Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 09:06
  • Data zakończenia: 7 grudnia 2025 09:34

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaka jest minimalna wartość rezystancji izolacji przewodu, gdy mierzymy induktorem w sieci o napięciu znamionowym badanego obwodu U < 500 V?

A. < 0,25 MΩ
B. ≥ 0,5 MΩ
C. ≥ 0,25 MΩ
D. < 0,5 MΩ
Odpowiedź z wartością ≥ 0,5 MΩ jest całkiem w porządku. Zgodnie z normami, jak PN-EN 61557-1, dla przewodów w sieciach do 500 V, ta minimalna wartość rezystancji izolacji wynosi właśnie 0,5 MΩ. To ważne, bo pomaga utrzymać bezpieczeństwo i zmniejsza ryzyko porażenia prądem czy zwarć w instalacjach elektrycznych. W praktyce, zanim technicy zaczną pracować przy instalacjach, zawsze wykonują pomiary rezystancji, żeby sprawdzić, czy wszystko jest w porządku. Jakby okazało się, że wartość jest niższa niż 0,5 MΩ, to trzeba działać, na przykład wymienić uszkodzone przewody lub poprawić izolację. Regularne sprawdzanie rezystancji izolacji to też dobry sposób na konserwację, co jest całkiem zgodne z najlepszymi praktykami w branży.

Pytanie 2

Według którego schematu należy podłączyć miernik parametrów RCD w celu pomiaru prądu wyzwolenia i czasu zadziałania wyłącznika różnicowoprądowego?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Podłączenie miernika parametrów RCD według innych schematów niż C może prowadzić do błędnych wyników pomiarów lub całkowitego braku zadziałania urządzenia. W przypadkach, gdy miernik nie jest prawidłowo podłączony do przewodów L, N oraz PE, nie jest w stanie zarejestrować wartości prądu upływu, co jest kluczowe dla oceny działania wyłącznika różnicowoprądowego. Na przykład, podłączenie miernika tylko do przewodu L lub N może spowodować, że pomiary będą niekompletne, a tym samym nieodpowiednie dla oceny bezpieczeństwa instalacji. Wiele osób błędnie zakłada, że wystarczy podłączyć miernik w sposób nieprzemyślany, co prowadzi do subiektywnej oceny jego możliwości. Jest to niezgodne z zasadami pomiarów elektrycznych i stanowi poważne naruszenie ogólnych zasad bezpieczeństwa. W praktyce, nieprawidłowe podłączenie może skutkować brakiem odpowiedzi RCD na prąd upływu, co jest bezpośrednim zagrożeniem dla użytkowników. Zrozumienie, jak poprawnie podłączyć miernik, jest kluczowe dla właściwej oceny oraz wyeliminowania potencjalnych zagrożeń związanych z użytkowaniem instalacji elektrycznych. Kluczowe jest również zapoznanie się z odpowiednimi normami oraz wytycznymi, które regulują procedury pomiarowe, aby uniknąć typowych błędów w analizach parametrów elektrycznych.

Pytanie 3

Na którym rysunku przedstawiono świetlówkę kompaktową?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Świetlówka kompaktowa, znana również jako lampa energooszczędna, jest nowoczesnym rozwiązaniem w dziedzinie oświetlenia, które łączy w sobie efektywność energetyczną oraz długowieczność. W przeciwieństwie do tradycyjnych żarówek, świetlówki kompaktowe emitują znacznie więcej światła przy tej samej mocy, co sprawia, że są bardziej ekonomiczne i ekologiczne. Odpowiedź D przedstawia lampę o charakterystycznym kształcie składającym się z kilku zwiniętych rurek, co jest typowe dla świetlówek kompaktowych. W praktyce, zastosowanie takich lamp w domach i biurach pozwala na znaczące obniżenie kosztów energii elektrycznej, co jest zgodne z aktualnymi trendami w zakresie zrównoważonego rozwoju oraz normami dotyczącymi ochrony środowiska. Dodatkowo, świetlówki kompaktowe charakteryzują się dłuższą żywotnością, co ogranicza liczbę odpadów, a wiele modeli jest kompatybilnych z oprawami standardowymi, co ułatwia ich wymianę. W kontekście dobrych praktyk, warto zwrócić uwagę na certyfikaty energetyczne, które świadczą o wysokiej efektywności tych lamp.

Pytanie 4

Jakie urządzenia powinny być zastosowane do wykonania pomiaru rezystancji w sposób techniczny?

A. watomierza oraz woltomierza
B. omomierza i amperomierza
C. omomierza oraz woltomierza
D. woltomierza i amperomierza
Pomiar rezystancji metodą techniczną przy użyciu woltomierza i amperomierza opiera się na zasadzie, że rezystancję można obliczyć z prawa Ohma, które mówi, że R = U/I, gdzie R to rezystancja, U to napięcie, a I to natężenie prądu. W praktyce, aby zmierzyć rezystancję, najpierw stosuje się woltomierz do zmierzenia napięcia na rezystorze, a następnie amperomierz do pomiaru prądu płynącego przez ten rezystor. Dzięki tym pomiarom, możliwe jest obliczenie rezystancji z dużą dokładnością. Ta metoda jest często wykorzystywana w laboratoriach do testowania komponentów elektronicznych, w elektrotechnice oraz w różnych aplikacjach przemysłowych, gdzie precyzyjne pomiary są kluczowe. Przykładem zastosowania tej metody może być diagnozowanie uszkodzeń w obwodach elektronicznych, gdzie pomiar rezystancji pomaga określić stan różnych podzespołów. Warto również wspomnieć, że stosowanie tej metody jest zgodne z normami PN-EN 61010, które określają wymagania dotyczące bezpieczeństwa w urządzeniach pomiarowych.

Pytanie 5

Przyporządkuj rodzaje trzonków świetlówek kompaktowych, w kolejności jak na rysunku.

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Odpowiedź B. jest poprawna, ponieważ zgodnie z przedstawionym rysunkiem, trzonki świetlówek kompaktowych są uporządkowane w oparciu o ich standardy montażowe. Trzonek B22d, który znajduje się w świetlówce nr 2, jest powszechnie stosowany w oświetleniu domowym, ze względu na łatwość w instalacji i szeroką dostępność. Użytkownicy często spotykają się z tym rodzajem trzonka w żarówkach przeznaczonych do lamp sufitowych oraz lamp stołowych. W praktyce, znajomość typów trzonków świetlówek jest kluczowa podczas zakupu nowych źródeł światła, ponieważ błędny wybór może prowadzić do problemów z kompatybilnością. Warto zaznaczyć, że różne trzonki mają różne zastosowania, co wpływa na efektywność i bezpieczeństwo użycia. Trzonek E14, E27 oraz GU10 również mają swoje specyficzne przeznaczenie i zastosowania, dlatego ważne jest, aby zrozumieć ich różnice oraz odpowiednio je dobierać, aby zapewnić optymalne warunki oświetleniowe w różnych przestrzeniach.

Pytanie 6

Na podstawie wyników pomiarów rezystancji w przewodzie elektrycznym przedstawionym na ilustracji można stwierdzić, że żyły

Pomiar pomiędzy końcami żyłRezystancja w Ω
L1.1 – L1.20
L2.1 – L2.20
L3.1 – L3.2
N.1 – N.20
PE.1 – PE.20
L1.1 – L2.1
L1.1 – L3.1
L1.1 – N.1
L1.1 – PE.1
N.1 – PE.10
N.1 – L2.1
N.1 – L3.1
Ilustracja do pytania
A. L1 i L2 są zwarte.
B. N i PE są zwarte oraz L3 jest przerwana.
C. N i L3 są zwarte oraz PE jest przerwana.
D. L1 i L2 są przerwane.
Prawidłowa odpowiedź wskazuje, że żyły N i PE są zwarte oraz L3 jest przerwana. W tym przypadku rezystancja między żyłami N i PE wynosząca 0 Ω oznacza, że są one ze sobą połączone, co jest zgodne z normami bezpieczeństwa. Z kolei wystąpienie nieskończonej rezystancji między końcami żyły L3 wskazuje na jej przerwanie. Ważne jest, aby pamiętać, że w instalacjach elektrycznych żyła neutralna (N) i żyła ochronna (PE) muszą być prawidłowo połączone, aby zapewnić skuteczne uziemienie i minimalizować ryzyko porażenia prądem. Takie połączenia są kluczowe w kontekście ochrony osób i mienia, co jest regulowane przez normy IEC 60364. W praktyce, technicy elektrycy powinni regularnie przeprowadzać pomiary rezystancji, aby upewnić się, że instalacje elektryczne są w dobrym stanie i spełniają wymagania bezpieczeństwa.

