniami, jak odłączniki czy rozłączniki. Odłącznik fizycznie przerywa obwód, ale nie chroni nas przed prądami upływowymi, które są tu kluczowe. Rozłącznik też rozłącza obwód, ale nie monitoruje różnic w prądzie, więc nie wyłapie potencjalnych problemów. Wyłącznik nadprądowy dba o przeciążenia i zwarcia, ale znów — nie sprawdza prądów, które mogą być niebezpieczne. Często mylimy te urządzenia z RCD, co prowadzi do błędnych wniosków o ich funkcjach. RCD jest jedynym z tych urządzeń, które rzeczywiście chroni przed skutkami prądów upływowych. Warto to zrozumieć, żeby właściwie korzystać z elektryczności i dbać o nasze bezpieczeństwo w domu.

Pytanie 2

Jaka jest minimalna wartość napięcia probierczego, która jest wymagana podczas pomiarów rezystancji izolacji przewodów w obwodach SELV oraz PELV?

A. 250 V
B. 1000 V
C. 100 V
D. 500 V
Wybór niewłaściwego napięcia probierczego przy pomiarach rezystancji izolacji może wynikać z niepełnego zrozumienia zasad bezpieczeństwa oraz specyfiki obwodów SELV i PELV. Użycie napięcia 100 V, na przykład, może być niewystarczające do skutecznego zdiagnozowania stanu izolacji. Praktyka pokazuje, że takie niskie napięcie nie jest w stanie ujawnić potencjalnych usterek, które są krytyczne dla bezpieczeństwa. W przypadku obwodów o napięciu roboczym, które wymagają wyższego poziomu izolacji, napięcie probiercze powinno być dostosowane do tych wymagań, co w przypadku SELV i PELV oznacza wartość nie mniejszą niż 250 V. Użycie napięcia 500 V lub 1000 V, z kolei, może prowadzić do uszkodzenia bardzo wrażliwych podzespołów w niektórych zastosowaniach, co jest szczególnie ważne w obwodach niskonapięciowych. Właściwe dobieranie napięcia probierczego to kluczowy element w zapewnieniu bezpieczeństwa systemów elektrycznych, a nieprzestrzeganie tych zasad może prowadzić do poważnych konsekwencji. Wiele osób błędnie zakłada, że wyższe napięcia są zawsze lepsze, jednak w rzeczywistości należy kierować się normami oraz zaleceniami producentów, aby zminimalizować ryzyko uszkodzeń oraz zapewnić bezpieczeństwo eksploatacyjne obwodów elektrycznych.

Pytanie 3

Zdjęcie przedstawia

Ilustracja do pytania
A. Woltomierz.
B. Techniczny mostek pomiarowy
C. Megaomomierz.
D. Woltomierz probierczy.
Megaomomierz jest specjalistycznym przyrządem pomiarowym używanym do określenia rezystancji w zakresie megaomów. Jego konstrukcja, w tym duża skala oraz pokrętło do wyboru zakresu pomiaru, są charakterystyczne dla tego typu urządzeń. Megaomomierze są często wykorzystywane w przemyśle elektrycznym i elektronicznym do testowania izolacji przewodów oraz komponentów, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych. Na przykład, podczas przeprowadzania testów izolacji w instalacjach elektrycznych, megaomomierz pozwala na wykrycie ewentualnych przecieków prądu, co może zapobiec poważnym awariom. Stosowanie megaomomierzy jest zgodne z normami branżowymi, takimi jak IEC 61557, które regulują wymagania dotyczące pomiarów parametrów elektrycznych w instalacjach. Dzięki właściwemu doborowi przyrządów i umiejętnemu przeprowadzaniu testów, można znacznie zwiększyć bezpieczeństwo oraz trwałość instalacji.

Pytanie 4

Który z urządzeń elektrycznych, zainstalowany w obwodzie systemu zasilania elektrycznego kuchenki trójfazowej, jest w stanie zidentyfikować przerwę w ciągłości przewodów jednej z faz?

A. Przekaźnik priorytetowy
B. Stycznik elektromagnetyczny
C. Odgromnik
D. Czujnik zaniku fazy
Czujnik zaniku fazy to urządzenie, którego głównym zadaniem jest monitorowanie i wykrywanie ewentualnych przerw w zasilaniu w poszczególnych fazach obwodu elektrycznego. W kontekście kuchenek trójfazowych, które wymagają stabilnego zasilania z trzech faz, czujnik ten odgrywa kluczową rolę w zapewnieniu bezpieczeństwa oraz sprawnego funkcjonowania urządzenia. Gdy zachodzi przerwa w jednej z faz, czujnik natychmiast wykrywa ten stan i może zainicjować odpowiednie działania, takie jak odłączenie urządzenia od zasilania, co zapobiega jego uszkodzeniu. Przykładowo, w kuchniach przemysłowych, gdzie kuchenki trójfazowe są wykorzystywane na dużą skalę, zastosowanie czujników zaniku fazy jest standardem, co wpływa na zwiększenie niezawodności i bezpieczeństwa operacji. Zgodnie z normami branżowymi, takie jak PN-EN 61439, zaleca się stosowanie czujników do monitorowania ciągłości zasilania w instalacjach elektrycznych, co w praktyce przekłada się na wyższą efektywność i minimalizację ryzyka awarii.

Pytanie 5

Jakie jest minimalne napięcie znamionowe izolacji, jakie powinien posiadać przewód przeznaczony do instalacji trójfazowej 230/400 V, umieszczonej w rurkach stalowych?

A. 300/300 V
B. 300/500 V
C. 600/1000 V
D. 450/750 V
Odpowiedź 450/750 V jest poprawna, ponieważ wynika z norm dotyczących instalacji elektrycznych, które wskazują, że przewody stosowane w instalacjach trójfazowych muszą charakteryzować się odpowiednim napięciem znamionowym izolacji. W przypadku instalacji o napięciu nominalnym 230/400 V, zgodnie z normą PN-EN 60228, przewody powinny mieć minimum napięcie znamionowe izolacji 450/750 V. Praktyczne zastosowanie tej wartości zapewnia odpowiednią ochronę przed uszkodzeniami elektrycznymi oraz minimalizuje ryzyko porażenia prądem w przypadku zwarcia. Stosowanie przewodów o wyższej wartości znamionowej izolacji również spowalnia proces degradacji materiału w trudnych warunkach, takich jak wysokie temperatury czy obecność wilgoci. Przykładem mogą być instalacje w przemyśle, gdzie przewody często narażane są na działanie agresywnych substancji chemicznych. Dodatkowo, zastosowanie przewodów z wyższą wartością napięcia znamionowego jest zgodne z zasadami dobrych praktyk w projektowaniu i wykonawstwie instalacji elektrycznych, co przekłada się na bezpieczeństwo i niezawodność systemu energetycznego.

Pytanie 6

Przed dokonaniem pomiaru rezystancji izolacji w instalacji elektrycznej najpierw należy odciąć napięcie zasilające, a potem

A. zamontować do opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, włączyć silniki trójfazowe
B. usunąć z opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, odłączyć silniki trójfazowe
C. usunąć z opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, odłączyć silniki trójfazowe
D. zamontować do opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, włączyć silniki trójfazowe
Dobra robota z odpowiedzią! To, co napisałeś, dobrze pokazuje, jakie kroki warto podjąć przed pomiarem rezystancji izolacji w instalacji elektrycznej. Najpierw trzeba wymontować źródła światła z opraw – to naprawdę ważne, żeby nie ryzykować porażeniem prądem w trakcie pomiarów. Poza tym, wyłączenie jednofazowych odbiorników i silników trójfazowych jest konieczne, żeby nie zakłócały one wyników i nie zostały uszkodzone przez niewłaściwe napięcie. Te zasady są zgodne z przepisami, jak PN-EN 50110-1, które mówią, że trzeba wyłączyć zasilanie przed przeprowadzeniem testów izolacji. To, że stosujesz te procedury, nie tylko zwiększa bezpieczeństwo, ale też sprawia, że pomiary są dokładniejsze. A to jest bardzo istotne, żeby dobrze ocenić stan izolacji i upewnić się, że instalacja jest w dobrym stanie.

