Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 8 grudnia 2025 12:51
  • Data zakończenia: 8 grudnia 2025 13:12

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Demontaż za pomocą klucza hakowego odbywa się przy użyciu

A. łożyska ślizgowego
B. łożyska tocznego
C. filtra oleju
D. wtryskiwacza
Demontaż wtryskiwacza, łożyska tocznego czy łożyska ślizgowego za pomocą klucza hakowego jest niewłaściwy, ponieważ każde z tych elementów silnika wymaga zastosowania innych narzędzi oraz technik. W przypadku wtryskiwaczy, które są precyzyjnymi komponentami, klucz hakowy nie zapewni odpowiedniego uchwytu ani stabilności. Do ich demontażu zazwyczaj używa się kluczy nasadowych, które pozwalają na dokładne dopasowanie i nie powodują uszkodzeń wtryskiwacza ani jego mocowania. Z kolei łożyska toczne i ślizgowe nie są projektowane do wykręcania ani demontażu za pomocą tego rodzaju narzędzi, ponieważ wymagają one specjalistycznych narzędzi takich jak ściągacze, które są skonstruowane do usuwania łożysk z wałów lub obudów. Użycie klucza hakowego w tych przypadkach może prowadzić do uszkodzenia łożysk lub ich mocowań oraz generować dodatkowe koszty związane z naprawą. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków obejmują brak zrozumienia specyfiki danego narzędzia oraz jego zastosowania w kontekście pracy mechanicznej. W mechanice niezwykle ważne jest, aby dobierać narzędzia zgodnie z ich przeznaczeniem, co nie tylko zapewnia efektywność pracy, ale również zwiększa bezpieczeństwo i trwałość naprawianych elementów. Przestrzeganie standardów i dobrych praktyk w doborze narzędzi znacznie podnosi jakość wykonania usługi mechanicznej.

Pytanie 2

Jaką precyzję pomiarową uzyskuje mikrometr, w którym zastosowano bęben z 50 podziałkami, a skok współpracującej śruby mikrometrycznej wynosi 0,5 mm?

A. 0,1 mm
B. 0,01 mm
C. 0,5 mm
D. 0,05 mm
Pojawia się wiele nieporozumień dotyczących dokładności pomiarowej mikrometrów, szczególnie w odniesieniu do parametrów takich jak skok śruby czy liczba nacięć na bębnie. Odpowiedzi sugerujące dokładność na poziomie 0,1 mm, 0,5 mm lub 0,05 mm bazują na błędnym oszacowaniu lub pomyłkach w obliczeniach. Na przykład, wybór 0,1 mm jako dokładności może wynikać z przeoczenia faktu, że mikrometr jest narzędziem, które służy do bardzo dokładnych pomiarów, a 0,1 mm byłoby zbyt dużym błędem w kontekście precyzyjnych aplikacji inżynieryjnych. Z kolei odpowiedź 0,5 mm w ogóle nie odnosi się do metody pomiarowej mikrometru, ponieważ wskazuje na wartość całkowitego skoku, a nie na rozdzielczość pomiarową. Odpowiedź 0,05 mm również nie uwzględnia liczby nacięć, prowadząc do mylnego przekonania, że taka wartość pomiaru jest odpowiednia dla narzędzi, które są zbudowane z myślą o znacznie większej precyzji. Wszelkie niepoprawne podejścia do tego tematu mogą prowadzić do istotnych błędów w projektach inżynieryjnych, gdzie precyzja jest kluczowa dla sukcesu operacji. W praktyce, właściwe zrozumienie zasad działania mikrometrów i ich dokładności pomiarowej jest niezbędne do efektywnego wykorzystania ich w różnych dziedzinach techniki.

Pytanie 3

Wskaźnikiem zdolności akumulatora do magazynowania energii jest

A. pojemność
B. maksymalny czas wyładowania
C. najwyższe napięcie
D. szybkość obrotów alternatora
Wybór maksymalnego czasu rozładowania jako miary zdolności gromadzenia energii jest mylny, ponieważ czas ten odnosi się do czasu, przez jaki akumulator może dostarczać energię przed całkowitym rozładowaniem, a nie do jego zdolności gromadzenia energii. W praktyce, dwa akumulatory o tej samej pojemności mogą różnić się czasem rozładowania w zależności od obciążenia, co sprawia, że ta miara jest niewystarczająca. Z kolei maksymalne napięcie odnosi się do wartości napięcia, które akumulator może dostarczyć w momencie pełnego naładowania, ale nie mówi nic o jego zdolności do przechowywania energii. To napięcie jest istotne, ale jako parametr samodzielny nie definiuje pojemności. Ostatnia propozycja, prędkość obrotowa alternatora, dotyczy zupełnie innego aspektu – generowania energii w pojazdach, a nie akumulatorów jako takich. Typowy błąd myślowy to mylenie parametrów technicznych, które mogą wydawać się związane, ale w rzeczywistości dotyczą innych aspektów działania systemów energetycznych. Aby dobrze zrozumieć funkcjonowanie akumulatorów, kluczowe jest odróżnienie pojemności od innych parametrów, co jest akcentowane w literaturze branżowej oraz podczas szkoleń technicznych.

Pytanie 4

Jakie napięcie uważa się za bezpieczne dla ludzi?

A. 360 V
B. 220 V
C. 24 V
D. 110 V
Napięcie 24 V jest uważane za bezpieczne dla człowieka, ponieważ w przypadku kontaktu z prądem o tej wartości ryzyko poważnych obrażeń jest znacznie mniejsze w porównaniu do wyższych napięć. Zgodnie z normami IEC 61140 oraz EN 60950, napięcia poniżej 50 V są klasyfikowane jako bezpieczne w warunkach normalnych. W praktyce napięcie 24 V jest powszechnie wykorzystywane w systemach zasilania urządzeń elektronicznych, automatyki budynkowej oraz zasilania czujników. Na przykład, w systemach sterowania oświetleniem lub w instalacjach alarmowych, napięcie 24 V pozwala na bezpieczne użytkowanie oraz minimalizuje ryzyko porażenia prądem. Dodatkowo, zasilanie w tym napięciu znacząco redukuje straty energii w systemach, co jest korzystne z perspektywy efektywności energetycznej. Warto podkreślić, że urządzenia działające na 24 V są często wykorzystywane w pojazdach czy instalacjach przemysłowych, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie.

Pytanie 5

W serwisie samochodowym klient zgłosił problem związany z nadmiernym zużyciem wewnętrznych elementów bieżnika kół przednich. Jakie działanie powinien podjąć mechanik jako pierwsze?

A. sprawdzić, czy układ hamulcowy nie jest uszkodzony
B. sprawdzić, czy w układzie zawieszenia nie występują luzy
C. zamienić koła przednie stronami
D. zweryfikować sprawność amortyzatorów
Odpowiedź 'sprawdzić, czy nie występują luzy w układzie zawieszenia' jest prawidłowa, ponieważ luzy w zawieszeniu mogą prowadzić do nierównomiernego zużycia opon, co objawia się nadmiernym zużyciem bieżnika. Układ zawieszenia jest kluczowy dla stabilności i komfortu jazdy, a wszelkie luzu mogą wpływać na geometrię kół, co w konsekwencji prowadzi do problemów z ich zużyciem. Mechanik powinien sprawdzić wszystkie elementy zawieszenia, takie jak łożyska, wahacze, tuleje i stabilizatory, aby upewnić się, że działają one poprawnie. W przypadku stwierdzenia luzów, konieczna jest ich naprawa lub wymiana, co może znacząco poprawić trwałość opon oraz bezpieczeństwo jazdy. Regularna kontrola układu zawieszenia jest zgodna z najlepszymi praktykami w branży motoryzacyjnej, gdzie zaleca się coroczne przeglądy, zwłaszcza w przypadku pojazdów intensywnie eksploatowanych.

