Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 21:45
  • Data zakończenia: 7 grudnia 2025 22:09

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

W tabeli przedstawiono wyniki pomiarów napięć między przewodami w sieci typu TN-C-S. Jakie uszkodzenie występuje w instalacji?

L1-N240 V
L2-N240 V
L3-N240 V
PEN-N0 V
PEN-PE10 V
A. Zwarcie między fazami L1-L2
B. Uszkodzenie przewodu N
C. Przebicie izolacji między L1-N
D. Brak ciągłości przewodu PE
Brak ciągłości przewodu PE w instalacjach TN-C-S jest kluczowym problemem, który może prowadzić do poważnych zagrożeń dla bezpieczeństwa. W sieci TN-C-S przewód PEN pełni podwójną rolę: przewodu neutralnego oraz ochronnego. Przykładowo, w sytuacji, gdy napięcie między przewodem PEN a PE wynosi 10 V, wskazuje to na brak ciągłości w przewodzie PE. W idealnych warunkach napięcie to powinno wynosić 0 V, co oznacza, że przewód ochronny jest prawidłowo uziemiony i pełni swoją funkcję zabezpieczającą. W przypadku braku ciągłości przewodu PE, istnieje ryzyko, że metalowe obudowy urządzeń mogą stać się naładowane, co stwarza niebezpieczeństwo porażenia prądem. W praktyce, wszelkie prace w instalacjach elektrycznych powinny być prowadzone zgodnie z normami, takimi jak PN-IEC 60364, które podkreślają znaczenie prawidłowego uziemienia i ochrony przeciwporażeniowej. Regularne pomiary i inspekcje mogą pomóc w identyfikacji takich problemów, co jest zgodne z zaleceniami zawartymi w dokumentach branżowych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jaki jest główny powód stosowania bezpieczników w instalacjach elektrycznych?

A. Poprawa jakości dostarczanej energii
B. Redukcja hałasu w instalacji
C. Zmniejszenie wartości napięcia w obwodach
D. Ochrona przed przeciążeniem i zwarciem
Bezpieczniki to kluczowe elementy ochronne stosowane w instalacjach elektrycznych, mające na celu zapewnienie bezpieczeństwa całego systemu oraz osób z niego korzystających. Głównym powodem stosowania bezpieczników jest ochrona przed przeciążeniem i zwarciem. W przypadku przeciążenia lub zwarcia bezpiecznik przerywa przepływ prądu, co zapobiega uszkodzeniom przewodów, urządzeń i potencjalnie niebezpiecznym sytuacjom, takim jak pożary. Działa to na zasadzie automatycznego wyłączenia obwodu, kiedy przepływ prądu przekracza określoną wartość dopuszczalną. To nie tylko chroni instalację, ale również minimalizuje ryzyko dla użytkowników. Dzięki temu, bezpieczniki stanowią pierwszą linię obrony w systemach elektrycznych. Wiele standardów branżowych, takich jak normy PN-EN, podkreśla konieczność stosowania bezpieczników jako podstawowego elementu ochrony w instalacjach. W praktyce, stosowanie bezpieczników jest nie tylko wymogiem prawnym, ale również dobrą praktyką inżynierską zapewniającą długotrwałą i bezawaryjną pracę urządzeń elektrycznych.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Który z poniższych przetworników powinien być użyty do pomiaru momentu obrotowego działającego na wał napędowy silnika elektrycznego?

A. Pozystor
B. Piezorezystor
C. Halotron
D. Tensometr
Tensometr to przetwornik, który jest idealnym narzędziem do pomiaru momentu obrotowego, szczególnie w kontekście wałów napędowych silników elektrycznych. Działa na zasadzie pomiaru deformacji, które są wynikiem przyłożonego momentu obrotowego. Kiedy wał napędowy zostaje poddany obciążeniu, jego deformacja jest proporcjonalna do przyłożonego momentu, co pozwala na dokładne obliczenie tego momentu przy użyciu tensometrów. Przykłady zastosowania tensometrów obejmują przemysł motoryzacyjny, gdzie są wykorzystywane do testowania komponentów silników, a także w maszynach przemysłowych do monitorowania stanu technicznego wałów oraz detekcji przeciążeń. W branży stosuje się także standardy, takie jak ISO 376, które regulują metody kalibracji i pomiaru tensometrycznego, zapewniając wysoką precyzję i niezawodność wyników. Zastosowanie tensometrów w praktyce nie tylko poprawia jakość pomiarów, ale również zwiększa bezpieczeństwo operacyjne, dzięki możliwości wczesnego wykrywania problemów w systemach napędowych.

Pytanie 7

Który z poniższych przewodów powinien zastąpić uszkodzony przewód OW 4×2,5 mm2, który zasila silnik indukcyjny trójfazowy do napędu maszyny w warsztacie ślusarskim?

A. H03V2V2H2-F 2X2,5
B. H03V2V2-F 3G2,5
C. H07VV-U 5G2,5
D. H07RR-F 5G2,5
Odpowiedź H07RR-F 5G2,5 jest poprawna, ponieważ przewody te charakteryzują się odpowiednią konstrukcją oraz właściwościami mechanicznymi, które są niezbędne do zasilania silników indukcyjnych w warunkach warsztatowych. Przewód H07RR-F to elastyczny przewód gumowy, co oznacza, że jest odporny na zginanie i uszkodzenia mechaniczne. Dzięki temu idealnie nadaje się do pracy w miejscach o dużym ryzyku uszkodzenia, takich jak warsztaty, gdzie maszyny są często przemieszczane. Dodatkowo, przewód ten posiada pięć żył o przekroju 2,5 mm², co zapewnia odpowiednią nośność prądową oraz możliwość podłączenia do trójfazowych silników indukcyjnych. Zgodnie z normą IEC 60227, H07RR-F spełnia wszystkie wymagania dotyczące bezpieczeństwa oraz jakości, co czyni go odpowiednim wyborem w kontekście zasilania silników. W praktyce, stosując ten przewód, można zminimalizować ryzyko pożaru oraz awarii sprzętu, co jest kluczowe w każdej przestrzeni roboczej.