Pytanie 7

Średnia wartość napięcia, które zostało zmierzone na wyjściu prostownika jednopołówkowego w stanie nieobciążonym, zasilanego z sinusoidalnego napięcia o wartości skutecznej 10 V, wynosi

A. 4,50 V
B. 10,00 V
C. 6,40 V
D. 7,07 V
Wartość średnia napięcia wyjściowego nieobciążonego prostownika jednopołówkowego zasilanego napięciem sinusoidalnym o wartości skutecznej 10 V można obliczyć, korzystając z odpowiednich wzorów. Dla prostownika jednopołówkowego, wartość średnia napięcia DC (Vdc) jest równa wartości szczytowej napięcia AC (Vp) podzielonej przez π. Wartość szczytowa napięcia sinusoidalnego oblicza się jako: Vp = Vrms × √2, co dla Vrms = 10 V daje Vp ≈ 14,14 V. Następnie obliczamy wartość średnią: Vdc = Vp / π ≈ 14,14 V / 3,14 ≈ 4,50 V. To pokazuje, że prostownik jednopołówkowy nie jest w stanie dostarczyć pełnej wartości skutecznej napięcia AC, a wartość średnia jest znacznie niższa. W praktyce, znajomość tej zależności jest kluczowa w projektowaniu zasilaczy, gdzie stosuje się prostowniki do konwersji napięcia AC na DC, co pozwala na zasilanie urządzeń elektronicznych. Wiedza ta jest również fundamentalna w kontekście analizy obwodów elektrycznych oraz zapewnienia optymalnego działania systemów zasilania.

Pytanie 8

Która z wymienionych czynności zaliczana jest do prac konserwacyjnych w przypadku oprawy oświetleniowej przedstawionej na rysunku?

Ilustracja do pytania
A. Wymiana złączki.
B. Wykonanie pomiarów natężenia oświetlenia.
C. Czyszczenie obudowy i styków.
D. Wymiana oprawki.
Wybór odpowiedzi związanej z wymianą oprawki lub złączki wskazuje na pewne nieporozumienie w zakresie klasyfikacji czynności konserwacyjnych i naprawczych. Wymiana oprawki jest działaniem, które zazwyczaj następuje w momencie, gdy oprawka jest uszkodzona lub nie działa poprawnie, co klasyfikuje tę czynność jako naprawczą, a nie konserwacyjną. Podobnie, wymiana złączki dotyczy bardziej aspektów technicznych, które wymagają interwencji w przypadku awarii, a nie rutynowego utrzymania. Czynności te są niezbędne w sytuacjach kryzysowych, ale nie powinny być mylone z regularnym utrzymywaniem sprzętu w dobrym stanie. W kontekście wykonywania pomiarów natężenia oświetlenia, należy zauważyć, że jest to proces kontrolny, który służy do oceny jakości oświetlenia w danym obszarze, a nie do jego konserwacji. Mylne podejście do konserwacji opraw oświetleniowych oraz ich funkcjonalności często prowadzi do nieprawidłowego zarządzania zasobami i zwiększonych kosztów operacyjnych. Przykładem może być sytuacja, w której brak odpowiedniej konserwacji skutkuje koniecznością częstszych napraw, co znacząco podnosi wydatki związane z utrzymaniem systemu oświetleniowego. Dlatego istotne jest, aby zrozumieć różnicę między tymi pojęciami oraz zastosować odpowiednie praktyki konserwacyjne, które będą sprzyjały długotrwałemu i efektywnemu działaniu urządzeń.

Pytanie 9

W instalacjach TN-S wyłączniki różnicowoprądowe są używane jako ochrona przed

A. zwarciem
B. przeciążeniem
C. porażeniem
D. przepięciem
Wybór niewłaściwej odpowiedzi może prowadzić do nieporozumień na temat funkcji wyłączników różnicowoprądowych. Zwarcie, czyli nagłe połączenie dwóch przewodów o różnym potencjale, prowadzi do zwiększonego przepływu prądu, co zazwyczaj jest zabezpieczane przez wyłączniki automatyczne (np. wyłączniki nadprądowe), a nie przez RCD, które nie reagują na wzrost natężenia prądu, lecz na różnice w prądzie między przewodami. Przepięcia, które mogą być wynikiem nagłych skoków napięcia, również nie są głównym celem RCD. Przeciążenie, z kolei, to sytuacja, gdy obciążenie przekracza nominalną wartość zabezpieczeń, co ponownie wymaga reakcji wyłączników nadprądowych. Kluczowym błędem jest zrozumienie, że RCD nie zabezpiecza przed skutkami zwarcia, przeciążenia ani przepięcia, lecz tylko przed porażeniem elektrycznym wynikającym z upływu prądu. Dobrą praktyką jest stosowanie RCD jako dodatkowego zabezpieczenia w instalacjach elektrycznych, ale nie należy mylić ich funkcji z innymi rodzajami zabezpieczeń, co może prowadzić do niewłaściwego stosowania urządzeń i potencjalnych zagrożeń dla użytkowników.

Pytanie 10

Montaż gniazda wtykowego pozbawionego styku ochronnego oraz podłączenie do niego urządzenia elektrycznego klasy I ochronności może prowadzić do

A. uszkodzenia podłączonego urządzenia elektrycznego
B. zagrożenia porażeniem prądem elektrycznym
C. przeciążenia obwodu elektrycznego
D. zwarcia w obwodzie elektrycznym
Zamontowanie gniazda wtykowego bez styku ochronnego i podłączenie do niego urządzenia elektrycznego klasy I stwarza poważne zagrożenie porażeniem prądem elektrycznym. Urządzenia tej klasy mają metalowe obudowy, które są w związku z tym potencjalnie niebezpieczne w przypadku awarii izolacji. Styk ochronny w gniazdku jest kluczowy, ponieważ zapewnia bezpieczeństwo poprzez uziemienie obudowy urządzenia, co zapobiega gromadzeniu się ładunków elektrycznych. W przypadku braku styku ochronnego, w sytuacji, gdy izolacja urządzenia ulegnie uszkodzeniu, napięcie może pojawić się na obudowie, co prowadzi do ryzyka porażenia prądem podczas kontaktu z użytkownikiem. Przykładowo, w przypadku użycia sprzętu AGD, takiego jak pralka, która nie ma odpowiedniej ochrony, użytkownik może być narażony na niebezpieczeństwo. Dlatego kluczowe jest stosowanie gniazd zgodnych z normami, takimi jak PN-EN 60309, które uwzględniają zabezpieczenia w instalacjach elektrycznych. Przeprowadzając prace instalacyjne, należy zawsze upewnić się, że gniazda są zgodne ze standardami i posiadają odpowiednie elementy ochronne.