Pytanie 7

Strzałką oznaczono na rysunku

Ilustracja do pytania
A. styk pomocniczy rozwierny.
B. styk pomocniczy zwiemy.
C. przycisk zwiemy.
D. przycisk rozwierny.
Przycisk rozwierny, nazywany również przyciskiem otwierającym, jest kluczowym elementem w wielu zastosowaniach elektrycznych oraz automatyce. W stanie spoczynku przycisk ten zapewnia przepływ prądu, co oznacza, że obwód jest zamknięty. Po jego aktywowaniu, czyli wciśnięciu, obwód zostaje otwarty, co przerywa przepływ prądu. Tego typu przyciski są powszechnie stosowane w różnych urządzeniach, takich jak dzwonki, alarmy czy systemy automatyki budynkowej. Ich działanie opiera się na zasadzie, że w momencie wciśnięcia przycisku, dochodzi do przełączenia stanu obwodu – z zamkniętego na otwarty. Zastosowanie przycisku rozwiernego jest zgodne z dobrymi praktykami w inżynierii elektrycznej, gdzie kluczowe jest zapewnienie bezpieczeństwa użytkowników. Przykładem może być system alarmowy, gdzie przycisk rozwierny umożliwia wyłączenie alarmu przez użytkownika, co jest istotne w sytuacjach awaryjnych. Ponadto, standardy IEC 60947-5-1 definiują wymagania dotyczące bezpiecznego użytkowania i montażu takich elementów, co czyni je niezawodnymi w codziennym użytkowaniu.

Pytanie 8

Jaka maksymalna wartość impedancji pętli zwarcia jest dopuszczalna w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, jeżeli wiadomo, że zasilanie tego obwodu ma odłączyć instalacyjny wyłącznik nadprądowy B20?

A. 3,8 Ω
B. 6,6 Ω
C. 2,3 Ω
D. 4,0 Ω
Odpowiedź 2,3 Ω jest prawidłowa, ponieważ w trójfazowym obwodzie elektrycznym o napięciu 230/400 V ochrona przeciwporażeniowa polega na szybkim wyłączeniu zasilania w przypadku uszkodzenia izolacji. Zgodnie z normą PN-EN 61140, maksymalna wartość impedancji pętli zwarcia, przy której może działać wyłącznik nadprądowy B20, wynosi 2,3 Ω. Wyłącznik B20 w typowych zastosowaniach ma czas zadziałania do 0,4 sekundy w przypadku zwarcia doziemnego, co oznacza, że impedancja pętli zwarcia nie powinna przekraczać tej wartości, aby zapewnić wystarczająco szybkie wyłączenie zasilania. W praktyce, aby system ochrony był skuteczny, wartość ta jest kluczowa, gdyż wpływa na bezpieczeństwo osób oraz urządzeń. Przykładowo, w instalacjach budowlanych i przemysłowych, pomiar impedancji pętli zwarcia powinien być regularnie wykonywany, aby upewnić się, że nie przekracza dopuszczalnych norm, co pomoże uniknąć niebezpiecznych sytuacji związanych z porażeniem prądem. Dodatkowo, przestrzeganie norm i wytycznych ochrony przeciwporażeniowej jest niezbędne do zapewnienia bezpieczeństwa użytkowników systemów elektrycznych.

Pytanie 9

W lokalu, który jest zasilany napięciem 400 V (3/N/PE 50Hz), zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody (12 kW) - obwód trójfazowy
2. zmywarka do naczyń (3,5 kW) - obwód jednofazowy
3. kuchenka elektryczna (9,5 kW) - obwód trójfazowy
4. pralka automatyczna (4,5 kW) - obwód jednofazowy

Odbiorniki jednofazowe i trójfazowe są zasilane z dwóch różnych obwodów. W celu zabezpieczenia wykorzystano wyłączniki instalacyjne. Jakie wartości prądu znamionowego powinny być zastosowane dla zabezpieczeń obwodu jedno- i trójfazowego?

A. 40 A, 25 A
B. 40 A, 40 A
C. 25 A, 40 A
D. 25 A, 25 A
Wartości prądów znamionowych w niepoprawnych odpowiedziach mogą wprowadzać w błąd, ponieważ nie uwzględniają one rzeczywistych wymagań technicznych związanych z mocą odbiorników. W przypadku, gdy dla obwodu trójfazowego zastosowano by zabezpieczenie o wartości 25 A, to byłoby to niewystarczające dla podgrzewacza wody, który wymaga przynajmniej 17,32 A, co w połączeniu z marginesem bezpieczeństwa powinno skutkować zabezpieczeniem 40 A. Ponadto, zastosowanie zabezpieczenia 25 A dla obwodu jednofazowego zmywarki również jest nieodpowiednie, ponieważ przy mocy 3,5 kW pobór prądu wynosi 15 A, co nie jest wystarczające w kontekście dodatkowych obciążeń, które mogą wystąpić w czasie pracy. Takie podejście ignoruje zasady dotyczące projektowania zabezpieczeń, które zalecają dobieranie wartości zabezpieczeń z uwzględnieniem maksymalnych obciążeń oraz ewentualnych skoków chwilowych poboru prądu. Zbyt niskie wartości zabezpieczeń mogą prowadzić do częstych wyłączeń, co wpłynie na komfort użytkowania oraz w dłuższej perspektywie może uszkodzić urządzenia. Wartości 40 A dla obu obwodów są zgodne z dobrymi praktykami branżowymi oraz uwzględniają zasady ochrony przed przeciążeniem, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 10

W oprawie oświetleniowej należy wymienić uszkodzony kondensator o danych 9 µF/230 VAC/50 Hz. Dobierz dwa kondensatory spośród dostępnych i określ sposób ich połączenia w celu wymiany uszkodzonego.

Dostępne kondensatory:
10 μF/100 VAC/50 Hz
18 μF/100 VAC/50 Hz
2,0 μF/230 VAC/50 Hz
4,0 μF/230 VAC/50 Hz
4,5 μF/230 VAC/50 Hz
A. 18 µF i połączyć równolegle.
B. 18 µF i połączyć szeregowo.
C. 4,5 µF i połączyć szeregowo.
D. 4,5 µF i połączyć równolegle.
Wybór kondensatora o pojemności 4,5 µF i połączenie go szeregowo jest koncepcją, która nie spełnia wymogów wymiany uszkodzonego kondensatora. Połączenie szeregowe powoduje, że łączna pojemność kondensatorów jest mniejsza niż pojedynczej kondensatora; w przypadku dwóch kondensatorów o pojemności 4,5 µF, łączna pojemność wyniesie 2,25 µF, co jest znacznie poniżej wymaganej wartości 9 µF. Warto pamiętać, że połączenie szeregowe zwiększa napięcie pracy układu, ale nie jest odpowiednie w sytuacji, gdy potrzebujemy określonej pojemności. Inną błędną koncepcją jest dobór kondensatorów o pojemności 18 µF. Połączenie takich kondensatorów w szereg również nie przyczyni się do uzyskania wymaganej wartości pojemności; w tym przypadku łączna pojemność wyniesie 9 µF, ale napięcie robocze znacznie wzrosłoby, co stwarza ryzyko uszkodzenia wrażliwych komponentów w obwodzie. W każdej sytuacji, kluczowe jest zapewnienie odpowiedniego dopasowania zarówno pojemności, jak i napięcia pracy, aby uniknąć potencjalnych uszkodzeń urządzenia. Dlatego ważne jest, aby przy wymianie kondensatorów kierować się zarówno teorią, jak i praktycznymi aspektami ich działania w układzie elektrycznym.

Pytanie 11

Który z wymienionych elementów nie ma wpływu na konieczną częstotliwość przeprowadzania przeglądów okresowych instalacji elektrycznej?