Pytanie 8

W systemach z stycznikami kategorii użytkowania DC-6 mogą być wykorzystywane

A. lampy rtęciowe
B. lampy sodowe
C. świetlówki
D. żarówki
Wybór żarówek jako odpowiedzi na to pytanie jest uzasadniony ze względu na ich zastosowanie w układach ze stycznikami o kategorii użytkowania DC-6. Kategoria ta jest przeznaczona do pracy z obwodami prądu stałego, które są w stanie obsłużyć normalne obciążenia, w tym żarówki. Żarówki charakteryzują się dość prostą charakterystyką obciążeniową, co sprawia, że są odpowiednie do zastosowań w instalacjach elektrycznych, gdzie mogą być włączane i wyłączane za pomocą styczników. Przykładem praktycznego zastosowania mogą być oświetlenie w halach produkcyjnych, gdzie styczniki sterują włączaniem i wyłączaniem grup żarówek w zależności od potrzeb. Warto również zauważyć, że żarówki, w przeciwieństwie do innych typów lamp, takich jak świetlówki, wymagają prostszych układów sterujących, co czyni je bardziej elastycznymi w zastosowaniach przemysłowych. Dla zachowania zgodności z normami bezpieczeństwa i efektywności energetycznej, ważne jest, aby dobierać odpowiednie styczniki oraz obwody zabezpieczające, co również wpływa na niezawodność całego układu oświetleniowego.

Pytanie 9

Należy kontrolować instalację elektryczną w obiektach o wysokiej wilgotności (75-100%) pod kątem efektywności ochrony przed porażeniem nie rzadziej niż co

A. 3 lata
B. 1 rok
C. 2 lata
D. 4 lata
Może się wydawać, że przeglądy instalacji elektrycznych w wilgotnych pomieszczeniach co 2, 3 czy 4 lata to dobry pomysł, ale w rzeczywistości to może być niebezpieczne. Wilgoć ma negatywny wpływ na izolację przewodów i urządzeń, co zwiększa ryzyko porażenia prądem. W branży elektrycznej są konkretne normy dotyczące bezpieczeństwa i jeśli zaniedbamy regularne kontrole w trudnych warunkach, to narażamy się na niebezpieczeństwo. Czeste przeglądy to nie tylko wymóg prawny, ale też zdrowy rozsądek. Ignorowanie tych zasad może prowadzić do poważnych problemów, a nawet wypadków. Ważne, żeby dobrze rozumieć wymagania dotyczące bezpieczeństwa w wilgotnych warunkach, bo to klucz do ochrony nas samych oraz przestrzegania norm.

Pytanie 10

Która z poniższych czynności nie jest częścią badań eksploatacyjnych silnika elektrycznego?

A. Przeprowadzenie próbnego rozruchu urządzenia
B. Weryfikacja stanu ochrony przeciwporażeniowej
C. Pomiar napięcia zasilającego
D. Pomiar rezystancji uzwojeń stojana
Pomiar napięcia zasilania nie należy do badań eksploatacyjnych silnika elektrycznego, ponieważ jest to czynność raczej związana z kontrolą źródła zasilania, a nie diagnostyką samego silnika. W kontekście eksploatacji silników elektrycznych, kluczowe jest zrozumienie, że badania eksploatacyjne koncentrują się na ocenie stanu technicznego komponentów silnika, takich jak uzwojenia, izolacja czy mechanika. Pomiar rezystancji uzwojeń stojana oraz sprawdzenie stanu ochrony przeciwporażeniowej są kluczowe dla bezpieczeństwa i efektywności pracy silnika. Rozruch próbny urządzenia jest niezbędny do oceny jego działania w rzeczywistych warunkach. Przykładowo, w przemyśle, regularne badania eksploatacyjne pozwalają na wczesne wykrycie potencjalnych awarii, co zmniejsza ryzyko przestojów i zwiększa efektywność operacyjną.

Pytanie 11

Jakim skrótem określa się w obowiązujących normach odnoszących się do instalacji elektrycznych systemy ochrony od piorunów?

A. LPL
B. SPZ
C. SPD
D. LPS
Odpowiedź 'LPS' oznacza 'Lightning Protection System', co w języku polskim można przetłumaczyć jako 'system ochrony odgromowej'. Jest to termin określający zestaw rozwiązań technicznych mających na celu zabezpieczenie obiektów przed skutkami wyładowań atmosferycznych. W kontekście aktualnych norm, takich jak norma PN-EN 62305, systemy LPS są projektowane i instalowane w celu minimalizacji ryzyka uszkodzeń strukturalnych oraz zapewnienia bezpieczeństwa ludzi i mienia. Przykładem zastosowania LPS może być budynek użyteczności publicznej, gdzie zainstalowane są przewody odgromowe, złącza uziemiające oraz elementy ochrony wewnętrznej, które współpracują w celu skutecznego odprowadzania energii odgromowej w sposób kontrolowany. Dodatkowo, zgodność z normami międzynarodowymi, takimi jak IEC 62305, zapewnia, że systemy te wykonane są zgodnie z najlepszymi praktykami inżynieryjnymi, co zwiększa ich efektywność oraz bezpieczeństwo eksploatacji.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jaki parametr silnika elektrycznego można zmierzyć mostkiem tensometrycznym, którego schemat ideowy zamieszczono na rysunku?

Ilustracja do pytania
A. Temperaturę uzwojeń.
B. Prędkość obrotową.
C. Moment obrotowy.
D. Położenie kątowe wału.
Mostek tensometryczny jest efektywnym narzędziem do pomiaru momentu obrotowego, dzięki swojej zdolności do rejestrowania deformacji mechanicznych. Kiedy moment obrotowy działa na wał silnika elektrycznego, powoduje on odkształcenie materiału, w którym zainstalowane są czujniki tensometryczne. Te odkształcenia są proporcjonalne do przyłożonego momentu, co umożliwia precyzyjny pomiar. W praktyce, mostki tensometryczne są szeroko stosowane w inżynierii do monitorowania wydajności silników, co ma kluczowe znaczenie w aplikacjach wymagających optymalizacji mocy i efektywności. Korzystając z danych uzyskanych z mostków tensometrycznych, inżynierowie mogą dostosować parametry pracy silników, co prowadzi do zwiększenia ich wydajności oraz żywotności. Stosując te technologie, przestrzegane są normy branżowe, takie jak ISO 376, co zapewnia wiarygodność i dokładność pomiarów. Warto również zauważyć, że pomiar momentu obrotowego jest istotny w kontekście zapewnienia bezpieczeństwa operacyjnego urządzeń mechanicznych, co ma na celu zapobieganie awariom i zwiększenie niezawodności systemów mechanicznych.