Pytanie 11

Na którym rysunku przedstawiono żarówkę halogenową?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
W przypadku odpowiedzi A, C oraz D, można zauważyć, że błędnie klasyfikują one rodzaje żarówek, co może prowadzić do dezinformacji na temat ich właściwości i zastosowań. Żarówka A, stanowiąca tradycyjną żarówkę żarnikową, wykorzystuje włókno wolframowe i charakteryzuje się dużą ilością emitowanego ciepła, co skutkuje niższą efektywnością energetyczną. W związku z tym, w wielu krajach wprowadzono ograniczenia dotyczące ich produkcji i sprzedaży. Żarówka C to żarówka energooszczędna, która działa na zasadzie fluorescencji, a jej kształt i konstrukcja różnią się od klasycznych żarówek halogenowych. Mimo że oferuje znacznie niższe zużycie energii, ma tendencję do generowania zimnego, nieprzyjemnego światła, co może nie być odpowiednie w wielu zastosowaniach. Żarówka D, oznaczająca źródło LED, jest nowoczesnym rozwiązaniem, które łączy w sobie wiele zalet, takich jak długa żywotność i niskie zużycie energii, ale jej konstrukcja i działanie różnią się od halogenów. Osoby udzielające odpowiedzi mogą mylić te różnice ze względu na podobieństwo w zastosowaniach oświetleniowych, jednakże każdy z tych typów żarówek ma swoje unikalne cechy oraz ograniczenia, które warto znać przed dokonaniem wyboru.

Pytanie 12

Jakie oznaczenie powinna posiadać wkładka topikowa do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego elektrycznego bojlera o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. aM 16 A
B. gG 16 A
C. gG 20 A
D. aM 20 A
Wybór wkładek topikowych aM 20 A i aM 16 A jest niewłaściwy, ponieważ wkładki te są stworzone do zabezpieczania obwodów w przypadku przeciążeń, a nie zwarć, co czyni je mniej odpowiednimi do ochrony bojlerów elektrycznych. Wkładki aM charakteryzują się dłuższym czasem reakcji na krótkotrwałe przeciążenia, co może prowadzić do niebezpiecznych sytuacji, szczególnie w przypadku urządzeń takich jak bojler, które mogą generować znaczne obciążenia podczas rozruchu. Użycie wkładki aM mogłoby skutkować opóźnieniem w zadziałaniu zabezpieczenia, co w rezultacie narażałoby instalację na uszkodzenia. Z kolei wkładka gG 20 A, choć jest odpowiednia dla zabezpieczeń przed zwarciami, przekracza prąd znamionowy dla bojlera o mocy 3 kW, co oznacza, że w przypadku wystąpienia zwarcia wkładka mogłaby nie zadziałać wystarczająco szybko. Takie podejście może prowadzić do przegrzania przewodów i zwiększenia ryzyka pożaru lub uszkodzenia sprzętu. Niezrozumienie różnicy pomiędzy charakterystyką wkładek topikowych aM a gG jest typowym błędem, który skutkuje nieprawidłowym doborem zabezpieczeń w instalacjach elektrycznych.

Pytanie 13

Rysunek przedstawia pętlę zwarciową w układzie

Ilustracja do pytania
A. TN-C
B. TN-S
C. TT
D. IT
Odpowiedź TT jest poprawna, ponieważ układ TT charakteryzuje się bezpośrednim uziemieniem punktu neutralnego źródła zasilania, co jest kluczowe w kontekście ochrony przeciwporażeniowej. W tym systemie, przewód neutralny (N) oraz przewody fazowe (L1, L2, L3) są oddzielnie prowadzone, co pozwala na niezależne uziemienie ochronne (RA) od uziemienia roboczego źródła (RB). Taka konstrukcja minimalizuje ryzyko prądów upływowych i zwiększa bezpieczeństwo użytkowników, szczególnie w instalacjach o dużym narażeniu na wilgoć. W przypadku zwarcia, pętla zwarciowa, która obejmuje przewód fazowy, odbiornik, uziemienie ochronne oraz uziemienie źródła, działa szybko, wyłączając zasilanie, co jest zgodne z wymaganiami normy PN-IEC 60364, która podkreśla potrzebę stosowania skutecznych środków ochrony. Przykładowo, w budynkach użyteczności publicznej, zastosowanie układu TT jest zalecane w strefach zwiększonego ryzyka, co zwiększa komfort i bezpieczeństwo użytkowników.

Pytanie 14

Jakie znaczenie ma opis OMY 500 V 3x1,5 mm2 umieszczony na izolacji przewodu?

A. Przewód oponowy warsztatowy pięciożyłowy w izolacji polietylenowej
B. Sznur mieszkalny trzyżyłowy w izolacji polwinitowej
C. Sznur mieszkalny pięciożyłowy w izolacji polietylenowej
D. Przewód oponowy mieszkalny trzyżyłowy w izolacji polwinitowej
Odpowiedź wskazująca na przewód oponowy mieszkaniowy trzyżyłowy w izolacji polwinitowej jest poprawna, ponieważ oznaczenie OMY 500 V 3x1,5 mm2 wskazuje na konkretny typ przewodu, który jest powszechnie stosowany w instalacjach elektrycznych w budynkach mieszkalnych. Oznaczenie 'OMY' odnosi się do przewodów oponowych, które charakteryzują się dużą elastycznością i odpornością na uszkodzenia mechaniczne. Izolacja polwinitowa (PVC) zabezpiecza przed działaniem wilgoci i substancji chemicznych, co czyni ten przewód idealnym do stosowania w warunkach domowych, gdzie często zachodzi ryzyko narażenia na różnorodne czynniki zewnętrzne. Przewód o przekroju 3x1,5 mm2 oznacza, że ma trzy żyły o średnicy 1,5 mm2, co jest standardowym przekrojem dla obwodów oświetleniowych i gniazd wtykowych w mieszkaniach. Przykłady zastosowania obejmują instalacje w domach jednorodzinnych, w których przewody te są używane do podłączenia oświetlenia oraz zasilania urządzeń elektrycznych. Zgodność z normą PN-EN 50525-2-21 potwierdza, że przewód spełnia wymagane standardy bezpieczeństwa oraz jakości.

Pytanie 15

Z którym zaciskiem będzie połączony zacisk 41 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem 22 stycznika K1
B. Z zaciskiem 4 listwy zaciskowej X1
C. Z zaciskiem A2 stycznika K1
D. Z zaciskiem 3 listwy zaciskowej X1
Analizując wybrane odpowiedzi, zauważamy, że wiele z nich opiera się na błędnym zrozumieniu schematu montażowego. Po pierwsze, połączenie zacisku A2 stycznika K1 z zaciskiem 41 stycznika K2 jest nieprawidłowe, ponieważ A2 jest zazwyczaj zarezerwowane dla innego obwodu zasilającego, a nie do bezpośredniego połączenia z K2. W kontekście elektryki, każdy zacisk ma określone funkcje, a pomylenie ich może prowadzić do nieprawidłowego działania urządzenia oraz potencjalnych zagrożeń dla bezpieczeństwa. W przypadku zacisku 22 stycznika K1, który jest połączony z zaciskiem 13 K1, zrozumienie, jakie funkcje pełni każdy z tych zacisków i jak są one zorganizowane w obwodzie, jest kluczowe. Zacisk 4 listwy zaciskowej X1 również nie jest poprawnym połączeniem, ponieważ zgodnie ze schematem, powinien być zarezerwowany dla innych zadań w obwodzie stycznika K2. W praktyce błędy te często wynikają z nieuważnego czytania schematów oraz braku wiedzy na temat podstawowych zasad okablowania. Kluczowe jest, aby przed przystąpieniem do pracy zapoznać się z pełnym kontekstem i funkcjonalnością obwodów, co jest fundamentalne dla zapewnienia skuteczności i bezpieczeństwa w instalacjach elektrycznych.