A. Warunki atmosferyczne, którym podlega instalacja
B. Typ instalacji
C. Funkcja budynku
D. Liczba odbiorników zasilanych z instalacji
Liczba odbiorników zasilanych z instalacji elektrycznej nie ma bezpośredniego wpływu na wymagania dotyczące częstotliwości sprawdzeń okresowych instalacji. Częstotliwość tych sprawdzeń jest przede wszystkim zależna od warunków zewnętrznych, w jakich funkcjonuje instalacja, przeznaczenia budynku oraz rodzaju instalacji. Na przykład, instalacje znajdujące się w warunkach trudnych, takich jak wysokie wilgotności czy narażenie na agresywne substancje chemiczne, wymagają częstszych przeglądów niż te w standardowych warunkach. Praktyka pokazuje, że zarówno w budynkach mieszkalnych, jak i przemysłowych, kluczowe jest, aby dostosować harmonogram kontrolowania stanu technicznego do specyfiki obiektów. Zgodnie z normami IEC 60364 oraz PN-EN 50110-1, kategorie ryzyka i warunki pracy powinny być brane pod uwagę przy ustalaniu częstotliwości przeglądów. Na przykład, w obiektach użyteczności publicznej i przemysłowych, gdzie występuje wyższe ryzyko uszkodzenia sprzętu elektrycznego, sprawdzenia powinny być przeprowadzane regularnie, nawet niezależnie od liczby odbiorników.

Pytanie 12

Jakiej z wymienionych czynności nie przeprowadza się w trakcie oględzin urządzenia napędowego z silnikiem elektrycznym podczas pracy?

A. Kontroli stanu osłon elementów wirujących
B. Oceny stanu przewodów ochronnych oraz ich podłączenia
C. Sprawdzenia szczotek i szczotkotrzymaczy
D. Sprawdzenia działania systemów chłodzenia
Odpowiedź dotycząca sprawdzenia szczotek i szczotkotrzymaczy jako czynności, której nie wykonuje się podczas oględzin urządzenia napędowego z silnikiem elektrycznym w czasie ruchu, jest poprawna. Podczas pracy silnika elektrycznego, szczegóły takie jak szczotki i szczotkotrzymacze nie mogą być skutecznie oceniane, ponieważ wymagają one zatrzymania silnika, aby móc przeprowadzić dokładne wizualne i techniczne badania. Szczotki są kluczowymi elementami, które przekazują prąd do wirnika i ich stan ma istotny wpływ na wydajność silnika. W praktyce, regularne kontrole tych komponentów powinny być przeprowadzane w warunkach postoju, aby uniknąć uszkodzeń i zapewnić długotrwałe, bezproblemowe funkcjonowanie napędu. Zaleca się stosowanie standardów takich jak PN-EN 60034, które określają wymagania dotyczące silników elektrycznych, oraz dokumentacji producentów, aby przestrzegać najlepszych praktyk obsługi i konserwacji urządzeń. Wnioskując, ocena stanu szczotek i szczotkotrzymaczy w czasie ruchu nie jest możliwa, co czyni tę odpowiedź prawidłową.

Pytanie 13

Warunkiem automatycznego odłączenia zasilania w systemach typu TN jest relacja (UO - napięcie nominalne w V; Ia - wartość prądu w A, zapewniająca natychmiastowe, automatyczne zadziałanie urządzenia ochronnego; Zs - impedancja pętli zwarciowej w Ω)

A. UO < Zs ∙ Ia
B. UO < Zs ∙ 2Ia
C. UO > Zs ∙ Ia
D. UO > Zs ∙ 2Ia
Niewłaściwe odpowiedzi mogą wynikać z niepełnego zrozumienia zasad działania układów zabezpieczeń elektrycznych. W przypadku odpowiedzi, gdzie UO jest mniejsze od Zs ∙ Ia, zakłada się, że napięcie nie jest wystarczające do wyzwolenia ochrony, co jest błędne. W rzeczywistości, aby zapewnić skuteczną reakcję urządzenia ochronnego, napięcie musi przekraczać wartość wynikającą z iloczynu impedancji pętli zwarciowej i prądu zadziałania. Odpowiedzi sugerujące, że UO powinno być mniejsze od tego iloczynu, wskazują na błędne założenia dotyczące warunków pracy zabezpieczeń. Również odpowiedzi, w których UO jest większe od Zs ∙ 2Ia, nie uwzględniają, że wartość prądu zadziałania powinna być odpowiednio dobrana do rzeczywistych warunków obciążeniowych. Należy pamiętać, że w projektowaniu instalacji elektrycznych kluczowe jest zachowanie właściwych relacji między napięciem, prądem i impedancją, co jest regulowane przez normy i standardy branżowe, takie jak PN-IEC 60364 dotyczące instalacji elektrycznych. Brak takiej wiedzy może prowadzić do poważnych konsekwencji, takich jak uszkodzenia urządzeń, a nawet zagrożenie dla życia ludzi. Dlatego ważne jest, aby dobrze rozumieć te relacje i ich praktyczne zastosowanie w projektowaniu i eksploatacji instalacji elektrycznych.

Pytanie 14

Który element stosowany w instalacjach mieszkaniowych przedstawiono na rysunku?

Ilustracja do pytania
A. Regulator temperatury.
B. Regulator oświetlenia.
C. Przekaźnik priorytetowy.
D. Przekaźnik bistabilny.
Ten przekaźnik bistabilny, który widzisz na rysunku, to naprawdę przydatne urządzenie w elektryce. Ma super fajną funkcję – potrafi zapamiętać, jaki miał stan nawet po odłączeniu zasilania. To oznaczenie 'BIS-403' i ten schemat wyraźnie pokazują, że działa na zasadzie przełączania między dwoma stanami, które mogą sobie być niezależnie od prądu. Takie przekaźniki są często używane w automatyce budynkowej, na przykład przy oświetleniu, które powinno działać, nawet jak prąd jest wyłączony. To jest naprawdę dobre rozwiązanie, bo zmniejsza zużycie energii – nie potrzebują ciągłego prądu, żeby pamiętać swój stan. A to, moim zdaniem, jest ważne w kontekście ekologii i oszczędności energii. Warto o tym wiedzieć, planując nowe instalacje.

Pytanie 15

Który z łączników dysponuje komorami gaszeniowymi i ma zdolność do przerywania prądów zwarciowych?

A. Wyłącznik
B. Rozłącznik
C. Stycznik
D. Odłącznik
Odłącznik, rozłącznik i stycznik to urządzenia elektryczne, które pełnią różne funkcje, ale nie są w stanie zastąpić wyłącznika w kontekście gaszenia łuku elektrycznego w przypadku zwarcia. Odłącznik to urządzenie, które umożliwia bezpieczne odłączenie obwodu od źródła zasilania, jednak nie ma zdolności do wyłączania prądów zwarciowych. Jego głównym celem jest izolacja obwodu na potrzeby konserwacji i napraw. Rozłącznik działa w podobny sposób, ale z reguły jest przeznaczony do pracy pod obciążeniem, co oznacza, że również nie jest zaprojektowany do gaszenia łuków zwarciowych. Stycznik z kolei jest używany do załączania i wyłączania obwodów w normalnych warunkach pracy, a jego zdolności do radzenia sobie z prądami zwarciowymi są ograniczone. Dlatego, wybierając odpowiednie urządzenie do zarządzania prądami zwarciowymi, kluczowe jest zrozumienie różnicy między tymi urządzeniami. W praktyce, pomylenie ich funkcji może prowadzić do poważnych konsekwencji, w tym uszkodzenia sprzętu, a także zwiększonego ryzyka dla bezpieczeństwa personelu oraz instalacji. Dlatego tak ważne jest stosowanie odpowiednich urządzeń zgodnie z ich przeznaczeniem i normami branżowymi.

