Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 28 stycznia 2026 14:27
  • Data zakończenia: 28 stycznia 2026 14:50

Egzamin niezdany

Wynik: 14/40 punktów (35,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie należy zastosować do pomiaru indukcyjności cewki?

A. watomierza
B. omomierza
C. mostka RLC
D. analizatora
Odpowiedź 'mostek RLC' jest prawidłowa, ponieważ mostek RLC jest dedykowanym narzędziem do pomiaru indukcyjności, pojemności oraz rezystancji. Działa na zasadzie porównywania nieznanej wartości z wartościami referencyjnymi, co pozwala na uzyskanie dokładnych wyników. W praktyce, mostki RLC są często wykorzystywane w laboratoriach oraz w przemyśle elektronicznym do testowania komponentów, gdzie precyzyjne pomiary indukcyjności są kluczowe, np. w projektowaniu filtrów, transformatorów czy cewek. Standardy branżowe, takie jak normy IEC, podkreślają znaczenie stosowania odpowiednich narzędzi do pomiarów w celu zapewnienia jakości oraz bezpieczeństwa urządzeń elektronicznych. Dodatkowo, mostek RLC pozwala na przeprowadzenie analizy rezonansowej, co ma istotne znaczenie w zastosowaniach RF (radiofrekwencyjnych), gdzie zachowanie indukcyjności w określonych warunkach częstotliwościowych jest kluczowe dla prawidłowego funkcjonowania obwodów.

Pytanie 2

W jakim układzie pracują tranzystory przedstawione na rysunku?

Ilustracja do pytania
A. Darlingtona.
B. Wspólnego emitera.
C. Przeciwsobnym.
D. Różnicowym.
W analizowanym pytaniu omówiono różne typy układów tranzystorowych, które mogą być mylnie utożsamiane z układem Darlingtona. Układ wspólnego emitera, na przykład, jest klasycznym układem wzmacniacza, w którym sygnał wejściowy jest podawany na bazę tranzystora, a sygnał wyjściowy odbierany z emitera. W tym przypadku, jednakże, nie mamy do czynienia z sumowaniem wzmocnienia z dwóch tranzystorów, co jest podstawą funkcjonowania układu Darlingtona. Kolejnym często mylnie interpretowanym układem jest układ różnicowy, który wykorzystywany jest do wzmacniania różnicy potencjałów między dwoma sygnałami wejściowymi. W kontekście pytania, układ różnicowy posiada zupełnie inną konstrukcję i nie może być mylony z połączeniem Darlingtona. Przeciwsobny układ tranzystorowy, który wprowadza na przemian dwa tranzystory do pracy w jednym cyklu, również nie ma związku z omawianym układem, gdyż jego celem jest zazwyczaj zwiększenie mocy wyjściowej, a nie wzmocnienia prądowego. Również układ Darlingtona nie powinien być mylony z połączeniem tranzystorów w przeciwsobny sposób, gdzie każdy z tranzystorów działa niezależnie, a ich wyjścia nie są ze sobą połączone w sposób, który umożliwiałby osiągnięcie wyższego wzmocnienia. W praktyce, zrozumienie różnic między tymi układami jest kluczowe dla projektowania skutecznych i wydajnych obwodów elektronicznych, a mylenie ich może prowadzić do poważnych błędów w projektach oraz nieefektywnego wykorzystania komponentów elektronicznych.

Pytanie 3

Co oznacza %I0.3 w kontekście programowania sterowników?

A. jedno z wejść sterownika
B. zawartość rejestru sterownika
C. zmienną wewnętrzną sterownika
D. jedno z wyjść sterownika
W kontekście automatyki przemysłowej, niewłaściwe zrozumienie terminologii związanej z programowaniem sterowników może prowadzić do błędnych interpretacji i decyzji. W przypadku stwierdzeń dotyczących zawartości licznika sterownika, jedno z wyjść sterownika oraz zmiennych wewnętrznych, kluczowym jest zrozumienie, czym dokładnie są te elementy w ramach systemów PLC. Liczniki, na przykład, służą do zliczania impulsów i mogą być używane do monitorowania cykli produkcyjnych, jednak są to narzędzia wewnętrzne, a nie wejścia. Wyjścia sterownika, z kolei, kontrolują urządzenia wykonawcze, takie jak silniki czy zawory, co jest zupełnie inną funkcją niż zbieranie danych z czujników. Zmienne wewnętrzne są używane do przechowywania danych w trakcie działania programu, ale również nie odnoszą się bezpośrednio do fizycznych wejść, przez co mylne jest ich utożsamianie z określeniem %I0.3. Prawidłowe zrozumienie struktury i funkcji systemów sterowania jest kluczowe dla efektywnego programowania oraz diagnostyki, oraz może mieć znaczący wpływ na osiągane wyniki w automatyzacji procesów przemysłowych.

Pytanie 4

Jakie narzędzie należy zastosować do przykręcenia kabli w czujniku dymu i ciepła?

A. klucz nasadowy
B. wkrętak
C. przecinak
D. szczypce boczne
Wybór wkrętaka jako narzędzia do przykręcania przewodów w czujce dymu i ciepła jest słuszny, ponieważ wkrętak jest specjalistycznym narzędziem, które zostało zaprojektowane do pracy z wkrętami i śrubami. W przypadku instalacji czujników dymu i ciepła, które są kluczowe dla bezpieczeństwa pożarowego, odpowiednie mocowanie przewodów jest niezbędne. Wkrętak pozwala na precyzyjne i pewne dokręcenie elementów, co eliminuje ryzyko luźnych połączeń, które mogłyby prowadzić do awarii urządzenia. Użycie wkrętaka zgodnie z zaleceniami producenta oraz normami branżowymi, takimi jak normy IEC 60335 dotyczące urządzeń elektrycznych, jest praktyką, która zapewnia bezpieczeństwo i niezawodność działania systemów alarmowych. Ponadto, wkrętaki są dostępne w różnych rozmiarach i typach (np. płaskie, krzyżakowe), co pozwala na ich zastosowanie w wielu różnych konfiguracjach instalacyjnych, co czyni je uniwersalnym narzędziem dla techników i instalatorów.

Pytanie 5

Ilość stabilnych stanów przerzutnika bistabilnego wynosi

A. 0
B. 3
C. 1
D. 2
Przerzutnik bistabilny, czyli ten flip-flop, to całkiem ciekawy układ cyfrowy. Ma dwie stabilne wartości: 0 albo 1. To znaczy, że jest w stanie jednocześnie przechowywać jeden bit informacji. Można go spotkać w różnych miejscach, jak rejestry czy pamięci RAM, ale też w generatorach zegarów i układach sekwencyjnych. Właśnie to, że potrafi zmieniać swoje stany w odpowiedzi na sygnały wejściowe, sprawia, że mogą powstawać złożone układy logiczne, które są podstawą współczesnych komputerów. Różne standardy, jak TTL i CMOS, dają nam różne typy tych przerzutników, co otwiera drzwi do wielu zastosowań w elektronice cyfrowej. Moim zdaniem, to naprawdę interesujące jak te małe elementy potrafią mieć tak duże znaczenie w naszym codziennym życiu.

Pytanie 6

W jakim celu w obwodzie sterowania przekaźnika dołącza się dodatkową diodę D?