Pytanie 14

Jakie warunki muszą zostać spełnione podczas pomiaru rezystancji izolacji w instalacji elektrycznej po wcześniejszym odłączeniu napięcia zasilającego?

A. Włączone odbiorniki do gniazd wtyczkowych, włączone przełączniki oświetleniowe, wymontowane źródła światła
B. Odłączone odbiorniki od gniazd wtyczkowych, włączone przełączniki oświetleniowe, wymontowane źródła światła
C. Odłączone odbiorniki od gniazd wtyczkowych, włączone przełączniki oświetleniowe, zamontowane źródła światła
D. Włączone odbiorniki do gniazd wtyczkowych, włączone przełączniki oświetleniowe, zamontowane źródła światła
Wybór niepoprawnych warunków do pomiaru rezystancji izolacji często wynika z braku zrozumienia podstawowych zasad bezpieczeństwa i metodologii pomiarowej. W scenarios, gdzie odbiorniki pozostają włączone do gniazd wtyczkowych, istnieje realne ryzyko zwarcia oraz uszkodzenia sprzętu. Takie podejście zaprzecza podstawowym zasadom ochrony przeciwporażeniowej, które mówią o konieczności całkowitego odłączenia zasilania przed przystąpieniem do jakichkolwiek działań pomiarowych. Obecność zamontowanych źródeł światła również stwarza zagrożenie, ponieważ może prowadzić do fałszywych odczytów wyników, które nie odzwierciedlają rzeczywistej sytuacji stanu izolacji instalacji. Ponadto, włączone łączniki oświetleniowe, mimo że mogą wydawać się korzystne, mogą w rzeczywistości wprowadzać dodatkowe obciążenie do obwodu, co prowadzi do nieprecyzyjnych pomiarów. Zgodnie z normami, takimi jak PN-EN 61557, kluczowe jest, aby wszystkie potencjalne obciążenia były usunięte przed przystąpieniem do pomiarów. Tego typu błędne podejścia mogą prowadzić do poważnych konsekwencji, w tym do uszkodzenia instalacji, urządzeń oraz, co najważniejsze, mogą zagrażać zdrowiu i życiu osób pracujących z instalacjami elektrycznymi.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jakie maksymalne napięcie elektryczne należy wykorzystać do zasilania lampy oświetleniowej zlokalizowanej w łazience w strefie 0?

A. 110 V DC
B. 12 V AC
C. 50 V AC
D. 230 V AC
Zasilanie lampy oświetleniowej w łazience, szczególnie w strefie 0, musi być zgodne z zasadami bezpieczeństwa, które mają na celu minimalizację ryzyka porażenia prądem elektrycznym. Maksymalna wartość napięcia, która jest bezpieczna do zastosowania w tym obszarze, wynosi 12 V AC. Tego rodzaju zasilanie jest skuteczne w eliminacji ryzyka niebezpiecznych sytuacji, jakie mogą wystąpić w wilgotnym środowisku. Przykładem zastosowania 12 V AC może być instalacja oświetlenia LED w kabinie prysznicowej lub nad wanną, gdzie bezpośredni kontakt z wodą stwarza dodatkowe zagrożenie. Zgodnie z normami IEC 60364, stosowanie niskiego napięcia, takiego jak 12 V, w obszarach o podwyższonym ryzyku, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Oprócz tego, systemy oświetleniowe zasilane niskim napięciem są często bardziej energooszczędne i umożliwiają zastosowanie rozwiązań z zakresu inteligentnego budownictwa, takich jak zdalne sterowanie oświetleniem.

Pytanie 18

Do zabezpieczenia silnika, którego parametry znamionowe zamieszczono w ramce, należy wybrać wyłącznik silnikowy o oznaczeniu fabrycznym

Silnik 3~   Typ MAS063-2BA90-Z

0,25 kW   0,69 A   Izol. F

IP54   2755 obr/min   cosφ 0,81

400 V (Y)   50 Hz

A. MMS-32S – 1,6A
B. PKZM01 – 1
C. MMS-32S – 4A
D. PKZM01 – 0,63
Wybranie wyłącznika silnikowego PKZM01 – 1 jest najlepszym rozwiązaniem do zabezpieczenia silnika o prądzie znamionowym 0,69 A. Wyłącznik ten ma prąd znamionowy 1 A, co zapewnia odpowiednią ochronę przed przeciążeniem silnika. Zgodnie z normą IEC 60947-4-1, wyłączniki silnikowe powinny być dobrane tak, aby ich prąd znamionowy był nieco wyższy od prądu znamionowego chronionego urządzenia, co pozwala na uniknięcie fałszywych wyłączeń przy normalnej pracy. Dodatkowo, wyłącznik PKZM01 – 1 posiada funkcję zabezpieczenia przed zwarciem i przeciążeniem, co jest kluczowe w kontekście długoterminowej niezawodności układów elektrycznych. W praktyce, użycie tego typu wyłącznika pozwala nie tylko na zabezpieczenie silnika, ale także na zwiększenie trwałości instalacji, co jest zgodne z najlepszymi praktykami w dziedzinie automatyki przemysłowej. Warto również dodać, że wybierając odpowiedni wyłącznik, należy wziąć pod uwagę charakterystykę obciążenia, co pozwala na minimalizację ryzyka uszkodzeń w systemie.