Pytanie 16

Ogranicznik przepięć klasy D, który można zainstalować w systemie elektrycznym o maksymalnym napięciu 1000 V, instaluje się w

A. niskonapięciowych liniach elektroenergetycznych.
B. złączach oraz miejscach, gdzie instalacja wchodzi do budynku z systemem piorunochronnym, zasilanego z linii napowietrznej.
C. gniazdach elektrycznych, puszkach w instalacji oraz bezpośrednio w urządzeniach.
D. rozgałęzieniach systemu elektrycznego w budynku oraz w rozdzielnicach dla mieszkań.
Wybór montażu ogranicznika przepięć w rozgałęzieniach instalacji elektrycznej czy w rozdzielnicach nie jest optymalnym rozwiązaniem, gdyż te miejsca są zbyt daleko od rzeczywistych punktów użycia urządzeń, które wymagają ochrony. Oczywiście, ważne jest zabezpieczenie całej instalacji, ale ograniczniki powinny być stosowane tam, gdzie mogą efektywnie działać, czyli blisko urządzeń. Linia elektroenergetyczna niskiego napięcia to również niewłaściwe miejsce dla ograniczników klasy D, ponieważ ich zadaniem jest ochrona konkretnych urządzeń, a nie samej infrastruktury zasilającej. Wprowadzenie ich do gniazd wtyczkowych, puszek w instalacji czy urządzeń bezpośrednio zapewnia ochronę przed przepięciami w momencie ich wystąpienia, co jest kluczowe w kontekście współczesnych instalacji elektrycznych, które często zasilają wrażliwe na zakłócenia elektroniki. Instalowanie ograniczników w złączach i miejscach wprowadzenia instalacji do budynku, szczególnie w obiektach z instalacją piorunochronną, może nie zapewnić wystarczającej ochrony, gdyż wyładowania atmosferyczne mogą zjawiskowo obciążać instalację. Z tego względu przy planowaniu i wykonaniu instalacji elektrycznych kluczowe jest dobre rozumienie zasad działania ograniczników przepięć oraz ich prawidłowe umiejscowienie zgodnie z normami i zaleceniami branżowymi.

Pytanie 17

Na którym rysunku przedstawiono schemat podłączenia automatu schodowego, umożliwiający prawidłową pracę układu oświetlenia?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Rysunek C przedstawia prawidłowe podłączenie automatu schodowego, co jest kluczowe dla zapewnienia efektywnego i bezpiecznego działania systemu oświetleniowego w miejscach o dużym natężeniu ruchu, takich jak klatki schodowe. W tym układzie przewód fazowy L jest prawidłowo podłączony do zacisku L automatu, co umożliwia kontrolowanie przepływu prądu. Zastosowanie przewodu neutralnego N do zacisku N zapewnia zamknięcie obwodu, a poprawne podłączenie przewodu oświetleniowego do symbolu żarówki gwarantuje, że po naciśnięciu przycisku oświetlenie zostanie włączone. Przyciski połączeniowe do zacisków A1 i A2 są niezbędne, aby umożliwić użytkownikom uruchomienie oświetlenia z różnych lokalizacji. Dobrą praktyką jest również stosowanie automatów schodowych, które mają możliwość regulacji czasu świecenia, co zwiększa komfort użytkowania oraz oszczędność energii. W kontekście norm i standardów, instalacje elektryczne powinny być zgodne z wymaganiami normy PN-IEC 60364, która określa zasady projektowania i wykonania instalacji elektrycznych, zapewniając bezpieczeństwo oraz efektywność energetyczną.

Pytanie 18

Który element osprzętu łączeniowego przedstawiono na rysunku?

Ilustracja do pytania
A. Listwę elektroinstalacyjną.
B. Listwę zaciskową.
C. Szynę montażową.
D. Szynę łączeniową.
Wybór innej odpowiedzi może wynikać z nieporozumienia dotyczącego podstawowych funkcji i zastosowań elementów osprzętu łączeniowego. Listwa elektroinstalacyjna, na przykład, jest przeznaczona do montażu urządzeń elektrycznych, jednak nie służy do łączenia ich w systemie. Listwa zaciskowa, z kolei, jest elementem używanym do połączeń przewodów, ale nie działa tak, jak szyna łączeniowa, która ma za zadanie równomierne rozprowadzenie prądu. Szyna montażowa jest elementem, na którym zamocowane są inne komponenty, ale również nie pełni funkcji łączenia. Wybierając którąkolwiek z tych odpowiedzi, można łatwo dojść do błędnych wniosków poprzez pomylenie funkcji poszczególnych elementów, co jest częstym błędem wśród osób zajmujących się instalacjami elektrycznymi. Ważne jest zrozumienie, że każdy z tych elementów ma swoje specyficzne zastosowanie i nie można ich stosować zamiennie. W kontekście projektowania systemów elektrycznych, stosowanie odpowiednich podzespołów zgodnych z ich przeznaczeniem jest kluczowe dla zapewnienia bezpieczeństwa i efektywności energetycznej instalacji. Warto również pamiętać o aktualnych normach branżowych, które regulują takie aspekty jak materiał, z którego wykonane są poszczególne elementy oraz ich parametry techniczne, co dodatkowo podkreśla znaczenie właściwego doboru osprzętu.

Pytanie 19

Przewód pokazany na zdjęciu ma symbol literowy

Ilustracja do pytania
A. YDYp
B. YnDYo
C. YLYp
D. YDYo
Odpowiedź YDYp jest poprawna, ponieważ oznaczenie to dokładnie opisuje charakterystykę przewodu, który możemy zaobserwować na zdjęciu. Litera 'Y' wskazuje na izolację wykonaną z polichlorku winylu (PVC), co jest powszechnie stosowane w przewodach elektrycznych dzięki swojej odporności na działanie chemikaliów i dobrej izolacyjności elektrycznej. Następnie litera 'D' informuje nas, że wewnątrz przewodu znajdują się żyły jednodrutowe, co jest istotne w kontekście zastosowania. Takie przewody są powszechnie stosowane w instalacjach elektrycznych, gdzie wymagana jest duża elastyczność i odporność na zginanie. Oznaczenie 'p' sugeruje, że przewód ma płaską konstrukcję, co może być korzystne przy instalacji w miejscach o ograniczonej przestrzeni. Zastosowanie przewodu YDYp możemy zaobserwować w domowych instalacjach elektrycznych, a także w różnych aplikacjach przemysłowych, gdzie wymagane są wysokie standardy bezpieczeństwa i niezawodności. Zgodność z normą PN-EN 50525-2-11 potwierdza wysoką jakość tego typu przewodów, czyniąc go odpowiednim wyborem w wielu zastosowaniach.

Pytanie 20

Która z poniższych czynności ocenia efektywność ochrony uzupełniającej przed porażeniem prądem elektrycznym?

A. Badanie wyłącznika różnicowoprądowego
B. Badanie stanu izolacji podłóg
C. Pomiar impedancji pętli zwarciowej
D. Pomiar rezystancji izolacji przewodów
Pomiar impedancji pętli zwarciowej, pomiar rezystancji izolacji przewodów oraz badanie stanu izolacji podłóg są istotnymi elementami oceny instalacji elektrycznych, jednak nie są bezpośrednimi metodami oceny skuteczności ochrony uzupełniającej przed porażeniem prądem elektrycznym. Pomiar impedancji pętli zwarciowej informuje o zdolności instalacji do ograniczenia prądu zwarciowego, co jest istotne, ale nie odnosi się bezpośrednio do ochrony przed porażeniem. Z kolei pomiar rezystancji izolacji przewodów ocenia stan izolacji, ale nie wskazuje na skuteczność zabezpieczeń przed prądem upływowym, które są kluczowe w sytuacjach zagrożenia. Badanie stanu izolacji podłóg, mimo że może mieć znaczenie w kontekście bezpieczeństwa, nie ocenia funkcjonalności wyłączników różnicowoprądowych i ich zdolności do natychmiastowego reagowania na pojawiające się zagrożenia. Typowym błędem myślowym jest zakładanie, że wszystkie te pomiary są równoważne w kontekście ochrony przed porażeniem. W rzeczywistości, skuteczna ochrona wymaga skoncentrowania się na elementach, które bezpośrednio przeciwdziałają zagrożeniom elektrycznym, takich jak wyłączniki różnicowoprądowe, które są fundamentalnym elementem systemów bezpieczeństwa elektrycznego, a ich regularne testowanie jest kluczowe dla zapewnienia bezpieczeństwa użytkowników.