Pytanie 16

Przedstawiona na ilustracji wstawka kalibrowa bezpiecznika przeznaczona jest do instalacji o napięciu znamionowym

Ilustracja do pytania
A. co najmniej 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A
B. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A
C. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
D. co najmniej 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
Wybrana odpowiedź jest poprawna, ponieważ na ilustracji przedstawiona jest wstawka kalibrowa bezpiecznika z oznaczeniami "63 A" oraz "500 V". Te oznaczenia wskazują, że wstawka jest przeznaczona do instalacji, w których napięcie znamionowe nie może przekraczać 500 V oraz dla wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A. W praktyce, zastosowanie odpowiednich bezpieczników jest kluczowe dla zapewnienia bezpieczeństwa w systemach elektroenergetycznych oraz ochrony przed przeciążeniem i zwarciem. Standardy takie jak PN-EN 60269, które dotyczą bezpieczników, określają wymagania dotyczące ich instalacji oraz właściwości, co pozwala na ich prawidłowe zastosowanie w różnych warunkach. W przypadku stosowania wyższych napięć lub większych prądów, konieczne jest stosowanie innych typów wkładek, co zwiększa ryzyko uszkodzeń i zagrożeń. Dlatego tak ważne jest, aby podczas wyboru zabezpieczeń kierować się wskazaniami producentów oraz normami branżowymi.

Pytanie 17

Którą czynność przedstawiono na rysunku?

Ilustracja do pytania
A. Ściąganie izolacji z przewodu.
B. Zaciskanie końcówki tulejkowej.
C. Klejenie na gorąco przewodu kabelkowego.
D. Zaciskanie opaski kablowej.
Wybór odpowiedzi, który nie odnosi się do zaciskania opaski kablowej, może wynikać z nieporozumienia dotyczącego funkcji narzędzi i ich zastosowania w pracy z przewodami. Ściąganie izolacji z przewodu jest procesem całkowicie innym, który polega na usunięciu zewnętrznej warstwy izolacyjnej kabla, co ma na celu odsłonięcie żył przewodzących. Przeprowadzając tę czynność, zawsze należy stosować odpowiednie narzędzia, aby uniknąć uszkodzenia samego przewodu. Zaciskanie końcówki tulejkowej odnosi się do innego procesu, który ma na celu połączenie przewodu z innym elementem za pomocą tulejek, co również nie ma związku z tematyką opasek kablowych. Klejenie na gorąco przewodu kabelkowego to technika, która nie jest stosowana w kontekście organizacji i zabezpieczania przewodów. Metoda ta jest raczej używana do łączenia różnych materiałów, co nie odnosi się do zagadnienia związanego z opaskami kablowymi. Typowe błędy myślowe, które mogą prowadzić do takich wyborów, obejmują pomylenie narzędzi i ich funkcji oraz niezrozumienie kontekstu, w jakim opaski kablowe są używane. Ważne jest, aby w kontekście technicznym zrozumieć różnice między tymi procesami i ich odpowiednie zastosowania w praktyce, aby unikać nieporozumień w przyszłości.

Pytanie 18

Który z łączników instalacyjnych przedstawionych na rysunkach należy zastosować w układzie realizującym sterowanie oświetleniem z dwóch miejsc?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Wybór innego łącznika niż łącznik schodowy prowadzi do nieporozumień związanych z jego funkcjonalnością. Na przykład łączniki krzyżowe czy pojedyncze nie mają zdolności do jednoczesnego sterowania oświetleniem z dwóch miejsc, co stanowi podstawowy wymóg w omawianej sytuacji. Typowe błędy myślowe, prowadzące do takich wyborów, często obejmują mylenie zastosowania różnych typów łączników, co może wynikać z braku zrozumienia ich funkcji. Łączniki jednobiegunowe, na przykład, są przeznaczone jedynie do sterowania oświetleniem z jednego miejsca, co w przypadku dwu- lub wielopunktowego sterowania, nie spełnia oczekiwań. Ponadto, niektóre rozwiązania mogą być uznawane za bardziej skomplikowane, przez co użytkownicy mogą wybierać nieodpowiednie komponenty, nie biorąc pod uwagę ich specyfikacji technicznych. Kluczowe jest zrozumienie, że w odpowiednich zastosowaniach konieczne jest stosowanie właściwych typów łączników, aby uniknąć problemów z instalacją i późniejszym użytkowaniem, co jest zgodne z zaleceniami branżowymi i standardami bezpieczeństwa.

Pytanie 19

Której klasy ogranicznik przepięć przedstawiono na rysunku?

Ilustracja do pytania
A. Klasy C
B. Klasy D
C. Klasy B
D. Klasy A
Wybór odpowiedzi spośród klas A, B czy C jest nieprawidłowy, ponieważ te klasy ograniczników przepięć mają inne zastosowania i nie odpowiadają na konkretne potrzeby ochrony końcowych urządzeń elektronicznych. Ograniczniki klasy A są przeznaczone do ochrony instalacji przed przepięciami, które mogą wystąpić w wyniku wyładowań atmosferycznych, co czyni je bardziej odpowiednimi dla systemów zasilających i infrastruktury budowlanej, a nie dla urządzeń użytkowych. Klasa B z kolei jest zarezerwowana dla zastosowań przemysłowych, gdzie konieczne jest ograniczenie przepięć na poziomie wyższym niż w przypadku klasy D, co czyni je niewłaściwym wyborem dla urządzeń codziennego użytku. Klasa C, stosowana w instalacjach niskonapięciowych, również nie zapewnia odpowiedniej ochrony dla końcowych urządzeń, które wymagają bardziej specyficznej i bezpośredniej ochrony. Kluczowym błędem, który często prowadzi do wyboru niewłaściwej klasy, jest mylenie ogólnych właściwości ograniczników z ich specyfiką zastosowania. Każda klasa ograniczników ma określone parametry i przeznaczenie, które powinny być zgodne z wymaganiami danego systemu. Zrozumienie różnic między tymi klasami jest kluczowe dla właściwego doboru urządzeń ochronnych w celu zapewnienia optymalnej ochrony i wydajności systemów elektronicznych.

Pytanie 20

Jakie działania należy podjąć po odłączeniu zasilania, aby zgodnie z PN-HD 60364-6:2008 Instalacje elektryczne niskiego napięcia, przeprowadzić pomiar rezystancji izolacji kabli?

A. Rozłączyć oprawy oświetleniowe, zewrzeć łączniki oświetlenia oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego
B. Wyłączyć odbiorniki oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego
C. Zasilić badaną instalację napięciem stałym oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego
D. Odłączyć odbiorniki, zewrzeć łączniki oraz zapewnić skuteczną ochronę przed dotykiem bezpośrednim
Poprawna odpowiedź to odłączenie odbiorników oraz zapewnienie skutecznej ochrony przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego. Zgodnie z PN-HD 60364-6:2008, przed przystąpieniem do pomiaru rezystancji izolacji, należy bezwzględnie odłączyć wszelkie odbiorniki elektryczne od instalacji. Takie działanie ma na celu uniknięcie ryzyka porażenia prądem oraz uszkodzenia urządzeń podczas pomiaru. Kluczowym aspektem jest także zapewnienie skutecznej ochrony, co często realizuje się poprzez zastosowanie odpowiednich zabezpieczeń mechanicznych lub elektronicznych, które blokują możliwość przypadkowego włączenia zasilania. Przykładem może być użycie blokady na rozdzielnicy. W praktyce, pomiar rezystancji izolacji wykonuje się najczęściej przy użyciu megomierza, który generuje wysokie napięcie, co może być niebezpieczne dla osób i sprzętu, jeśli nie zostaną podjęte odpowiednie środki ochrony. Prawidłowe przygotowanie do pomiaru jest kluczowe, aby zapewnić bezpieczeństwo oraz dokładność wyników. Dobrą praktyką jest także dokumentacja stanu wyłączenia oraz przeprowadzonych działań, co jest przydatne w kontekście inspekcji i audytów.

Pytanie 21

Aby zabezpieczyć silnik indukcyjny trójfazowy w układzie zasilania ze stycznikiem przed przeciążeniem, należy użyć przekaźnika termobimetalowego. Jaki typ przekaźnika powinien być zastosowany?

