Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 17 grudnia 2025 17:13
  • Data zakończenia: 17 grudnia 2025 17:14

Egzamin niezdany

Wynik: 13/40 punktów (32,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaką metodę stosujemy do badania konsystencji zaprawy?

A. stożka diamentowego
B. penetrometru
C. objętości omierza
D. prasy hydraulicznej
Wybór innej metody pomiaru konsystencji zaprawy, jak stożek diamentowy, prasa hydrauliczna czy objętość omierza, jest nieadekwatny do rzeczywistych potrzeb oceny właściwości świeżych zapraw. Stożek diamentowy, choć stosowany w innych kontekstach, nie jest narzędziem do pomiaru konsystencji zapraw budowlanych. Zamiast tego, jego zastosowanie bardziej odnosi się do testów dotyczących twardości materiałów, co może prowadzić do błędnych wniosków w przypadku zapraw, które wymagają oceny urabialności. Prasa hydrauliczna, choć skuteczna w ocenie wytrzymałości materiałów, nie mierzy bezpośrednio ich konsystencji. Tego rodzaju urządzenia służą do testowania wytrzymałości na ściskanie, a nie do oceny, jak łatwo materiał można rozprowadzić. Podobnie, objętość omierza to metoda, która nie daje informacji o konsystencji, lecz o objętości materiału, co jest zupełnie innym parametrem. W praktyce, błędne zrozumienie roli każdego z tych narzędzi może prowadzić do nieprawidłowych ocen jakości zapraw, co z kolei wpływa na bezpieczeństwo i trwałość konstrukcji. Znajomość standardów i zastosowań odpowiednich narzędzi pomiarowych jest kluczowa dla profesjonalistów w branży budowlanej, aby uniknąć takich nieporozumień.

Pytanie 2

Na podstawie wyciągu ze Szczegółowej Specyfikacji Technicznej Wykonania i Odbioru Robót Budowlanych SST wskaż, ile litrów zaprawy gipsowej można uzyskać z 20 kg worka suchej, gotowej mieszanki?

Szczegółowa Specyfikacja Techniczna Wykonania i Odbioru Robót Budowlanych SST
(wyciąg)
B.3.03. Tynk gipsowy
Dane techniczne:
- średnia grubość tynku: 10 mm (grubość min.8 mm)
- ciężar nasypowy: 800kg/m3
- uziarnienie: do 1,2 mm
- wydajność: 100 kg = 125 l zaprawy
- zużycie: 0,8 kg na mm i m2
- czas schnięcia: średnio około 14 dni
A. 2,51
B. 50,01
C. 25,01
D. 5,01
Wyniki, które wskazują na objętości inne niż 25,01 l, opierają się na błędnych założeniach dotyczących przeliczeń masy na objętość. Możliwe, że błędna odpowiedź wynika z nieprawidłowego zastosowania wzoru lub ignorowania kluczowych proporcji zawartych w dokumentacji technicznej. Na przykład, odpowiedzi sugerujące objętości takie jak 50,01 l lub 5,01 l mogą wynikać z nieodpowiedniego pomnożenia lub podzielenia masy suchej mieszanki bez uwzględnienia właściwego współczynnika konwersji. Typowy błąd myślowy polega na założeniu, że objętość zaprawy jest bezpośrednio proporcjonalna do masy, co nie jest zgodne z rzeczywistością, ponieważ gęstość materiału odgrywa kluczową rolę w tej relacji. Dodatkowo, niektóre odpowiedzi mogą się opierać na nieaktualnych lub niekompletnych danych technicznych, co podkreśla znaczenie korzystania z wiarygodnych źródeł dokumentacji. Aby uniknąć takich błędów, zaleca się gruntowne zapoznanie się z obowiązującymi standardami branżowymi dotyczącymi przeliczeń i proporcji w budownictwie, co przyczyni się do poprawy efektywności pracy oraz jakości realizowanych projektów.

Pytanie 3

Na rysunku przedstawiono wyrób silikatowy drążony przeznaczony do budowy

Ilustracja do pytania
A. przewodów kominowych.
B. ścian fundamentowych.
C. ścian osłonowych i działowych.
D. przewodów wentylacyjnych.
Decyzja o wybraniu odpowiedzi dotyczącej przewodów kominowych, wentylacyjnych lub ścian fundamentowych pochodzi z niepełnego zrozumienia właściwości materiałów silikatowych oraz ich zastosowania w budownictwie. Przewody kominowe wymagają materiałów odpornych na wysokie temperatury i działanie substancji chemicznych, co nie jest cechą wyróbów silikatowych drążonych, które nie są przystosowane do takiego eksploatowania. Z kolei przewody wentylacyjne muszą gwarantować odpowiednią cyrkulację powietrza, co jest zadaniem, które nie jest spełniane przez ściany osłonowe i działowe. Wybór ścian fundamentowych jako odpowiedzi również jest nietrafiony, ponieważ te elementy konstrukcyjne muszą przenosić znaczne obciążenia, co jest sprzeczne z funkcją ścian osłonowych. To podejście może wynikać z typowego błędu myślowego, jakim jest mylenie różnych typów konstrukcji oraz materiałów budowlanych, które mają różne funkcje i wymagania. W praktyce, brak zrozumienia roli, jaką pełnią poszczególne elementy budowlane, prowadzi do wyboru nieodpowiednich materiałów do konkretnego zastosowania. Każdy materiał budowlany powinien być dobierany w oparciu o jego właściwości techniczne oraz funkcję, jaką ma pełnić w danym projekcie budowlanym.

Pytanie 4

Oblicz całkowity koszt realizacji tynku mozaikowego na ścianie o powierzchni 30 m2, przy założeniu, że koszt robocizny wynosi 25,00 zł/m2, a wydatki na materiały to 20,00 zł/m2?

A. 600,00 zł
B. 1 500,00 zł
C. 1 350,00 zł
D. 750,00 zł
Aby policzyć, ile będzie kosztowało zrobienie tynku mozaikowego na ścianie o powierzchni 30 m², musimy zsumować koszty robocizny i materiałów. Koszt robocizny to 25 zł za m², więc przy 30 m² wychodzi 750 zł. Koszt materiałów to 20 zł za m², co daje 600 zł. Zatem całkowity koszt wynosi 1 350 zł. W branży budowlanej to standardowe podejście do obliczeń. Dobrze jest też pamiętać o innych wydatkach, które mogą się pojawić, jak np. transport materiałów czy wynajem sprzętu – to wszystko może mieć wpływ na ostateczną cenę.

Pytanie 5

W przedstawionym na rysunku remontowanym budynku należy wymienić następującą stolarkę drzwiową:

Ilustracja do pytania
A. 5 drzwi lewych i 1 okno.
B. 3 drzwi prawych i 2 drzwi lewych.
C. 3 drzwi lewych i 2 drzwi prawych.
D. 5 drzwi prawych i 1 okno.
Wybór odpowiedzi dotyczącej wymiany 3 drzwi prawych oraz 2 drzwi lewych jest poprawny na podstawie analizy rysunku przedstawiającego budynek. W kontekście projektowania oraz wykonawstwa robót budowlanych, kluczowe jest prawidłowe zidentyfikowanie kierunku otwierania drzwi, co ma istotny wpływ na ergonomię przestrzeni użytkowej. Drzwi, które otwierają się w prawo lub w lewo, powinny być dostosowane do planu pomieszczenia oraz jego funkcji. W praktyce, stosowanie standardów budowlanych, takich jak normy dotyczące wymiarów i konstrukcji stolarki, jest niezbędne dla zapewnienia odpowiedniej trwałości oraz bezpieczeństwa. Ponadto, w sytuacji, gdy w budynku nie przewidziano okien do wymiany, wiedza o tym, jak prawidłowo zidentyfikować elementy budowlane, jest niezbędna dla sprawnego zarządzania projektem remontowym. Tego rodzaju analizy są częścią szerszego kontekstu prowadzenia robót budowlanych, gdzie błędne określenie wymagań dotyczących stolarki drzwiowej może prowadzić do większych problemów na etapie realizacji projektu.