Pytanie 6

Aby odczytać kod błędu pojazdu z systemem OBDII / EOBD, konieczne jest użycie

A. spektrofotometru
B. woltomierza
C. diagnoskopu
D. oscyloskopu
Odpowiedź "diagnoskopu" jest poprawna, ponieważ diagnoskop to specjalistyczne urządzenie służące do komunikacji z systemem OBDII/EOBD, które jest standardem diagnostyki w nowoczesnych pojazdach. OBDII (On-Board Diagnostics II) to system monitorujący stan najważniejszych podzespołów samochodu, a także kontrolujący emisję spalin. Umożliwia on odczytanie kodów błędów, które są generowane przez komputer pokładowy w przypadku wystąpienia problemów z silnikiem lub innymi istotnymi komponentami. W praktyce użycie diagnoskopu pozwala mechanikom szybko zidentyfikować źródło problemu, co prowadzi do efektywniejszej diagnostyki i naprawy pojazdu. Przykładowo, w przypadku, gdy kontrolka silnika zaświeci się na desce rozdzielczej, diagnoskop umożliwi odczytanie kodu błędu, co pozwoli na szybkie podjęcie działań naprawczych. Stosowanie diagnoskopów jest zgodne z najlepszymi praktykami branżowymi, ponieważ przyspiesza proces diagnostyki i poprawia jakość usług serwisowych, redukując jednocześnie koszty naprawy.

Pytanie 7

Zasilanie silnika z nadmiernie bogatą mieszanką paliwowo-powietrzną skutkuje pokryciem izolatora świecy zapłonowej osadem o kolorze

A. brunatnym
B. czarnym
C. białoszarym
D. błękitnym
Zasilanie silnika zbyt bogatą mieszanką paliwowo-powietrzną prowadzi do powstawania charakterystycznego osadu na izolatorze świecy zapłonowej, który przyjmuje kolor czarny. Taki stan rzeczy wynika z niepełnego spalania paliwa, co prowadzi do wzrostu ilości węgla i innych zanieczyszczeń. Gdy silnik nie otrzymuje odpowiedniej proporcji powietrza w stosunku do paliwa, efektywność spalania maleje, a nadmiar paliwa ulega rozkładowi, tworząc osad. Osad czarny na świecy zapłonowej może wskazywać na problemy z silnikiem, takie jak nieszczelności w układzie dolotowym, zanieczyszczone filtry powietrza lub zły stan wtryskiwaczy. W praktyce, aby poprawić efektywność pracy silnika, zaleca się regularne monitorowanie składu mieszanki paliwowo-powietrznej oraz stosowanie odpowiednich procedur diagnostycznych, takich jak analiza spalin czy inspekcja układów wtryskowych, zgodnie z normami Euro i wytycznymi producentów pojazdów.

Pytanie 8

Pierwsze elektroniczne urządzenie sterujące w historii motoryzacji - system Motronic od firmy Bosch - stosowano do regulacji

A. skrzynką biegów
B. centralnym systemem blokady drzwi
C. układem przeciwpoślizgowym
D. układem wtryskowo-zapłonowym
Odpowiedź dotycząca układu wtryskowo-zapłonowego jest poprawna, ponieważ system Motronic, opracowany przez firmę Bosch, rewolucjonizował proces zarządzania silnikiem spalinowym. Zintegrowane sterowanie wtryskiem paliwa i zapłonem pozwalało na precyzyjne dostosowanie dawki paliwa do warunków pracy silnika, co znacząco wpłynęło na jego wydajność oraz redukcję emisji szkodliwych substancji. W praktyce, system ten analizuje różne parametry, takie jak temperatura silnika, prędkość obrotowa i ciśnienie atmosferyczne, aby optymalizować proces spalania. Dzięki zastosowaniu elektronicznych czujników i zaawansowanego oprogramowania, Motronic stał się wzorem dla nowoczesnych systemów zarządzania silnikami. Współczesne standardy w branży motoryzacyjnej, takie jak Euro 6, wymagają zastosowania zaawansowanych rozwiązań sterujących, które system Motronic zainspirował. Przykładem zastosowania tego systemu są pojazdy marki Volkswagen, które jako pierwsze wprowadziły ten typ sterowania w latach 80-tych XX wieku.

Pytanie 9

Co oznacza kod SAE 80W-90?

A. płynu hamulcowego
B. oleju skrzyni biegów
C. oleju silnikowego
D. płynu chłodniczego
Olej SAE 80W-90 to coś, co stosuje się w skrzyniach biegów. Oznaczenie 'SAE' mówi nam, że przeszedł testy według norm stowarzyszenia inżynierów motoryzacyjnych, więc możemy być pewni, że jest ok. Te liczby '80W' mówią o tym, jak olej się zachowuje w zimie – im mniejsza liczba, tym lepiej się leje w chłodniejsze dni. Z kolei '90' to lepkość w wyższych temperaturach, co jest ważne, żeby skrzynia biegów dobrze działała, nawet gdy dostaje w kość. Używanie oleju SAE 80W-90 to dobry wybór, bo chroni mechanizmy i zmniejsza ich zużycie. Można go spotkać w manualnych skrzyniach biegów, zarówno w osobówkach, jak i autach dostawczych, gdzie ważne jest, żeby olej zachowywał odpowiednią lepkość, by wszystko działało jak należy.

Pytanie 10

Jakie informacje powinny być zawarte w dokumentacji dotyczącej przyjęcia pojazdu do diagnostyki?

A. regulacji zbieżności
B. wady nadwozia
C. wady podwozia
D. regulacji świateł
Zauważam, że niektóre odpowiedzi nie do końca rozumieją, jak ważna jest dokumentacja diagnostyczna. Uszkodzenia podwozia, mimo że są istotne, nie są priorytetem, gdy przyjmujemy auto do diagnostyki. To nadwozie, z uwagi na swoje znaczenie dla bezpieczeństwa pasażerów, powinno być na pierwszym miejscu. Ustawienie zbieżności jest ważne, ale to bardziej efekt diagnostyki niż coś, co trzeba badać na etapie przyjęcia. A ustawienie świateł? Też istotne, ale nie wpływa bezpośrednio na integralność pojazdu. Często jest tak, że ludzie koncentrują się na technicznych aspektach, które nie są aż tak krytyczne dla bezpieczeństwa. Powinno się skupić na uszkodzeniach, które naprawdę zagrażają stabilności i bezpieczeństwu pasażerów, a to właśnie uszkodzenia nadwozia są kluczowe w tej kwestii.

Pytanie 11

Kolejność dokręcania śrub/nakrętek głowicy rzędowego silnika wielocylindrowego ustalana przez producenta realizuje się według jakiej zasady?

A. od zewnętrznej strony do wnętrza
B. po kolei od strony skrzyni biegów
C. od wnętrza do zewnętrznej strony
D. po kolei od strony napędu wałka rozrządu
Właściwa kolejność dokręcania śrub głowicy silnika od środka do zewnątrz jest kluczowa dla zapewnienia równomiernego rozkładu sił i uniknięcia odkształceń w obszarze głowicy. Dzięki tej metodzie, wszystkie śruby działają w zharmonizowany sposób, co pozwala na równomierne dociśnięcie uszczelki oraz stabilizację całej konstrukcji. Działanie to jest szczególnie istotne w silnikach wielocylindrowych, gdzie różnice w rozkładzie ciśnienia mogłyby prowadzić do uszkodzeń, takich jak nieszczelności lub pęknięcia. Przykładem może być silnik typu V, gdzie ścisłe przestrzeganie tej zasady jest niezbędne do zapewnienia optymalnej pracy jednostki napędowej. W branży motoryzacyjnej standardy takie jak ISO 6789 określają metody i narzędzia do precyzyjnego dokręcania, co podkreśla wagę tego procesu. Wykonując dokręcanie zgodnie z tą zasadą, minimalizujemy ryzyko awarii i przedłużamy żywotność silnika, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 12

Jaką czynność należy wykonać w pierwszej kolejności, udzielając pomocy osobie rażonej prądem elektrycznym?