Ilustracja do pytania
A. Zabezpieczenia tranzystora T przed uszkodzeniem wysokimi napięciami indukowanymi w cewce przekaźnika w chwili wyłączenia cewki.
B. Zabezpieczenia cewki przekaźnika przed odwrotnym podłączeniem zasilania.
C. Obniżenia napięcia zasilającego cewkę przekaźnika.
D. Zwiększenia szybkości zadziałania przekaźnika.
Wybór odpowiedzi, która sugeruje, że dioda D ma na celu zabezpieczenie cewki przekaźnika przed odwrotnym podłączeniem zasilania, jest niepoprawny, ponieważ nie uwzględnia rzeczywistej funkcji diody w obwodzie. Dioda w tym kontekście nie jest używana do ochrony przed odwrotnym podłączeniem zasilania, co mogłoby sugerować mylne rozumienie jej roli w układzie. Odwrotne podłączenie zasilania cewki przekaźnika mogłoby prowadzić do zniszczenia samej cewki, co jest innym problemem, a nie kwestią, którą można rozwiązać poprzez dodanie diody. Z kolei obniżenie napięcia zasilającego cewkę przekaźnika to kolejny mit, ponieważ dioda nie służy do regulacji napięcia w tym kontekście. W rzeczywistości, dioda pracuje w trybie przewodzenia tylko w momencie, gdy cewka przestaje być zasilana, co pozwala na rozładowanie indukowanego napięcia. Argument o zwiększeniu szybkości zadziałania przekaźnika jest również błędny, ponieważ dioda nie wpływa na czas reakcji przekaźnika, a jedynie na jego ochronę przed uszkodzeniami. Tego rodzaju pomyłki często wynikają z braku zrozumienia podstawowych zasad działania elementów elektronicznych, takich jak diody i przekaźniki. Zrozumienie rzeczywistej roli diody w kontekście zabezpieczeń jest kluczowe dla prawidłowego projektowania układów elektronicznych.

Pytanie 7

Indywidualny zestaw satelitarny odbiera programy telewizyjne nadawane wyłącznie w polaryzacji "V". Napięcia zasilające i sterujące konwerterem oraz głowicą tunera satelitarnego są zgodne z dokumentacją techniczną. Uszkodzeniu uległ

Ilustracja do pytania
A. przewód koncentryczny łączący konwerter z tunerem.
B. konwertor zamontowany w antenie satelitarnej.
C. moduł głowicy w.cz. tunera SAT.
D. modulator w.cz. tunera SAT.
Wybór odpowiedzi dotyczących modułu głowicy w.cz. tunera SAT lub przewodu koncentrycznego łączącego konwerter z tunerem może wynikać z nieporozumienia na temat funkcji poszczególnych komponentów systemu satelitarnego. Głowica tunera jest odpowiedzialna za przetwarzanie sygnału, który otrzymuje z konwertera, a jej uszkodzenie zazwyczaj prowadzi do problemów z dekodowaniem sygnału, co nie jest zgodne z opisanymi w pytaniu symptomami. Z kolei przewód koncentryczny, choć istotny, nie jest źródłem problemu, jeśli napięcia zasilające są zgodne z dokumentacją techniczną, co wskazuje na jego prawidłowe działanie. Często zdarza się, że użytkownicy mylą objawy uszkodzenia konwertera z problemami w innych częściach systemu. Ponadto, wybór modulatora w.cz. tunera SAT również jest nietrafiony, gdyż modulator odpowiada za generowanie sygnału, który jest przekazywany do telewizyjnego odbiornika, a nie za jego odbiór. Kluczowe jest zrozumienie, że w systemach satelitarnych konwerter jest pierwszym elementem, który przetwarza sygnał, a jego uszkodzenie ma bezpośredni wpływ na jakość odbioru. Dlatego identyfikacja rzeczywistego źródła problemu wymaga znajomości funkcji poszczególnych komponentów oraz ich wzajemnych interakcji.

Pytanie 8

W przypadku wzmacniaczy prądu stałego nie wykorzystuje się sprzężenia pojemnościowego pomiędzy poszczególnymi stopniami, ponieważ kondensator

A. tak jak dioda, umożliwia przepływ sygnału tylko w jednym kierunku
B. działa jak zwarcie dla sygnału stałego
C. nie przekazuje składowej stałej sygnału
D. prowadzi do przerwy dla sygnału o wysokiej częstotliwości
Kiedy analizujemy odpowiedzi, które mogą wydawać się trafne na pierwszy rzut oka, łatwo jest popaść w pułapki myślowe, które prowadzą do błędnych wniosków. W przypadku pierwszej odpowiedzi, która sugeruje, że kondensator stanowi zwarcie dla sygnału stałego, musimy zrozumieć, że zwarcie oznacza, iż sygnał nie może przejść przez kondensator. W rzeczywistości, kondensator nie przepuszcza składowej stałej, a nie jest tożsame z zwarciem. Druga odpowiedź, twierdząca, że kondensator nie przenosi składowej stałej sygnału, jest zbliżona do prawdy, ale nie oddaje pełnego kontekstu, w jakim kondensatory są używane. Wyklucza to zrozumienie ich roli w obwodzie, jako urządzeń, które mogą być używane do separacji sygnałów. Trzecia odpowiedź, mówiąca o kondensatorze jako przerwie dla sygnału o dużej częstotliwości, jest myląca, ponieważ kondensatory w rzeczywistości przewodzą składowe zmienne, a ich reaktancja zmniejsza się wraz ze wzrostem częstotliwości. Ostatnia opcja, która porównuje kondensator do diody, jest nieprecyzyjna, ponieważ kondensatory nie przewodzą prądu w jednym kierunku, tylko przechowują ładunek, a ich działanie jest całkowicie odmienne. Dlatego ważne jest, aby zrozumieć zasady działania kondensatorów, ich zastosowanie w obwodach oraz jak mogą wpływać na różne składowe sygnału, aby unikać typowych błędów myślowych w analizie układów elektronicznych.

Pytanie 9

Aby zmierzyć moc czynną urządzenia działającego w obwodzie prądu stałego metodą techniczną, jakie przyrządy należy zastosować?

A. dwa woltomierze
B. woltomierz i amperomierz
C. watomierz
D. dwa amperomierze
Pomiar mocy czynnej w obwodach prądu stałego jest kluczowym zagadnieniem w elektrotechnice, a zastosowanie woltomierza i amperomierza to standardowa metoda na jej określenie. Aby obliczyć moc czynną, wykorzystujemy wzór P = U * I, gdzie P to moc, U to napięcie, a I to natężenie prądu. Woltomierz służy do pomiaru napięcia na odbiorniku, natomiast amperomierz mierzy natężenie prądu przepływającego przez ten sam obwód. Praktyczne zastosowanie tej metody można zaobserwować w laboratoriach, gdzie inżynierowie i technicy często mierzą moc urządzeń, takich jak silniki elektryczne czy elementy grzejne, aby ocenić ich efektywność energetyczną. W branży energetycznej stosuje się również normy IEC 61010, które określają wymagania dotyczące bezpieczeństwa w urządzeniach pomiarowych. Właściwe zastosowanie woltomierza i amperomierza pozwala na precyzyjne monitorowanie i optymalizację zużycia energii w różnych zastosowaniach, co jest istotne z perspektywy zrównoważonego rozwoju i efektywności energetycznej.

Pytanie 10

Jaką kluczową rolę w tunerze satelitarnym pełni moduł CI (Common Interface)?

A. Służy do łączenia urządzeń audio-video.
B. Daje możliwość aktualizacji oprogramowania tunera.
C. Funkcjonuje jako czytnik kart dostępu.
D. Pozwala na podłączenie pamięci zewnętrznej.
Odpowiedzi sugerujące, że moduł CI służy do podłączenia pamięci zewnętrznej, aktualizacji oprogramowania tunera lub podłączenia urządzeń audio-video, są błędne, ponieważ pomijają fundamentalną rolę, jaką odgrywa ten moduł w kontekście dostępu do zaszyfrowanych kanałów. Moduł CI nie jest przeznaczony do obsługi pamięci zewnętrznych; zamiast tego, jego głównym celem jest dekodowanie sygnałów z kart kodowych. Podłączenie pamięci zewnętrznej do tunera może być realizowane za pomocą portów USB, ale nie jest związane z funkcjonalnością modułu CI. Również aktualizacja oprogramowania tunera najczęściej realizowana jest poprzez internet lub zewnętrzne nośniki danych, a nie przez CI, który pełni rolę jedynie w kontekście zarządzania dostępem do treści. Co więcej, podłączenie urządzeń audio-video, takich jak odtwarzacze Blu-ray czy kina domowe, odbywa się zazwyczaj za pomocą HDMI lub innych standardowych złączy, a nie za pośrednictwem modułu CI. W ten sposób można dostrzec, że wiele błędnych odpowiedzi wynika z pomylenia ról różnych komponentów systemu telewizyjnego oraz braku zrozumienia, jakie funkcje pełnią poszczególne elementy w zapewnieniu dostępu do treści multimedialnych.