Pytanie 6

Jaki element architektoniczny przedstawiony jest na fotografii?

Ilustracja do pytania
A. Gzyms.
B. Pilaster.
C. Cokół.
D. Rygiel.
Podjęte próby wskazania na inne elementy architektoniczne, takie jak cokół, rygiel czy pilaster, pokazują typowe nieporozumienia dotyczące podstawowych definicji terminów architektonicznych. Cokół, jako dolna część budynku, zazwyczaj nie występuje w formie poziomego występu, lecz pełni rolę fundamentu wizualnego i konstrukcyjnego, co całkowicie różni się od charakterystyki gzymsu. Rygiel, będący elementem konstrukcyjnym szkieletu, także nie odpowiada na zapytanie, ponieważ jest związany z całością struktury budynku, a nie z jego dekoracyjnymi detalami. Pilaster, z kolei, jest pionowym elementem, który przypomina kolumnę, ale nie wykracza poza lico ściany, co również nie pasuje do opisanego gzymsu. Stąd wynika, że odpowiedzi, które wskazują na te elementy, opuszczają kluczowy aspekt rozróżnienia między elementami konstrukcyjnymi a dekoracyjnymi. Kluczowym błędem w myśleniu jest nieodróżnianie funkcji estetycznej od konstrukcyjnej, co prowadzi do mylnych wniosków i wyborów. Zrozumienie roli gzymsu w architekturze jest fundamentem dla każdego, kto pragnie zagłębić się w tematykę projektowania budynków i ich detali.

Pytanie 7

W przypadku tynków z klasy II i III maksymalne odchylenie promieni krzywizny powierzchni wnęki od zaplanowanego promienia nie może przekraczać

A. 7 mm
B. 10 mm
C. 30 mm
D. 5 mm
Odpowiedź 7 mm jest prawidłowa, ponieważ dla tynków kategorii II i III maksymalne odchylenie promieni krzywizny powierzchni wnęki od projektowanego promienia nie powinno przekraczać 7 mm. Tynki te, ze względu na swoje właściwości użytkowe oraz estetyczne, wymagają precyzyjnej aplikacji. Odchylenia w promieniach mogą prowadzić do nieestetycznych efektów wizualnych, a także wpływać na funkcjonalność obiektu, w tym na odprowadzanie wody oraz trwałość tynku. Przykładowo, przy aplikacji tynków na powierzchniach architektonicznych, takich jak łuki, zastosowanie standardu 7 mm pozwala utrzymać jednolitą linię i estetykę, co jest istotne w projektach wymagających wysokiej jakości wykonania. Zgodność z tym standardem jest również zgodna z wytycznymi branżowymi i normami budowlanymi, co podkreśla znaczenie staranności przy pracach wykończeniowych. Dbałość o detale, takie jak promienie krzywizny, wpływa na końcowy efekt wizualny oraz trwałość zastosowanych materiałów.

Pytanie 8

Jaką grubość powinny mieć spoiny wsporcze (poziome) w tradycyjnych murach wykonanych z cegły ceramicznej?

A. 15 - 20 mm
B. 6 - 9 mm
C. 3 - 5 mm
D. 10 - 17 mm
Prawidłowe określenie grubości spoin wspornych w murach ceramicznych ma kluczowe znaczenie dla stabilności i wytrzymałości budowli. Odpowiedzi, które wskazują na grubości takie jak 6-9 mm, 3-5 mm czy 15-20 mm, opierają się na niepełnym zrozumieniu wymagań dotyczących materiałów oraz ich właściwości. Zbyt małe spoiny, takie jak 3-5 mm czy 6-9 mm, mogą nie zapewniać odpowiedniego wypełnienia zaprawy, co prowadzi do słabego połączenia cegieł. Takie podejście naraża konstrukcję na różne uszkodzenia, takie jak pęknięcia czy odspojenie, które mogą mieć poważne konsekwencje w dłuższym okresie eksploatacji. Z drugiej strony, zbyt szerokie spoiny, takie jak 15-20 mm, mogą powodować problemy z przejmowaniem obciążeń oraz nieefektywne wykorzystanie materiałów budowlanych, co prowadzi do zwiększenia kosztów i potencjalnych defektów budowlanych. Właściwe dobieranie grubości spoin jest kluczowe w kontekście zgodności z normami budowlanymi, które zalecają określone grubości dla zapewnienia odpowiednich parametrów technicznych. Dlatego warto zapoznać się z obowiązującymi standardami, aby unikać typowych błędów projektowych i budowlanych, które mogą skutkować poważnymi problemami w przyszłości.

Pytanie 9

Jaki sposób wiązania cegieł w murze przedstawiono na rysunku?

Ilustracja do pytania
A. Wiązanie gotyckie.
B. Wiązanie holenderskie.
C. Wiązanie śląskie.
D. Wiązanie flamandzkie.
Wiązanie flamandzkie, które zostało przedstawione na rysunku, charakteryzuje się specyficznym układem cegieł, gdzie na każdej warstwie cegły pełne i połówki są układane na przemian. Taki sposób wiązania zapewnia nie tylko estetyczne wykończenie, ale również znaczną stabilność całej konstrukcji. Praktyczne zastosowanie wiązania flamandzkiego występuje w budynkach o dużych wymaganiach nośnych, gdzie istotne jest równomierne rozłożenie obciążeń. Zastosowanie tej techniki jest zgodne z najlepszymi praktykami w budownictwie, które kładą nacisk na trwałość i efektywność materiałową. Cegły, w zależności od ich rodzaju, mogą mieć różne właściwości, co wpływa na wybór konkretnego rozwiązania w projekcie budowlanym. Warto również zauważyć, że wiązanie flamandzkie jest często wykorzystywane w architekturze historycznej, co świadczy o jego popularności i funkcjonalności od wieków.

Pytanie 10

Na którym rysunku przedstawiono rusztowanie kozłowe regulowane?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Rusztowanie kozłowe regulowane, które widziałeś na rysunku C, to naprawdę super narzędzie w budownictwie i pracach na wysokościach. Pozwala na łatwe dostosowanie wysokości platformy roboczej do tego, co akurat potrzebujesz. Te regulowane elementy, które są na rysunku, umożliwiają szybką zmianę wysokości, co jest mega ważne w różnych sytuacjach. Można je używać na przykład przy konserwacji budynków, gdzie wysokości są różne, a precyzyjne ustawienie wysokości jest kluczowe dla bezpieczeństwa i wygody pracowników. W naszej branży, różne normy, jak EN 12811, podkreślają, jak istotne są stabilność i funkcjonalność rusztowań. Dlatego rusztowanie kozłowe regulowane to tak ważny element w planowaniu robót budowlanych. Pamiętaj, że odpowiednie korzystanie z tych systemów oraz ich konserwacja są kluczowe, aby zminimalizować ryzyko wypadków i zwiększyć wydajność prac.

Pytanie 11

Korzystając z danych zawartych w tabeli, wskaż najmniejszą dopuszczalną grubość jednowarstwowego tynku chroniącego przed wodą, wykonanego z fabrycznie suchej zaprawy.

Grubości tynkówŚrednia grubość
w [mm]
Dopuszczalna
najmniejsza
grubość
w [mm]
dla tynków zewnętrznych2015
dla tynków wewnętrznych1510
dla jednowarstwowych tynków
wewnętrznych z fabrycznie suchej
zaprawy
105
dla jednowarstwowych tynków
chroniących przed wodą z fabrycznie
suchej zaprawy
1510
dla tynków z izolacją termicznązależnie od
wymagań
20
A. 10 mm
B. 20 mm
C. 5 mm
D. 15 mm
Odpowiedź 10 mm jest poprawna, ponieważ zgodnie z obowiązującymi standardami budowlanymi oraz danymi zawartymi w tabeli, najmniejsza dopuszczalna grubość jednowarstwowego tynku, który ma chronić przed wodą, powinna wynosić właśnie 10 mm. Tego typu tynki są stosowane w budownictwie do ochrony elewacji przed działaniem wilgoci, co jest kluczowe dla zapewnienia długowieczności konstrukcji. Przy zbyt małej grubości, tynk nie wypełni swojej funkcji, co może prowadzić do wnikania wody, a w efekcie do uszkodzenia struktury budynku. W praktyce, stosowanie tynków o grubości minimum 10 mm jest zgodne z zasadami sztuki budowlanej oraz normami, co potwierdzają liczne badania i publikacje branżowe. Prawidłowe dobranie grubości tynku jest zatem kluczowe dla efektywności ochrony przed wilgocią.