A. sprawdzenie tętna oraz oddechu osoby poszkodowanej.
B. zawiadomienie przełożonego o wystąpieniu wypadku.
C. informowanie dostawcy energii elektrycznej o potrzebie odłączenia napięcia.
D. bezpieczne oddzielenie poszkodowanego od źródła prądu.
Pierwszą czynnością przy udzielaniu pomocy osobie, która została porażona prądem elektrycznym, jest bezpieczne uwolnienie jej od źródła porażenia. W praktyce oznacza to, że pomocnik powinien najpierw zadbać o własne bezpieczeństwo oraz ocenić sytuację. Wyłączenie prądu jest kluczowe, ale nie zawsze jest to możliwe w danym momencie. Dlatego w pierwszej kolejności należy zastosować środki, które minimalizują ryzyko dalszych obrażeń, takie jak użycie izolujących narzędzi (np. kij z materiału nieprzewodzącego) do odsunięcia poszkodowanego od źródła prądu. Ważne jest, aby nie dotykać personelu bezpośrednio, gdyż można również zostać porażonym. Gdy osoba jest już bezpieczna, można przejść do oceny jej stanu zdrowia, takiej jak sprawdzenie tętna i oddychania. W sytuacjach kryzysowych, jak porażenie prądem, dobre praktyki i standardy bezpieczeństwa, np. zgodne z wytycznymi Krajowego Centrum Ratownictwa Medycznego, sugerują, że priorytetem jest zawsze bezpieczeństwo ratownika oraz osoby poszkodowanej.

Pytanie 13

Ciśnienie powietrza w oponach pojazdu określane jest

A. przez wytwórcę pojazdu.
B. w zależności od sezonu.
C. w zależności od wzoru bieżnika.
D. dla określonego rozmiaru opon.
Ciśnienie powietrza w oponach to naprawdę ważna sprawa. Wiesz, jak to jest – odpowiednie ciśnienie wpływa na to, jak jeździsz, pożerasz paliwo i czy podróż jest wygodna. Producenci aut ustalają te wartości, bo robią różne testy i mają swoje normy dla każdego modelu. Ważne, żeby trzymać się tych zalecanych ciśnień, bo wtedy opony dobrze przylegają do drogi, co oznacza lepszą przyczepność i stabilność. Na przykład, niskie ciśnienie może sprawić, że opony szybciej się zużywają, a nawet mogą pęknąć. Z kolei zbyt wysokie ciśnienie może być niebezpieczne, bo opony mogą gorzej trzymać się drogi, zwłaszcza w deszczu. Z mojego doświadczenia wynika, że kierowcy powinni regularnie kontrolować ciśnienie w oponach, szczególnie przed dłuższymi trasami, bo to naprawdę się opłaca. Warto też pamiętać o zaleceniach różnych organizacji, jak ETRTO czy ANSI.

Pytanie 14

Zanim przystąpimy do analizy geometrii kół kierowanych, należy przede wszystkim

A. zablokować pedał hamulca
B. sprawdzić ciśnienie w ogumieniu
C. zablokować koło kierownicy
D. sprawdzić stopień tłumienia amortyzatorów
Sprawdzenie ciśnienia w ogumieniu przed przystąpieniem do diagnostyki geometrii kół jest kluczowym krokiem, który zapewnia prawidłowe ustawienie geometrii pojazdu. Niewłaściwe ciśnienie w oponach może prowadzić do nieprawidłowego zużycia opon oraz wpływać na stabilność i bezpieczeństwo jazdy. Standardy branżowe zalecają, aby ciśnienie w oponach było dostosowane do wartości określonych przez producenta pojazdu, co można znaleźć na etykietach umieszczonych na drzwiach lub w instrukcji obsługi. Przykładem praktycznego zastosowania tej wiedzy jest sytuacja, gdy kierowca zauważa nierównomierne zużycie bieżnika. W takim przypadku, zanim przeprowadzi się diagnostykę geometrii, zaleca się sprawdzenie ciśnienia, ponieważ niewłaściwe wartości mogą być przyczyną problemów z ustawieniem kół. Regularne kontrolowanie ciśnienia w oponach nie tylko wpływa na bezpieczeństwo, ale także na wydajność paliwową pojazdu, co jest istotne w kontekście zrównoważonego rozwoju motoryzacji.

Pytanie 15

Jakim urządzeniem dokonuje się pomiaru bicia osiowego tarczy hamulcowej?

A. pasametrem
B. suwmiarką modułową
C. czujnikiem zegarowym
D. średnicówką mikrometryczną
Czujnik zegarowy jest kluczowym narzędziem w pomiarze bicia osiowego tarczy hamulcowej, ponieważ pozwala na precyzyjne określenie odchylenia od osi obrotu. Umożliwia to wykrycie nawet najmniejszych nieprawidłowości, co jest niezwykle ważne dla bezpieczeństwa pojazdu. W praktyce, czujnik zegarowy jest umieszczany na tarczy hamulcowej, a następnie obraca się koło. Wskazania czujnika pokazują wahania, które można zaobserwować w różnych punktach tarczy. Tarcze hamulcowe muszą spełniać określone normy, aby zapewnić odpowiednią efektywność hamowania oraz minimalizować wibracje. Odpowiednie bicia osiowe mogą prowadzić do nierównomiernego zużycia klocków hamulcowych oraz pogorszenia działania układu hamulcowego. W branży motoryzacyjnej, standardy takie jak te określone przez SAE (Society of Automotive Engineers) lub ISO (International Organization for Standardization) podkreślają znaczenie precyzyjnych pomiarów w celu zapewnienia bezpieczeństwa i wydajności pojazdu. Zastosowanie czujnika zegarowego w tej dziedzinie jest zatem niezbędne, aby dokonać rzetelnej oceny stanu technicznego tarczy hamulcowej, co przekłada się na bezpieczeństwo jazdy i żywotność komponentów.

Pytanie 16

Mechanik, który wymienia wahacze przedniej osi, ma możliwość dokręcenia

A. śruby/nakrętki sworznia dopiero po dokonaniu ustawienia zbieżności kół
B. śrub znajdujących się w poziomej płaszczyźnie wyłącznie w normalnej pozycji pracy zawieszenia
C. śrub usytuowanych w pionowej płaszczyźnie tylko w normalnej pozycji pracy zawieszenia
D. wszystkich śrub w dowolnym ustawieniu zawieszenia
Istnieje kilka koncepcji związanych z dokręcaniem śrub, które mogą wprowadzać w błąd. Zaczynając od pierwszej, idea, że śrubę lub nakrętkę sworznia można dokręcić tylko po ustawieniu zbieżności kół, jest niepoprawna. Zbieżność kół jest istotnym aspektem regulacji układu zawieszenia, ale nie ma bezpośredniego związku z momentem dokręcania wahaczy. Właściwe dokręcenie śrub powinno odbywać się w odpowiednim położeniu zawieszenia, aby zapobiec nieprawidłowym naprężeniom, które mogą wynikać z ich wcześniejszego luzowania. Kolejna koncepcja dotycząca dokręcania śrub w płaszczyźnie pionowej w położeniu normalnej pracy zawieszenia jest również myląca. W rzeczywistości, dokręcanie śrub w tej płaszczyźnie wymaga szczególnej uwagi i powinno odbywać się z zachowaniem zasad bezpieczeństwa oraz odpowiednich standardów. Ostatnia opcja, sugerująca, że wszystkie śruby można dokręcać w dowolnym ułożeniu zawieszenia, jest nie tylko niebezpieczna, ale także sprzeczna z najlepszymi praktykami w branży. Praca w niewłaściwym położeniu zawieszenia może prowadzić do nieprawidłowego dokręcania, a w konsekwencji do awarii układu zawieszenia, co stwarza poważne zagrożenie dla bezpieczeństwa jazdy. W związku z powyższym, kluczowe jest zrozumienie zasad dotyczących dokręcania śrub w odpowiednich położeniach oraz stosowanie się do wytycznych producenta, co zapewnia nie tylko bezpieczeństwo, ale i długowieczność elementów zawieszenia.