Pytanie 11

Podczas podłączania czujnika ruchu typu NC do panelu alarmowego w konfiguracji 3EOL/NC, konieczne jest umieszczenie w tym czujniku, odpowiednio podłączonych, trzech

A. rezystorów
B. kondensatorów
C. diody
D. fototranzystorów
Podczas analizy innych odpowiedzi na to pytanie, można zauważyć, że odpowiedzi takie jak diody, kondensatory czy fototranzystory, są nieadekwatne do konfiguracji 3EOL/NC w czujkach ruchu. Diody, choć mogą być używane w obwodach elektronicznych, nie pełnią funkcji monitorowania stanu czujki w systemie alarmowym. Ich główną rolą jest kontrola przepływu prądu, a nie detekcja ruchu czy zabezpieczenie przed sabotażem, co czyni je niewłaściwym wyborem w tym przypadku. Z kolei kondensatory są elementami służącymi do przechowywania energii, a ich zastosowanie w kontekście czujek ruchu jest ograniczone, ponieważ nie dostarczają informacji o stanie obwodu. Mogą, co prawda, być używane do filtracji szumów, ale nie mają zastosowania w monitorowaniu stanu normalnie zamkniętego. Fototranzystory, z drugiej strony, działają na zasadzie detekcji światła, co jest zupełnie inną funkcją niż detekcja ruchu. Zastosowanie tych elementów w miejsce rezystorów może prowadzić do poważnych błędów w systemie alarmowym, takich jak fałszywe alarmy, brak detekcji ruchu czy nawet całkowita awaria systemu. W związku z tym, wybór elementów w konfiguracji alarmowej powinien być podejmowany w oparciu o ich funkcję oraz zgodność ze standardami branżowymi, aby zapewnić bezpieczeństwo oraz efektywność całego systemu.

Pytanie 12

Na podstawie oscylogramów przedstawionych na rysunku można stwierdzić, że w badanym układzie prostowniczym

Ilustracja do pytania
A. nastąpiło zwarcie diody Dl i D3
B. nastąpiła przerwa w obwodzie Dl, R, D3
C. nastąpiła przerwa w obwodzie D2, R, D4
D. nastąpiło zwarcie diody D2 i D4
Poprawna odpowiedź wskazuje na przerwę w obwodzie D2, R, D4. Analizując oscylogramy, zauważamy, że napięcie wyjściowe Uwy wykazuje charakterystykę połówkowego prostowania, co oznacza, że tylko jedna para diod (D1 i D3) przewodzi prąd. W prawidłowym działaniu mostka Graetza, powinno występować pełno-okresowe prostowanie, co jest standardem w układach prostowniczych. Przerwa w obwodzie D2 i D4 skutkuje brakiem przewodzenia prądu przez te diody, co wyklucza możliwość pełno-okresowego prostowania. W praktyce, takie sytuacje mogą prowadzić do zmniejszenia efektywności zasilania w układach elektronicznych, a także do uszkodzeń komponentów, jeśli nie zostaną szybko zidentyfikowane. W kontekście standardów branżowych, należy pamiętać o regularnym monitorowaniu i diagnozowaniu układów prostowniczych, aby zapewnić ich niezawodne działanie oraz minimalizować ryzyko awarii.

Pytanie 13

Dołączenie obciążenia R do przedstawionego na schemacie dzielnika napięcia

Ilustracja do pytania
A. spowoduje wzrost lub spadek napięcia na rezystorze R2, zależnie od wartości R2
B. spowoduje wzrost napięcia na rezystorze R2
C. spowoduje spadek napięcia na rezystorze R2
D. nie zmieni wartości napięcia na R2
Dołączenie obciążenia R do dzielnika napięcia powoduje spadek napięcia na rezystorze R2 ze względu na zasadę działania obwodów równoległych. W przypadku, gdy dodatkowy rezystor R jest podłączony równolegle do R2, całkowita rezystancja zastępcza dla tej gałęzi obwodu ulega zmniejszeniu. Zgodnie z prawem Ohma, obniżenie rezystancji prowadzi do wzrostu prądu. W efekcie, ponieważ napięcie na rezystorze R2 jest także uzależnione od prądu płynącego przez ten element, jego wartość musi spaść. W praktyce takie zjawisko można zaobserwować w obwodach zasilania, gdzie dodawanie obciążeń do dzielników napięcia jest powszechną praktyką. W elektronice, zrozumienie tego mechanizmu jest kluczowe, aby uniknąć niepożądanych efektów, takich jak przeciążenie obwodu czy niesprawność komponentów. W kontekście dobrych praktyk, projektanci obwodów muszą uwzględniać zmiany napięcia i prądu przy dodawaniu nowych elementów, aby zapewnić stabilność i bezpieczeństwo całego systemu.

Pytanie 14

Aktywna bariera podczerwieni może działać, wykorzystując fale elektromagnetyczne o długości wynoszącej

A. 500 nm
B. 300 nm
C. 600 nm
D. 900 nm
Wybór długości fali 500 nm, 600 nm lub 300 nm wynika z nieporozumienia dotyczącego zakresu promieniowania elektromagnetycznego, które jest efektywnie wykorzystywane przez aktywne bariery podczerwieni. Promieniowanie o długości fali 500 nm oraz 600 nm znajduje się w widzialnym zakresie spektrum elektromagnetycznego, co powoduje, że nie są one odpowiednie do detekcji obiektów w warunkach, gdzie zmiana temperatury jest kluczowa dla wykrywania obecności. Detekcja w tym zakresie może być zakłócona przez naturalne światło oraz inne źródła promieniowania widzialnego, co czyni je niewłaściwymi dla systemów, które muszą działać niezawodnie w zmiennych warunkach oświetleniowych. Długość fali 300 nm, natomiast, znajduje się w zakresie ultrafioletu, co również nie jest zgodne z zasadami działania aktywnych barier podczerwieni. Promieniowanie ultrafioletowe jest skutecznie absorbowane przez atmosferę oraz nie jest emitowane w znacznych ilościach przez obiekty, co czyni detekcję w tym zakresie jeszcze mniej praktyczną. Niezrozumienie zasad działania czujników w oparciu o promieniowanie podczerwone może prowadzić do błędnych wniosków na temat ich zastosowania oraz zdolności do skutecznego wykrywania ruchu, co jest kluczowe w kontekście ochrony oraz automatyzacji obiektów.

Pytanie 15

Na podstawie analizy instalacji telewizyjnej nie jest możliwe określenie

A. uszkodzenia powłoki kabla
B. zniekształceń lustra czaszy anteny
C. uszkodzeń elektroniki konwertera
D. korozji czaszy anteny
Analizując pozostałe odpowiedzi, można zauważyć, że uszkodzenia zniekształcenia lustra czaszy anteny, uszkodzenia powłoki kabla i skorodowanie czaszy anteny to wszystkie problemy, które mogą być zidentyfikowane podczas wizualnych oględzin instalacji telewizyjnej. Zniekształcenia lustra czaszy anteny mogą wystąpić na skutek uderzeń, działanie warunków atmosferycznych czy nieodpowiedniego montażu. Tego rodzaju uszkodzenia zazwyczaj można zauważyć gołym okiem, co sprawia, że są łatwiejsze do zdiagnozowania. Uszkodzenia powłoki kabla mogą prowadzić do utraty sygnału, a ich obecność często jest widoczna w postaci przetarć lub uszkodzeń mechanicznych. Skorodowanie czaszy anteny, szczególnie w przypadku instalacji eksponowanych na niekorzystne warunki atmosferyczne, również może być dostrzegalne. Ponadto, użytkownicy powinni być świadomi, że wiele z tych problemów może wpływać na jakość odbioru sygnału, co podkreśla znaczenie regularnych przeglądów oraz właściwej konserwacji instalacji telewizyjnych. Typowe błędy myślowe, które prowadzą do nieprawidłowych odpowiedzi, często wynikają z założenia, że wszystkie uszkodzenia muszą być widoczne, co jest mylną interpretacją. Dobra praktyka w diagnostyce to holistyczne podejście, które łączy zarówno analizy wizualne, jak i testy funkcjonalne, co pozwala na dokładniejszą ocenę stanu instalacji.