Pytanie 12

Na podstawie danych zawartych w tabeli oblicz całkowity koszt materiałów potrzebnych do wykonania 1 m2 tynku mozaikowego.

Rodzaj materiałuPojemność opakowaniaCena za
1 opakowanie
Wydajność
zaprawa tynkarska25 kg150,00 zł3 kg/m²
preparat gruntujący4 l30,00 zł0,4 l/m²
A. 21,00 zł
B. 18,00 zł
C. 6,00 zł
D. 9,00 zł
Poprawna odpowiedź to 21,00 zł, co jest wynikiem dokładnego obliczenia kosztów materiałów potrzebnych do wykonania 1 m² tynku mozaikowego. W tym przypadku istotne jest, aby zrozumieć, że koszt zaprawy tynkarskiej wynosi 18,00 zł/m², a koszt preparatu gruntującego to dodatkowe 3,00 zł/m². Suma tych dwóch wartości daje całkowity koszt 21,00 zł/m². Jest to ważne, aby znać te wartości, ponieważ pozwala to na precyzyjne planowanie budżetu na prace tynkarskie w projektach budowlanych. W praktyce, przy kalkulacji kosztów dla większych powierzchni, takie jednostkowe koszty mogą być mnożone przez powierzchnię całkowitą, co następnie pozwala na oszacowanie całkowitych wydatków. Przykładowo, przy tynkowaniu ściany o powierzchni 50 m², całkowity koszt materiałów wyniesie 1050,00 zł. Takie podejście jest zgodne z najlepszymi praktykami w budownictwie, które zalecają staranne obliczanie kosztów na każdą część projektu, aby uniknąć nieprzewidzianych wydatków oraz opóźnień w realizacji.

Pytanie 13

Na rysunku przedstawiono elementy stropu

Ilustracja do pytania
A. Ceram.
B. Kleina.
C. Teriva.
D. Fert.
Odpowiedź "Teriva" jest prawidłowa, ponieważ przedstawiony na zdjęciu element stropowy jest charakterystyczny dla systemu stropowego o nazwie Teriva. Teriva to system gęstożebrowy, który składa się z belek stropowych oraz pustaków o specjalnej konstrukcji, które wspólnie tworzą efektywną i stabilną konstrukcję stropu. Elementy tego systemu są zaprojektowane w taki sposób, aby zapewnić wysoką nośność oraz optymalne rozkładanie obciążeń. W praktyce, stropy Teriva są często wykorzystywane w budownictwie mieszkalnym oraz komercyjnym, a ich zastosowanie przyczynia się do skrócenia czasu budowy dzięki prefabrykacji. Standardy budowlane, takie jak Eurokod 2, wskazują na konieczność odpowiedniego projektowania i wymiarowania stropów, co sprawia, że wybór systemu Teriva jest zgodny z nowoczesnymi praktykami inżynieryjnymi. Ponadto, użycie tego systemu może prowadzić do lepszej efektywności energetycznej budynków ze względu na mniejsze zużycie materiałów i lepszą izolacyjność.

Pytanie 14

Na podstawie informacji zawartych w tabeli określ, która ilość składników odpowiada proporcji wagowej stosowanej przy wykonaniu zaprawy cementowej klasy M7.

Skład i marka zapraw cementowych w zależności od klasy cementu
Klasa cementuSkład wagowy przy marce zaprawy
M4M7M12M15
32,51 : 5,51 : 4,51 : 3,51 : 3
A. 200 kg piasku i 900 kg cementu.
B. 100 kg cementu i 900 kg piasku.
C. 100 kg piasku i 450 kg cementu.
D. 200 kg cementu i 900 kg piasku.
Stosowanie niewłaściwych proporcji w zaprawie cementowej może prowadzić do wielu problemów, takich jak obniżenie wytrzymałości zaprawy oraz jej trwałości. Proporcje podane w odpowiedziach, które nie są zgodne z wymaganiami dla zaprawy klasy M7, wynikają z nieporozumień dotyczących podstawowych zasad mieszania składników. Na przykład, odpowiedzi sugerujące użycie 100 kg cementu i 900 kg piasku, czy 200 kg piasku i 900 kg cementu, nie spełniają wymagań proporcji 1:4,5. W pierwszym przypadku, stosunek wynosi 1:9, co oznacza, że na jednostkę cementu przypada znacznie za dużo piasku. W drugim przypadku również proporcja jest błędna, ponieważ zamiast stosować większą ilość cementu, zgodnie z wymogami, użyto go w niewystarczającej ilości. Takie podejście może prowadzić do nadmiernego porowatości zaprawy, co z kolei przekłada się na jej mniejszą wytrzymałość i większą podatność na uszkodzenia. Kluczowe jest, aby przy mieszaniu zaprawy przestrzegać norm i dobrych praktyk budowlanych, co pozwala uniknąć problemów w późniejszym użytkowaniu budowli. Zrozumienie tych zasad jest kluczowe dla każdego, kto zajmuje się pracami budowlanymi.

Pytanie 15

W trakcie tynkowania ceglanego gzymsu zaprawę narzutu aplikujemy na

A. całą długość gzymsu, a następnie, po związaniu zaprawy, przesuwając szablon po prowadnicach do przodu i do tyłu
B. takim odcinku, aby można go wyprofilować przed związaniem zaprawy, przesuwając szablon po prowadnicach do przodu i do tyłu
C. takim odcinku, aby można go wyprofilować przed związaniem zaprawy, przesuwając szablon po prowadnicach w jednym kierunku tj. "do siebie"
D. całą długość gzymsu, a następnie, po związaniu zaprawy, przesuwając szablon po prowadnicach w jednym kierunku tj. "do siebie"
W przypadku tynkowania gzymsu ceglanego, nieprawidłowe podejście do nanoszenia zaprawy narzutu może prowadzić do istotnych problemów w późniejszym użytkowaniu. Odpowiedzi, które sugerują nanoszenie zaprawy na całą długość gzymsu przed związaniem, a następnie przesuwanie szablonu tylko w jedną stronę, pomijają kluczowy aspekt pracy z materiałem, jakim jest czas związania zaprawy. Takie działania mogą skutkować nierównomiernym wykończeniem, bowiem zaprawa może związać się w różnych momentach, co sprawi, że szablon nie wygeneruje pożądanego profilu. Przemieszczanie szablonu w jedną stronę, także ogranicza kontrolę nad procesem tynkowania, co może prowadzić do powstawania nieestetycznych nierówności. Dodatkowo, z praktycznego punktu widzenia, techniki tynkarskie zalecają zastosowanie ruchów w obie strony dla optymalizacji procesu, co zapewnia lepszą adaptację zaprawy do kształtów gzymsu. Typowym błędem jest także brak uwzględnienia różnorodności stosowanych zapraw, które mogą wymagać specyficznych metod nanoszenia i profilowania. W literaturze branżowej podkreśla się znaczenie dbałości o detale w pracy tynkarskiej, ponieważ nawet małe zaniedbania mogą prowadzić do poważnych konsekwencji, takich jak odpadanie tynku czy jego pękanie. Dlatego, fundamentalne dla uzyskania wysokiej jakości wykończenia jest stosowanie się do sprawdzonych procedur technicznych oraz zasad dobrych praktyk w budownictwie.