Pytanie 17

Aby wykonać badanie diagnostyczne głośności dźwięku z układu wydechowego pojazdu, należy zastosować

A. aerometr
B. sonometr
C. refraktometr
D. stetoskop
Sonometra jest urządzeniem służącym do pomiaru natężenia dźwięku. W kontekście diagnostyki układu wydechowego pojazdu, jest to kluczowe narzędzie, które pozwala na dokładne określenie poziomu hałasu generowanego przez wydech. Zgodnie z normami branżowymi, takimi jak ISO 362, pomiary hałasu powinny być przeprowadzane w kontrolowanych warunkach, a sonometr dostarcza precyzyjnych danych, które mogą być pomocne w ocenie zgodności z wymaganiami dotyczącymi emisji dźwięku. Praktyczne zastosowanie sonometru pozwala na identyfikację potencjalnych problemów z układem wydechowym, takich jak nieszczelności lub uszkodzenia tłumika, co może wpływać na przepisy dotyczące ochrony środowiska oraz komfort użytkowania pojazdu. Właściwe użycie sonometru wymaga znajomości technik pomiarowych oraz interpretacji wyników, co jest niezbędne dla profesjonalnych diagnostyków i mechaników samochodowych.

Pytanie 18

Ile czasu zajmie całkowite odpowietrzenie hamulców w samochodzie osobowym wyposażonym w hydrauliczny układ hamulcowy, jeżeli czas potrzebny na odpowietrzenie każdego koła wynosi 15 minut?

A. 1,0 godz
B. 1,5 godz
C. 0,5 godz
D. 2,0 godz
Odpowiedź 1,0 godz. jest prawidłowa, ponieważ całkowity czas odpowietrzenia hamulców w samochodzie osobowym z hydraulicznym układem hamulcowym obliczamy, mnożąc czas pracy na jedno koło przez liczbę kół. W standardowych samochodach osobowych mamy cztery koła, a czas odpowietrzenia dla każdego z nich wynosi 15 minut. Stąd całkowity czas odpowietrzenia wynosi 15 minut x 4 = 60 minut, co przekłada się na 1,0 godz. W praktyce, procedura odpowietrzania hamulców jest kluczowa dla zapewnienia ich prawidłowego działania, eliminacji powietrza z układu oraz utrzymania odpowiedniego ciśnienia hydraulicznego. Wiele warsztatów stosuje technikę odpowietrzania w oparciu o standardy, takie jak SAE J1401, które określają procedury i narzędzia potrzebne do prawidłowego przeprowadzenia tej operacji. Zrozumienie tego procesu jest niezbędne dla mechaników oraz właścicieli pojazdów, aby zapewnić bezpieczeństwo i efektywność układu hamulcowego.

Pytanie 19

Wymiana uszczelki głowicy silnika jest konieczna w przypadku

A. wymiany pompy oleju
B. naprawy gniazd zaworowych
C. naprawy przekładni napędu wałka rozrządu
D. wymiany uszczelniacza wału korbowego
Wydaje mi się, że odpowiedzi dotyczące wymiany uszczelki w kontekście gniazd zaworowych mogą być trochę mylące. W sumie, naprawa gniazd zaworowych wiąże się z demontażem głowicy, a to właśnie w tym momencie trzeba wymienić uszczelkę głowicy. Wymiana pompy oleju, to niby ważny temat, ale nie ma bezpośredniego związku z głowicą. Zresztą, jak się demontuje pompę, to głowicy nie trzeba ruszać, więc uszczelka nie musi być zmieniana. Ponadto, naprawa wałka rozrządu czy uszczelniacza wału korbowego też nie ma związku z uszczelką głowicy. Często można się pomylić i myśleć, że uszczelka głowicy jest taka sama jak inne uszczelki w silniku, co prowadzi do błędnych wniosków. Kluczowe jest, żeby wiedzieć, kiedy i dlaczego wymienia się tę uszczelkę, żeby silnik działał prawidłowo i nie psuł się przez nieszczelność.

Pytanie 20

W głównej przekładni mostu napędowego najczęściej wykorzystuje się przekładnie

A. cierną.
B. hipoidalną.
C. walcową.
D. ślimakową.
Przekładnie hipoidalne są najczęściej stosowane w przekładniach głównych mostów napędowych ze względu na ich unikalne właściwości. Ich konstrukcja pozwala na efektywne przenoszenie momentu obrotowego przy jednoczesnym zapewnieniu kompaktowych rozmiarów. Przekładnie te charakteryzują się zębatkami, które są ustawione pod kątem, co umożliwia większy kąt zębatki w porównaniu do przekładni walcowych. Dzięki temu, hipoidalne przekładnie oferują lepsze właściwości w zakresie redukcji hałasu oraz zmniejszenia wibracji. W praktyce, wykorzystywane są w pojazdach osobowych, ciężarowych oraz w maszynach przemysłowych, gdzie wymagana jest wysoka wydajność przeniesienia mocy. Te przekładnie są zgodne z normami branżowymi, co zapewnia ich niezawodność i trwałość. Dodatkowo, ich projektowanie opiera się na doskonałych praktykach inżynieryjnych, które pozwalają na optymalizację osiągów i ekonomii eksploatacji.

Pytanie 21

Ustawienie świateł mijania w pojazdach samochodowych przeprowadza się przy pomocy urządzenia, które funkcjonuje na zasadzie porównania granicy światła oraz cienia reflektora z

A. liniami odcięcia według wzoru urządzenia
B. wartościami zdefiniowanymi dla pojazdów z maksymalną prędkością do 130 km/h
C. wartościami ustalonymi przez producenta auta
D. wartościami określonymi w tabelach naświetleń
Wybór odpowiedzi na temat wartości podanych przez producentów pokazuje pewne nieporozumienia, bo ustawienie świateł mijania to nie tylko proste przyjęcie wartości. Producenci dają ogólne wytyczne, ale w praktyce potrzebujemy dokładnych narzędzi, jak szablony. Gdy tylko opieramy się na wartościach producenta, może to być mylące. Często te parametry nie mówią, jak je właściwie stosować w rzeczywistości. Co więcej, tabela naświetleń sugeruje, że wszystkie samochody są do siebie podobne, a to wcale nie jest prawda. Każdy model ma swoje unikalne cechy, więc potrzebne jest indywidualne podejście. Użycie takich tabel zazwyczaj opiera się na teoretycznych danych, a nie na fizycznym ustawieniu świateł. To może prowadzić do złych regulacji i oślepienia innych kierowców. Odpowiedź związana z prędkością do 130 km/h może dawać wrażenie, że ustawienia są tylko zależne od maksymalnej prędkości, co jest błędne. Ustawienia świateł mijania powinny być zgodne z normami dla wszystkich pojazdów, niezależnie od ich prędkości. Te błędy w myśleniu mogą skutkować złymi praktykami w diagnostyce i konserwacji pojazdów.