Pytanie 19

Jaką wartość ma maksymalna dozwolona rezystancja uziomu RA przewodu ochronnego, który łączy uziom z częścią przewodzącą przy nominalnym prądzie różnicowym IΔN = 30 mA oraz napięciu dotykowym 50 V AC wyłącznika różnicowoprądowego?

A. Około 1660 Ω
B. Około 830 Ω
C. 4 000 Ω
D. 2 000 Ω
Największa dopuszczalna rezystancja uziomu R_A dla przewodu ochronnego łączącego uziom z częścią przewodzącą dostępną w przypadku prądu różnicowego I_ΔN = 30 mA i napięcia dotykowego 50 V AC wynosząca około 1660 Ω wynika z obliczeń opartych na zasadach bezpieczeństwa elektrycznego. W przypadku, gdy wystąpi prąd różnicowy, uziemienie ma za zadanie zapewnić skuteczne odprowadzenie prądu do ziemi, aby zminimalizować ryzyko porażenia prądem. Przy napięciu dotykowym 50 V AC maksymalna dopuszczalna rezystancja uziomu może być obliczona z równania: R = U/I, gdzie U to napięcie dotykowe, a I to prąd różnicowy. Zatem R = 50 V / 0,030 A = 1666,67 Ω. Praktyczne zastosowanie tej wiedzy ma kluczowe znaczenie w projektowaniu instalacji elektrycznych, gdzie zapewnienie skutecznego uziemienia jest niezbędne dla ochrony ludzi oraz sprzętu. Utrzymywanie odpowiednich wartości rezystancji uziomu jest zgodne z normami europejskimi, takimi jak PN-EN 61140, które wskazują na konieczność regularnych pomiarów oraz konserwacji systemów uziemiających, aby zapewnić ich skuteczność i bezpieczeństwo.

Pytanie 20

Zamiana przewodu OWY 2,5 mm2 na YKY 2,5 mm2 w odbiorniku ruchomym doprowadzi do

A. podniesienia obciążalności prądowej
B. obniżenia obciążalności prądowej
C. wzrostu wytrzymałości mechanicznej przewodu
D. zmiany wytrzymałości mechanicznej przewodu
Wybór odpowiedzi dotyczącej zmniejszenia wytrzymałości mechanicznej przewodu YKY 2,5 mm² w porównaniu do OWY 2,5 mm² jest trafny z kilku powodów. Przewody OWY, wykonane z miedzi i zwykle stosowane w instalacjach, charakteryzują się większą elastycznością i odpornością na uszkodzenia mechaniczne. W przeciwieństwie do nich, przewody YKY, chociaż mają lepsze właściwości izolacyjne i są bardziej odporne na działanie chemikaliów, są również sztywniejsze. Zmiana na przewód YKY w zastosowaniach, gdzie przewód jest narażony na ruch, może prowadzić do łatwiejszych uszkodzeń związanych z nadmiernym zginaniem czy przecieraniem. To bardzo ważne w kontekście projektowania instalacji elektrycznych, gdzie przewody często muszą być elastyczne, aby wytrzymać różne ruchy i wibracje. W praktyce, standardy takie jak PN-EN 60228 definiują różne parametry przewodów i ich zastosowań, co podkreśla znaczenie wyboru odpowiedniego typu w zależności od środowiska operacyjnego. Dlatego w kontekście zastosowania przewodów w instalacjach ruchomych, zmiana na YKY może nie być optymalnym rozwiązaniem.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Podczas wymiany uzwojeń w jednofazowym transformatorze o parametrach: SN = 200 VA , U1N = 230 V, U2N = 14,6 V, uzwojenie pierwotne powinno być wykonane z drutu nawojowego

A. o większej średnicy i większej liczbie zwojów niż uzwojenie wtórne
B. o tej samej średnicy i większej liczbie zwojów niż uzwojenie wtórne
C. o mniejszej średnicy i mniejszej liczbie zwojów niż uzwojenie wtórne
D. o większej średnicy i mniejszej liczbie zwojów w porównaniu do uzwojenia wtórnego
Udzielenie odpowiedzi dotyczącej większej średnicy i mniejszej liczby zwojów niż uzwojenie wtórne, czy jakiejkolwiek innej nieprawidłowej odpowiedzi, opiera się na zrozumieniu podstawowych zasad działania transformatorów. Prawidłowe projektowanie uzwojeń wymaga znajomości zależności między napięciem, liczbą zwojów oraz prądem. Uzwojenie pierwotne musi mieć większą liczbę zwojów, aby zapewnić odpowiedni spadek napięcia, gdyż transformator działa na zasadzie indukcji elektromagnetycznej, gdzie stosunek napięcia do liczby zwojów jest kluczowy. W transformatorze, na podstawie wzoru: U1/U2 = N1/N2, gdzie U1 i U2 to napięcia uzwojeń, a N1 i N2 to liczby zwojów, możemy zobaczyć, że musimy mieć więcej zwojów w uzwojeniu pierwotnym. Ponadto, koncepcja zastosowania drutu mniejszej średnicy w uzwojeniu pierwotnym prowadzi do problemów z wytrzymałością na prąd oraz ciepłem, co może skutkować przeciążeniem i awarią transformatora. W praktyce, stosowanie odpowiednich norm, takich jak IEC 60076, pozwala na zapobieganie takim błędom projektowym poprzez określenie minimalnych wymagań dotyczących materiałów i konstrukcji uzwojeń. Zrozumienie tych zasad jest kluczowe dla każdego inżyniera zajmującego się projektowaniem systemów elektroenergetycznych.