Pytanie 16

Multimetr prezentuje wyniki pomiarów w formacie trzech i pół cyfry. Jaka jest dokładność pomiaru napięcia tego multimetru w zakresie do 20 V?

A. 100 uV
B. 10 mV
C. 1 mV
D. 100 mV
Odpowiedzi 1 mV, 100 mV oraz 100 uV są niepoprawne ze względu na błędne obliczenia związane z rozdzielczością pomiaru. W przypadku multimetru wyświetlającego wyniki w formacie trzy i pół cyfry, nie wystarczy jedynie podzielić maksymalną wartość zakresu przez jednostki, które można wyświetlić, aby uzyskać rozdzielczość pomiaru. Odpowiedź 1 mV sugeruje, że multimetr mógłby rozróżniać zmiany napięcia na poziomie 1 mV, co jest niezgodne z jego rzeczywistymi możliwościami w zakresie 20 V. Wartość 100 mV również nie uwzględnia pełnej skali pomiarowej i maksymalnej liczby wyświetlanych jednostek, a zatem nie powinna być uznawana za poprawną. Odpowiedź 100 uV wydaje się nierealistyczna w kontekście tego typu multimetru, ponieważ wymagałoby to znacznie większej precyzji, niż oferuje instrument z wyświetlaczem trzy i pół cyfrowym. Ważne jest, aby zrozumieć, że przy wyborze odpowiedniego zakresu pomiarowego, użytkownik powinien zawsze kierować się rozdzielczością urządzenia, co pozwala na skuteczniejszą interpretację wyników oraz unikanie błędnych wniosków. W praktyce stosowanie niewłaściwych wartości rozdzielczości może prowadzić do istotnych błędów w pomiarach oraz interpretacji danych, co jest krytyczne w aplikacjach wymagających dokładności.

Pytanie 17

Urządzeniem realizującym zadania jest

A. przycisk monostabilny
B. fotorezystor
C. silnik elektryczny prądu stałego
D. czujnik
Fotorezystor to taki element, co ma różne funkcje w automatyce, ale nie jest urządzeniem wykonawczym. Działa na zasadzie zmiany rezystancji w zależności od światła, więc najczęściej spotkać go można w systemach pomiarowych, czy do automatycznego sterowania światłem, ale sam nic nie rusza. A ten przycisk monostabilny, to on zmienia stan układu, jak go naciśniesz, ale nie generuje ruchu ani nie przekształca energii – po prostu sygnalizuje co chcesz. Z kolei czujnik wykrywa zmiany w otoczeniu, na przykład temperaturę, ciśnienie czy ruch i zmienia to na sygnał elektryczny. I mimo że czujniki i przyciski są mega ważne w automatyce, to raczej pełnią rolę sensoryczną lub kontrolną, nie wykonawczą. Często ludzie mylą to i myślą, że czujniki mogą coś wykonać, a to nie tak. W praktyce, rozumienie różnicy tych komponentów jest kluczowe w projektowaniu i wdrażaniu systemów automatyki, co jest ważne w zarządzaniu procesami przemysłowymi.

Pytanie 18

LED  EQU 1.7
     LJMP START
     ORG 100H
START:
     CLR LED ; włącz
     MOV A,#10 ; ustaw w akumulatorze wartość 10
     LCALL DELAY_100MS ; zatrzymaj na czas 0,1×A [s]
     SETB LED ; wyłącz
     MOV A,  #10 ; ustaw w akumulatorze wartość 10
     LCALL DELAY_100MS ; zatrzymaj na czas 0,1×A [s]
     LJMP START ; wróć do START
Przedstawiona sekwencja programu realizuje zmianę stanu diody LED co
A. 0,01 s
B. 10 s
C. 1 s
D. 0,1 s
Wybór odpowiedzi sugerującej dłuższe interwały czasowe, takie jak 10 s, 0,1 s czy 0,01 s, nie uwzględnia kluczowych zasad związanych z percepcją użytkownika oraz funkcjonalnością diody LED w praktycznych zastosowaniach. Przy zmianie stanu co 10 s, użytkownik może nie zauważyć zmiany, co czyni tę odpowiedź nieefektywną w kontekście sygnalizacji. Typowo w projektach elektronicznych diody LED są wykorzystywane jako wskaźniki, które muszą być wystarczająco widoczne, aby użytkownicy mogli na bieżąco kontrolować stan urządzenia. W przypadku zbyt szybkich interwałów, jak 0,1 s czy 0,01 s, dioda LED może migać z taką częstotliwością, że ludzkie oko nie jest w stanie zarejestrować zmian. Efekt ten prowadzi do nieczytelności sygnalizacji, co może wprowadzać użytkownika w błąd i skutkować błędnymi interpretacjami stanu urządzenia. Dokładne oszacowanie czasu, w którym dioda LED zmienia stan, powinno brać pod uwagę ergonomię i komfort użytkowania. W praktyce, czas zmiany stanu powinien być zaprojektowany tak, aby nie tylko spełniał funkcję informacyjną, ale także był zgodny z zasadami efektywności energetycznej urządzeń elektronicznych. Dlatego kluczowe jest, aby dobierać czasy w sposób przemyślany, stosując się do standardów branżowych oraz dobrych praktyk inżynieryjnych w projektowaniu systemów sygnalizacyjnych.

Pytanie 19

W dokumentacji serwisowej kamery znajduje się informacja: "kamerę zasilać napięciem stałym U = 12 V /15 W". Który zasilacz pozwoli na jednoczesne działanie czterech takich kamer?

A. 12 V DC/ 6 A
B. 12 V AC/ 4 A
C. 12 V DC/ 4 A
D. 12 V AC/ 6 A
Zasilacze z napięciem 12 V AC/ 4 A oraz 12 V AC/ 6 A są niewłaściwe, ponieważ kamery wymagają zasilania napięciem stałym (DC), a nie zmiennym (AC). Zasilanie AC może prowadzić do uszkodzenia urządzeń, które nie są zaprojektowane do pracy z prądem zmiennym. W przypadku zasilania AC, kamery mogą nie działać w ogóle lub ich działanie może być niestabilne, co prowadzi do problemów z jakością obrazu i funkcjonalnością. Zasilacz 12 V DC/ 4 A również jest niewłaściwy, ponieważ zapewnia tylko 4 A, co jest niewystarczające dla czterech kamer, które wymagają łącznie 5 A. Wybór niewłaściwego zasilacza może skutkować przeciążeniem, co z kolei może prowadzić do awarii sprzętu oraz krótszej żywotności urządzeń. W branży elektronicznej i systemów zasilania, kluczowe jest przestrzeganie zasad bezpieczeństwa i stosowanie zasilaczy zgodnych z wymaganiami technicznymi urządzeń. Niezastosowanie się do tych zasad może skutkować nie tylko uszkodzeniem sprzętu, ale również stanowić zagrożenie dla użytkowników i infrastruktury.

Pytanie 20

Na podstawie fragmentu instrukcji zamka zbliżeniowego określ sygnalizację informującą, że urządzenie jest w trybie programowania.

SYGNALIZACJA DŹWIĘKOWA I OPTYCZNA
Status działaniaŚwiatło czerwoneŚwiatło zieloneŚwiatło niebieskieBrzęczyk
Strefa 1, odblokowana-Jasne-Krótki dzwonek
Strefa 2, odblokowana--JasneKrótki dzwonek
ZasilanieJasne--Długi dzwonek
GotowośćZapala się powoli---
Naciśnięcie klawisza---Krótki dzwonek
Operacja zakończona pomyślnie--JasnyDługi dzwonek
Operacja zakończona niepowodzeniem---3 krótkie dzwonki
Wprowadzenie trybu programowaniaJasny--Długi dzwonek
Wprowadzony tryb programowaniaJasnyJasny--
Wyjście z trybu programowaniaZapala się powoli--Długi dzwonek
AlarmZapala się szybko--Alarm
A. Włączone diody LED czerwona i niebieska.
B. Trzy krótkie dzwonki, wyłączone diody LED.
C. Wyłączona dioda LED niebieska, bez brzęczyka.
D. Szybkie zapalanie diody LED czerwonej.
Odpowiedź, w której masz trzy krótkie dzwonki i wyłączone diody LED, jest trochę myląca. To dlatego, że te dźwięki nie pokazują stanu programowania. W systemach zbliżeniowych takie dzwonki mogą być mylnie odbierane jako znak, że coś działa, a nie jak sygnał, że jesteśmy w trybie programowania. Ważne jest, żeby znać, co oznaczają dźwięki w kontekście systemów zabezpieczeń. Na przykład, jeśli diody LED świecą się na czerwono i niebiesko, to mogą pokazywać inne stany, jak alarm lub jakiś błąd, co jest zupełnie inne niż programowanie. Często ludzie mylą te sygnały, co prowadzi do zbędnych nieporozumień przy konfiguracji systemu. Ignorowanie, co sygnalizują diody LED, może prowadzić do błędnej interpretacji i mieć poważne konsekwencje dla bezpieczeństwa. Takie błędne odpowiedzi pokazują, że warto lepiej zrozumieć, jak działa sygnalizacja w systemach zbliżeniowych.