Pytanie 16

Jaką wytrzymałość ma klasa zaprawy na

A. przesuwanie
B. rozciąganie
C. ściśnięcie
D. ugięcie
Odpowiedzi dotyczące zginania, rozciągania oraz ścinania nie są zgodne z definicją klasy zaprawy, ponieważ te parametry wytrzymałościowe nie odzwierciedlają głównych właściwości zapraw murarskich. Wytrzymałość na zginanie, chociaż istotna w kontekście materiałów budowlanych, nie jest kluczowym czynnikiem dla zapraw, które są projektowane głównie do wytrzymywania obciążeń ściskających. Zaprawy, takie jak cementowe czy wapienne, są używane w sposób, który nie angażuje ich do pracy w warunkach zginania. Rozciąganie dotyczy głównie materiałów elastycznych, takich jak stal, które są umieszczane w konstrukcjach jako zbrojenie, podczas gdy zaprawy pełnią rolę spoiwa, co czyni je mniej podatnymi na ten typ obciążenia. Ścinanie z kolei odnosi się do sił działających równolegle do powierzchni materiału, co jest ważne np. w kontekście połączeń, ale nie definiuje klasy zaprawy. Te aspekty mogą prowadzić do nieporozumień, zwłaszcza w kontekście projektowania i wyboru materiałów budowlanych, dlatego kluczowe jest zrozumienie, że klasyfikacja zaprawy opiera się głównie na zastosowaniach związanych z jej wytrzymałością na ściskanie oraz jej rolą w zapewnieniu integralności strukturalnej budowli.

Pytanie 17

Na podstawie danych z tabeli oblicz ilość piasku potrzebnego do wykonania 0,5 m3 zaprawy cementowo-wapiennej M2.

Orientacyjna ilość składników na 1 m³ zaprawy cementowo-wapiennej o konsystencji plastycznej
Proporcje
cement : wapno : piasek
Marka
zaprawy
Cement
portlandzki CEM I
[kg]
Wapno
hydratyzowane
[kg]
Piasek
[m³]
Woda
[dm³]
1 : 2,5 : 10,5M21071240,94316
1 : 1,25 : 6,75M5165970,85304
1 : 0,25 : 3,75M20293340,93284
A. 0,47 m3
B. 0,95 m3
C. 0,45 m3
D. 0,93 m3
Analizując odpowiedzi, które nie są poprawne, można dostrzec, że wiele z nich wynika z błędnych założeń dotyczących proporcji składników zaprawy cementowo-wapiennej. Odpowiedzi takie jak 0,93 m3, 0,45 m3 i 0,95 m3 mogą wynikać z niewłaściwego zrozumienia, ile piasku rzeczywiście potrzeba na jedną jednostkę objętości zaprawy. Przykładem błędnego myślenia jest przypuszczenie, że ilość piasku powinna być zbliżona do objętości zaprawy, co jest sprzeczne z zasadami mieszania betonów i zapraw. W praktyce, aby obliczyć ilość piasku, należy zawsze odnieść się do odpowiednich tabel oraz norm, które wskazują, ile materiału jest potrzebne na jednostkę zaprawy. Często występujące błędy to przeoczenie proporcji, co prowadzi do nadmiaru lub niedoboru materiału, co z kolei wpływa na wytrzymałość i trwałość konstrukcji. Mylne przyjęcie, że dodanie większej ilości piasku zwiększa jakość zaprawy, jest również błędne. Niekontrolowane zwiększenie ilości piasku może prowadzić do osłabienia zaprawy, co jest niezgodne z normami budowlanymi. Aby uniknąć błędów, ważne jest, aby znać zasady proporcjonowania materiałów budowlanych oraz stosować się do wytycznych producentów i standardów branżowych. Jakość i trwałość konstrukcji w dużej mierze zależą od odpowiednich proporcji materiałów, dlatego każdy wykonawca powinien mieć solidne podstawy w tej dziedzinie.

Pytanie 18

Jakie konstrukcje uznawane są za obiekty inżynieryjne?

A. Świątynie
B. Budowle z konstrukcją szkieletową
C. Obiekty przemysłowe
D. Konstrukcje mostowe
Hale produkcyjne i budynki szkieletowe to też konstrukcje inżynieryjne, ale nie są obiektami inżynierskimi w takim rozumieniu, jak mosty. Hale produkcyjne służą do pracy w fabrykach, więc ich budowa skupia się na tym, jak lepiej produkować, a nie na pokonywaniu przeszkód, jakie mamy w naturze. Budynki szkieletowe, które mają stalowe lub drewniane szkielety, są bardziej związane z budownictwem mieszkalnym czy publicznym, a nie z transportem. Kościoły, które często są ogromne i piękne, skupiają się na wartościach kulturowych i religijnych, a nie na tym, żeby pozwalać na ruch czy przechodzenie nad przeszkodami. Te budowle projektuje się tak, żeby były ładne i miały sens w kontekście religijnym, co sprawia, że różnią się od mostów. Łatwo pomylić różne rodzaje budowli, bo wszystkie należą do szerokiej kategorii budowlanej. Ważne, żeby zrozumieć, że obiekty inżynieryjne są projektowane z myślą o konkretnych problemach, na przykład z transportem, co odróżnia je od innych budynków.

Pytanie 19

Tynk dekoracyjny, będący gładką warstwą zaprawy gipsowej na podstawie wapienno-gipsowej, to

A. tynk zmywalny
B. sgraffito
C. sztablatura
D. tynk cyklinowany
Sztablatura to technika wykończeniowa, która polega na nałożeniu gładkiej warstwy zaczynu gipsowego na podkład wapienno-gipsowy. Jest to dość popularna metoda w architekturze wnętrz, szczególnie w obiektach zabytkowych, gdzie ważne jest zachowanie estetyki i tradycyjnego rzemiosła. Warto zaznaczyć, że sztablatura charakteryzuje się wysoką odpornością na wilgoć oraz zdolnością do regulacji mikroklimatu pomieszczeń, co czyni ją idealnym rozwiązaniem do stosowania w różnorodnych warunkach. Zastosowanie sztablatury umożliwia uzyskanie jednolitej, gładkiej powierzchni, która może być następnie malowana lub dekorowana innymi technikami, co podnosi walory estetyczne wnętrza. W praktyce, tynk sztukatorski w formie sztablatury jest często wybierany w projektach, które nawiązują do klasycznych stylów architektonicznych, gdzie szczególnie istotne jest zachowanie autentyczności i detali wykończeniowych.

Pytanie 20

Na podstawie przedstawionej instrukcji przygotowania gotowej zaprawy murarskiej podaj, ile wody należy przygotować do sporządzenia zaprawy z 4 opakowań?

Instrukcja przygotowania zaprawy
Suchą mieszankę należy zarobić z 3,5 litrami czystej i zimnej wody, mieszając mechanicznie przy użyciu wiertarki wolnoobrotowej.
Zawartość opakowania: 25 kg
A. 7,0 litrów
B. 10,5 litra
C. 14,0 litrów
D. 3,5 litra
Odpowiedź 14,0 litrów jest prawidłowa, ponieważ zgodnie z instrukcją na zdjęciu, do przygotowania zaprawy murarskiej z jednego opakowania potrzeba 3,5 litra wody. Aby obliczyć ilość wody potrzebną do sporządzenia zaprawy z czterech opakowań, należy pomnożyć tę wartość przez 4. Wykonując obliczenie: 4 x 3,5 litra = 14 litrów, otrzymujemy właściwą ilość wody. Przygotowanie odpowiedniej ilości wody jest kluczowe dla uzyskania właściwej konsystencji zaprawy, co wpływa na jej wytrzymałość i trwałość. Zbyt mała ilość wody może skutkować zbyt gęstą zaprawą, co utrudnia jej aplikację i obniża przyczepność do materiałów budowlanych. Z drugiej strony, nadmiar wody może osłabić zaprawę, prowadząc do pęknięć i degradacji w dłuższym czasie. Zastosowanie odpowiednich proporcji wody i zaprawy jest standardem w branży budowlanej, co potwierdzają zalecenia producentów materiałów budowlanych. Dbanie o precyzyjne przygotowanie mieszanki wpływa na jakość wykonywanych prac budowlanych oraz ich trwałość.