Pytanie 23

Przed dokonaniem pomiarów rezystancji izolacji w elektrycznej instalacji oświetleniowej należy odciąć zasilanie, zdemontować ochronniki przeciwprzepięciowe oraz

A. otworzyć łączniki instalacyjne i wykręcić źródła światła
B. otworzyć łączniki instalacyjne i wkręcić źródła światła
C. zamknąć łączniki instalacyjne i wkręcić źródła światła
D. zamknąć łączniki instalacyjne i wykręcić źródła światła
Podczas pomiarów rezystancji izolacji w instalacjach elektrycznych niezwykle istotne jest, aby zrozumieć, dlaczego błędne podejścia mogą prowadzić do niebezpieczeństw i nieprawidłowych wyników. W przypadku otwierania łączników instalacyjnych oraz wkręcania źródeł światła, istnieje ryzyko wprowadzenia niepożądanych elementów do obwodu, co może spowodować zwarcie. Otwarte łączniki to otwarte ścieżki, które mogą prowadzić do nieprzewidzianych zachowań w instalacji, szczególnie jeśli zasilanie jest włączone, co zagraża zarówno osobie wykonującej pomiary, jak i urządzeniom pomiarowym. Z kolei wkręcenie źródeł światła do otwartych łączników stwarza dodatkowe ryzyko, ponieważ w przypadku awarii obwodu, prąd może popłynąć przez te elementy, co może prowadzić do ich uszkodzenia, a także stanowić zagrożenie dla bezpieczeństwa użytkowników. Rekomendowane standardy, takie jak PN-EN 61557 dotyczące pomiarów w instalacjach elektrycznych, podkreślają znaczenie zachowania odpowiednich procedur w celu zapewnienia dokładnych wyników pomiarów. Właściwe przygotowanie instalacji poprzez zamknięcie łączników i wykręcenie źródeł światła jest kluczowe w zapobieganiu sytuacjom, które mogą prowadzić do błędnych pomiarów oraz potencjalnych wypadków.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Przed rozpoczęciem wymiany uszkodzonych części instalacji elektrycznej do 1 kV, należy najpierw odłączyć napięcie, a następnie stosować się do zasad bezpieczeństwa w poniższej kolejności:

A. zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną, potwierdzić brak napięcia
B. potwierdzić brak napięcia, zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną
C. zabezpieczyć przed ponownym załączeniem, potwierdzić brak napięcia, uziemić instalację elektryczną
D. potwierdzić brak napięcia, uziemić instalację elektryczną, zabezpieczyć przed ponownym załączeniem
Zrozumienie procedur bezpieczeństwa przed pracami przy instalacjach elektrycznych jest kluczowe dla uniknięcia niebezpieczeństw. W sytuacji, gdy najpierw potwierdzamy brak napięcia lub uziemiamy instalację przed zabezpieczeniem jej przed powtórnym załączeniem, narażamy się na poważne ryzyko. Potwierdzenie braku napięcia jest ważnym krokiem, ale jego wcześniejsze wykonanie bez odpowiednich zabezpieczeń może prowadzić do sytuacji, w której instalacja zostanie przypadkowo załączona podczas wykonywania prac. Z tego powodu, nie jest wystarczające jedynie potwierdzenie braku napięcia, ponieważ w tym momencie pracujący elektryk może być narażony na kontakt z energią elektryczną. Uziemienie systemu elektrycznego przed zabezpieczeniem przed załączeniem również nie jest właściwą praktyką; uziemienie powinno być ostatnim krokiem, aby zapewnić, że wszelkie ewentualne pozostałe ładunki są odprowadzone, ale nie przed podjęciem odpowiednich środków ostrożności. Kluczowe jest, aby zawsze najpierw zastosować blokady, które fizycznie uniemożliwiają włączenie zasilania, a następnie upewnić się o braku napięcia, co pozwala na bezpieczne przeprowadzenie dalszych działań. Tego rodzaju zaniedbanie w przestrzeganiu kolejności działań może prowadzić do tragicznych wypadków oraz poważnych konsekwencji zdrowotnych dla osób wykonujących prace w instalacjach elektrycznych.

Pytanie 26

Który z przewodów należy zastosować w instalacji elektrycznej budynku mieszkalnego podczas modernizacji z układu TN-C na układ TN-S?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Odpowiedź C jest prawidłowa, ponieważ w układzie TN-S przewód neutralny (kolor niebieski) i przewód ochronny (kolor zielono-żółty) są oddzielone na całej długości instalacji elektrycznej. Taki układ zapewnia wyższy poziom bezpieczeństwa, minimalizując ryzyko prądów upływowych i zwiększając niezawodność systemu. W praktyce, zastosowanie przewodu z oddzielnym przewodem ochronnym i neutralnym jest zgodne z obowiązującymi normami, takimi jak PN-IEC 60364, które definiują wymogi dla instalacji elektrycznych w budynkach mieszkalnych. W przypadku modernizacji instalacji, zmiana z układu TN-C na TN-S jest często zalecana, aby poprawić efektywność ochrony przeciwporażeniowej. Przykład zastosowania układu TN-S znajdziemy w nowoczesnych budynkach wielorodzinnych, gdzie bezpieczeństwo mieszkańców jest kluczowe. Warto również zauważyć, że oddzielne przewody pozwalają na lepszą diagnostykę i detekcję uszkodzeń w instalacji, co jest istotne w kontekście utrzymania i eksploatacji systemów elektrycznych.

Pytanie 27

W jaki sposób zareaguje trójfazowy silnik indukcyjny obciążony momentem znamionowym po podłączeniu zasilania, jeśli jeden z fazowych przewodów zasilających został odłączony od zacisku silnika?

A. Rozbiegnie się
B. Zacznie obracać się z prędkością trzykrotnie niższą od znamionowej
C. Zacznie wirować w kierunku przeciwnym do spodziewanego
D. Nie uruchomi się
Trójfazowy silnik indukcyjny wymaga zasilania we wszystkich trzech fazach, aby mógł prawidłowo funkcjonować. Gdy jeden z przewodów fazowych jest odłączony, silnik nie otrzymuje wystarczającej ilości energii do wytworzenia obrotowego pola magnetycznego, co jest kluczowe dla jego działania. W rezultacie silnik nie uruchomi się, co jest zgodne z zasadami działania maszyn elektrycznych. Przykładem zastosowania tej wiedzy może być sytuacja w zakładzie produkcyjnym, gdzie przed uruchomieniem maszyn należy upewnić się, że wszystkie połączenia elektryczne są prawidłowe i że silniki są zasilane w sposób zapewniający ich pełną funkcjonalność. Ignorowanie tego aspektu może prowadzić do uszkodzenia sprzętu oraz przestojów w produkcji, co podkreśla znaczenie przestrzegania standardów bezpieczeństwa i efektywności operacyjnej. W praktyce, przy projektowaniu układów zasilania, często stosuje się zabezpieczenia przeciążeniowe i monitoring parametrów sieci, aby uniknąć takich sytuacji.