Pytanie 21

Całkowitą moc odbiornika trójfazowego mierzoną w układzie pomiarowym pokazanym na rysunku oblicza się ze wzoru

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Wybór niepoprawnej odpowiedzi może wynikać z kilku powszechnych nieporozumień dotyczących pomiarów mocy w układach trójfazowych. Na przykład, niektórzy mogą sądzić, że wystarczy zmierzyć moc jedynie jednego watomierza, co prowadzi do niedoszacowania rzeczywistej mocy całkowitej odbiornika. Takie podejście jest błędne, ponieważ nie uwzględnia różnic w prądach i napięciach w poszczególnych fazach, co jest kluczowe w przypadku układów niesymetrycznych. Inna często spotykana pomyłka to zakładanie, że moc w każdym z trzech faz jest identyczna, co jest prawdziwe tylko w idealnych warunkach symetrycznych. W rzeczywistości, w układach, gdzie występują różnice, całkowita moc musi być obliczana jako suma mocy z dwóch watomierzy, co jest praktycznym zastosowaniem zasady superpozycji. Ignorowanie tego faktu może prowadzić do błędnych wniosków na temat wydajności systemu energetycznego. Dodatkowo, wiele osób ma trudności z interpretacją wyników pomiarów, co może być spowodowane brakiem wiedzy na temat zasad działania watomierzy i ich zastosowania w różnych konfiguracjach. Kluczowe jest zrozumienie, że pomiar energii elektrycznej w systemach trójfazowych wymaga starannego podejścia i znajomości metodologii, aby unikać potencjalnych błędów i zapewnić dokładność analizy energetycznej.

Pytanie 22

Na przyrządzie ustawionym na zakres 300 V zmierzono napięcie w sieci, które wynosi 230 V. Do wykonania pomiaru zastosowano miernik analogowy o dokładności w klasie 1,5. Jaki jest błąd bezwzględny uzyskanego pomiaru?

A. ± 4,50 V
B. ± 4,30 V
C. ± 4,60 V
D. ± 4,40 V
Błędy w obliczeniach błędów bezwzględnych pomiaru mogą wynikać z niedokładnego zrozumienia klasy dokładności miernika oraz sposobu jej zastosowania. W przypadku analizowania błędów pomiarowych istotne jest, aby pamiętać, że klasa dokładności odnosi się do całego zakresu pomiarowego, a nie tylko do konkretnego odczytu. Na przykład, niektóre odpowiedzi mogłyby sugerować, że błąd bezwzględny pomiaru wynosi ± 4,30 V lub ± 4,40 V, co jest wynikiem mylenia wartości procentowych z rzeczywistymi pomiarami. Klasa 1,5% oznacza, że błąd ten powinien być obliczany z całkowitego zakresu, a nie bezpośrednio z odczytu. Ponadto, pomijanie kontekstu zastosowania miernika oraz jego ograniczeń prowadzi do nieprawidłowych wniosków, co może być krytyczne w praktycznych zastosowaniach, takich jak instalacje elektryczne. Przykładowo, nieprawidłowe oszacowanie błędu pomiarowego może prowadzić do niewłaściwego doboru komponentów systemu lub nieprawidłowej oceny stanu instalacji, co w konsekwencji może wpłynąć na bezpieczeństwo użytkowników oraz efektywność energetyczną całego systemu. Dlatego tak ważne jest, aby przy obliczaniu błędów pomiarowych zawsze stosować przyjęte normy i metodyki, zapewniając rzetelność wyników.

Pytanie 23

Który z wymienionych parametrów elementów instalacji elektrycznej można zmierzyć przyrządem, którego fragment pokazano na rysunku?

Ilustracja do pytania
A. Rezystancję uziemienia.
B. Rezystancję izolacji.
C. Czas wyłączenia wyłącznika nadprądowego.
D. Impedancję pętli zwarcia.
Odpowiedź "Impedancja pętli zwarcia" jest jak najbardziej na miejscu. Miernik z zdjęcia jest zaprojektowany właśnie do takich pomiarów w instalacjach elektrycznych. Ten miernik wielofunkcyjny, oznaczony jako "ZL-PE", wskazuje na to, że można nim zmierzyć impedancję pętli zwarcia, co jest mega ważne dla bezpieczeństwa systemów elektrycznych. Wartość impedancji wpływa na to, jak szybko i skutecznie działają zabezpieczenia, na przykład wyłączniki nadprądowe. Jak dojdzie do zwarcia, niska impedancja sprawia, że zabezpieczenie zadziała szybko, co zmniejsza ryzyko uszkodzenia instalacji. Zgodnie z normami PN-IEC 60364, regularne pomiary impedancji pętli zwarcia to standard w utrzymaniu i audytach instalacji elektrycznych, co naprawdę chroni ludzi i mienie. Osobiście uważam, że znajomość przeszłych pomiarów i umiejętność ich interpretacji to klucz do optymalizacji zabezpieczeń.

Pytanie 24

Aby ocenić efektywność ochrony przez automatyczne odcięcie zasilania w systemie TN instalacji elektrycznej, konieczne jest

A. zweryfikowanie ciągłości połączeń w instalacji
B. przeprowadzenie pomiarów impedancji pętli zwarcia
C. wykonanie pomiaru rezystancji uziemienia
D. określenie czasu oraz prądu zadziałania wyłącznika RCD
Pomiar impedancji pętli zwarcia jest kluczowym działaniem w ocenie skuteczności ochrony przed porażeniem elektrycznym w systemie TN. Zgodnie z normą PN-EN 61230, impedancja pętli zwarcia wpływa na czas zadziałania zabezpieczeń, co jest istotne dla bezpieczeństwa instalacji. W przypadku zwarcia, niższa impedancja oznacza, że prąd zwarciowy będzie wyższy, co z kolei przyspiesza działanie wyłączników automatycznych. Praktycznie, przeprowadzając pomiar, możemy określić, czy wartości impedancji mieszczą się w dopuszczalnych normach, co pozwala na weryfikację, czy zabezpieczenia zadziałają w wystarczająco krótkim czasie, aby zminimalizować ryzyko porażenia użytkowników. Takie pomiary są również wymagane podczas odbiorów instalacji elektrycznych, aby zapewnić zgodność z normami oraz bezpieczeństwo użytkowników.

Pytanie 25

Które z wymienionych urządzeń elektrycznych jest pokazane na ilustracji?

Ilustracja do pytania
A. Wzbudnik indukcyjny.
B. Transformator.
C. Dławik magnetyczny.
D. Elektromagnes.
Dławik magnetyczny, elektromagnes oraz wzbudnik indukcyjny to urządzenia, które różnią się zasadniczo od transformatora w swoim działaniu oraz zastosowaniach. Dławik magnetyczny jest stosowany głównie w obwodach elektronicznych do filtrowania i stabilizacji prądu, jednak nie służy do zmiany napięcia, co czyni go nieodpowiednim wyborem. Elektromagnes, z kolei, generuje pole magnetyczne, które można kontrolować poprzez zmianę prądu w uzwojeniu, ale jego funkcjonalność nie obejmuje przekazywania energii między dwoma obwodami, co jest kluczową cechą transformatora. Wzbudnik indukcyjny, będący elementem używanym w silnikach elektrycznych, ma na celu wzbudzenie pola magnetycznego, ale również nie zmienia poziomu napięcia ani nie przenosi energii w sposób, w jaki robi to transformator. Często pojawiającym się błędem myślowym jest mylenie tych urządzeń ze względu na ich wspólne zastosowanie w obwodach elektrycznych, co może prowadzić do nieprawidłowych wniosków. Kluczowe jest zrozumienie, że transformator pełni unikalną rolę w systemach elektronicznych i energetycznych, a jego właściwe zastosowanie jest podstawą efektywnego zarządzania energią.