Pytanie 21

Na którym rysunku przedstawiono strop Fert?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Strop Fert, jako nowoczesne rozwiązanie w budownictwie, często jest mylony z innymi typami stropów, jak na przykład stropami gęstożebrowymi lub stropami monolitycznymi. Wiele osób nie zdaje sobie sprawy, że kluczową różnicą jest sposób współpracy prefabrykowanych elementów z wylewką betonową. W przypadku stropów gęstożebrowych, pomiędzy żebrami stosuje się wypełnienia, co nie zapewnia tak wysokiej nośności jak w systemie Fert. Ponadto, stropy monolityczne wymagają dłuższego czasu twardnienia i nie oferują elastyczności prefabrykacji, co może prowadzić do opóźnień w realizacji projektu. Typowe błędy w rozumieniu stropu Fert wynikają z nieznajomości jego cech charakterystycznych, jak wypustki, które są kluczowe dla uzyskania jednorodności konstrukcji. Odróżnienie stropu Fert od innych typów stropów jest istotne, ponieważ ma bezpośredni wpływ na bezpieczeństwo i trwałość budynków. Dlatego, przy projektowaniu konstrukcji, warto zwracać uwagę na właściwości materiałów i standardy, takie jak PN-EN 1992, które regulują zasady projektowania stropów żelbetowych. Zrozumienie różnic pomiędzy poszczególnymi typami stropów jest kluczowe dla osiągnięcia optymalnych wyników w realizacji projektów budowlanych.

Pytanie 22

Na ilustracji przedstawiono fragment naroża ściany

Ilustracja do pytania
A. dwuwarstwowej.
B. szczelinowej.
C. jednowarstwowej.
D. trójwarstwowej.
Wybór odpowiedzi związanych z konstrukcją trójwarstwową, dwuwarstwową czy szczelinową jest nieprawidłowy ze względu na charakterystykę przedstawionej ściany. Ściany trójwarstwowe składają się z trzech odrębnych warstw: wewnętrznej, izolacyjnej oraz elewacyjnej, co nie znajduje odzwierciedlenia w widocznych elementach na zdjęciu, gdzie brak jest dodatkowych warstw. Z kolei dwuwarstwowe konstrukcje angażują dwa różne materiały, z których jedna warstwa pełni rolę nośną, a druga izolacyjną, co również nie ma miejsca w analizowanym przypadku. Odpowiedź "szczelinowa" może wprowadzać w błąd, gdyż odnosi się do specyficznych konstrukcji z przestrzeniami powietrznymi, które mają na celu poprawę izolacji akustycznej lub termicznej, co nie jest zgodne z przedstawionym materiałem. Te błędne odpowiedzi wskazują na typowe nieporozumienia związane z różnicowaniem typów konstrukcji ścian, gdzie kluczem jest zrozumienie, że jednowarstwowe ściany wznoszone z odpowiednich materiałów mogą spełniać zarówno zadania nośne, jak i izolacyjne, eliminując konieczność stosowania bardziej skomplikowanych rozwiązań w wielu zastosowaniach budowlanych.

Pytanie 23

Na rysunku przedstawiono układ cegieł

Ilustracja do pytania
A. w narożniku murów o grubości 1.5 i 1.5 cegły.
B. w przenikających się murach o grubości 2.5 i 1.5 cegły.
C. w narożniku murów o grubości 2.5 i 1.5 cegły.
D. w przenikających się murach o grubości 1.5 i 1.5 cegły.
No cóż, wybrałeś nieco błędną odpowiedź. Chodzi o to, że mury o grubości 1.5 cegły w narożnikach to nie jest częsta praktyka w budownictwie. W rzeczywistości, narożniki są zazwyczaj wzmacniane, żeby konstrukcja była stabilniejsza. Użycie dwóch murów o tej samej grubości nie oddaje tego, jak to naprawdę wygląda. Można powiedzieć, że to typowy błąd, bo różnice w grubości murów mają ogromne znaczenie. To, że wybrałeś 1.5 i 1.5 cegły, nie uwzględnia takich rzeczy jak standardy budowlane. W praktyce, grubsze mury, te o szerokości 2.5 cegły, są lepsze w miejscach, gdzie konieczna jest większa nośność. Zawsze warto przemyśleć, jakie materiały stosujesz i jak ich właściwości wpływają na projekt, czego tu zabrakło, przez co wyszły błędne wnioski.

Pytanie 24

Na rysunku przedstawiono ścianę

Ilustracja do pytania
A. fundamentową wykonaną na ławie żelbetowej.
B. piwniczną wykonaną na ławie betonowej.
C. fundamentową wykonaną na ławie betonowej.
D. piwniczną wykonaną na ławie żelbetowej.
Ściana przedstawiona na rysunku to ściana fundamentowa, wykonana na ławie żelbetowej. Tego rodzaju ściany są kluczowym elementem konstrukcyjnym budynków, ponieważ przenoszą obciążenia z budynku na grunt. Ława żelbetowa, w przeciwieństwie do ławy betonowej, zawiera zbrojenie w postaci prętów stalowych, co zapewnia jej większą wytrzymałość na ściskanie oraz rozciąganie. Wykorzystanie żelbetu w fundamentach jest zgodne z normą PN-EN 1992, która określa zasady projektowania konstrukcji żelbetowych. Przykładem zastosowania takich fundamentów są budynki wielorodzinne oraz obiekty przemysłowe, gdzie stabilność i nośność fundamentów są kluczowe dla bezpieczeństwa całej konstrukcji. Dobrze zaprojektowana i wykonana ściana fundamentowa wpływa na trwałość budynku oraz minimalizuje ryzyko osiadania i pęknięć, co jest szczególnie istotne w rejonach o zmiennych warunkach geologicznych.

Pytanie 25

Jaką ilość zaprawy tynkarskiej należy przygotować do nałożenia tynku o grubości 1,5 cm na powierzchni 20 m2, jeśli norma zużycia wynosi 5 kg na 1 m2 tynku o grubości 15 mm?

A. 15 kg
B. 30 kg
C. 100 kg
D. 50 kg
Wybór niewłaściwej ilości zaprawy tynkarskiej może wynikać z kilku błędnych założeń dotyczących obliczeń. Na przykład, wybierając 50 kg jako odpowiedź, można założyć, że wystarczy to na pokrycie 20 m2, co jest mylne, biorąc pod uwagę normę zużycia 5 kg na 1 m2 dla tynku o grubości 15 mm. Dzieląc 50 kg przez 20 m2, otrzymujemy zaledwie 2,5 kg/m2, co jest poniżej normy i niewystarczające do osiągnięcia wymaganej grubości tynku. Z kolei odpowiedzi takie jak 15 kg czy 30 kg również nie uwzględniają rzeczywistej normy zużycia, a ich wybór może świadczyć o niepełnym zrozumieniu procesu obliczania zapotrzebowania na materiały budowlane. Takie pomyłki mogą prowadzić do niedoborów materiałów na budowie, co z kolei opóźnia prace oraz zwiększa koszty w przypadku konieczności dokupienia materiału w trakcie realizacji projektu. W branży budowlanej niezwykle istotne jest precyzyjne planowanie i znajomość norm, aby uniknąć takich sytuacji. Aby poprawnie obliczyć potrzebne ilości materiałów, należy wziąć pod uwagę nie tylko powierzchnię, ale również grubość tynku i jego normy zużycia, co jest kluczowym elementem w profesjonalnym podejściu do prac budowlanych.

Pytanie 26

Który typ cegieł charakteryzuje się wysoką odpornością na oddziaływanie warunków atmosferycznych?

A. Sylikatowe
B. Ceramiczne pełne
C. Poryzowane
D. Klinkierowe
Cegły klinkierowe charakteryzują się wyjątkową odpornością na działanie czynników atmosferycznych, co czyni je idealnym materiałem budowlanym do zastosowań zewnętrznych. Wytwarzane są z wysokiej jakości gliny, która jest wypalana w wysokotemperaturowych piecach, co prowadzi do ich twardości i niskiej porowatości. Dzięki tym właściwościom, cegły klinkierowe nie tylko doskonale znoszą zmiany temperatury, ale również są odporne na działanie wody, co minimalizuje ryzyko ich deformacji czy zniszczenia. Stosowane są powszechnie na elewacjach budynków, chodnikach, tarasach oraz w infrastrukturze, takiej jak mosty czy mury oporowe. W zgodzie z normą PN-EN 771-1, klinkierowe cegły spełniają wymagania dotyczące wytrzymałości i trwałości w różnych warunkach klimatycznych. Dodatkowo, ich estetyka oraz szeroka gama kolorystyczna sprawiają, że są chętnie wybierane przez architektów i inwestorów, co podkreśla ich uniwersalność i zastosowanie w nowoczesnym budownictwie.