Pytanie 28

Wartość rezystancji cewki stycznika w układzie sterującym silnikiem wynosi 0 Ω. Co można na podstawie tego pomiaru wnioskować?

A. przewód neutralny jest odłączony
B. cewka stycznika jest uszkodzona
C. przewód fazowy jest odłączony
D. cewka stycznika działa prawidłowo
Pomiar rezystancji cewki stycznika wynoszący 0 Ω jednoznacznie wskazuje na zwarcie w tej cewce, co sugeruje jej uszkodzenie. W praktyce, cewka stycznika jest elementem wykonawczym, który za pomocą pola elektromagnetycznego kontroluje włączanie i wyłączanie obwodów elektrycznych. W przypadku, gdy wartość rezystancji cewki wynosi zero, oznacza to, że nie ma oporu dla przepływu prądu, co jest typowym objawem uszkodzenia. Stosując się do normy IEC 60204-1, która reguluje wymogi dotyczące bezpieczeństwa maszyn, należy regularnie kontrolować stan elementów sterujących, aby zapewnić ich prawidłowe funkcjonowanie i unikać sytuacji, które mogą prowadzić do awarii całego systemu. Przykładowo, w zastosowaniach przemysłowych, gdzie styczniki sterują silnikami, uszkodzenie cewki może prowadzić do poważnych problemów operacyjnych, jak zatrzymanie produkcji. Dlatego ważne jest, aby po zidentyfikowaniu takiej usterki, niezwłocznie przeprowadzić wymianę cewki na nową, aby przywrócić pełną funkcjonalność układu.

Pytanie 29

Który element osprzętu kablowego przedstawiono na ilustracji?

Ilustracja do pytania
A. Mufę rozgałęźną.
B. Złączkę.
C. Głowicę.
D. Mufę przelotową.
Głowice kablowe to naprawdę ważna część sprzętu w systemach elektroenergetycznych, zwłaszcza gdy mówimy o końcówkach kabli energetycznych. Na obrazku widać głowicę, która nie tylko dobrze izoluje, ale też chroni przed różnymi nieprzyjemnościami na zewnątrz, jak na przykład wilgoć czy brud. Takie głowice są często wykorzystywane w przyłączach do sieci, gdzie potrzeba mocnego i bezpiecznego połączenia. Warto korzystać z głowic, które spełniają normy, takie jak IEC 60529 czy IEC 61238-1, bo to podnosi jakość i niezawodność instalacji. Praktycznie rzecz biorąc, głowice są stosowane w wielu miejscach, jak przyłączenia do transformatorów, stacji rozdzielczych czy w różnych instalacjach przemysłowych, więc są naprawdę niezbędne w infrastrukturze energetycznej.

Pytanie 30

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między
zaciskami silnika
Rezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1– W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ
A. uszkodzoną izolację w uzwojeniach U1 — U2 oraz V1 — V2
B. zwarcie między uzwojeniami U1 — U2 oraz W1 - W2
C. przerwę w uzwojeniu U1 — U2
D. zwarcie międzyzwojowe w uzwojeniu W1 — W2
Wybrałeś odpowiedź mówiącą o uszkodzonej izolacji w uzwojeniach U1 — U2 oraz V1 — V2, i to jest akurat słuszne. Wyniki pomiarów rezystancji pokazują wyraźne anomalie. Na przykład, rezystancja izolacji między uzwojeniem U1 a V1 wynosi 0 Ω, co jasno wskazuje, że izolacji tam nie ma. Prowadzi to do potencjalnego zagrożenia dla bezpieczeństwa zarówno urządzenia, jak i użytkowników. Z mojej perspektywy, dobrze jest pamiętać, że normy branżowe, jak IEC 60034 dotyczące silników elektrycznych, mówią, że odpowiednie wartości rezystancji są kluczowe dla bezpieczeństwa i niezawodności silnika. Regularne pomiary rezystancji izolacji powinny być częścią rutyny konserwacji, żeby móc wcześnie wykrywać problemy i unikać awarii. Dbanie o tę izolację jest naprawdę istotne, bo jej uszkodzenie może prowadzić do zwarcia, co może zrujnować silnik i inne elementy systemu zasilania. W praktyce, ważne jest, żeby trzymać się pewnych procedur pomiarowych i konserwacyjnych – to naprawdę fundament, by działać zgodnie z najlepszymi praktykami.

Pytanie 31

Jak zastosowanie w instalacji puszek rozgałęźnych o stopniu ochrony IP 43 zamiast wymaganych w projekcie o stopniu ochrony IP44 wpłynie na jej jakość?

A. Poprawi się klasa ochrony.
B. Poprawi się klasa izolacji.
C. Zmniejszy się odporność na pył.
D. Zmniejszy się odporność na wilgoć.
Stwierdzenie, że wybór puszek IP 43 zamiast IP 44 poprawia ochronność, to poważny błąd. Odpowiedzi mówiące o poprawie ochronności są mylące. IP 43 ma gorszą klasę ochronności niż IP 44, więc rzeczywiście bardziej naraża nas na wilgoć i pył. IP 44 lepiej chroni przed wnikaniem ciał stałych i cieczy, co jest mega ważne, zwłaszcza w instalacjach elektrycznych, które mogą być na ciężkich warunkach atmosferycznych. Jeśli zmienisz z IP 44 na IP 43, to twoja instalacja będzie bardziej narażona na uszkodzenia, a to się nie opłaca. To jakby nie zabezpieczać dobrego sprzętu elektronicznego – nie ma sensu. A jeszcze musisz pamiętać, że klasa izolacji to coś innego i nie jest to związane z klasą ochrony IP. Użycie puszek o niższej ochronie może prowadzić do kłopotów, jak awarie elektryczne, a to zagraża bezpieczeństwu ludzi korzystających z tych instalacji. Dlatego warto dobrze dobierać komponenty, żeby zachować standardy bezpieczeństwa.