Pytanie 22

Po wymianie klocków hamulcowych z przodu pojazdu przeprowadzono jazdę testową, której celem jest ustalenie

A. siły hamowania
B. rozkładu siły hamowanej na każde z kół
C. rodzaju użytego płynu hamulcowego
D. skuteczności hamulców
Skuteczność hamulców jest kluczowym wskaźnikiem, który pozwala ocenić, czy wymiana klocków hamulcowych przyniosła zamierzony efekt. Jazda próbna po wymianie klocków hamulcowych ma na celu nie tylko sprawdzenie, czy nowo zamontowane części działają poprawnie, ale również, czy ich działanie jest zgodne z wymaganiami bezpieczeństwa i komfortu jazdy. W praktyce, skuteczność hamulców można ocenić poprzez obserwację reakcji pojazdu na wciśnięcie pedału hamulca, co powinno skutkować natychmiastowym i proporcjonalnym spowolnieniem. Przy odpowiednim doborze klocków i tarcz hamulcowych, ich współpraca powinna zapewniać optymalne warunki hamowania, co jest kluczowe dla zapobiegania wypadkom drogowym. Warto również wspomnieć, że skuteczność hamulców powinna być regularnie weryfikowana, a jej ocena powinna być zgodna z wytycznymi producentów oraz standardami branżowymi, takimi jak normy ECE R90, które regulują wymagania dotyczące wydajności hamulców w pojazdach. Dodatkowo, nieodpowiednie dobranie klocków hamulcowych może prowadzić do ich przegrzewania, co może negatywnie wpływać na ich skuteczność. Aspekty te powinny być brane pod uwagę podczas każdej wymiany klocków hamulcowych.

Pytanie 23

W trakcie prowadzenia pojazdu zaświeciła się kontrolka ładowania. Jakie mogą być tego powody?

A. zbyt wysokie napięcie podczas ładowania
B. uszkodzony przekaźnik kontrolki
C. zerwanie paska napędowego alternatora
D. wadliwy akumulator
Uszkodzony akumulator, zbyt wysokie napięcie ładowania oraz uszkodzony przekaźnik lampki to koncepcje, które mogą być mylące w kontekście problemu z lampką kontrolną ładowania. Uszkodzony akumulator może rzeczywiście przyczynić się do problemów z ładowaniem, ale jego uszkodzenie zazwyczaj prowadzi do innych objawów, takich jak trudności z uruchomieniem silnika czy spadek mocy akumulatora. W przypadku zapalenia się lampki kontrolnej, akumulator może być w dobrym stanie, ale nie otrzymuje energii, ponieważ alternator nie działa z powodu zerwanego paska. Zbyt wysokie napięcie ładowania może powodować uszkodzenia elektroniki, ale zazwyczaj objawia się innymi symptomami, takimi jak intensywne nagrzewanie się akumulatora czy awaria diod prostowniczych w alternatorze, a niekoniecznie zapaleniem lampki kontrolnej. Jeżeli chodzi o uszkodzony przekaźnik lampki, to taka usterka mogłaby prowadzić do nieprawidłowych sygnałów, jednak nie jest to bezpośrednia przyczyna zapalenia lampki kontrolnej ładowania. Właściwe podejście do diagnostyki problemów elektrycznych w samochodzie wymaga zrozumienia, że każdy element układu ładowania ma swoje specyficzne funkcje, a ich awaria wpływa na działanie całości. Dlatego kluczowe jest, aby diagnostyka była dokładna i oparta na rzeczywistych objawach, a nie na przypuszczeniach.

Pytanie 24

Jakiej wielkości nie można określić, korzystając z metody pomiaru bezpośredniego?

A. Grubości pierścienia
B. Objętości cylindra
C. Średnicy tłoka
D. Średnicy sworznia tłokowego
W kontekście pomiarów mechanicznych, istnieją różne wielkości, które można zmierzyć bezpośrednio, jednak nie wszystkie z nich są odpowiednie dla metody pomiaru bezpośredniego. Średnica tłoka, grubość pierścienia oraz średnica sworznia tłokowego to wymiary, które można określić za pomocą standardowych narzędzi pomiarowych, takich jak suwmiarki czy mikrometry. W przypadku średnicy tłoka, pomiar jest zazwyczaj wykonywany w kilku punktach, aby upewnić się, że uzyskane wartości są reprezentatywne, a także aby zminimalizować błędy pomiarowe. Grubość pierścienia można zmierzyć, przykładając suwmiarkę do najgrubszej części pierścienia, co pozwala na uzyskanie dokładnych pomiarów, które są kluczowe dla prawidłowego dopasowania do cylindra. Podobnie, średnica sworznia tłokowego jest mierzone w kilku punktach, aby uzyskać dokładny pomiar, co ma istotne znaczenie dla zapewnienia odpowiedniej współpracy z tłokiem i cylindrem. Te metody pomiarowe są zgodne z dobrymi praktykami w inżynierii mechanicznej, które zakładają, że wielkości wymiarowe powinny być mierzone bezpośrednio za pomocą precyzyjnych narzędzi, aby uzyskać powtarzalne i dokładne wyniki. Błędne wnioski mogą wynikać z mylnego założenia, że każdą wielkość można zmierzyć bezpośrednio, co nie znajduje zastosowania w przypadku objętości, gdzie konieczne jest uwzględnienie dodatkowych obliczeń i pomiarów pośrednich.

Pytanie 25

Na rysunku przedstawiono dźwignię automatycznej skrzyni biegów. Ustawienie dźwigni w pozycji "D" umożliwia

Ilustracja do pytania
A. uruchomienie silnika.
B. jazdę do przodu.
C. jazdę wstecz.
D. parkowanie.
Ustawienie dźwigni automatycznej skrzyni biegów w pozycji "D" oznacza tryb jazdy do przodu, co jest kluczowe dla prawidłowego funkcjonowania pojazdu. W tej pozycji automatyczna skrzynia biegów samodzielnie wybiera odpowiednie przełożenia w zależności od prędkości oraz obciążenia silnika, co zapewnia optymalne osiągi i efektywność paliwową. Dzięki temu kierowca może skoncentrować się na prowadzeniu pojazdu, nie martwiąc się o konieczność manualnej zmiany biegów. Przykładowo, podczas normalnej jazdy po mieście dźwignia w pozycji "D" pozwala na płynne przyspieszanie oraz redukcję biegów w momencie hamowania. Ponadto, przejrzystość takiej konstrukcji dźwigni i jej oznaczenia, w połączeniu z intuicyjnym użytkowaniem, wpisuje się w standardy ergonomii i bezpieczeństwa w projektowaniu wnętrz samochodów. Kierowcy powinni być także świadomi, że nieprawidłowe użycie dźwigni, np. przełączenie na "D" podczas jazdy wstecz, może prowadzić do uszkodzenia skrzyni biegów oraz innych elementów układu napędowego.