A. jednotorowy ze stykiem kontrolnym
B. trójtorowy ze stykiem kontrolnym
C. trójtorowy bez styku kontrolnego
D. jednotorowy bez styku kontrolnego
Wybór przekaźnika jednostorowego, niezależnie od tego, czy ma on styk sterujący, czy nie, jest niewłaściwy w kontekście zabezpieczania silnika trójfazowego. Przekaźnik jednostorowy monitoruje tylko jedną fazę, co nie zapewnia pełnej ochrony w przypadku przeciążenia, które może wystąpić w którejkolwiek z pozostałych faz. Silniki trójfazowe są zaprojektowane do pracy równomiernie w trzech fazach, dlatego ich zabezpieczenie wymaga kompleksowego podejścia. Zastosowanie przekaźnika trójtorowego jest kluczowe, ponieważ pozwala na równoczesne monitorowanie prądów w każdej fazie, co umożliwia szybkie wykrycie anomalii. W przypadku przekaźnika trójtorowego bez styku sterującego, brak integracji z systemami automatyki może prowadzić do opóźnień w reakcji na przeciążenie, co zwiększa ryzyko uszkodzenia silnika. Z kolei jednostorowy przekaźnik ze stykami sterującymi, mimo że może wydawać się użyteczny, również nie spełnia wymagań w kontekście monitorowania całego układu zasilania. W praktyce, profesjonalne podejście do zabezpieczeń wymaga zastosowania przekaźnika trójfazowego, który zapewnia nie tylko ochronę, ale i możliwość integracji z nowoczesnymi systemami zarządzania energetycznego.

Pytanie 22

Pomiar impedancji pętli zwarciowych wykonuje się w przypadku

A. aktywnie działającej sieci, co uwzględnia impedancje transformatorów zasilających
B. aktywnie działającej sieci, co nie uwzględnia impedancji transformatorów zasilających
C. wyłączonej sieci, co nie uwzględnia impedancji transformatorów zasilających
D. wyłączonej sieci, co uwzględnia impedancje transformatorów zasilających
Pomiar impedancji pętli zwarciowej w momencie, gdy sieć jest odłączona, prowadzi do znacznych zniekształceń wyników. W takim przypadku nie uwzględniamy rzeczywistej interakcji między elementami systemu, co skutkuje pomiarami, które nie odzwierciedlają rzeczywistych warunków pracy. Odpowiedzi, które zakładają odłączenie sieci i pomijają impedancję transformatorów, zapominają o fundamentalnej roli, jaką te urządzenia odgrywają w systemach zasilania. W przypadku zwarcia, transformatorzy przyczyniają się do zmiany impedancji, poprzez swoją własną impedancję zwarciową, co może znacząco wpłynąć na prąd zwarciowy i czas reakcji zabezpieczeń. Pomiar przeprowadzony w tej konfiguracji może prowadzić do zbyt niskich lub zbyt wysokich wartości impedancji, co w praktyce może skutkować nieadekwatnym dobraniem zabezpieczeń. Typowym błędem myślowym jest przekonanie, że pomiar w czasie odłączenia jest wystarczający i dostarcza pełnego obrazu zachowania systemu. Należy pamiętać, że odpowiednie wytyczne, takie jak normy IEC, zalecają przeprowadzanie tych pomiarów w warunkach operacyjnych, aby zapewnić rzetelność i bezpieczeństwo instalacji elektrycznych.

Pytanie 23

Symbol graficzny przedstawiony na rysunku oznacza łącznik

Ilustracja do pytania
A. dwubiegunowy.
B. schodowy.
C. hotelowy.
D. świecznikowy.
Odpowiedź schodowy jest poprawna, ponieważ symbol graficzny przedstawiony na rysunku rzeczywiście oznacza łącznik schodowy. Łącznik schodowy jest urządzeniem elektrycznym stosowanym w instalacjach oświetleniowych, które umożliwia kontrolowanie jednego źródła światła z dwóch różnych miejsc, co jest szczególnie przydatne na klatkach schodowych. Przykładowo, w przypadku długich schodów lub korytarzy, możliwe jest umiejscowienie jednego łącznika na dół schodów, a drugiego na górze. Zastosowanie łącznika schodowego przyczynia się do poprawy ergonomii i bezpieczeństwa, eliminując konieczność schodzenia w ciemności. Zgodnie z normą PN-IEC 60669-1, stosowanie łączników schodowych w instalacjach oświetleniowych jest szeroko uznawane jako najlepsza praktyka w celu zwiększenia funkcjonalności i komfortu użytkowania. Warto także zwrócić uwagę, że łączniki schodowe mogą być używane z innymi typami łączników, co umożliwia bardziej złożoną kontrolę oświetlenia w większych przestrzeniach.

Pytanie 24

Który schemat montażowy instalacji oświetleniowej przedstawionej na zamieszczonym planie jest prawidłowy?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Schemat C. przedstawia prawidłowe podłączenie instalacji oświetleniowej, co jest kluczowe dla bezpieczeństwa i funkcjonalności systemu. W tym schemacie przewody fazowe (L) są właściwie podłączone do przełącznika bistabilnego, co umożliwia sterowanie oświetleniem z jednego miejsca. Przewody neutralne (N) są bezpośrednio podłączone do lamp, co jest zgodne z normami bezpieczeństwa. Taki układ zapewnia, że w momencie wyłączenia przełącznika, nie ma napięcia na lampach, co minimalizuje ryzyko porażenia prądem. Ponadto, stosowanie przełączników bistabilnych jest zgodne z dobrymi praktykami w projektowaniu instalacji oświetleniowych, co podnosi komfort użytkowania. Warto również zaznaczyć, że zgodnie z normami PN-IEC 60364, odpowiednie podłączenie przewodów jest fundamentalne dla prawidłowego funkcjonowania instalacji oraz jej bezpieczeństwa.

Pytanie 25

Którym z kluczy należy dokręcić nakrętkę kotwy przedstawionej na ilustracji?

Ilustracja do pytania
A. Imbusowym.
B. Płaskim.
C. Oczkowym.
D. Nasadowym.
Wybór innych typów kluczy niż klucz płaski do dokręcania nakrętki kotwy jest niewłaściwy z kilku względów. Klucz nasadowy, mimo że jest uniwersalnym narzędziem, dedykowanym często do elementów z łbem sześciokątnym, nie pasuje do nakrętki o specyficznym kształcie, jaką ma kotwa przedstawiona na ilustracji. Użycie klucza nasadowego może skutkować niemożnością pełnego uchwycenia nakrętki, co prowadzi do poślizgu i potencjalnych uszkodzeń. Z kolei klucz imbusowy, zaprojektowany do elementów z gniazdem sześciokątnym wewnętrznym, nie ma zastosowania w tym kontekście, gdyż nakrętka kotwy nie posiada takiego gniazda. W przypadku klucza oczkowego, jego konstrukcja również nie będzie odpowiednia, ponieważ nie pozwala na objęcie nakrętki w sposób, który zapewni stabilność i siłę dokręcania. W praktyce, niewłaściwy dobór klucza prowadzi nie tylko do problemów z dokręcaniem, ale także może skutkować uszkodzeniami narzędzi oraz elementów, co narazi użytkownika na dodatkowe koszty naprawy. Kluczowe jest zrozumienie, że w każdej sytuacji technicznej, wybór odpowiedniego narzędzia powinien być oparty na jego specyfikacji oraz na charakterystyce łączonych elementów. Zastosowanie niewłaściwego klucza to klasyczny błąd myślowy, który wynika z braku analizy sytuacji i nieznajomości podstawowych zasad doboru narzędzi.

Pytanie 26

W którym miejscu układu przedstawionego na schemacie powinny zostać zainstalowane zabezpieczenia nadprądowe o największej wartości prądu znamionowego?