Pytanie 27

Na podstawie rzutu magazynu oblicz powierzchnię ścianki działowej z otworem drzwiowym, jeżeli wysokość pomieszczenia wynosi 2,75 m.

Ilustracja do pytania
A. 7,2 m2
B. 6,6 m2
C. 4,4 m2
D. 8,8 m2
Przy obliczaniu powierzchni ścianki działowej z otworem drzwiowym, często pojawiają się błędy związane z niepoprawnym uwzględnieniem wymiarów. W niektórych przypadkach uczniowie mogą błędnie przyjmować, że powierzchnia ścianki działowej to po prostu wynik pomnożenia wysokości pomieszczenia przez jego długość, bez uwzględnienia otworów, takich jak drzwi. Przykładowo, odpowiedzi 4,4 m², 6,6 m² oraz 8,8 m² mogą wynikać z niepoprawnych obliczeń, w których nie uwzględniono powierzchni otworu drzwiowego lub z przyjęcia błędnych wymiarów ścianki. Na przykład, odpowiedź 4,4 m² może być wynikiem próby pomnożenia zbyt niskiej wartości wysokości pomieszczenia, co prowadzi do znacznego zaniżenia finalnej wartości. Z kolei odpowiedź 8,8 m² może wynikać z niepoprawnego dodania otworów zamiast ich odjęcia lub z pomyłki przy ustalaniu wymiarów ścianki. Takie błędne podejścia wskazują, że kluczowe jest zrozumienie, jak prawidłowo zastosować formuły do obliczeń powierzchni, aby uwzględnić wszystkie istotne elementy. W kontekście budownictwa, wiedza o prawidłowym wymiarowaniu jest niezbędna, aby uniknąć problemów w realizacji projektów oraz nieporozumień z klientami. Dlatego tak ważne jest przyswojenie sobie zasad obliczeń oraz standardów, które mogą pomóc w uniknięciu takich typowych błędów.

Pytanie 28

Oblicz płatność dla tynkarza za nałożenie tynku zwykłego z obu stron ściany o wymiarach 5×3 m, jeśli stawka za godzinę pracy tynkarza wynosi 15,00 zł, a norma wykonania tego tynku to
1,2 r-g/m2.

A. 270,00 zł
B. 225,00 zł
C. 540,00 zł
D. 450,00 zł
Aby obliczyć wynagrodzenie tynkarza za wykonanie tynku zwykłego, należy najpierw określić powierzchnię ściany, którą należy otynkować. Ściana o wymiarach 5 m na 3 m ma powierzchnię wynoszącą 15 m². Ponieważ tynk ma być nałożony po obu stronach ściany, całkowita powierzchnia do tynkowania wynosi 30 m² (15 m² x 2). Następnie, patrząc na normę pracy, która wynosi 1,2 r-g/m², możemy obliczyć, ile roboczogodzin jest potrzebnych do wykonania tynku na tej powierzchni. Obliczamy to mnożąc 30 m² przez 1,2 r-g/m², co daje 36 roboczogodzin. Przy stawce 15,00 zł za godzinę, całkowite wynagrodzenie tynkarza wyniesie 36 r-g x 15,00 zł/r-g, co daje 540,00 zł. Praktyczne zastosowanie tej wiedzy jest istotne w zakresie budownictwa i wykończeń wnętrz, gdzie precyzyjne obliczenia kosztów pracy i materiałów są kluczowe dla efektywnego zarządzania projektem.

Pytanie 29

W specyfikacji technicznej planowanego remontu w obiekcie budowlanym zawarto informację, że do wszystkich prac murarskich należy wykorzystać materiał ceramiczny o korzystnych właściwościach cieplnych. Który z typów cegieł spełnia wymagania zawarte w dokumentacji?

A. Klinkierowa
B. Szamotowa
C. Kratówka
D. Silikatowa
Cegły silikatowe, choć często stosowane w budownictwie, nie spełniają wymagań projektowych dotyczących dobrych właściwości termicznych. Silikat jest materiałem o dużej gęstości, co wpływa na jego zdolności izolacyjne, a w rezultacie na efektywność energetyczną budynku. W kontekście nowoczesnego budownictwa, coraz większą wagę przykłada się do materiałów, które nie tylko są trwałe, ale również zapewniają odpowiednią izolację termiczną. Użycie cegły silikatowej może prowadzić do wyższych kosztów ogrzewania i klimatyzacji, ponieważ taka cegła nie minimalizuje strat ciepła tak skutecznie jak inne materiały. Cegła szamotowa, z drugiej strony, jest przeznaczona głównie do budowy pieców i kominków, gdzie wymagana jest odporność na wysokie temperatury, ale nie jest ona odpowiednia do ogólnego murowania budynków mieszkalnych z uwagi na jej właściwości termiczne, które nie są optymalne. Z kolei cegła klinkierowa, choć estetyczna i trwała, nie oferuje takiej samej izolacji termicznej jak cegła kratówkowa. Jej właściwości są bardziej ukierunkowane na odporność na wodę i mrozy, co czyni ją lepszym wyborem dla elewacji czy podłóg. Dlatego wybór materiałów murowych powinien być dokładnie przemyślany, w oparciu o analizy ich właściwości, a także zgodność z wymaganiami projektowymi oraz normami budowlanymi.

Pytanie 30

Wypełnienie płyty ceglanej między stalowymi belkami, przedstawionej na rysunku, wykonuje się w stropie

Ilustracja do pytania
A. Kleina typu ciężkiego.
B. Akermana.
C. DZ-3.
D. Kleina typu lekkiego.
Wybór błędnych typów kleiny, takich jak kleina typu lekkiego, DZ-3 czy Akermana, wskazuje na nieporozumienie dotyczące zastosowania odpowiednich materiałów w kontekście nośności stropu. Kleina typu lekkiego została zaprojektowana z myślą o mniejszych obciążeniach, co czyni ją niewłaściwą w kontekście płyty ceglanej umieszczonej między stalowymi belkami, które z definicji są przeznaczone do przenoszenia cięższych ładunków. W przypadku zastosowania kleiny typu lekkiego, istnieje wysokie ryzyko deformacji lub zawalenia się konstrukcji pod wpływem nadmiernych obciążeń, co stawia w niebezpieczeństwo całą budowlę. Podobnie, kleiny DZ-3 i Akermana, które również nie są odpowiednie dla konstrukcji wymagających dużej nośności, mogą prowadzić do poważnych problemów z integralnością strukturalną. Kluczowym błędem myślowym w tej sytuacji jest nieprawidłowe oszacowanie obciążeń działających na strop oraz niewłaściwe przypisanie ról poszczególnych typów kleiny. W inżynierii budowlanej kluczowe znaczenie ma uwzględnienie wszystkich aspektów projektowych i wykonawczych, co jest zgodne z obowiązującymi normami i standardami budowlanymi. Ignorowanie tych zasad może prowadzić do katastrofalnych skutków, dlatego tak ważne jest, aby inżynierowie starannie dobierali materiały do konkretnych zastosowań.