Pytanie 26

Na ilustracji przedstawiono filtr

Ilustracja do pytania
A. paliwa.
B. powietrza.
C. oleju.
D. cząstek stałych.
Na ilustracji przedstawiono filtr paliwa, który ma kluczowe znaczenie w układzie paliwowym każdego pojazdu. Filtr ten jest odpowiedzialny za usuwanie zanieczyszczeń, takich jak cząstki stałe czy woda, z paliwa zanim dotrze ono do silnika. Dzięki temu, może być zapewniona optymalna wydajność silnika oraz jego długowieczność. W przypadku silników benzynowych, filtr paliwa jest często umieszczany w komorze silnika lub wzdłuż przewodów paliwowych. Warto zauważyć, że regularna wymiana filtra paliwa jest zalecana przez producentów, co wpływa na zmniejszenie ryzyka awarii silnika. Zgodnie z dobrymi praktykami, filtry paliwa powinny być wymieniane co 30-50 tysięcy kilometrów, w zależności od warunków eksploatacji. Ponadto, nowoczesne filtry są często wyposażone w przezroczystą obudowę, co umożliwia szybkie sprawdzenie stanu filtra bez demontażu. Warto także dodać, że zaniedbanie wymiany filtra paliwa może prowadzić do poważnych konsekwencji, jak zubożenie mieszanki paliwowo-powietrznej, co w skrajnych przypadkach może uszkodzić silnik.

Pytanie 27

Krzywa charakterystyki zewnętrznej silnika oznaczona symbolem "X" obrazuje

Ilustracja do pytania
A. jednostkowe zużycie paliwa Ge
B. sekundowe zużycie paliwa ge
C. moment obrotowy silnika Mo
D. moc silnika N.
Odpowiedzi, takie jak "jednostkowe zużycie paliwa Ge", "moment obrotowy silnika Mo" oraz "sekundowe zużycie paliwa ge", są niepoprawne, ponieważ mylą kluczowe pojęcia związane z charakterystykami silnika. Jednostkowe zużycie paliwa Ge odnosi się do ilości paliwa zużywanego na jednostkę mocy, co nie jest bezpośrednio związane z mocą silnika, lecz raczej z jego efektywnością. Moment obrotowy Mo, z kolei, definiuje siłę, z jaką silnik może obracać wał, co jest różnym parametrem technicznym, który wpływa na przyspieszenie pojazdu, ale nie obrazuje bezpośrednio jego mocy. Sekundowe zużycie paliwa ge porusza się w podobnym zakresie, jako że odnosi się do ilości paliwa zużywanego w danym czasie, a nie do wydajności silnika jako takiej. Typowe błędy prowadzące do takich nieprawidłowych odpowiedzi obejmują mylenie terminów technicznych oraz brak zrozumienia zależności między mocą, momentem obrotowym a zużyciem paliwa. Dla inżynierów oraz techników istotne jest rozróżnienie tych parametrów, aby móc skutecznie projektować i oceniać silniki pod kątem ich zastosowań oraz efektywności, co jest zgodne z dobrymi praktykami w branży motoryzacyjnej oraz mechanicznej.

Pytanie 28

Przy użyciu areometru dokonuje się pomiaru

A. temperatury elektrolitu.
B. napięcia akumulatora.
C. gęstości elektrolitu.
D. wysokości elektrolitu.
Odpowiedź gęstości elektrolitu jest poprawna, ponieważ areometr jest narzędziem służącym do pomiaru gęstości cieczy. W przypadku elektrolitu akumulatorowego, gęstość jest kluczowym wskaźnikiem stanu naładowania akumulatora. Wartość gęstości elektrolitu zależy od jego stanu naładowania: im wyższa gęstość, tym lepsza kondycja akumulatora. Przykładem zastosowania areometru w praktyce jest okresowe sprawdzanie gęstości elektrolitu w akumulatorach kwasowo-ołowiowych, co pozwala na ocenę ich wydajności oraz żywotności. Standardy branżowe, takie jak SAE J537, zalecają monitorowanie gęstości elektrolitu jako kluczowego parametru podczas konserwacji akumulatorów. Wiedza na temat tego, jak interpretować wyniki pomiarów gęstości, jest niezbędna do prawidłowego zarządzania akumulatorami i zapewnienia ich długotrwałej pracy.

Pytanie 29

Czujniki magnetoindukcyjne wykorzystywane w systemach zapłonowych silników ZI zlikwidowały

A. cewkę zapłonową
B. czujnik położenia wału korbowego silnika
C. rozdzielacz zapłonu
D. przerywacz
Wybór odpowiedzi dotyczącej cewki zapłonowej, rozdzielacza zapłonu czy czujnika położenia wału korbowego może prowadzić do nieporozumień dotyczących funkcji poszczególnych elementów układu zapłonowego. Cewka zapłonowa jest kluczowym komponentem, który przekształca niskonapięciowy sygnał z akumulatora na wysokie napięcie, niezbędne do wytworzenia iskry w świecy zapłonowej. Dlatego jej eliminacja nie jest możliwa w kontekście działania silnika ZI. Z kolei rozdzielacz zapłonu, który kieruje impulsy zapłonowe do odpowiednich cylindrów, również nie może zostać wyeliminowany, ponieważ pełni rolę w synchronizacji procesu zapłonu z cyklem pracy silnika. A czujnik położenia wału korbowego, jako element odpowiedzialny za monitorowanie pozycji wału, jest niezwykle istotny dla precyzyjnego sterowania zapłonem i nie może być zastąpiony przez czujniki magnetoindukcyjne. Wybór tych odpowiedzi może wynikać z mylnego przekonania, że nowoczesne technologie całkowicie zastępują tradycyjne elementy, podczas gdy w rzeczywistości wiele z nich nadal współistnieje w złożonych układach zapłonowych, aby zapewnić ich optymalne działanie. Zrozumienie funkcji każdego z tych elementów jest kluczowe dla właściwej diagnozy i naprawy układów zapłonowych w silnikach ZI.

Pytanie 30

Parownik stanowi składnik systemu

A. chłodzenia
B. smarowania
C. klimatyzacji
D. wydechowego
Parownik, jako jeden z kluczowych elementów systemu klimatyzacji, odgrywa fundamentalną rolę w procesie chłodzenia powietrza wewnętrznego. Działa na zasadzie odparowania czynnika chłodniczego, który w parowniku przyjmuje ciepło z otoczenia, co prowadzi do obniżenia temperatury powietrza. W praktyce oznacza to, że ciepłe powietrze z pomieszczenia przechodzi przez parownik, gdzie jest schładzane, a następnie wydmuchiwane z powrotem do wnętrza, co znacznie poprawia komfort użytkowników. W standardowych systemach klimatyzacyjnych, takich jak jednostki split czy centralne systemy wentylacji, parowniki są projektowane zgodnie z normami ASHRAE oraz ISO, co zapewnia ich wysoką efektywność energetyczną i niezawodność. Wiedza na temat działania parowników ma kluczowe znaczenie nie tylko dla inżynierów, ale także dla techników zajmujących się serwisowaniem systemów klimatyzacyjnych, ponieważ wszelkie problemy w ich funkcjonowaniu mogą prowadzić do obniżonej wydajności systemu oraz zwiększonego zużycia energii.

Pytanie 31

Gdzie wykorzystuje się rezonator Helmholtza?

A. w systemie zapłonowym silnika
B. w systemie zasilania silnika
C. w systemie dolotowym silnika
D. w systemie wylotowym silnika
Rezonator Helmholtza jest komponentem stosowanym w układzie dolotowym silnika, którego głównym zadaniem jest optymalizacja przepływu powietrza do cylindrów silnika. Działa na zasadzie rezonansu akustycznego, co oznacza, że potrafi amplifikować określone częstotliwości dźwięku, co z kolei wpływa na lepsze napełnienie cylindrów mieszanką paliwowo-powietrzną. W praktyce, wykorzystanie rezonatora Helmholtza zwiększa efektywność spalania, co prowadzi do poprawy osiągów silnika oraz zmniejszenia emisji spalin. Przykładem zastosowania tego rozwiązania mogą być silniki sportowe, gdzie poprawne wprowadzenie i sprężenie mieszanki paliwowej jest kluczowe dla uzyskania maksymalnej mocy. Takie systemy projektowane są zgodnie z dobrą praktyką inżynieryjną, uwzględniając parametry akustyczne oraz dynamikę przepływu, co pozwala na dostosowanie rezonatorów do specyficznych wymagań silnika. Ponadto, w kontekście norm emisji spalin, zrozumienie wpływu rezonatorów na proces spalania staje się kluczowe dla projektowania bardziej ekologicznych jednostek napędowych.