Pytanie 21

Jaką rolę pełni heterodyna w radiu?

A. Wzmacniacza pośredniej częstotliwości
B. Generatora sygnału o określonej częstotliwości
C. Układu zmiany zakresów w obwodach wielkiej częstotliwości
D. Filtra aktywnego środkowo przepustowego
Wszystkie pozostałe odpowiedzi odnoszą się do funkcji, które heterodyna nie pełni w odbiorniku radiowym. Wzmacniacz pośredniej częstotliwości, będący jednym z elementów obwodu odbiorczego, ma za zadanie wzmacniać sygnał pośredniej częstotliwości po jego zdemodulowaniu, ale sam nie generuje nowych sygnałów. Z tego względu nie można go mylić z heterodyną, której głównym celem jest właśnie generowanie sygnałów w procesie konwersji częstotliwości. Filtr aktywny środkowo-przepustowy również nie ma związku z funkcją heterodyny, ponieważ jego zadaniem jest przepuszczanie sygnałów o określonym zakresie częstotliwości, a nie generowanie nowych sygnałów. Przy tym, może on być zastosowany w różnych miejscach obwodu, ale nie ma związku z demodulacją sygnału, co czyni go niewłaściwym odniesieniem w tym kontekście. Kolejna nieprawidłowa odpowiedź, dotycząca układu zmiany zakresów, jest myląca, ponieważ heterodyna nie zmienia zakresu częstotliwości, lecz przekształca sygnał, aby umożliwić jego dalsze przetwarzanie w obrębie tego samego zakresu częstotliwości. Typowe błędy myślowe mogą obejmować mylenie funkcji generowania sygnału z jego wzmacnianiem lub filtrowaniem, co prowadzi do nieporozumień na temat roli poszczególnych komponentów w obwodach radiowych. Zrozumienie różnicy między tymi funkcjami jest kluczowe dla prawidłowego przyswojenia wiedzy na temat działania systemów komunikacji radiowej.

Pytanie 22

Do podłączenia dysku twardego z interfejsem EIDE, w czterokanałowym rejestratorze monitoringu, należy zastosować taśmę zakończoną wtykiem

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Podczas analizy błędnych odpowiedzi można zauważyć, że wiele osób ma trudności z rozpoznaniem standardów interfejsów stosowanych w podłączaniu dysków twardych. Wtyki z innych typów interfejsów, takich jak SATA czy SCSI, mają różne liczby pinów oraz różnią się konstrukcją, co uniemożliwia ich użycie w przypadku interfejsu EIDE. Typowym błędem myślowym jest założenie, że wszystkie wtyki są uniwersalne, co jest nieprawidłowe, ponieważ każdy standard ma swoje specyficzne wymagania dotyczące konstrukcji i liczby pinów. Ważne jest również, aby zwrócić uwagę na kable, które mogą wpływać na wydajność podłączonych urządzeń. Na przykład, stosowanie taśm o nieodpowiedniej jakości lub z błędnymi wtykami może prowadzić do problemów z transferem danych lub nawet uszkodzenia sprzętu. Zrozumienie różnic między interfejsami oraz ich zastosowaniem jest kluczowe dla każdego, kto pracuje z technologią komputerową. Dlatego istotne jest, aby pisać i analizować schematy połączeń z wykorzystaniem odpowiednich standardów, aby uniknąć takich pomyłek w przyszłości.

Pytanie 23

Skrót odnoszący się do zakresu fal radiowych o częstotliwości od 30 MHz do 300 MHz z modulacją FM to

A. ULF
B. LF
C. MF
D. VHF
Odpowiedź VHF, czyli Very High Frequency, odnosi się do pasma fal radiowych o częstotliwości od 30 MHz do 300 MHz. Jest to kluczowy zakres częstotliwości, który znajduje szerokie zastosowanie w komunikacji radiowej, w tym w nadawaniu telewizyjnym, radiu FM oraz w systemach komunikacji bezprzewodowej. Przykładem zastosowania VHF są stacje telewizyjne, które nadawane są w tym paśmie, zapewniając wysoką jakość sygnału i zasięg. W praktyce, urządzenia działające w zakresie VHF, takie jak transceivery i odbiorniki, muszą spełniać określone normy techniczne, aby zapewnić efektywność i niezawodność działania w tym zakresie. Warto również zauważyć, że VHF jest mniej podatne na zakłócenia ze strony przeszkód terenowych, co czyni je bardziej efektywnym w zastosowaniach mobilnych i na otwartych przestrzeniach. Dlatego VHF jest preferowane w wielu zastosowaniach, od komunikacji morskiej po systemy awaryjne, co pokazuje jego znaczenie w nowoczesnej technologii komunikacyjnej.

Pytanie 24

Ile bitów ma adres IP zapisany w standardzie protokołu IPv4?

A. 16 bitów
B. 32 bity
C. 12 bitów
D. 8 bitów
Rozmiar binarny adresu IP w formacie IPv4 wynosi 32 bity, co sprawia, że odpowiedzi wskazujące inne wartości są merytorycznie błędne. Adresy IP nie mogą być zredukowane do 16, 8 czy 12 bitów. Adres 16-bitowy mógłby teoretycznie umożliwić 2^16, czyli 65 536 unikalnych adresów, co jest niewystarczające w kontekście globalnej sieci, w której liczba urządzeń znacznie przekracza tę wartość. Z kolei 8-bitowy adres pozwala na jedynie 256 adresów, co również jest zbyt mało do efektywnego zarządzania współczesnymi sieciami komputerowymi. Natomiast 12-bitowy adres IP, oferujący zaledwie 4 096 unikalnych adresów, również nie odpowiada wymaganiom, które stawia przed nami rozwój technologii informacyjnej. Typowe błędy myślowe, które prowadzą do tych niepoprawnych odpowiedzi, to mylne przełożenie ilości bitów z możliwością adresacji. Odpowiedzi takie mogą wynikać z nieporozumienia co do fundamentalnych zasad działania protokołów internetowych oraz ich struktur danych. Zrozumienie roli, jaką odgrywają bity w adresacji, jest kluczowe dla wszelkich prac związanych z sieciami komputerowymi, a także dla każdego, kto planuje zajmować się administracją sieci lub projektowaniem systemów informatycznych.

Pytanie 25

Jakim rodzajem energii pobieranej przez telewizor LCD w trybie czuwania (tzw. tryb STANDBY) jest wartość 3 VA, podana w jego specyfikacji technicznej?

A. Biernej
B. Skutecznej
C. Czynnej
D. Pozornej
Odpowiedź "Pozornej" jest prawidłowa, ponieważ moc pozorna, wyrażana w voltamperach (VA), odnosi się do całkowitej mocy w obwodzie prądu przemiennego, którą dostarcza źródło energii. W przypadku telewizora LCD w trybie czuwania, moc pozorna 3 VA oznacza, że urządzenie pobiera moc, która nie jest w pełni przekładana na pracę wykonaną przez urządzenie, co jest charakterystyczne dla stanu STANDBY. Takie urządzenia zazwyczaj nie wykonują aktywnej pracy, jednak pozostają w gotowości do szybkiego uruchomienia. W praktyce oznacza to, że telewizor może pobierać moc pozorną z sieci elektrycznej, ale rzeczywista moc czynna, która jest używana do generowania obrazu, jest minimalna. Zgodnie z normami IEC 62087, pomiar mocy pozornej w trybie czuwania jest istotny dla oceny efektywności energetycznej urządzeń, a takie informacje są niezbędne przy podejmowaniu decyzji o wyborze energooszczędnych produktów.