Pytanie 32

Przy wymianie uszkodzonych rezystorów regulacyjnych silnika pracującego w układzie połączeń zamieszczonym na rysunku nie można dopuścić do

Ilustracja do pytania
A. zwarcia rezystora w obwodzie twornika.
B. zwarcia rezystora w obwodzie wzbudzenia.
C. powstania przerwy w obwodzie twornika.
D. powstania przerwy w obwodzie wzbudzenia.
Pomimo znalezienia się w kontekście wymiany rezystorów regulacyjnych, niektóre odpowiedzi nie odzwierciedlają istoty działania obwodów w silniku elektrycznym. Twierdzenie o zwarciu rezystora w obwodzie twornika może wydawać się uzasadnione, jednak należy zauważyć, że zwarcie może prowadzić do nadmiernych prądów, co z kolei może uszkodzić inne elementy obwodu, ale nie prowadzi bezpośrednio do zatrzymania silnika. Również powstanie przerwy w obwodzie twornika, choć problematyczne, nie jest tak krytyczne, jak przerwa w obwodzie wzbudzenia. Obwód twornika, w przeciwieństwie do obwodu wzbudzenia, ma pewną rezerwę operacyjną; w przypadku jego przerwy silnik może nadal pracować przez krótki czas, zanim dojdzie do całkowitego zatrzymania. Z kolei obwód wzbudzenia, odpowiedzialny za generowanie pola magnetycznego, jest fundamentem działania silnika, a jego przerwa skutkuje natychmiastowym brakiem tego pola, co prowadzi do zatrzymania silnika. W kontekście praktycznym, nieprawidłowe podejście do wymiany elementów w obwodzie wzbudzenia może skutkować poważnymi konsekwencjami, takimi jak uszkodzenie silnika lub całego systemu. Dlatego niezwykle ważne jest, aby podczas wymiany komponentów przywiązywać odpowiednią wagę do struktury obwodu i jego funkcji, stosując się do standardów branżowych, które podkreślają znaczenie ciągłości obwodu wzbudzenia.

Pytanie 33

W jaki sposób zmieni się prędkość obrotowa silnika synchronicznego, gdy liczba par biegunów w jego tworniku zostanie zmieniona z 2 na 1?

A. Dwukrotnie wzrośnie
B. Czterokrotnie zmniejszy się
C. Czterokrotnie wzrośnie
D. Dwukrotnie zmniejszy się
Prędkość obrotowa silnika synchronicznego jest ściśle związana z częstotliwością prądu zasilającego oraz liczbą par biegunów w uzwojeniach silnika. Zgodnie z zasadą synchronizacji, prędkość obrotowa silnika synchronicznego (n) oblicza się za pomocą wzoru: n = (120 * f) / p, gdzie f to częstotliwość prądu w hercach, a p to liczba par biegunów. W przypadku zmiany liczby par biegunów z 2 na 1, mamy do czynienia ze zmniejszeniem liczby par biegunów o połowę, co skutkuje podwojeniem prędkości obrotowej. W praktyce oznacza to, że silnik będzie pracować z wyższą prędkością, co jest istotne w aplikacjach wymagających zwiększenia efektywności operacyjnej, takich jak napędy wentylatorów czy pomp. W przemyśle zastosowanie silników synchronicznych z mniejszą liczbą par biegunów może umożliwić osiągnięcie wyższej wydajności energetycznej, co jest zgodne z aktualnymi trendami dążącymi do optymalizacji procesów produkcyjnych oraz redukcji kosztów eksploatacyjnych.

Pytanie 34

Podaj, jaką wartość nie może przewyższać spodziewane napięcie dotykowe na dostępnej części przewodzącej urządzenia działającego w normalnych warunkach środowiskowych, podczas samoczynnego wyłączenia wynoszącego 5 s, przy prawidłowo dobranych przewodach oraz zabezpieczeniach w elektrycznej instalacji do 1 kV.

A. 50 V
B. 110 V
C. 70 V
D. 220 V
Odpowiedź 50 V jest prawidłowa, ponieważ jest to wartość maksymalna dopuszczalnego napięcia dotykowego na częściach dostępnych przewodzących zgodnie z normą PN-IEC 61140. W przypadku instalacji elektrycznych o napięciu do 1 kV, w warunkach normalnych, napięcie dotykowe nie może przekraczać tej wartości, aby zapewnić bezpieczeństwo użytkowników. W instytucjach i obiektach, w których używa się urządzeń elektrycznych, kluczowe jest stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które w przypadku wykrycia upływu prądu mogą zadziałać w czasie poniżej 30 ms. Przykładem zastosowania tej zasady mogą być instalacje w budynkach mieszkalnych, gdzie konieczne jest zapewnienie bezpieczeństwa osób korzystających z urządzeń elektrycznych. Obowiązujące normy, takie jak PN-EN 60038, wskazują na znaczenie odpowiedniego doboru zabezpieczeń, aby w sytuacji zwarcia lub uszkodzenia izolacji nie doszło do niebezpiecznego wzrostu napięcia dotykowego. W ten sposób, przy właściwej ochronie, można skutecznie zminimalizować ryzyko porażenia prądem elektrycznym.

Pytanie 35

Jakie są maksymalne dopuszczalne odchylenia napięcia zasilającego dla elektrycznych urządzeń napędowych?