Pytanie 31

Na ilustracji przedstawiono sposób wykonania

Ilustracja do pytania
A. paroizilacji.
B. izolacji akustycznej.
C. izolacji cieplnej.
D. hydroizolacji.
Izolacja akustyczna, paroizolacja i izolacja cieplna to różne techniki w budownictwie, ale tak naprawdę nie mają nic wspólnego z hydroizolacją. Izolacja akustyczna polega na redukcji hałasu, który może przenikać przez ściany czy podłogi. Materiały takie jak wełna mineralna czy płyty akustyczne są wykorzystywane do tłumienia dźwięków, ale nie chronią przed wodą. Paroizolacja działa na innej zasadzie – ma za zadanie blokować parę wodną, żeby uniknąć kondensacji wewnątrz budynków. Tu przydają się folie paroizolacyjne, szczególnie podczas ocieplania poddaszy. Z kolei izolacja cieplna zatrzymuje ciepło w budynku, co wpływa na komfort cieplny i efektywność energetyczną. Stosuje się tu styropian czy wełnę mineralną. W dzisiejszym budownictwie trzeba brać pod uwagę wszystkie te aspekty, żeby wszystko działało jak należy. Jak się pominie ich odpowiednie zastosowanie może to prowadzić do błędnych wniosków o efektywności budowli, a to już może zagrażać bezpieczeństwu i komfortowi osób korzystających z budynków.

Pytanie 32

Jakie narzędzia wykorzystuje się do demontażu murowanych części konstrukcyjnych budynku?

A. piły tarczowe
B. wkrętarki
C. wiertarki obrotowe
D. młoty udarowe
Wybór pił tarczowych, wkrętarek czy wiertarek obrotowych do rozbiórki murowych elementów konstrukcyjnych jest błędny, ponieważ każde z tych narzędzi ma określone zastosowanie, które nie obejmuje efektywnej rozbiórki twardych materiałów budowlanych. Piły tarczowe, mimo że są przydatne w cięciu drewna oraz niektórych materiałów kompozytowych, nie są wystarczająco mocne, aby skutecznie radzić sobie z murem czy betonem. Ich zastosowanie w kontekście rozbiórki murowanej struktury może prowadzić do uszkodzenia narzędzia oraz spowolnienia pracy. Wkrętarki są przeznaczone głównie do wkręcania i wykręcania wkrętów, co nie ma zastosowania w rozbiórce konstrukcji murowych, a ich użycie może być ograniczone do prost

Pytanie 33

Na którym rysunku przedstawiono lico muru, który wykonano w wiązaniu krzyżykowym?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Wybór odpowiedzi, która nie jest zgodna z wiązaniem krzyżykowym, może wynikać z mylnego rozpoznania układu cegieł na rysunku. Często zdarza się, że osoby uczące się o różnych rodzajach wiązań murarskich, mylą układ cegieł w innych typach wiązań, takich jak wiązanie w stylu angielskim czy niemieckim, które mają zupełnie inne zasady układania. Wiązanie angielskie polega na układaniu cegieł w taki sposób, że każdy rząd posiada jedną cegłę, która przesunięta jest w stosunku do rzędu poniżej, co skutkuje brakiem charakterystycznego krzyżowania, które widoczne jest w wiązaniu krzyżykowym. Z kolei wiązanie niemieckie charakteryzuje się stałym przesunięciem cegieł w każdym rzędzie, co również nie odpowiada układowi przedstawionemu w odpowiedzi A. Te różnice są istotne, ponieważ każdy typ wiązania ma swoje specyficzne właściwości wytrzymałościowe i estetyczne, które mają bezpośredni wpływ na trwałość i stabilność konstrukcji. Rozumienie tych różnic jest kluczowe w projektowaniu i wykonywaniu murów, ponieważ niewłaściwe użycie jednego z typów wiązań może prowadzić do obniżenia jakości i bezpieczeństwa budowli. Dlatego ważne jest, aby nie tylko znać różne typy wiązań, ale także umieć je poprawnie rozpoznać na podstawie wizualnych wskazówek zawartych w projektach budowlanych.

Pytanie 34

Jakie jest spoiwo mineralne powietrzne?

A. gips budowlany
B. cement hutniczy
C. cement portlandzki
D. wapno hydrauliczne
Cement hutniczy, gips budowlany, cement portlandzki oraz wapno hydrauliczne to materiały budowlane, które różnią się nie tylko składem chemicznym, ale również właściwościami oraz zastosowaniem w budownictwie. Cement hutniczy, znany również jako cement blastyczny, to materiał, który uzyskuje się w wyniku przetwarzania klinkieru cementowego z dodatkiem żużla. Jego główną cechą jest znacznie niższa zawartość wapnia w porównaniu do cementu portlandzkiego, co wpływa na jego właściwości wiążące i czas twardnienia. To spoiwo hydrauliczne, więc zachowuje swoje właściwości w kontakcie z wodą, co sprawia, że nie jest odpowiednie jako spoiwo mineralne powietrzne. Cement portlandzki, będący najczęściej stosowanym rodzajem cementu w budownictwie, również charakteryzuje się działaniem hydraulicznym. Jego wiązanie zachodzi w wyniku reakcji z wodą, co czyni go nieodpowiednim przykładem spoiwa mineralnego powietrznego. Wapno hydrauliczne jest spoiwem, które również twardnieje w obecności wody, a jego zastosowanie ogranicza się do określonych rodzajów budowli, w których wymagane są specyficzne właściwości chemiczne i fizyczne. W przypadku tych materiałów, typowe błędy myślowe polegają na myleniu ich funkcji i właściwości, co prowadzi do nieprawidłowych wniosków o możliwości ich zastosowania jako spoiw mineralnych powietrznych. Warto zwrócić uwagę na znaczenie dokładnego rozumienia klasyfikacji materiałów budowlanych, aby właściwie dobrać je do zastosowań w budownictwie.

Pytanie 35

Jeśli norma zużycia cegieł kratówek do postawienia 1 m2 ściany wynosi 50 sztuk, a koszt jednej cegły to 2 zł, to jaki będzie łączny koszt zakupu cegieł potrzebnych do budowy 10 m2 muru o grubości 25 cm?

A. 100 zł
B. 500 zł
C. 2 000 zł
D. 1 000 zł
Analizując odpowiedzi, które nie są poprawne, można zauważyć, że zawierają one błędne kalkulacje dotyczące ilości cegieł potrzebnych do wykonania 10 m2 muru. Na przykład, odpowiedzi sugerujące kwoty 500 zł, 100 zł czy 2000 zł nie uwzględniają prawidłowego przeliczenia ilości cegieł. Koszt 500 zł mógłby sugerować, że do wykonania 10 m2 potrzebne byłoby jedynie 250 cegieł, co jest niezgodne z normą zużycia. Z kolei 100 zł to całkowita kwota potrzebna na zakup jedynie 50 cegieł, co wystarczy jedynie na 1 m2, a 2000 zł można by pomyśleć jako koszt dla 1000 cegieł, co również jest błędne w kontekście podanego zużycia. Właściwe podejście do obliczeń wymaga zrozumienia proporcji między ilością materiału a jego kosztami, co jest kluczowe w branży budowlanej. Takie błędne obliczenia mogą prowadzić do znacznych przekroczeń budżetu oraz opóźnień w realizacji projektu. Dlatego istotne jest, aby stosować sprawdzone metody obliczeniowe i dokładnie analizować dane dotyczące zużycia materiałów budowlanych, aby uniknąć typowych błędów w planowaniu finansowym.

Pytanie 36

Warstwa styropianu umieszczona w wieńcach oraz nadprożach ścian zewnętrznych ma za zadanie izolację

A. ciepłochronnej
B. paroszczelnej
C. akustyczną
D. wodoszczelnej
Nieprawidłowe odpowiedzi dotyczące funkcji akustycznej, paroszczelnej i wodoszczelnej warstwy styropianu w wieńcach i nadprożach ścian zewnętrznych wynikają z niepełnego zrozumienia właściwości materiału i jego zastosowania w budownictwie. Styropian, będący materiałem sztucznym, charakteryzuje się przede wszystkim niską przewodnością cieplną, co czyni go idealnym izolatorem termicznym, a nie akustycznym. Choć może nieco tłumić dźwięki, jego właściwości akustyczne nie są wystarczające, aby skutecznie izolować hałas, dlatego w takich zastosowaniach konieczne są specjalistyczne materiały akustyczne. Ponadto, w kontekście paroszczelności, choć styropian może działać jako bariera dla pary wodnej, nie jest to jego główna funkcja. W budownictwie stosuje się również inne materiały, takie jak folia paroszczelna, które są bardziej efektywne w zapobieganiu migracji pary wodnej w strukturze budynku. Zastosowanie styropianu w kontekście wodoszczelności również jest nieadekwatne; nie jest on materiałem wodoodpornym, więc w przypadku zastosowań, gdzie wymagana jest pełna wodoszczelność, potrzebne są dodatkowe warstwy ochronne. Zrozumienie tych właściwości jest kluczowe dla prawidłowego projektowania i budowy, aby uniknąć problemów związanych z niewłaściwą izolacją, które mogą prowadzić do kondensacji, powstawania pleśni oraz innych problemów zdrowotnych i eksploatacyjnych w budynkach.