Pytanie 26

Rysunek przedstawia pomiar

Ilustracja do pytania
A. rezystywności gruntu metodą pośrednią.
B. rezystancji uziemień metodą kompensacyjną.
C. rezystywności gruntu metodą bezpośrednią.
D. rezystancji uziemień metodą techniczną.
Wybór innych odpowiedzi sugeruje pewne nieporozumienia dotyczące metod pomiaru rezystancji i rezystywności gruntu oraz ich zastosowań. Rezystywność gruntu, na przykład, odnosi się do właściwości materiału, który wpływa na przewodnictwo elektryczne, jednak do jej pomiaru stosuje się metody różniące się od pomiaru rezystancji uziemienia. Odpowiedzi sugerujące pomiar rezystywności metodą bezpośrednią lub pośrednią zakładają, że rysunek dotyczy pomiaru właściwości gruntu zamiast pomiaru samego uziemienia, co jest nieprawidłowe. Pomiar rezystywności gruntu ma swoje zastosowanie w badaniach geotechnicznych i inżynierii lądowej, ale nie jest tożsamy z oceną efektywności systemów uziemiających. Z kolei odpowiedź dotycząca metody kompensacyjnej, która jest wykorzystywana w specyficznych warunkach pomiarowych, również nie odnosi się do przedstawionego rysunku. W praktyce, błędne wybranie metody pomiarowej może prowadzić do poważnych konsekwencji, takich jak niewłaściwe zabezpieczenie instalacji elektrycznych, co może skutkować zagrożeniem dla osób oraz mienia. Zrozumienie różnic między tymi metodami oraz ich odpowiednich zastosowań jest kluczowe dla prawidłowego wykonywania pomiarów w inżynierii elektrycznej.

Pytanie 27

W rozdzielnicy instalacji mieszkaniowej, wykonanej zgodnie z przedstawionym schematem, należy zainstalować

Ilustracja do pytania
A. cztery wyłączniki różnicowoprądowe i pięć jednofazowych wyłączników nadprądowych.
B. jeden wyłącznik różnicowoprądowy, cztery trójfazowe wyłączniki nadprądowe i cztery jednofazowe wyłączniki nadprądowe.
C. pięć wyłączników różnicowoprądowych i cztery jednofazowe wyłączniki nadprądowe.
D. cztery wyłączniki różnicowoprądowe, cztery trójfazowe wyłączniki nadprądowe i jeden jednofazowy wyłącznik nadprądowy.
Wybrana odpowiedź jest prawidłowa, ponieważ zgodnie z przedstawionym schematem w rozdzielnicy instalacji mieszkaniowej zainstalowane są cztery wyłączniki różnicowoprądowe. Ich rola polega na zabezpieczaniu obwodów przed prądem upływowym, co jest kluczowe dla ochrony ludzi przed porażeniem prądem elektrycznym. Dodatkowo każda z linii zasilających musi być zabezpieczona jednofazowym wyłącznikiem nadprądowym, co w tym przypadku odpowiada pięciu wyłącznikom o wartościach znamionowych B10 lub B16. Takie podejście jest zgodne z normami PN-EN 61439 oraz PN-IEC 60364, które wskazują na konieczność odpowiedniego zabezpieczenia instalacji elektrycznych, aby zapewnić bezpieczeństwo użytkowania. W praktyce, przestrzeganie tych zasad minimalizuje ryzyko awarii oraz zwiększa niezawodność całej instalacji, co jest niezwykle istotne w kontekście użytkowania w warunkach domowych.

Pytanie 28

Którą z wymienionych wielkości fizycznych można zmierzyć w instalacji elektrycznej przyrządem pomiarowym przedstawionym na rysunku?

Ilustracja do pytania
A. Czas wyłączenia wyłączników instalacyjnych nadprądowych.
B. Rezystancję izolacji przewodów.
C. Impedancję pętli zwarcia.
D. Prąd różnicowy wyłącznika różnicowoprądowego.
Rezystancja izolacji przewodów jest kluczowym parametrem w ocenie stanu technicznego instalacji elektrycznych. Miernik izolacji, przedstawiony na zdjęciu, jest specjalnie zaprojektowany do pomiaru rezystancji izolacji, co pozwala zidentyfikować potencjalne usterki i zapewnić bezpieczeństwo użytkowników. Wysokie wartości rezystancji wskazują na dobrą izolację, co jest zgodne z normami bezpieczeństwa, takimi jak PN-IEC 60364, które stawiają wymagania dotyczące izolacji w instalacjach elektrycznych. Pomiar rezystancji izolacji jest szczególnie istotny przed oddaniem do użytku nowej instalacji lub po przeprowadzeniu prac serwisowych. Regularne kontrole stanu izolacji mogą zapobiegać awariom, w tym porażeniom prądem elektrycznym oraz pożarom spowodowanym uszkodzeniami izolacji. Przykładowo, w obiektach przemysłowych, gdzie występuje duże ryzyko uszkodzeń mechanicznych, zaleca się coroczne wykonywanie pomiarów rezystancji izolacji, aby zapewnić zgodność z przepisami BHP i normami branżowymi.

Pytanie 29

W instrukcji technicznej dotyczącej instalacji elektrycznej przewód uziemiający jest oznaczony symbolem literowym

A. E
B. CC
C. FPE
D. TE
Nieprawidłowe odpowiedzi mogą wynikać z nieporozumień dotyczących symboliki używanej w dokumentacji elektrycznej. Odpowiedzi takie jak TE, E oraz FPE nie odnoszą się do przewodu wyrównawczego w kontekście ochrony przed porażeniem prądem. Symbol TE odpowiada zazwyczaj przewodom stosowanym w instalacjach telekomunikacyjnych, natomiast E najczęściej odnosi się do uziemienia, co nie jest tym samym co przewód wyrównawczy. Przewód uziemiający ma na celu zapewnienie bezpiecznego odprowadzenia prądu do ziemi, ale nie służy bezpośrednio do wyrównywania potencjałów. FPE z kolei może być mylone z przewodami stosowanymi w systemach ochrony przeciwprzepięciowej, które mają inną funkcję. Zrozumienie różnic między tymi symbolami jest kluczowe dla prawidłowego projektowania i implementacji systemów elektrycznych. Błędy myślowe związane z myleniem funkcji przewodów mogą prowadzić do niebezpiecznych sytuacji, w których instalacja nie spełnia wymogów bezpieczeństwa, co jest niezgodne z normami i dobrymi praktykami branżowymi. Właściwe stosowanie symboli oraz ich zrozumienie jest podstawą skutecznego i bezpiecznego projektowania instalacji elektrycznych.

Pytanie 30

Który element stosowany w instalacjach sterowania oświetleniem przedstawiono na ilustracji?

Ilustracja do pytania
A. Przekaźnik bistabilny.
B. Automat zmierzchowy.
C. Ściemniacz oświetlenia.
D. Czujnik ruchu.
Automat zmierzchowy to urządzenie, które automatycznie zarządza oświetleniem, dostosowując je do zmieniających się warunków świetlnych w otoczeniu. Na ilustracji przedstawiono model AZH-S, który jest typowym przykładem automatu zmierzchowego. Działa on na zasadzie pomiaru natężenia światła, co pozwala na włączenie oświetlenia po zachodzie słońca, a wyłączenie go w ciągu dnia. To rozwiązanie jest szczególnie przydatne w miejscach, gdzie oświetlenie jest potrzebne tylko w nocy, takich jak ogrody, podjazdy czy parkingi. Dzięki zastosowaniu automatu zmierzchowego można znacząco zmniejszyć zużycie energii, co jest zgodne z zasadami zrównoważonego rozwoju i oszczędności energii. W praktyce, urządzenia te są łatwe do zainstalowania i oferują wiele możliwości konfiguracji, co pozwala na ich dostosowanie do indywidualnych potrzeb użytkowników. Warto również zaznaczyć, że automaty zmierzchowe są zgodne z normami EN 60598-2-1, które dotyczą bezpieczeństwa i wydajności oświetlenia.

Pytanie 31

Na rysunku przedstawiono schemat układu sterowania oświetleniem oraz diagram działania zastosowanego przekaźnika. Który opis działania układu jest prawidłowy?