Ilustracja do pytania
A. W rozdzielnicy mieszkaniowej.
B. Bezpośrednio przed licznikami.
C. W rozdzielnicy głównej.
D. W złączu.
Wydaje się, że instalowanie zabezpieczeń nadprądowych w rozdzielnicy głównej, mieszkaniowej lub przed licznikami to dobry pomysł, ale nie do końca tak jest. Rozdzielnica główna służy do rozdzielania obwodów, ale nie jest najlepszym miejscem na montaż zabezpieczeń o najwyższej wartości prądu, bo nie będzie chronić całego układu przed przeciążeniami na etapie przyłączenia do sieci. Jak się je włoży w rozdzielnicy mieszkaniowej, to chronią tylko lokalne obwody, a nie całą instalację. A umiejscowienie ich przed licznikami może prowadzić do problemów, jak źle dobrane przewody czy izolacja, co sprawi, że nie zadziałają, gdy dojdzie do awarii. Najlepiej, żeby te zabezpieczenia były w złączu, aby mogły działać w momencie zwarcia i przeciążenia, gdzie energia z sieci wchodzi do instalacji. Źle dobrane miejsce do montażu zabezpieczeń może prowadzić do poważnych problemów, jak pożar lub uszkodzenia urządzeń elektrycznych. Dlatego ważne jest, by projektując instalację, trzymać się norm i zasad, które wskazują, że złącze elektryczne to kluczowe miejsce dla zabezpieczeń.

Pytanie 27

W instalacjach elektrycznych w budynkach mieszkalnych o napięciu 230 V nie wolno używać opraw oświetleniowych zrealizowanych w klasie ochrony

A. 0
B. III
C. I
D. II
Wybór klasy ochronności I, II lub III dla opraw oświetleniowych w instalacjach o napięciu 230 V jest nieodpowiedni ze względu na różnice w poziomie zabezpieczeń, które oferują poszczególne klasy. Klasa I obejmuje urządzenia, które mają zabezpieczenie w postaci uziemienia, co może stwarzać mylne wrażenie większego bezpieczeństwa w porównaniu do klasy 0. W rzeczywistości jednak, jeśli nie jest zastosowane odpowiednie uziemienie, urządzenie klasy I może być równie niebezpieczne, zwłaszcza w przypadku uszkodzeń. Z kolei klasa II zapewnia dodatkową izolację, co czyni ją bardziej odpowiednią dla instalacji domowych. Klasa III jest z kolei przeznaczona dla urządzeń niskonapięciowych, co nie jest zgodne z wymaganiami dla standardowych opraw oświetleniowych w mieszkaniach, gdzie napięcie wynosi 230 V. Błędem myślowym jest zakładanie, że klasy z większym poziomem zabezpieczeń mogą być stosowane w sytuacjach, gdzie nie jest to zalecane. Właściwe zrozumienie klas ochrony i ich zastosowań jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych, a ich niewłaściwe dobieranie może prowadzić do poważnych wypadków oraz uszkodzeń sprzętu. Dlatego tak ważne jest, aby zawsze przestrzegać standardów oraz zasad bezpieczeństwa określonych w normach elektrycznych.

Pytanie 28

Którego z wymienionych urządzeń pomiarowych powinno się użyć do przeprowadzenia pomiarów rezystancji izolacji w domowej instalacji elektrycznej?

A. Amperomierza cęgowego
B. Megaomomierza induktorowego
C. Mostka prądu zmiennego
D. Omomierza szeregowego
Jak wybierzesz złe urządzenie do mierzenia rezystancji izolacji, to może to prowadzić do błędnych wyników i braku zidentyfikowania problemów. Na przykład mostek prądu przemiennego, mimo że jest używany do pomiarów impedancji, nie nadaje się do oceny izolacji, bo nie daje wystarczającego napięcia, żeby pokazać ewentualne uszkodzenia. Użycie go w takich pomiarach może prowadzić do fałszywych pozytywnych wyników, co z kolei jest niebezpieczne dla ludzi. Amperomierz cęgowy też jest do pomiaru prądu, a nie rezystancji, więc to kompletnie się nie sprawdzi w tym kontekście. W tym przypadku omomierz szeregowy również odpada, bo bada rezystancję przy niskim napięciu, co nie pozwala dobrze ocenić jakości izolacji. Korzystanie z takich urządzeń może sprawić, że nie dostrzegasz ryzyka związanego z niewłaściwą izolacją, a to może prowadzić do poważnych zagrożeń dla zdrowia i życia. Dlatego lepiej używać odpowiednich narzędzi, jak megaomomierz induktorowy, żeby zapewnić bezpieczeństwo i trzymać się norm w branży.

Pytanie 29

Metodą oceny efektywności połączeń wyrównawczych powinien być pomiar napięć

A. rażeniowych
B. skutecznych
C. dotykowych
D. krokowych
Pomiar napięć skutecznych jest naprawdę ważny, jeśli chodzi o ocenę, jak dobrze działają połączenia wyrównawcze. Dzięki temu możemy zobaczyć, jak dobrze system radzi sobie z ewentualnymi różnicami napięć w instalacji elektrycznej. Połączenia wyrównawcze mają na celu zminimalizowanie ryzyka porażeń prądem, więc istotne jest, żeby te różnice były na niskim poziomie. Napięcia skuteczne, czyli wartości RMS, pokazują nam, jak system działa w rzeczywistości, co bardzo ułatwia ocenę skuteczności zabezpieczeń. Można to zastosować na przykład w instalacjach przemysłowych, gdzie ochrona ludzi i sprzętu jest kluczowa. Normy, jak PN-IEC 60364, podkreślają, jak ważne są regularne inspekcje i pomiary, żeby mieć pewność, że systemy bezpieczeństwa działają prawidłowo i są w dobrym stanie.

Pytanie 30

Jaka jest znamionowa sprawność silnika jednofazowego przy danych: PN = 3,7 kW (moc mechaniczna), UN = 230 V, IN = 21,4 A oraz cos φN = 0,95?

A. 0,79
B. 0,75
C. 0,95
D. 0,71
Zrozumienie wyniku sprawności silnika wymaga znajomości pojęcia mocy, napięcia oraz prądu, a także współczynnika mocy. Odpowiedzi, które wskazują na wartości takie jak 0,95, 0,75 czy 0,71, opierają się na niepełnym zrozumieniu tych pojęć. Przykładowo, wybór 0,95 może sugerować, że użytkownik pomylił sprawność z współczynnikiem mocy, co jest powszechnym błędem. Współczynnik mocy jest miarą efektywności wykorzystania energii, ale nie mierzy strat samego silnika, dlatego nie może być bezpośrednio uznawany za sprawność. Z kolei wartości takie jak 0,75 czy 0,71 mogą wynikać z błędnego obliczenia lub nieprawidłowego zrozumienia danych wejściowych. Aby poprawnie ocenić sprawność silnika, kluczowe jest zrozumienie, że sprawność to stosunek mocy mechanicznej do mocy elektrycznej dostarczanej do silnika. Niskie wartości sprawności wskazują na wysokie straty energii, co jest niekorzystne w kontekście eksploatacji silników. W branży energetycznej, zgodnie z normami IEC, dąży się do maksymalizacji efektywności energetycznej, co oznacza, że silniki o sprawności poniżej 0,80 są uważane za nieefektywne. W praktyce, wybierając silnik, warto zwrócić uwagę na jego parametry, aby uniknąć wyższych kosztów eksploatacji i zapewnić lepszą wydajność systemu.