Pytanie 32

Rzetelną ocenę gładzi cylindrów wykonuje się na podstawie

A. badania dotykowego
B. pomiarów średnic cylindrów przy użyciu suwmiarki
C. pomiarów średnic cylindrów przy użyciu średnicówki
D. oględzin wizualnych
Oględziny wzrokowe, badanie dotykowe oraz pomiary suwmiarką, choć mogą wydawać się praktycznymi metodami, nie zastępują dokładności pomiarów średnicówki, co czyni je niewłaściwymi dla miarodajnej weryfikacji gładzi cylindrów. Oględziny wzrokowe są subiektywne i nie dostarczają obiektywnych danych na temat wymiarów cylindrów. Tego typu inspekcja może ujawnić widoczne uszkodzenia powierzchni, ale nie dostarcza informacji o dokładnych wymiarach, co jest kluczowe dla dalszej analizy. Badanie dotykowe, chociaż może dawać pewne wskazówki o chropowatości powierzchni, nie jest w stanie zweryfikować precyzyjnych wymiarów cylindrów, co może prowadzić do błędnych wniosków o stanie technicznym. Z kolei suwmiarka, mimo że jest narzędziem pomiarowym, nie jest wystarczająco precyzyjna dla pomiarów cylindrów, które wymagają dokładności rzędu mikrometrów. Użycie suwmiarki może prowadzić do pomiarów z błędem, co jest nieakceptowalne w kontekście remontów silników, gdzie precyzyjne wymiary są niezbędne do osiągnięcia odpowiedniego dopasowania. Wnioskując, korzystanie z tych metod w celu weryfikacji gładzi cylindrów może prowadzić do nieprawidłowych diagnoz i potencjalnych problemów w działaniu silnika, dlatego kluczowe jest stosowanie właściwych narzędzi pomiarowych, takich jak średnicówki.

Pytanie 33

Z zamieszczonego obok wydruku z analizy spalin pojazdu wynika, że stężenie tlenu w spalinach wynosi

RODZAJ PALIWA: Benzyna
POMIAR CIĄGŁY:
SILNIK T= 0°C ZA ZIMNY
obj< 20
CO = 0.76 % obj
CO2=12.68 % obj
O2 = 3.21 % obj
HC = 508 ppm obj
λ =1.141
NOx= 120 ppm obj
A. 3,21 %.
B. 508 ppm.
C. 1.141
D. 12,60 %.
Analiza spalin w samochodzie to ważny temat, bo wpływa na jego efektywność ekologiczną i ekonomiczną. Odpowiedzi 508 ppm i 1.141, mimo że mogą brzmieć ok, dotyczą innych parametrów i nie odnoszą się do stężenia tlenu w objętości. PPM to jednostka, którą zazwyczaj używamy do gazów, ale w analizie spalin lepiej trzymać się tych samych jednostek, bo inaczej można się pogubić. Odpowiedź 12,60% jest też błędna, bo sugeruje znacznie większe stężenie tlenu niż to, które mamy w analizie. Takie wartości mogą prowadzić do błędnych wniosków o efektywności spalania i wskazywać na problemy z układem dolotowym albo wtryskowym. W branży, błędne interpretacje mogą skutkować źle ustawionym silnikiem, co w dłuższej perspektywie zwiększa zużycie paliwa i emisję. Ważne, żeby podczas analizy wyników zawsze brać pod uwagę jednostki i ich kontekst, bo inaczej możemy się pomylić i źle ocenić stan techniczny samochodu.

Pytanie 34

Wysokie zadymienie spalin w silniku o zapłonie samoczynnym może wynikać z

A. nadmiaru podawanego powietrza
B. wadliwości świecy żarowej
C. zamykania filtra DPF
D. niewystarczającego ciśnienia wtrysku
Zatkany filtr DPF w dieslu może faktycznie powodować większe opory w układzie wydechowym, co może wpływać na wydobywanie spalin, ale nie jest to bezpośrednia przyczyna zwiększonego zadymienia. Filtr DPF ma za zadanie łapanie cząstek stałych, a nie wpływanie na ciśnienie wtrysku czy spalanie. Jeśli świeca żarowa jest uszkodzona, to nie musi to od razu oznaczać większego zadymienia. Jej rola to podgrzewanie mieszanki powietrzno-paliwowej, co jest szczególnie ważne przy rozruchu, zwłaszcza w zimnych warunkach. Takie uszkodzenie może utrudnić start silnika, ale nie ma wpływu na ciśnienie wtrysku w trakcie normalnej pracy. Za dużo powietrza w silniku raczej nie spowoduje zwiększonego zadymienia, bo nadmiar powietrza prowadzi do ubogiej mieszanki, co na ogół zmniejsza emisję cząstek. Kluczowe jest zrozumienie, że odpowiednie ciśnienie wtrysku jest super ważne dla efektywności spalania i mniejszych emisji. Warto korzystać z norm i standardów w diagnostyce układów wtryskowych, żeby silnik działał jak należy i spełniał normy ekologiczne.

Pytanie 35

Pierwszym krokiem przed przeprowadzeniem badania okresowego w Stacji Kontroli Pojazdów jest

A. pomiar zadymienia spalin silnika ZI
B. sprawdzenie oraz regulacja ciśnienia w oponach do wartości nominalnych
C. sprawdzenie indeksu tłumienia amortyzatorów osi przedniej
D. pobranie informacji o badanym pojeździe z Centralnej Ewidencji Pojazdów
Prawidłowa odpowiedź to pobranie danych badanego pojazdu z Centralnej Ewidencji Pojazdów (CEP). Jest to kluczowy krok w procesie przeprowadzania badania okresowego, ponieważ pozwala na weryfikację tożsamości pojazdu oraz jego historii. Centralna Ewidencja Pojazdów zawiera dane dotyczące właścicieli, zarejestrowanych pojazdów, a także informacje o ich stanie technicznym oraz ewentualnych stłuczkach czy wypadkach. Praktyczne zastosowanie tego kroku polega na unikaniu nieporozumień związanych z identyfikacją pojazdu, co jest nie tylko zgodne z przepisami prawa, ale również zwiększa bezpieczeństwo podczas przeprowadzania badań. Zgodnie z dobrą praktyką branżową, każda stacja kontroli pojazdów powinna mieć dostęp do CEP, aby móc sprawdzić, czy pojazd spełnia wymogi stawiane przez prawo. Dodatkowo, pozyskanie danych z CEP pozwala na ocenę, czy pojazd został poddany wcześniejszym badaniom, co może wskazywać na jego stan techniczny oraz potrzebne naprawy.