A.B.
SekwencjaEfekt działania układuSekwencjaEfekt działania układu
0Zgaszone są obie żarówki0Zgaszone są obie żarówki
1Świeci tylko żarówka R11Świeci tylko żarówka R1
2Świeci tylko żarówka R22Świeci tylko żarówka R2
3Świeci tylko żarówka R13Świeci tylko żarówka R1
4Zgaszone są obie żarówki4Świecą obie żarówki
C.D.
SekwencjaEfekt działania układuSekwencjaEfekt działania układu
0Zgaszone są obie żarówki0Świecą obie żarówki
1Świeci tylko żarówka R11Świeci tylko żarówka R1
2Świeci tylko żarówka R22Świeci tylko żarówka R2
3Świecą obie żarówki3Zgaszone są obie żarówki
4Zgaszone są obie żarówki4Świecą obie żarówki
Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Odpowiedź C. jest prawidłowa, ponieważ dokładnie odzwierciedla działanie układu sterowania oświetleniem przedstawionego na rysunku oraz diagramu działania przekaźnika. W sekwencji 0, gdy żadne z styków nie są aktywne, obie żarówki pozostają zgaszone. Następnie w sekwencji 1, aktywacja styku 1-2 powoduje świecenie żarówki R1, co pokazuje zastosowanie przekaźników w prostych układach sterujących. W sekwencji 2, aktywacja styku 3-4 skutkuje załączeniem żarówki R2, co ilustruje możliwość niezależnego sterowania różnymi źródłami światła. W sekwencji 3, w której oba styki są aktywne, zarówno R1, jak i R2 świecą, co pokazuje, jak można zintegrować różne obwody w jednym układzie. Na koniec, w sekwencji 4, układ wraca do stanu początkowego, co jest typowym zachowaniem w układach sterujących, gdzie ważna jest możliwość cyklicznego powracania do stanu zerowego. Takie podejście jest zgodne z najlepszymi praktykami w automatyzacji i sterowaniu, umożliwiając efektywne zarządzanie oświetleniem w różnych aplikacjach.

Pytanie 32

W układzie przedstawionym na rysunku, po podłączeniu odbiornika, zadziałał wyłącznik różnicowoprądowy. Przyczyną tego jest

Ilustracja do pytania
A. zwarcie między przewodem neutralnym i ochronnym.
B. pojawienie się napięcia na części metalowej normalnie nie przewodzącej.
C. nieprawidłowe połączenie przewodu neutralnego i ochronnego.
D. dotyk bezpośredni przewodu pod napięciem.
Nieprawidłowe połączenie przewodu neutralnego (N) z przewodem ochronnym (PE) jest kluczowym czynnikiem, który spowodował zadziałanie wyłącznika różnicowoprądowego. W momencie, gdy te dwa przewody są połączone, wyłącznik różnicowoprądowy wykrywa różnicę w prądzie, co prowadzi do jego zadziałania w celu ochrony użytkowników przed porażeniem prądem. Przykładowo, w przypadku instalacji elektrycznych w budynkach mieszkalnych, zaleca się stosowanie wyłączników różnicowoprądowych w obwodach zasilających gniazda, co zwiększa bezpieczeństwo użytkowników. W praktyce, aby zapewnić prawidłowe działanie wyłączników, konieczne jest przestrzeganie standardów, takich jak norma PN-EN 61008-1, która określa wymagania dla różnicowoprądowych wyłączników nadprądowych. Dobre praktyki obejmują regularne testowanie tych urządzeń, aby upewnić się, że działają prawidłowo i mogą skutecznie chronić przed zagrożeniami elektrycznymi.

Pytanie 33

Przewód, który jest oznaczony symbolem SMYp, ma żyły

A. płaskie
B. wielodrutowe
C. jednodrutowe
D. sektorowe
Przewód oznaczony jako SMYp to typowy przewód elektryczny, który ma w sobie wielodrutowe żyły zrobione z miedzi. Dzięki tym wielodrutowym żyłom, przewód jest elastyczny, co jest naprawdę ważne, zwłaszcza tam, gdzie przewody muszą się ruszać lub zakręcać. Fajnie, że te żyły poprawiają odporność na przeciążenia i przewodnictwo elektryczne, bo to ma duże znaczenie, gdy zasilamy różne urządzenia. W praktyce, przewody tego typu bardzo często spotyka się w instalacjach zarówno w domach, jak i w przemyśle. Ich właściwości są zgodne z normami, takimi jak PN-EN 60228, które mówią, jak klasyfikować żyły w przewodach. Co istotne, przewody SMYp są też odporne na wilgoć i wysokie temperatury, co sprawia, że można je stosować w trudnych warunkach. Zauważ, że te żyły mają większą powierzchnię przekroju, co zmniejsza straty energii podczas przesyłu prądu. To jest naprawdę ważne w dzisiejszym świecie, gdzie efektywność energetyczna ma znaczenie.

Pytanie 34

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWynik
U - V15 Ω
V - W15 Ω
W - U20 Ω
A. Przerwa w uzwojeniu fazy V
B. Przerwa w uzwojeniu fazy W
C. Zwarcie międzyzwojowe w fazie W
D. Zwarcie międzyzwojowe w fazie V
Przerwa w uzwojeniu fazy V oraz zwarcie międzyzwojowe w fazie W to odpowiedzi, które mogą wydawać się logiczne na pierwszy rzut oka, jednak analiza pomiarów rezystancji wskazuje na błędne interpretacje. Przerwa w uzwojeniu fazy V skutkujełaby znacznie wyższą rezystancją między zaciskami U-V i V-W, co jest sprzeczne z danymi, które pokazują mniejsze wartości rezystancji. Taki błąd myślowy często wynika z niepoprawnego założenia, że wszystkie rezystancje powinny być jednorodne, co w praktyce nie zawsze ma miejsce, zwłaszcza w obliczu uszkodzeń. Natomiast zwarcie międzyzwojowe w fazie W, choć również może wydawać się możliwą przyczyną uszkodzenia, nie znajduje potwierdzenia w pomiarach, które jasno wskazują na asymetrię w rezystancjach, a nie na zjawisko zwarcia w fazie W. W przypadku zwarcia międzyzwojowego, oczekiwalibyśmy, że rezystancja tej fazy będzie znacznie niższa niż w innych fazach, co nie jest zgodne z wynikami. Takie nieporozumienia mogą prowadzić do niewłaściwego diagnozowania problemów w silnikach indukcyjnych, co w efekcie może skutkować dalszymi uszkodzeniami i kosztownymi naprawami. Ważne jest zrozumienie różnicy pomiędzy przerwą w uzwojeniu a zwarciami, oraz umiejętność analizy danych pomiarowych w kontekście ich praktycznego zastosowania.

Pytanie 35

Którą oprawę oświetleniową należy zastosować w piwnicy o zwiększonej wilgotności powietrza?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Oprawa oświetleniowa oznaczona jako D. jest odpowiednia do zastosowania w piwnicy o zwiększonej wilgotności powietrza, ponieważ spełnia normy dotyczące szczelności i odporności na działanie wilgoci. W takich warunkach, zastosowanie oprawy z wyższym stopniem ochrony, jak IP65 lub IP67, jest kluczowe, aby uniknąć ryzyka uszkodzenia instalacji elektrycznej oraz zapewnić bezpieczeństwo użytkowników. Dobrą praktyką jest wybór opraw wyekwipowanych w zatrzaski, co zwiększa ich szczelność i zapobiega przedostawaniu się pary wodnej oraz zanieczyszczeń. W piwnicach, gdzie może występować wilgoć, szczególnie istotne jest regularne sprawdzanie stanu technicznego oświetlenia, a także stosowanie źródeł światła odpornych na wahania temperatury oraz wilgotności, takich jak diody LED. Przykładem mogą być instalacje oświetleniowe w magazynach lub piwnicach, które wymagają nie tylko właściwego doboru opraw, ale także odpowiedniego montażu, aby zapewnić ich długotrwałą i bezpieczną eksploatację.