Pytanie 31

Który z przyrządów służy do bezpośredniego pomiaru współczynnika mocy?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Wybór niewłaściwej odpowiedzi może wynikać z powszechnego nieporozumienia dotyczącego przyrządów pomiarowych i ich funkcji w kontekście analizy obwodów elektrycznych. Wiele osób może mylić różne typy przyrządów, takich jak amperomierze, woltomierze czy oscyloskopy, z watomierzami, nie zdając sobie sprawy, że każdy z tych przyrządów ma swoje specyficzne zastosowanie. Amperomierz mierzy prąd elektryczny, a woltomierz mierzy napięcie, co pozwala na obliczenie mocy pozornej (S) w obwodzie, jednak nie dostarczają one informacji o mocy czynnej (P) bez dodatkowych obliczeń. Natomiast oscyloskop, służący do analizy sygnałów elektrycznych, może być użyty do wizualizacji fali, ale nie jest przeznaczony do pomiaru współczynnika mocy. Typowym błędem myślowym jest także przeświadczenie, że wystarczy znać wartości prądu i napięcia, aby obliczyć współczynnik mocy bez uwzględnienia mocy czynnej, co jest kluczowe w tym kontekście. W praktyce, aby uzyskać rzetelne wyniki pomiarów oraz analiz, niezbędne jest stosowanie przyrządów odpowiednich do zamierzonego pomiaru, co potwierdzają normy i wytyczne branżowe. Dlatego tak ważne jest, aby dobrze zrozumieć rolę watomierza jako narzędzia do bezpośredniego pomiaru współczynnika mocy.

Pytanie 32

Na którym rysunku przedstawiono zgodne ze schematem połączenie układu sterowania oświetleniem?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Schemat C został zaprezentowany w sposób, który odpowiada zasadom prawidłowego montażu instalacji elektrycznych. W tym schemacie przewód fazowy (L) jest właściwie podłączony do jednego z łączników, co umożliwia sterowanie oświetleniem w sposób zgodny z normami. Przewód neutralny (N) nie jest połączony z łącznikami, co jest zgodne z dobrymi praktykami w instalacjach oświetleniowych, gdzie przewody neutralne zazwyczaj podłączane są bezpośrednio do źródła światła lub rozdzielnicy. Taki układ zapewnia bezpieczeństwo oraz minimalizuje ryzyko porażenia prądem. Zastosowanie schematu C w praktyce pozwala na efektywne i bezpieczne sterowanie oświetleniem, co jest kluczowe w projektowaniu oraz wykonawstwie instalacji elektrycznych. Warto również zwrócić uwagę na konieczność przestrzegania odpowiednich norm, takich jak PN-IEC 60364, które regulują sposób wykonywania instalacji elektrycznych, aby były one zarówno funkcjonalne, jak i bezpieczne dla użytkowników.

Pytanie 33

Którego z symboli należy użyć na schemacie wielokreskowym w celu oznaczenia łącznika schodowego?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Symbol C. reprezentuje łącznik schodowy, który jest kluczowym elementem w instalacjach elektrycznych, szczególnie w kontekście zarządzania oświetleniem w obiektach mieszkalnych i komercyjnych. Łącznik schodowy pozwala na włączanie i wyłączanie światła z dwóch różnych miejsc, co jest niezwykle praktyczne w przypadku długich korytarzy czy klatek schodowych. W standardowej instalacji, łącznik schodowy jest umieszczany w miejscach, gdzie użytkownik może potrzebować dostępu do włączania światła zarówno z dołu, jak i z góry schodów. Stosowanie tego symbolu jest zgodne z normami IEC 60617 oraz polskimi normami PN-EN 60617, które regulują oznaczanie symboli elektrycznych. W praktyce, stosowanie łączników schodowych poprawia komfort użytkowania oraz zwiększa bezpieczeństwo, eliminując konieczność poruszania się w ciemności. Warto również zauważyć, że łącznik schodowy można łączyć z innymi elementami instalacji, takimi jak łączniki krzyżowe, co pozwala na jeszcze większą elastyczność w projektowaniu systemów oświetleniowych.

Pytanie 34

Jaka jest maksymalna moc kuchni elektrycznej zamontowanej w lokalu zasilanym napięciem 400/230V, jeśli obwód zasilający jest chroniony przez wyłącznik nadprądowy typu S-303 CLS6-C10/3?

A. 3,9 kW
B. 2,9 kW
C. 9,6 kW
D. 6,9 kW
W przypadku odpowiedzi, które wskazują na inne wartości mocy, istotne jest zrozumienie kilku kluczowych zasad dotyczących obliczeń mocy oraz właściwego doboru zabezpieczeń dla urządzeń elektrycznych. Na przykład, wiele osób może błędnie sądzić, że maksymalna moc kuchenki elektrycznej może być wyższa niż wskazywana przez wyłącznik, nie uwzględniając, że każdy obwód zasilający ma swoje ograniczenia wynikające z zastosowanych zabezpieczeń. Warto również zauważyć, że przy zasilaniu z napięcia 230 V, przy założeniu, że używamy wyłącznika o prądzie znamionowym 10 A, obliczona moc wynosi tylko 2,3 kW, co jest znacznie poniżej potrzebnej mocy dla typowej kuchenki, która zazwyczaj wymaga większej mocy do efektywnego gotowania. Z kolei założenie, że można użyć wartości mocy 9,6 kW, jest niezgodne z parametrami wyłącznika, co może prowadzić do niebezpieczeństwa przeciążenia i awarii instalacji. Warto pamiętać, że każda instalacja elektryczna powinna być projektowana zgodnie z obowiązującymi normami, a także z praktykami, które zapewniają nie tylko skuteczność, ale przede wszystkim bezpieczeństwo użytkowników. Ustalając maksymalną moc dla urządzeń elektrycznych, należy zawsze odnosić się do specyfikacji producenta oraz obowiązujących przepisów, co pozwoli uniknąć nieprzewidzianych problemów i zagrożeń.

Pytanie 35

Łącznik przedstawiony na zdjęciu jest oznaczony na schematach symbolem graficznym

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Wybór odpowiedzi A, B lub D może wynikać z nieporozumienia dotyczącego symboliki graficznej używanej w elektrotechnice. Symbole te mają na celu ułatwienie identyfikacji funkcji urządzeń oraz ich prawidłowego połączenia w instalacjach elektrycznych. Odpowiedź A może sugerować, że użytkownik pomylił dwuklawiszowy łącznik z innym typem łącznika, podczas gdy w rzeczywistości każdy typ łącznika ma swoje specyficzne oznaczenie. Z kolei odpowiedź B może być wynikiem nieprawidłowego zrozumienia schematów elektrycznych, gdzie umiejętność ich czytania jest kluczowa. Odpowiedź D, która nie odnosi się w ogóle do dwuklawiszowego łącznika, może świadczyć o braku wiedzy na temat różnorodności łączników dostępnych na rynku. W każdym z tych przypadków, kluczowym błędem jest brak zrozumienia, jak symbole graficzne przekładają się na rzeczywiste urządzenia elektryczne oraz ich funkcjonalności. Właściwe rozpoznawanie symboli jest fundamentalne, ponieważ pozwala na poprawne wykonanie instalacji elektrycznych zgodnie z obowiązującymi normami i standardami, co jest istotne dla zapewnienia bezpieczeństwa oraz efektywności energetycznej w obiektach budowlanych. Aby uniknąć takich pomyłek, warto zapoznać się z materiałami edukacyjnymi związanymi z podstawami elektrotechniki oraz z praktykami instalacyjnymi, które pomogą w interpretacji schematów oraz właściwym doborze elementów w instalacjach.