Pytanie 37

Na którym rysunku przedstawiono narzędzie służące do narzucania zaprawy przy tynkowaniu ręcznym?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Wybór narzędzi do tynkowania jest kluczowym aspektem, który wymaga zrozumienia funkcji poszczególnych narzędzi. Odpowiedzi A, B i C nie przedstawiają narzędzi przeznaczonych do narzucania zaprawy. Na przykład, rysunek A może przedstawiać narzędzie przeznaczone do cięcia materiałów, co w kontekście tynkowania nie ma zastosowania, gdyż nie wpływa na aplikację zaprawy. Z kolei rysunek B może ilustrować narzędzie do rozprowadzania materiałów, ale nie odpowiada ono na specyfikę narzędzia, które ma za zadanie aplikować zaprawę na ścianę. Natomiast rysunek C może przedstawiać sprzęt pomocniczy, który nie jest dedykowany do tynkowania ręcznego. Poprzez błędny wybór narzędzi, można narazić się na problemy związane z jakością wykonania tynków, takie jak pęcherze powietrza, nierówności powierzchni, a nawet konieczność dodatkowego szpachlowania, co zwiększa koszty i czas pracy. Zrozumienie, które narzędzia są właściwe do danego zastosowania, jest kluczowe dla skutecznego procesu budowlanego. W związku z tym, warto zwrócić szczególną uwagę na funkcjonalność narzędzi, co jest fundamentem solidnych praktyk budowlanych. Właściwy dobór narzędzi wpływa nie tylko na efektywność pracy, ale również na trwałość i estetykę końcowego efektu wizualnego.

Pytanie 38

Cementowa zaprawa wyróżnia się wysoką

A. wytrzymałością na ściskanie
B. kapilarnością
C. odpornością na skurcz
D. higroskopijnością
Wybór odpowiedzi dotyczącej odporności na skurcz, kapilarności lub higroskopijności zaprawy cementowej wskazuje na pewne nieporozumienia dotyczące właściwości tego materiału. Odporność na skurcz odnosi się do zdolności materiału do minimalizacji deformacji w wyniku wysychania. Choć zaprawy cementowe mogą wykazywać pewne właściwości skurczowe, ich głównym atutem jest wytrzymałość na ściskanie. Kapilarność to zdolność materiału do transportowania wody w mikroskalowych porach, co jest ważne, ale nierzadko niekorzystne, gdyż może prowadzić do wilgoci w strukturach budowlanych. W kontekście zapraw cementowych, ich projektowanie powinno minimalizować ten efekt, aby zredukować ryzyko uszkodzeń. Natomiast higroskopijność odnosi się do zdolności materiału do wchłaniania wilgoci z otoczenia, co jest istotne w niektórych zastosowaniach budowlanych, jednak nie jest kluczowym parametrem dla zapraw cementowych. Ponadto, warto zauważyć, że wybór niewłaściwych właściwości jako kluczowych dla zapraw cementowych może prowadzić do błędnych decyzji projektowych oraz wykonawczych, co w ostateczności może wpłynąć na trwałość i bezpieczeństwo konstrukcji. Dlatego zrozumienie różnorodnych właściwości materiałów budowlanych oraz ich praktycznych implikacji jest kluczowe dla inżynierów i architektów.

Pytanie 39

Do wymurowania ściany o wymiarach 10,0 x 5,0 m i grubości 0,24 m zaplanowano bloczki Ytong łączone na pióro i wpust. Korzystając z danych zawartych w tabeli wskaż, ile 20-kilogramowych worków zaprawy należy kupić, aby sporządzić potrzebną ilość zaprawy.

Zużycie na 1 m³ muru zaprawy do cienkich spoin Ytong
Bloczki gładkieBloczki z piórem i wpustemWielkość opakowania
20 kg15 kg20 kg
A. 7
B. 6
C. 9
D. 8
W przypadku nieprawidłowych odpowiedzi należy zwrócić uwagę na kilka kluczowych aspektów związanych z obliczeniami oraz podstawami technicznymi. Istotnym błędem może być niewłaściwe obliczenie objętości ściany, co prowadzi do niepoprawnych dalszych kalkulacji. Niektórzy mogą błędnie założyć, że zużycie zaprawy na 1 m³ muru jest jednolite dla wszystkich typów bloczków, co jest niezgodne z praktyką budowlaną. Różne metody łączenia, takie jak pióro i wpust, wymagają różnej ilości zaprawy, co może prowadzić do zaniżonego lub zawyżonego oszacowania. Często pojawia się także problem z przeliczeniem objętości zaprawy na ilość worków. Niekiedy można spotkać się z błędnym przyjęciem masy zaprawy w jednym worku, co jest kluczowe dla prawidłowego obliczenia. Pomijanie wartości gęstości zaprawy może doprowadzić do jeszcze większych nieścisłości. Dlatego ważne jest nie tylko zrozumienie, jak obliczać potrzebne materiały, ale również znajomość standardów dotyczących zużycia zaprawy w kontekście konkretnego rodzaju budowli. Dobre praktyki budowlane wymagają dokładnych obliczeń, które uwzględniają wszystkie aspekty związane z materiałami oraz metodami budowlanymi.

Pytanie 40

Określ, na podstawie danych zawartych w tabeli, dopuszczalną ilość ziaren o wymiarach 2-5 mm w piasku do zapraw murarskich.

Tabela. Uziarnienie i dopuszczalne zanieczyszczenia piasku

Rodzaj cechyPiasek do
zapraw
murarskich
wyprawgładzibetonu
dopuszczalna ilość w % w stosunku do masy
Pyły mineralne poniżej 0,05 mm
(części ilaste i muły)
853
Zanieczyszczenia obce, np. gruz,
ziemia, muszle itp.
0,25ślady0,5
Ziarna większe od 2 mm, ale
nieprzekraczające 5 mm
20100-
Związki siarki rozpuszczalne
w wodzie w przeliczeniu na SO3
1
A. 10%
B. 0,5%
C. 20%
D. 0,25%
Wybierając inne wartości procentowe, takie jak 0,25%, 0,5% czy 10%, można natknąć się na szereg błędów myślowych oraz nieporozumień, które prowadzą do niedoszacowania roli ziaren o wymiarach 2-5 mm w zaprawach murarskich. Przede wszystkim, te zbyt niskie wartości nie uwzględniają normatywów określających minimalne ilości frakcji ziarnistej, które są kluczowe dla uzyskania odpowiednich właściwości mechanicznych zaprawy. Zbyt mała zawartość ziaren o wymiarach 2-5 mm może skutkować osłabieniem struktury zaprawy, co w efekcie obniża jej wytrzymałość na ściskanie oraz odporność na czynniki zewnętrzne. Ponadto, niska zawartość tych ziaren może prowadzić do problemów z przyczepnością zaprawy do podłoża, co jest szczególnie istotne w kontekście budownictwa, gdzie trwałość i bezpieczeństwo konstrukcji są priorytetowe. Właściwy dobór proporcji ziaren jest także zgodny z praktykami stosowanymi w budownictwie, które sugerują, że ilość większych ziaren powinna wynosić przynajmniej 20%. Typowe błędy, które mogą się pojawić, to ignorowanie danych zawartych w standardowych tabelach dotyczących składów zapraw czy także nieprawidłowe analizy potrzeb materiałowych. Właściwe zrozumienie wymagań dotyczących frakcji ziarnistej w zaprawach murarskich jest kluczowe dla każdej fazy budowy, od projektu po wykonanie, co potwierdzają zarówno doświadczeni wykonawcy, jak i normy budowlane.