A. 5,0% Un
B. 7,5% Un
C. 10,0% Un
D. 2,5% Un
Wybór innych wartości maksymalnych dopuszczalnych odchyleń napięcia, takich jak 2,5% Un, 7,5% Un czy 10,0% Un, prowadzi do nieporozumień związanych z funkcjonowaniem elektrycznych urządzeń napędowych. Odchylenie 2,5% Un jest zbyt restrykcyjne, co może powodować problemy w sytuacjach, gdy napięcie zasilania ulega naturalnym fluktuacjom, na przykład w wyniku obciążeń sieci lub zmian w warunkach operacyjnych. Z kolei odchylenia 7,5% Un i 10,0% Un mogą wprowadzać istotne ryzyka dla efektywności i bezpieczeństwa urządzeń. Zbyt wysokie odchylenie napięcia może spowodować, że urządzenia będą pracować w niewłaściwy sposób, co prowadzi do nadmiernego zużycia energii, a także zwiększa ryzyko awarii. Należy pamiętać, że zbyt duże wahania napięcia mogą prowadzić do uszkodzeń izolacji, co w dłuższej perspektywie może skutkować poważnymi kosztami naprawy oraz przestoju w produkcji. W kontekście inżynierii elektrycznej, kluczowe jest przestrzeganie ustalonych norm, aby zapewnić optymalne warunki pracy urządzeń oraz ich długowieczność. Niewłaściwe podejście do kwestii dopuszczalnych odchyleń napięcia może prowadzić do błędnych wniosków i potencjalnych zagrożeń dla systemu zasilania.

Pytanie 36

Który z podanych przewodów jest przeznaczony do instalacji wtynkowej?

A. YADYn
B. LYg
C. OMYp
D. YDYt
Odpowiedź YDYt jest poprawna, ponieważ ten typ przewodu jest specjalnie zaprojektowany do instalacji wtynkowych. Przewody YDYt są izolowane i osłonięte, co czyni je odpowiednimi do układania w ścianach oraz innych strukturach budowlanych. Zbudowane z miedzi, posiadają wielowarstwową izolację, która chroni je przed uszkodzeniami mechanicznymi oraz wpływem niekorzystnych warunków atmosferycznych, co jest kluczowe w kontekście ich zastosowania w budynkach. Przewody te są zgodne z normami PN-IEC 60227, co potwierdza ich wysoką jakość oraz bezpieczeństwo użytkowania. Przykładem zastosowania YDYt może być instalacja oświetlenia w pomieszczeniach biurowych, gdzie przewody te są układane w ścianach, co zapewnia estetykę oraz bezpieczeństwo. Warto również zaznaczyć, że przewody te są dostępne w różnych przekrojach, co pozwala na dopasowanie do specyficznych wymagań instalacyjnych.

Pytanie 37

Jaką maksymalną wartość prądu ustawioną na przekaźniku termobimetalowym można zastosować w obwodzie zasilania silnika asynchronicznego o parametrach znamionowych UN = 400 V, PN = 0,37 kW, I = 1,05 A, n = 2710 l/min, aby zapewnić skuteczną ochronę przed przeciążeniem?

A. It = 1,15 A
B. It = 0,88 A
C. It = 1,33 A
D. It = 1,05 A
Wybór wartości prądu zadziałania na poziomie 0,88 A, 1,05 A czy 1,33 A nie uwzględnia istotnych zasad dotyczących zabezpieczania silników elektrycznych. Ustawienie przekaźnika na wartość 0,88 A jest zbyt niskie i nie pozwoli na odpowiednią ochronę silnika. Tego typu wartość może sprawić, że przekaźnik będzie zbyt szybko reagował na normalne, krótkotrwałe przeciążenia, co prowadziłoby do częstych wyłączeń i nieuzasadnionych przestojów w pracy urządzenia. Ustalenie prądu zadziałania na 1,05 A z kolei nie zapewnia odpowiedniego marginesu, co może skutkować brakiem ochrony w sytuacjach, gdy silnik doświadcza chwilowych wzrostów obciążenia. Zatem, przekaźnik zadziałałby w momencie, gdy obciążenie jest wciąż akceptowalne, co prowadziłoby do potencjalnych uszkodzeń. Z kolei ustawienie na 1,33 A wiąże się z ryzykiem, że silnik będzie działał z przeciążeniem przez dłuższy czas, co może prowadzić do przegrzania i uszkodzenia uzwojeń. W praktyce, odpowiednie wartości prądu zadziałania powinny być ustalane na podstawie analizy obciążenia oraz zastosowanych norm, które zalecają wartości w granicach 1,1 do 1,2-krotności prądu znamionowego dla skutecznej ochrony silnika przed przeciążeniem. Ignorowanie tych zasad prowadzi do nieefektywności w zabezpieczeniach oraz zwiększa ryzyko awarii.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Który z wymienionych aparatów łączeniowych niskiego napięcia przedstawiono na ilustracji?

Ilustracja do pytania
A. Odłącznik.
B. Wyłącznik silnikowy.
C. Stycznik.
D. Rozłącznik izolacyjny.
Zrozumienie zadań i funkcji różnych aparatów łączeniowych niskiego napięcia jest kluczowe w dziedzinie elektrotechniki. Stycznik, na przykład, jest urządzeniem przeznaczonym do automatycznego włączania i wyłączania obwodów elektrycznych, ale nie zapewnia izolacji w takim samym stopniu jak rozłącznik izolacyjny. Dzięki swojej konstrukcji stycznik może być używany w aplikacjach, gdzie wymagane jest częste cykliczne włączanie i wyłączanie, co nie jest zgodne z funkcją rozłącznika izolacyjnego. Z kolei odłącznik jest urządzeniem, które służy do rozłączania obwodu, ale nie zawsze gwarantuje pełne odizolowanie od źródła zasilania. Warto zauważyć, że niektóre odłączniki mogą nie mieć funkcji wizualnej kontroli styków, co czyni je mniej bezpiecznymi w praktyce. Wyłącznik silnikowy natomiast, choć również służy do ochrony silników przed przeciążeniem, nie jest przeznaczony do izolacji obwodów. Te różnice w funkcjach mogą prowadzić do nieporozumień i błędnych wyborów w kontekście doboru odpowiednich urządzeń do danej aplikacji. Niezrozumienie tych podstawowych parametrów może skutkować niewłaściwym użytkowaniem sprzętu elektrycznego, co w dłuższej perspektywie może prowadzić do awarii i zagrożeń dla bezpieczeństwa. Warto zawsze odnosić się do aktualnych norm i wytycznych branżowych, aby właściwie dobierać aparaty łączeniowe do odpowiednich zastosowań.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.