Pytanie 36

Na ilustracji przedstawiono schemat układu zasilania silnika elektrycznego zawierający

Ilustracja do pytania
A. czujnik kolejności i zaniku faz.
B. wyłącznik silnikowy.
C. cyklokonwertor.
D. przekaźnik termobimetalowy.
Nieprawidłowe odpowiedzi dotyczące wyłączników silnikowych, cyklokonwertorów oraz przekaźników termobimetalowych mogą prowadzić do nieporozumień w kontekście zasilania silników elektrycznych. Wyłącznik silnikowy, choć istotny w obwodach elektrycznych, nie monitoruje kolejności czy obecności faz, a jedynie chroni silnik przed przeciążeniem i zwarciem. Jego rola ogranicza się do zabezpieczenia, a nie do bieżącej kontroli parametrów zasilania. Cyklokonwertor, z drugiej strony, jest urządzeniem służącym do przekształcania częstotliwości prądu elektrycznego, co może być mylone z funkcjami czujnika, jednak jego zastosowanie dotyczy głównie regulacji prędkości obrotowej silników, a nie ich zabezpieczenia przed błędami w zasilaniu. Przekaźnik termobimetalowy działa na zasadzie zmiany kształtu pod wpływem temperatury, a jego zastosowanie dotyczy ochrony przed przegrzaniem, a nie monitorowania faz. Powszechnym błędem w myśleniu jest utożsamianie tych urządzeń z funkcjami czujnika, co może prowadzić do niewłaściwego doboru komponentów w układach zasilania, a tym samym do awarii lub zniszczenia silników elektrycznych.

Pytanie 37

Jakie wartości krotności prądu znamionowego obejmuje obszar działania wyzwalaczy elektromagnetycznych w samoczynnych wyłącznikach instalacyjnych nadprądowych typu C?

A. (3÷5) · In
B. (2÷3) · In
C. (5÷20) · In
D. (5÷10) · In
Wybrałeś wartość (5÷10) · In, czyli zakres krotności prądu znamionowego, w którym uruchamia się wyzwalacz elektromagnetyczny w wyłączniku instalacyjnym typu C. To jest właśnie zgodne z normą PN-EN 60898-1 – tzw. „eski” typu C mają za zadanie chronić instalację przed skutkami zwarć i większych przeciążeń. Moim zdaniem dobrze znać ten przedział, bo pozwala to dobrać charakterystykę zabezpieczeń do rodzaju obciążenia w instalacji. Typ C jest najbardziej uniwersalny – stosuje się go w mieszkaniach, biurach, czasem w niewielkich zakładach, czyli wszędzie tam, gdzie mogą się pojawić wyższe prądy rozruchowe, np. od silników czy transformatorów. Prąd wyzwalający elektromagnetycznie musi być wystarczająco wysoki, żeby nie rozłączać obwodu przy każdym chwilowym skoku, ale też na tyle niski, żeby chronić przed zwarciem. Z mojego doświadczenia, jeśli założy się wyłącznik o zbyt „czułej” charakterystyce, to potem są telefony od użytkowników, że „wywala korki” przy włączaniu odkurzacza czy wiertarki. Typ C ze swoim zakresem 5 do 10 razy prądu znamionowego naprawdę dobrze sprawdza się w praktyce, bo łączy szybkość reakcji na zwarcie z odpornością na krótkie impulsy prądowe.

Pytanie 38

Jakie z poniższych działań jest uznawane za czynność konserwacyjną w instalacji elektrycznej?

A. Modernizacja rozdzielnicy instalacji elektrycznej
B. Zmiana rodzaju użytych przewodów
C. Wymiana uszkodzonych źródeł światła
D. Instalacja dodatkowego gniazda elektrycznego
Te odpowiedzi są nietrafione, bo dotyczą rzeczy, które nie są do końca pracami konserwacyjnymi w instalacji elektrycznej. Zmiana przewodów czy modyfikacja rozdzielnicy to zmiany systemowe, które mogą być potrzebne, gdy trzeba rozbudować instalację lub dostosować do nowych wymagań. Ale to już nie jest konserwacja. Właściwie konserwacja to utrzymywanie tego, co już mamy w dobrym stanie i nie powinno się to wiązać z fundamentalnymi zmianami. Dodatkowo, zakładanie nowego gniazda elektrycznego też wykracza poza działania konserwacyjne, bo zmienia układ instalacji. Takie nieporozumienia wynikają często z tego, że nie rozumiemy do końca, co oznaczają terminy związane z konserwacją i modernizacją. W praktyce powinniśmy skupić się na zachowaniu i poprawie funkcji tych komponentów, które już mamy. To naprawdę ważne dla bezpieczeństwa i efektywności energetycznej systemu. Mylenie konserwacji z modernizacją może prowadzić do problemów i niepotrzebnych wydatków.

Pytanie 39

Który układ sieciowy przedstawiono na schemacie?

Ilustracja do pytania
A. TT
B. IT
C. TN-C
D. TN-S
Wybór odpowiedzi innej niż TT wskazuje na szereg nieporozumień dotyczących układów sieciowych. Układ TN-C, na przykład, charakteryzuje się połączeniem przewodu neutralnego z przewodem ochronnym, co w przypadku awarii może prowadzić do niebezpiecznych sytuacji, zagrażających użytkownikom budynku. W kontekście norm, takie połączenie jest sprzeczne z zasadami, które nakładają obowiązek utrzymania niezależnych ścieżek uziemienia dla przewodu neutralnego i ochronnego. Z kolei układ IT, który także został błędnie wybrany, polega na braku połączenia z ziemią w systemie zasilania, co powoduje, że nawet w przypadku uszkodzenia izolacji, nie ma bezpośredniego uziemienia, co generuje zagrożenie. Układ TT, w przeciwieństwie do tych dwóch, zapewnia dodatkowe bezpieczeństwo poprzez niezależne uziemienia. Odpowiedzi wskazujące na TN-S również są mylne, ponieważ w tym układzie występuje oddzielne uziemienie dla przewodów neutralnych i ochronnych, co nie jest zgodne z przedstawionym schematem. Tego typu nieprawidłowe odpowiedzi często wynikają z mylenia podstawowych zasad dotyczących uziemienia oraz bezpieczeństwa instalacji elektrycznych. Niezrozumienie kluczowych różnic pomiędzy tymi układami może prowadzić do podjęcia niewłaściwych decyzji w projektowaniu i eksploatacji instalacji elektrycznych, co z kolei może zagrażać bezpieczeństwu użytkowników.

Pytanie 40

Na której ilustracji przedstawiono przewód przeznaczony do wykonania trójfazowego przyłącza ziemnego do budynku jednorodzinnego w sieci TN-S?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 1.
C. Na ilustracji 4.
D. Na ilustracji 2.
Wybór niewłaściwych ilustracji wskazuje na pewne nieporozumienia dotyczące budowy i zastosowania przewodów stosowanych w przyłączach trójfazowych. Ilustracje, które przedstawiają przewody z mniejszą liczbą żył, mogą przypominać przewody jednofazowe lub nieodpowiednie konstrukcje dla systemu TN-S, które wymagają co najmniej czterech żył. Typowym błędem jest mylenie przewodów jednofazowych, które najczęściej mają jedną fazę i neutralny, z przewodami trójfazowymi. W systemie TN-S kluczowe jest zapewnienie nie tylko prawidłowego zasilania, ale również skutecznej ochrony przed porażeniem elektrycznym, co jest niemożliwe bez odpowiedniego przewodu ochronnego PE. Brak separacji przewodów fazowych i neutralnego może prowadzić do poważnych problemów, takich jak niewłaściwe działanie zabezpieczeń czy ryzyko przeciążenia. Takie podejście do projektowania instalacji elektrycznej jest nie tylko niezgodne z normami PN-IEC 60364, ale także może prowadzić do awarii systemu w momencie obciążenia większą ilością urządzeń elektrycznych. Dlatego niezwykle istotne jest, aby przy projektowaniu instalacji elektrycznych zawsze stosować przewody odpowiednie do przewidywanych obciążeń, co w przypadku trójfazowych przyłączy ziemnych oznacza użycie przewodów czterordzeniowych.