Pytanie 26

Jaki typ generatora powinno się wykorzystać w bloku podstawy czasu oscyloskopu?

A. Generator prostokątny
B. Generator piłokształtny
C. Generator sinusoidalny
D. Generator impulsowy
Generator piłokształtny jest kluczowym elementem w bloku podstawy czasu oscyloskopu, ponieważ generuje sygnały, które zmieniają się w sposób liniowy na pewnym odcinku czasu, a następnie natychmiastowo wracają do stanu początkowego. Taki kształt sygnału umożliwia oscyloskopowi precyzyjne ustawienie podstawy czasu, co jest fundamentalne dla analizy sygnałów. W praktyce, generator piłokształtny jest używany do tworzenia sygnałów testowych, które pozwalają inżynierom na kalibrację i diagnostykę układów elektronicznych oraz na ocenę ich wydajności w różnych warunkach pracy. Zgodnie z normami branżowymi, zastosowanie generatorów piłokształtnych jest zalecane w analizie sygnałów, ponieważ zapewniają one lepszą reprezentację sygnałów o zmiennych kształtach. Dodatkowo, sygnał piłokształtny jest szczególnie przydatny w aplikacjach związanych z cyfrowym przetwarzaniem sygnałów, gdzie precyzyjne pomiary czasowe i amplitudowe są kluczowe.

Pytanie 27

Układ do pomiaru rezystancji metoda techniczną z poprawnie mierzonym prądem jest przedstawiony na rysunku

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Podczas analizy błędnych odpowiedzi, warto zwrócić uwagę na kluczowe zasady dotyczące pomiarów elektrycznych. Niewłaściwe podłączenie woltomierza i amperomierza prowadzi do fundamentalnych błędów w pomiarze rezystancji. W przypadku błędnych schematów, woltomierz mógłby być podłączony szeregowo z rezystorem, co skutkowałoby pomiarem całkowitego napięcia źródła, a nie napięcia na samym rezystorze. Takie podejście uniemożliwia określenie rzeczywistej rezystancji, ponieważ nie uwzględnia prądu przepływającego przez ten rezystor. Innym powszechnym błędem jest podłączenie amperomierza równolegle do rezystora, co prowadzi do zwarcia i zniszczenia urządzenia pomiarowego. Ta nieprawidłowa koncepcja opiera się na mylnym przeświadczeniu, że amperomierz można stosować w taki sam sposób jak woltomierz. Ponadto, brak znajomości zasad prawa Ohma oraz niewłaściwe zrozumienie relacji między napięciem, prądem a rezystancją może prowadzić do poważnych pomyłek przy pomiarach. Zrozumienie tych zasad jest kluczowe nie tylko dla poprawności pomiarów, ale także dla bezpieczeństwa podczas pracy z urządzeniami elektrycznymi. W kontekście praktycznym, stosowanie nieprawidłowych metod pomiarowych może prowadzić do błędnych wyników w projektach inżynieryjnych, co może mieć poważne konsekwencje w zastosowaniach przemysłowych czy badawczych.

Pytanie 28

We wzmacniaczu przeciwsobnym klasy B doszło do uszkodzenia jednego z elementów. Wskaż uszkodzony element wiedząc, że na wejście wzmacniacza podłączono napięcie sinusoidalnie zmienne.

Ilustracja do pytania
A. C
B. R0
C. Ti
D. T2
Odpowiedź T2 jest poprawna, ponieważ w wzmacniaczu przeciwsobnym klasy B tranzystory pracują w taki sposób, że każdy z nich przewodzi w swojej połówce cyklu. W przypadku, gdy na wyjściu wzmacniacza obserwujemy jedynie dodatnią połówkę sinusoidy, można wnioskować, że tranzystor odpowiedzialny za przewodzenie w negatywnej połówce, czyli T2, jest uszkodzony. W praktyce, tego typu awarie mogą prowadzić do zniekształcenia sygnału wyjściowego, co jest niepożądane w aplikacjach audio i telekomunikacyjnych. Zgodnie z dobrą praktyką, przy projektowaniu wzmacniaczy klasy B, należy stosować odpowiednie dobory komponentów oraz zabezpieczenia, takie jak diody zabezpieczające, aby uniknąć uszkodzeń w przypadku przeciążenia. Znajomość działania wzmacniaczy klasy B oraz przyczyn ich awarii jest kluczowa dla inżynierów zajmujących się elektroniką, umożliwia bowiem skuteczne diagnozowanie problemów oraz optymalizację projektów w zakresie wydajności i niezawodności.

Pytanie 29

W przypadku wzmacniaczy prądu stałego pomiędzy kolejnymi stopniami nie wykorzystuje się sprzężenia pojemnościowego, ponieważ kondensator

A. jest zworą dla sygnału stałego
B. tworzy przerwę dla sygnału o wysokiej częstotliwości
C. tak jak dioda, przewodzi sygnał w jednym kierunku
D. nie przekazuje składowej stałej sygnału
Wzmacniacze prądu stałego są projektowane z myślą o obsłudze sygnałów stałych, w związku z czym zastosowanie sprzężenia pojemnościowego byłoby nieodpowiednie. W odpowiedzi, która sugeruje, że kondensator stanowi zwarcie dla sygnału stałego, nie uwzględnia się faktu, że kondensator na dłuższą metę działa jak izolator w obwodach stałoprądowych, co w praktyce oznacza, że nie przepuszcza składowej stałej sygnału. Natomiast w kontekście sygnałów zmiennych, kondensator działa jako element przejściowy, co jest mylone z jego rolą w obwodach DC. Również stwierdzenie, że kondensator stanowi przerwę dla sygnału o dużej częstotliwości, jest nieprecyzyjne. W rzeczywistości kondensator przewodzi wysokie częstotliwości, co czyni go odpowiednim do sprzężenia w wzmacniaczach AC. Dodatkowo, koncepcja, że kondensator przewodzi sygnał tylko w jednym kierunku, jest błędna. Kondensatory nie mają kierunkowości przewodzenia jak diody; zamiast tego gromadzą ładunek i mogą działać w różnych kierunkach w zależności od napięcia. Typowe błędy myślowe prowadzące do takich nieprawidłowych odpowiedzi często wynikają z mylenia podstawowych zasad działania kondensatorów oraz ich ról w różnych typach obwodów. Warto przypomnieć, że zrozumienie tych różnic jest kluczowe dla prawidłowego projektowania i implementacji układów elektronicznych.

Pytanie 30

W celu odkręcenia śrub mocujących obudowę urządzenia pokazanego na rysunku należy użyć wkrętaka:

Ilustracja do pytania
A. krzyżakowego.
B. płaskiego.
C. imbusowego.
D. typu torx.
Odpowiedź typu torx jest poprawna, ponieważ na zdjęciu widoczna jest śruba z charakterystycznym sześcioramiennym gwiazdkowym wzorem, który jest dedykowany dla wkrętaków torx. Wkrętaki te są powszechnie stosowane w branży elektronicznej i mechanicznej ze względu na ich zdolność do zapewnienia większego momentu obrotowego oraz lepszego dopasowania do śruby, co redukuje ryzyko uszkodzenia zarówno narzędzia, jak i elementu mocującego. Wkrętaki torx są również powszechnie używane w montażu urządzeń elektronicznych, samochodów oraz w konstrukcjach meblowych. Standard torx jest szczególnie ceniony w sytuacjach, gdzie wymagana jest większa precyzja i trwałość połączenia. Warto również zauważyć, że wkrętak torx występuje w różnych rozmiarach, co pozwala na dostosowanie narzędzia do konkretnych zastosowań, co jest zgodne z dobrymi praktykami w zakresie inżynierii i produkcji.