Pytanie 36

Refraktometr typu "trzy w jednym" w diagnostyce pojazdów jest wykorzystywany do oceny

A. grubości powłoki lakierniczej
B. płynu chłodzącego
C. paliwa diesla
D. oleju w silniku
Odpowiedzi dotyczące grubości lakieru, oleju napędowego oraz oleju silnikowego nie są zgodne z zastosowaniem refraktometru w diagnostyce samochodowej. Grubość lakieru oceniana jest zazwyczaj za pomocą mierników grubości, które działają na zasadzie indukcji elektromagnetycznej lub ultradźwięków, a nie na podstawie pomiaru współczynnika załamania światła. Takie narzędzia są kluczowe w diagnostyce stanu nadwozia, szczególnie w przypadku wykrywania napraw blacharskich czy stanu korozji. Z kolei olej napędowy i olej silnikowy, mimo że również mogą być analizowane za pomocą różnych technik, nie są typowymi zastosowaniami refraktometru 'trzy w jednym'. Dla oleju napędowego, istotne jest monitorowanie jego gęstości i zawartości wody, co można osiągnąć przy użyciu wodoodpornych mierników gęstości. Olej silnikowy natomiast oceniany jest na podstawie jego lepkości, a także zawartości zanieczyszczeń, co wymaga zastosowania specjalistycznych analizatorów. Wiele osób może mieć mylne przekonanie, że każdy płyn w samochodzie można badać za pomocą refraktometru, jednak kluczowe jest zrozumienie, że każde narzędzie diagnostyczne ma swoje specyficzne zastosowania i właściwości, które determinują jego skuteczność w danym kontekście. Dlatego ważne jest, aby rozumieć, jakie narzędzia są odpowiednie do danej analizy, co jest nie tylko istotne dla prawidłowego funkcjonowania pojazdu, ale również dla bezpieczeństwa na drodze.

Pytanie 37

W trakcie wymiany wtryskiwaczy konieczne jest również zastąpienie

A. pierścieni uszczelniających wtryskiwacze
B. przewodów paliwowych wysokiego ciśnienia
C. przewodów paliwowych powrotnych
D. spinek zabezpieczających przewody powrotne
Wymiana pierścieni uszczelniających wtryskiwaczy jest kluczowym elementem podczas serwisowania układu wtryskowego. Te niewielkie komponenty mają za zadanie zapewnienie szczelności połączenia pomiędzy wtryskiwaczem a głowicą cylindrów, co jest niezwykle istotne dla prawidłowego funkcjonowania silnika. Uszkodzone lub zużyte pierścienie mogą prowadzić do wycieków paliwa, co w efekcie może powodować nieefektywne spalanie, zwiększenie emisji spalin, a także uszkodzenia silnika. Standardy branżowe, takie jak SAE (Society of Automotive Engineers), zalecają regularne sprawdzanie i wymianę tych uszczelek podczas serwisowania wtryskiwaczy, aby zapewnić ich prawidłowe działanie oraz długowieczność całego układu. Ważne jest również, aby używać wysokiej jakości zamienników, które odpowiadają specyfikacjom producenta, co zminimalizuje ryzyko awarii i zapewni optymalne parametry pracy silnika. Przykładowo, podczas wymiany wtryskiwaczy w silniku Diesla, nieprzestrzeganie zaleceń dotyczących wymiany pierścieni uszczelniających może prowadzić do kosztownych napraw związanych z uszkodzeniem pompy wtryskowej lub systemu wtryskowego.

Pytanie 38

Urządzenie służące do analizy silnika, przy użyciu metody określania ciśnienia sprężania, funkcjonuje na podstawie zmiany odczytów w zależności od wartości

A. podciśnienia w cylindrze
B. kąta zwarcia styków przerywacza
C. kąta wyprzedzenia zapłonu
D. ciśnienia w cylindrze
Odpowiedzi, które wskazują na podciśnienie w cylindrze, kąt wyprzedzenia zapłonu oraz kąt zwarcia styków przerywacza, nie są odpowiednie w kontekście przyrządów do diagnostyki silnika. Podciśnienie w cylindrze, mimo że jest ważnym parametrem w niektórych aspektach działania silnika, nie jest bezpośrednio odpowiedzialne za ocenę ciśnienia sprężania. W rzeczywistości, podciśnienie jest bardziej związane z procesem zasysania mieszanki paliwowo-powietrznej przez silnik, a jego pomiar jest używany w innych kontekstach, na przykład do regulacji mieszanki. Z kolei kąt wyprzedzenia zapłonu jest istotny dla precyzyjnego momentu zapłonu mieszanki paliwowej w cylindrze, co wpływa na efektywność spalania, ale nie bezpośrednio na pomiar ciśnienia sprężania. Kąt zwarcia styków przerywacza dotyczy klasycznych układów zapłonowych, ale również nie ma związku z pomiarem ciśnienia sprężania. Osoby mylące te pojęcia mogą myśleć, że różne aspekty funkcjonowania silnika są ze sobą ściśle powiązane, jednak każdy z tych parametrów ma swoją specyfikę i znaczenie w diagnostyce. W praktyce, nieprawidłowe zrozumienie tych elementów może prowadzić do błędnych diagnoz i decyzji serwisowych, co w dłuższej perspektywie wpływa na efektywność i trwałość silnika.

Pytanie 39

Jeśli przełożenie w skrzyni biegów wynosi ib=1,0, a przełożenie tylnego mostu to it=4,1, to całkowite przełożenie układu napędowego jest równe

A. 4,1
B. 1,0
C. 3,1
D. 5,1
Wybór niepoprawnej odpowiedzi wynika zazwyczaj z nieporozumienia dotyczącego sposobu obliczania przełożenia całkowitego. Niektórzy mogą mylić pojedyncze wartości przełożeń z ich kombinacją, co prowadzi do błędnych wniosków. Przełożenie 4,1 jest wynikiem pomnożenia przełożenia skrzyni biegów i tylnego mostu, a nie prostym odczytem jednego z tych przełożeń. Na przykład, wybierając 3,1, można pomyśleć, że to tylko wartość z przełożenia tylnego mostu, jednak całkowite przełożenie nigdy nie może być mniejsze niż największe z indywidualnych przełożeń, gdyż obie wartości są ze sobą powiązane działania na jeden układ napędowy. Z kolei wybór 1,0 może sugerować, że nie uwzględniono przełożenia tylnego mostu, co również jest błędne, ponieważ pomija kluczowy element układu napędowego. Aby uniknąć takich pomyłek, warto pamiętać, że w każdym układzie napędowym przełożenia powinny być zawsze analizowane w kontekście ich współdziałania i wpływu na osiągi pojazdu. Analiza przełożeń jest szczególnie istotna w projektowaniu skrzyń biegów oraz układów napędowych, gdzie zrozumienie podstawowych zasad inżynierii mechanicznej i dynamiki pojazdów ma kluczowe znaczenie dla uzyskania pożądanych parametrów jazdy.

Pytanie 40

Jaki jest całkowity wydatek związany z wymianą oleju silnikowego, jeśli jego ilość w silniku wynosi 3,5 litra, cena za litr wynosi 21 zł, a koszt filtra oleju to 65 zł? Prace zajmują 30 minut, a stawka za godzinę roboczą to 120 zł?

A. 258,50 zł
B. 138,50 zł
C. 146,00 zł
D. 198,50 zł
Aby obliczyć całkowity koszt wymiany oleju silnikowego, należy uwzględnić kilka istotnych elementów. Po pierwsze, ilość oleju w silniku wynosi 3,5 litra, a cena za litr wynosi 21 zł. Dlatego koszt samego oleju wynosi 3,5 litra * 21 zł/litr = 73,5 zł. Po drugie, koszt filtra oleju wynosi 65 zł. Następnie należy uwzględnić koszt robocizny. Wymiana oleju trwa 30 minut, co przekłada się na 0,5 godziny. Stawka za roboczogodzinę wynosi 120 zł, więc koszt robocizny wynosi 0,5 godziny * 120 zł/godzina = 60 zł. Sumując wszystkie te koszty: 73,5 zł (olej) + 65 zł (filtr) + 60 zł (robocizna) = 198,5 zł. Takie podejście do wyceny usługi jest zgodne z dobrymi praktykami w branży motoryzacyjnej, gdzie dokładne oszacowanie kosztów jest kluczowe dla przejrzystości i zaufania klientów.