Pytanie 36

Minimalny czas działania oświetlenia ewakuacyjnego powinien wynosić przynajmniej

A. 1 godzinę
B. 3 godziny
C. 2 godziny
D. 4 godziny
Chociaż krótszy czas działania oświetlenia ewakuacyjnego, jak 1 godzina, może wydawać się w porządku w niektórych sytuacjach, to jednak nie spełnia norm i nie bierze pod uwagę różnych zagrożeń, które mogą się zdarzyć w krytycznych momentach. Gdy ewakuacja zajmie więcej czasu, może być naprawdę niebezpiecznie, zwłaszcza w dużych obiektach, gdzie ludzie mogą być rozproszeni na różnych piętrach. Z kolei, wydłużenie tego czasu do 3 czy 4 godzin, mimo że brzmi lepiej, nie jest wymagane przepisami i może prowadzić do marnotrawienia zasobów i wyższych kosztów związanych z utrzymywaniem oświetlenia ewakuacyjnego. Czasami można spotkać się z błędnym myśleniem, że wystarczy jedynie zaświecić drogę ewakuacyjną. Kluczowe jest, by system oświetlenia dawał stabilne i jasne światło przez cały czas ewakuacji. To można osiągnąć tylko dzięki dobrym rozwiązaniom technicznym i regularnemu serwisowi, żeby mieć pewność, że wszystko działa. Bezpieczeństwo osób opuszczających budynek w kryzysowych sytuacjach jest absolutnie priorytetowe, a czas działania oświetlenia ewakuacyjnego jest jednym z kluczowych elementów, które to bezpieczeństwo zapewniają.

Pytanie 37

Jakie uszkodzenie mogło wystąpić w instalacji elektrycznej, dla której wyniki pomiarów rezystancji izolacji przedstawiono w tabeli?

Rezystancja izolacji, MΩ
Zmierzona międzyWymagana
L1–L2L2–L3L1–L3L1–PENL2–PENL3–PEN
2,101,051,101,401,300,991,00
A. Zwarcie międzyfazowe.
B. Zawilgocenie izolacji jednej z faz.
C. Jednofazowe zwarcie doziemne.
D. Przeciążenie jednej z faz.
Przeciążenie jednej z faz, mimo że jest to problem, który może wystąpić w instalacjach elektrycznych, nie jest odpowiedzią w tym przypadku. Przeciążenie związane jest z nadmiernym przepływem prądu przez przewody, co prowadzi do ich nagrzewania się. W tej sytuacji jednak, wyniki pomiarów rezystancji izolacji wykazują, że wszystkie fazy mają wartości powyżej 1 MΩ, co wyklucza obecność przeciążenia. Przeciążenie fazy charakteryzuje się innymi objawami, takimi jak wzrost temperatury przewodów czy wyłączanie się zabezpieczeń, co nie jest zgodne z danymi z tabeli. Z kolei zwarcie międzyfazowe również nie znajduje potwierdzenia w wynikach pomiarów, ponieważ wymagałoby niskich rezystancji międzyfazowych, co w tym przypadku nie ma miejsca. Warto pamiętać, że zwarcie międzyfazowe najczęściej prowadzi do natychmiastowego wyłączenia zabezpieczeń, a nieprawidłowe wartości rezystancji nie są jedynym objawem tego zjawiska. Jednofazowe zwarcie doziemne, mimo że może wpływać na rezystancję L3 do PEN, nie byłoby jedynym czynnikiem mającym wpływ na pozostałe fazy, które w tym przypadku wykazywały poprawne wartości. Kluczowe jest, aby podczas analizy wyników pomiarów izolacji brać pod uwagę wszystkie aspekty, a nie jedynie pojedyncze parametry, co pozwala na trafną diagnozę stanu instalacji elektrycznej.

Pytanie 38

Jakim z podanych rodzajów przewodów powinno się zasilić jednofazowy ruchomy odbiornik?

A. YDYt 3×1,5 mm2
B. OMYp 3×1,5 mm2
C. LGu 3×1,5 mm2
D. YDY 3×1,5 mm2
YDYt 3×1,5 mm2, YDY 3×1,5 mm2 oraz LGu 3×1,5 mm2 to inne typy przewodów, które mają różne zastosowania, lecz nie są odpowiednie do zasilania jednofazowego odbiornika ruchomego. Przewód YDYt, będący wersją przewodu YDY z dodatkowym ekranem, przeznaczony jest głównie do instalacji stałych i nie jest przystosowany do dużych ruchów oraz narażeń mechanicznych. Stosowanie go w aplikacjach ruchomych może prowadzić do uszkodzeń mechanicznych, co z czasem może skutkować awarią lub zagrożeniem bezpieczeństwa. Podobnie, przewód YDY, mimo że jest powszechnie używany w instalacjach elektrycznych, nie zapewnia elastyczności wymaganej w przypadku przewodów zasilających mobilne urządzenia. Z kolei przewód LGu, który jest przeznaczony do instalacji wewnętrznych oraz jako przewód sygnałowy, nie spełnia standardów dotyczących zasilania urządzeń, które są narażone na ruch i zmienne warunki pracy. Użycie tych typów przewodów w aplikacjach, które wymagają mobilności, może prowadzić do ich uszkodzenia, a w konsekwencji do problemów z bezpieczeństwem i niezawodnością zasilania. Wybór niewłaściwego typu przewodu w obszarze zasilania ruchomych odbiorników elektrycznych jest typowym błędem, który wynika z braku zrozumienia różnic pomiędzy przewodami przeznaczonymi do instalacji stałych i mobilnych.

Pytanie 39

Który z symboli przedstawionych na rysunkach jest stosowany na schematach montażowych?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Wybór symbolu innego niż przedstawiony na rysunku C. wskazuje na niezrozumienie podstawowych zasad oznaczania elementów w schematach montażowych. Każdy symbol na schemacie ma swoje specyficzne znaczenie i zastosowanie, które są ściśle określone przez normy branżowe, takie jak IEC 60617 czy ANSI Y32. W przypadku symboli A., B. i D., każdy z tych symboli nie odpowiada standardowym oznaczeniom używanym w elektronice. Na przykład, symbol A. mógłby być mylony z innym komponentem, takim jak kondensator czy opornik, co prowadzi do błędnej interpretacji funkcjonalności obwodu. W praktyce, takie pomyłki mogą skutkować nieprawidłowym montażem, a w konsekwencji awarią urządzenia. Ważne jest, aby przed podjęciem decyzji w odniesieniu do schematów montażowych, zrozumieć, jakie elementy są na nich przedstawione i jak wpływają na działanie całego układu. Dlatego kluczowe jest dokładne zapoznanie się z normami i dobrymi praktykami, aby uniknąć typowych błędów myślowych, które mogą prowadzić do niewłaściwych wyborów w procesie projektowania elektronicznego.

Pytanie 40

Jakie właściwości definiują wyłącznik instalacyjny nadprądowy?

A. Napięcie dopuszczalne, prąd różnicowy, czas zadziałania
B. Napięcie znamionowe, prąd znamionowy, rodzaj charakterystyki
C. Prąd zwarciowy, typ zestyku, napięcie podtrzymania
D. Prąd obciążenia, rezystancja zestyku, czas wyłączenia
Wyłącznik instalacyjny nadprądowy jest kluczowym elementem zabezpieczeń w instalacjach elektrycznych. Parametry takie jak napięcie znamionowe, prąd znamionowy oraz rodzaj charakterystyki definiują jego właściwości i funkcjonalność. Napięcie znamionowe określa maksymalne napięcie, przy którym wyłącznik może pracować bezawaryjnie, co jest istotne w kontekście doboru urządzeń do konkretnej instalacji. Prąd znamionowy to wartość prądu, przy której wyłącznik powinien funkcjonować poprawnie, ale również powinien zareagować w przypadku przekroczenia tej wartości, co jest kluczowe dla ochrony instalacji przed przeciążeniem. Rodzaj charakterystyki (np. A, B, C, D) wskazuje na czas reakcji oraz sposób działania wyłącznika w obliczu przeciążeń oraz zwarć, co pozwala na optymalne dopasowanie do różnych aplikacji, takich jak domowe instalacje, przemysłowe czy zastosowania specjalistyczne. Przykładowo, charakterystyka typu B jest powszechnie stosowana w instalacjach domowych, gdzie występują małe prądy rozruchowe, natomiast typ C jest odpowiedni dla obciążeń z wyższymi prądami rozruchowymi, np. w urządzeniach elektrycznych. Stosowanie wyłączników zgodnie z tymi parametrami jest zgodne z normami IEC 60898 oraz IEC 60947, co zapewnia bezpieczeństwo i niezawodność instalacji elektrycznych.