Pytanie 31

Przestawione gniazdo służy do podłączenia przewodu zakończonego wtykiem w standardzie

Ilustracja do pytania
A. FireWire
B. USB
C. D-Sub
D. HDMI
Wybór odpowiedzi innej niż FireWire wskazuje na nieporozumienie dotyczące różnych standardów złączy oraz ich zastosowań. Złącze D-Sub, znane również jako DE-9, to typowe złącze używane głównie do połączeń z monitorami oraz urządzeniami szeregowego przesyłania danych. Jego konstrukcja i liczba pinów są zupełnie inne niż w przypadku FireWire, co uniemożliwia ich pomylenie. Podobnie, złącze HDMI, które jest stosowane głównie w przesyłaniu sygnału audio-wideo, ma zupełnie inną budowę i zastosowanie, a jego kształt nie przypomina wtyczki FireWire. Z kolei złącze USB, które stało się standardem w komunikacji z urządzeniami peryferyjnymi, również różni się od FireWire zarówno pod względem kształtu, jak i funkcji. Kluczowym błędem jest zatem próba zrozumienia różnych złączy na podstawie ich ogólnego wyglądu, zamiast skupienia się na specyfikacjach technicznych oraz standardach, które definiują ich funkcjonalność. Warto zwrócić uwagę na to, że każde z tych złączy ma swoje unikalne zastosowanie i parametry, co czyni je odpowiednimi w różnych kontekstach technologicznych. Zrozumienie tych różnic jest kluczowe dla poprawnego identyfikowania złączy oraz ich funkcji w praktyce.

Pytanie 32

W układzie prostownika pokazanym na rysunku przeprowadzono pomiary czasowych przebiegów napięcia u1(t) oraz u2(t). Na tej podstawie można stwierdzić uszkodzenie polegające na

Ilustracja do pytania
A. rozwarciu diody D3
B. rozwarciu diody Di
C. zwarciu diody D3
D. zwarciu diody D2
Odpowiedź "rozwarciu diody D3" jest poprawna, ponieważ analizując przebiegi napięć u1(t) i u2(t) w układzie prostownika, zauważamy, że napięcie u2(t) jest dodatnie tylko w dodatnich półokresach napięcia u1(t). Taki stan wskazuje na to, że dioda D3, odpowiedzialna za przewodzenie w ujemnych półokresach, nie funkcjonuje prawidłowo i jest rozwarta. W praktyce, w prostownikach mostkowych, prawidłowe przewodzenie diod w obu półokresach napięcia zmiennego jest kluczowe dla uzyskania stabilnego i ciągłego wyjściowego napięcia. Zgodnie z dobrymi praktykami branżowymi, w przypadku wykrycia takich anomalii, należy przeprowadzić dokładną diagnostykę systemu oraz wymienić uszkodzoną diodę, aby zapewnić efektywność działania układu. Warto również zwrócić uwagę na zastosowanie odpowiednich narzędzi diagnostycznych, które pozwalają na monitorowanie kondycji komponentów w czasie rzeczywistym, co może zapobiec większym awariom oraz zwiększyć niezawodność systemu.

Pytanie 33

W systemie z wzmacniaczem oraz głośnikiem kluczowe jest z perspektywy efektywności układu, aby impedancja głośnika

A. była jak najmniejsza
B. była jak największa
C. przekraczała impedancję wyjściową wzmacniacza
D. była równa impedancji wyjściowej wzmacniacza
Wybór odpowiedzi zakładającej, że impedancja głośnika powinna być większa niż impedancja wyjściowa wzmacniacza, jest błędny, ponieważ prowadzi do znacznych strat energii w systemie audio. W sytuacji, gdy impedancja głośnika jest wyższa niż impedancja wyjściowa wzmacniacza, część energii nie zostanie przekazana do głośnika, co skutkuje niższą efektywnością i gorszą jakością dźwięku. Podobnie, twierdzenie, że impedancja głośnika powinna być jak najmniejsza, jest również nieprawidłowe. Zbyt niska impedancja głośnika w stosunku do impedancji wzmacniacza może prowadzić do przeciążenia wzmacniacza, co może skutkować jego uszkodzeniem. W praktyce, wiele osób nie zdaje sobie sprawy z tego, jak kluczowe jest poprawne dopasowanie impedancji. Często mylnie przyjmuje się, że im większa moc głośnika, tym lepiej, jednak nie uwzględnia się przy tym zasady dopasowania impedancji. Nieodpowiedni dobór impedancji może również wpływać na osobliwości dźwięku, takie jak zniekształcenia tonalne, co jest sprzeczne z podstawowymi zasadami inżynierii dźwięku. Dlatego istotne jest, aby projektując system audio, kierować się wiedzą na temat impedancji oraz dostosowywać ją do zalecanych wartości, co zapewnia lepszą wydajność i jakość dźwięku.

Pytanie 34

Jaką rolę pełni heterodyna w odbiorniku radiowym?

A. mieszacza
B. demodulatora
C. wzmacniacza wstępnego
D. generatora lokalnego
Odpowiedzi, które wskazują na funkcje demodulatora, mieszacza i wzmacniacza wstępnego, pomijają kluczową rolę, jaką odgrywa heterodyna jako generator lokalny. Demodulator jest urządzeniem, które odzyskuje zmodulowany sygnał, przekształcając go z powrotem do formy pierwotnej. Jego zadaniem jest oddzielenie sygnału informacyjnego od nośnej, co jest procesem, który zachodzi po mieszaniu sygnałów. Z kolei mieszacz, będący elementem układu, służy do mieszania sygnałów o różnych częstotliwościach, co w rzeczywistości również nierozłącznie wiąże się z funkcją heterodyny, ale nie jest to jej główna rola. Wzmacniacz wstępny natomiast jest odpowiedzialny za wzmocnienie słabego sygnału po jego odebraniu, przed dalszym przetwarzaniem, jednak nie zmienia on jego częstotliwości. Wybór błędnych odpowiedzi często wynika z niepełnego zrozumienia architektury odbiornika radiowego i funkcji przypisanych poszczególnym komponentom. Kluczowe jest zrozumienie, że heterodyna jako generator lokalny jest niezbędna do efektywnego przetwarzania sygnału, co wydobywa sygnał informacyjny i umożliwia jego dalszą obróbkę. Należy zawsze pamiętać o tym, że każdy z tych elementów ma swoją specyficzną rolę i nie można ich mylić ani traktować zamiennie.

Pytanie 35

Którym symbolem graficznym, w sprzęcie elektronicznym powszechnego użytku, oznacza się uziemienie bezszumowe?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Niepoprawne odpowiedzi mogą wynikać z nieporozumienia dotyczącego symboliki stosowanej w sprzęcie elektronicznym. Wiele osób może mylić oznaczenia uziemienia z innymi symbolami graficznymi, które reprezentują różne funkcje, takie jak zasilanie czy wyłączniki. Oznaczenia A, B i C mogą przypominać symbole związane z innymi aspektami bezpieczeństwa elektrycznego, co może prowadzić do błędnych interpretacji. Przykładowo, symbol uziemienia zawiera trzy poziome linie, które wskazują na stabilność, oraz linię pionową, która symbolizuje połączenie z ziemią. Osoby, które udzieliły błędnej odpowiedzi, mogą także nie być świadome znaczenia bezszumowego uziemienia, które jest kluczowe w kontekście ochrony przed zakłóceniami. Takie zakłócenia mogą pochodzić z różnych źródeł, w tym z urządzeń radiowych, telefonów komórkowych czy nawet z sieci elektrycznej. W kontekście projektowania systemów audio i wideo, brak uziemienia bezszumowego może prowadzić do znacznego pogorszenia jakości dźwięku i obrazu, co jest nieakceptowalne w profesjonalnych zastosowaniach. Dlatego kluczowe jest zrozumienie, że odpowiednie oznaczenie uziemienia ma praktyczne zastosowanie w każdym elemencie infrastruktury elektronicznej, a jego pominięcie może skutkować poważnymi konsekwencjami zarówno dla sprzętu, jak i użytkowników.

Pytanie 36

Dokumentacja serwisowa odbiornika radiowego nie zawiera

A. schematu blokowego
B. schematu ideowego
C. opisu panelu przedniego
D. informacji o cenie odbiornika
Poprawna odpowiedź wskazuje, że instrukcja serwisowa odbiornika radiowego nie zawiera informacji o cenie odbiornika. W kontekście serwisowania urządzeń elektronicznych, instrukcje serwisowe mają na celu dostarczenie technicznych i praktycznych wskazówek dotyczących napraw, konserwacji i diagnostyki. Zawierają one szczegółowe opisy konstrukcji, takie jak opis płyty czołowej, schematy blokowe i ideowe, które są kluczowe dla technika w procesie serwisowania. Informacja o cenie, chociaż istotna z perspektywy marketingowej, nie jest częścią dokumentacji technicznej. Przykładowo, podczas naprawy odbiornika radiowego technik może odnosić się do schematu ideowego, aby zrozumieć, jak poszczególne obwody są połączone i jak działają, co jest wyjątkowo istotne w diagnozowaniu problemów.

Pytanie 37

Ile wynosi moc czynna wytwarzana w złączu elementu elektronicznego, jeżeli jego temperatura wynosi Tj=120°C, a otoczenia Tamb=20°C? Całkowita rezystancja termiczna od złącza poprzez obudowę do otoczenia jest równa ΣRt=50°C/W.

Ilustracja do pytania
A. 1 W
B. 10 W
C. 2 W
D. 0,5 W
Moc czynna wytwarzana w złączu elementu elektronicznego wynosi 2 W, co można obliczyć na podstawie różnicy temperatur złącza i otoczenia oraz całkowitej rezystancji termicznej. Różnica temperatur wynosi Tj - Tamb = 120°C - 20°C = 100°C. Całkowita rezystancja termiczna ΣRt = 50°C/W, co pozwala na obliczenie mocy: P = ΔT / ΣRt = 100°C / 50°C/W = 2 W. Zrozumienie tego procesu jest kluczowe w projektowaniu systemów elektronicznych, gdzie zarządzanie ciepłem jest niezbędne do zapewnienia stabilności i wydajności urządzeń. W praktyce, wiedza ta znajduje zastosowanie w chłodzeniu komponentów w takich dziedzinach jak telekomunikacja czy elektronika użytkowa, gdzie przegrzewanie się elementów może prowadzić do ich uszkodzenia lub obniżenia wydajności. Przykładem może być zastosowanie radiatorów czy wentylatorów w układach, które skutecznie odprowadzają ciepło, zapewniając długotrwałe i bezpieczne działanie urządzeń. Takie podejście jest zgodne z najlepszymi praktykami inżynieryjnymi, które podkreślają znaczenie efektywnego zarządzania ciepłem w projektowaniu systemów elektronicznych.

Pytanie 38

Uziemiająca opaska na nadgarstku osoby zajmującej się montażem lub wymianą układów scalonych chroni przed

A. uszkodzeniem układów scalonych
B. porażeniem przez wysokie napięcie
C. uszkodzeniem narzędzi montażowych
D. poparzeniem spoiwem o wysokiej temperaturze
Wybór odpowiedzi dotyczącej porażenia wysokim napięciem jest błędny, ponieważ opaska uziemiająca na przegubie ręki nie chroni przed zagrożeniami związanymi z napięciem sieciowym. Porażenie elektryczne na ogół wynika z kontaktu z napięciem powyżej 50V AC lub 120V DC, co jest znacznie wykraczające poza zagadnienie ESD. Ponadto, opaski uziemiające nie mają właściwości izolacyjnych, które są kluczowe w przypadku ochrony przed wysokim napięciem. Odpowiedź sugerująca, że opaska ta zapobiega poparzeniom gorącym spoiwem również jest nieprawidłowa, gdyż ochrona przed wysokotemperaturowymi substancjami wymaga zastosowania odzieży ochronnej oraz technik montażowych, które wykluczają ryzyko kontaktu z gorącymi elementami. Ostatnia proponowana odpowiedź, dotycząca uszkodzenia sprzętu monterskiego, opiera się na mylnym założeniu, że opaska uziemiająca wpływa na mechaniczne aspekty pracy z narzędziami. W rzeczywistości, uziemienie odnosi się do problematyki wyładowań elektrostatycznych, a nie do uszkodzenia sprzętu w wyniku niewłaściwego użytkowania. W ten sposób, zrozumienie roli opaski uziemiającej powinno koncentrować się na jej funkcji w kontekście ESD, co jest kluczowe dla ochrony elektronicznych komponentów przed uszkodzeniem, a nie dla innych form zagrożeń elektrycznych czy mechanicznych.

Pytanie 39

Którą właściwość posiada wzmacniacz tranzystorowy przedstawiony na rysunku?

Ilustracja do pytania
A. Średnia rezystancja wyjściowa tego wzmacniacza wynosi około 10 k?
B. Wzmocnienie napięciowe tego układu wynosi około 10 V/V
C. Średnia rezystancja wejściowa tego wzmacniacza wynosi około 100 k?
D. Sygnał wyjściowy jest odwrócony o 180° w stosunku do sygnału wejściowego.
Wybór niepoprawnej odpowiedzi może wynikać z kilku nieporozumień dotyczących zasad działania wzmacniaczy tranzystorowych. Jednym z typowych błędów jest mylenie rezystancji wejściowej z rezystancją wyjściową, co prowadzi do nieprawidłowych wniosków na temat specyfiki wzmacniacza. Na przykład, stwierdzenie, że sygnał wyjściowy jest odwrócony o 180° w stosunku do sygnału wejściowego, dotyczy jedynie wzmacniacza w konfiguracji wspólnego emitera, ale nie odnosi się do jego rezystancji. Z kolei wzmocnienie napięciowe wynoszące około 10 V/V to wartość, która w kontekście konkretnego układu może być prawdziwa, ale nie odnosi się do samej rezystancji wejściowej. Jest to częsty błąd, ponieważ studenci często koncentrują się na wzmocnieniu, nie dostrzegając, że różne parametry wzmacniacza muszą być analizowane w kontekście jego ogólnych właściwości. Kluczowe jest zrozumienie, jakie elementy wpływają na rezystancję wejściową i wyjściową oraz ich znaczenie w praktycznych zastosowaniach. Podczas projektowania układów elektronicznych, takie zrozumienie pozwala na skuteczniejsze dobieranie komponentów oraz przewidywanie zachowania układów w określonych warunkach pracy.

Pytanie 40

Jaką rezystancję Rb powinien mieć bocznik, aby można było podłączyć go równolegle do amperomierza o oporności wewnętrznej RA=300 mΩ, aby czterokrotnie zwiększyć jego zakres pomiarowy?

A. 300 mΩ
B. 100 mΩ
C. 75 mΩ
D. 150 mΩ
Rozważając błędne odpowiedzi, ważne jest zrozumienie podstawowych zasad dotyczących pomiarów prądu oraz rezystancji w układach elektrycznych. Odpowiedzi takie jak 150 mΩ, 75 mΩ oraz 300 mΩ mogą wynikać z niepoprawnego zrozumienia zasady równoległego połączenia rezystancji. Przy połączeniach równoległych rezystancje zmniejszają ogólną rezystancję układu, co jest kluczowe w kontekście amperomierza. Wartości 150 mΩ i 300 mΩ są zbyt wysokie, aby uzyskać pożądaną całkowitą rezystancję wynoszącą 75 mΩ, co prowadziłoby do nieprawidłowych odczytów. Odpowiedź 75 mΩ, mimo że zbliżona, pozostaje błędna, ponieważ w tym przypadku całkowita rezystancja nie osiągnie pożądanego celu czterokrotnego zwiększenia zakresu. Typowym błędem myślowym jest zakładanie, że większa wartość bocznika wspomoże pomiar, co w rzeczywistości prowadzi do spadku dokładności. Kluczowe jest, aby pamiętać, że dobór rezystancji bocznika musi być starannie przemyślany, aby zachować balans między bezpieczeństwem a dokładnością pomiaru. W przypadku nieprawidłowych wyborów rezystancji, wyniki pomiarowe mogą być zafałszowane, co w kontekście profesjonalnych pomiarów elektrycznych może prowadzić do poważnych błędów i nieprawidłowych analiz.