Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 2 lutego 2026 13:38
  • Data zakończenia: 2 lutego 2026 13:57

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który z poniższych adresów IPv4 jest adresem bezklasowym?

A. 162.16.0.1/16
B. 202.168.0.1/25
C. 11.0.0.1/8
D. 192.168.0.1/24
Odpowiedzi 11.0.0.1/8, 162.16.0.1/16 oraz 192.168.0.1/24 są związane z tradycyjnymi klasami adresowymi, co wprowadza pewne ograniczenia w elastyczności zarządzania adresami IP. Adres 11.0.0.1 należy do klasy A, co oznacza, że największa część przestrzeni adresowej jest zarezerwowana dla identyfikacji sieci, a tylko niewielka część dla hostów. Ta klasa była odpowiednia w przeszłości, ale dzisiaj, z uwagi na ograniczone zasoby adresowe, nie jest już zalecana. Adres 162.16.0.1/16 to przykład klasy B, gdzie 16 bitów jest przeznaczone na część sieci, co również ogranicza liczbę dostępnych adresów hostów w porównaniu do CIDR. Z kolei adres 192.168.0.1/24 jest częścią klasy C, która jest często używana w lokalnych sieciach, ale również nie korzysta z elastyczności oferowanej przez CIDR. Tego rodzaju adresy mogą prowadzić do marnotrawstwa przestrzeni adresowej, ponieważ wiele z nich nie jest wykorzystywanych w sposób efektywny. Kluczowym błędem jest przywiązywanie się do tradycyjnych klas adresowych, zamiast przystosowywać się do nowoczesnych rozwiązań, które oferują CIDR i umożliwiają bardziej precyzyjne i ekonomiczne zarządzanie adresacją IP.

Pytanie 2

Jak można zidentyfikować przeciążenie w sieci lokalnej LAN?

A. miernika uniwersalnego
B. reflektometru optycznego OTDR
C. diodowego testera okablowania
D. analizatora protokołów sieciowych
Analizator protokołów sieciowych to kluczowe narzędzie w monitorowaniu i diagnostyce sieci lokalnych (LAN). Dzięki możliwości rejestrowania i analizy ruchu sieciowego, może on wykryć przeciążenie poprzez identyfikację spadków wydajności oraz zatorów w przesyłaniu danych. Na przykład, jeśli analizator wskazuje, że określony port jest mocno obciążony, administrator sieci może podjąć działania, takie jak optymalizacja trasowania pakietów czy zarządzanie przepustowością. W kontekście dobrych praktyk, wykorzystanie takich narzędzi pozwala na proaktywne zarządzanie siecią, zgodnie z zasadami ITIL (Information Technology Infrastructure Library), co zwiększa niezawodność i stabilność usług sieciowych. Warto również podkreślić, że analizatory protokołów, takie jak Wireshark, są standardem w branży, umożliwiając dogłębną analizę zarówno warstwy aplikacji, jak i transportowej, co jest niezbędne do zrozumienia i rozwiązania problemów z przeciążeniem.

Pytanie 3

Komputer w sieci lokalnej ma adres IP 172.16.0.0/18. Jaka jest maska sieci wyrażona w postaci dziesiętnej?

A. 255.255.255.128
B. 255.255.255.192
C. 255.255.128.0
D. 255.255.192.0
Wybór błędnej odpowiedzi może wynikać z niepełnego rozumienia koncepcji adresacji IP oraz maski podsieci. Na przykład, 255.255.255.192 to maska odpowiadająca prefiksowi /26, co oznacza, że 26 bitów jest używanych do identyfikacji sieci. Taka maska umożliwia 64 adresy IP w danej podsieci, z czego 62 mogą być używane przez hosty. W przypadku sieci 172.16.0.0/18, jednak potrzebujemy więcej adresów, ponieważ ta podsieć pozwala na 16382 hostów. Podobnie, 255.255.128.0 odpowiada masce /17, co znowu zmniejsza liczbę dostępnych adresów w porównaniu do /18. Wykorzystanie 255.255.255.128, która odpowiada /25, ogranicza nas do 126 hostów w podsieci. Istotne jest zrozumienie, że wybór odpowiedniej maski jest kluczowy w kontekście zarówno zarządzania adresacją IP, jak i planowania sieci. Typowym błędem jest niewłaściwe przeliczenie bitów maski lub zrozumienie, jak te bity wpływają na dostępność adresów. Z tego powodu, dla sieci o adresie IP 172.16.0.0/18 najlepszym rozwiązaniem jest maska 255.255.192.0, co wskazuje na umiejętność prawidłowego planowania oraz organizacji sieci.

Pytanie 4

Aby zabezpieczyć system Windows przed nieautoryzowanym dostępem poprzez ograniczenie liczby nieudanych prób logowania, należy ustawić

A. Panel Sterowania, Zaporę systemu Windows
B. Zasady grup, Opcje zabezpieczeń
C. Zasady grup, Zasady konta
D. Panel Sterowania, Konta użytkowników
Niepoprawne odpowiedzi koncentrują się na aspektach, które nie są bezpośrednio związane z właściwym zabezpieczeniem systemu Windows przed włamaniami. W przypadku pierwszej odpowiedzi, panel sterowania i zapora systemu Windows, chociaż są istotne dla ochrony systemu, nie oferują bezpośredniego mechanizmu ograniczania liczby nieudanych prób logowania. Zaporę można wykorzystać do blokowania nieautoryzowanego dostępu do sieci, ale nie radzi sobie z problemem logowania na poziomie użytkownika. Ponadto, w kontekście zabezpieczeń, mało prawdopodobne jest, aby sama konfiguracja zapory mogła skutecznie zapobiec atakom opartym na próbach odgadnięcia haseł. Z drugiej strony, odpowiedzi odnoszące się do kont użytkowników mogą być mylone z innymi aspektami zarządzania kontami, ale nie zawierają kluczowych mechanizmów polityki blokad i audytu, które są wbudowane w zasady grup. Zasady grup są bardziej kompleksowe i zapewniają centralne zarządzanie, co jest krytyczne dla organizacji, które pragną utrzymać wysoki poziom bezpieczeństwa. Nieprawidłowe podejście do zabezpieczeń często wynika z niedostatecznego zrozumienia hierarchii oraz funkcjonalności narzędzi dostępnych w systemie operacyjnym, co prowadzi do błędnych wyborów w kontekście zabezpieczania systemu.

Pytanie 5

Standard Transport Layer Security (TLS) stanowi rozwinięcie protokołu

A. Network Terminal Protocol (telnet)
B. Security Shell (SSH)
C. Secure Socket Layer (SSL)
D. Session Initiation Protocol (SIP)
Protokół Security Shell (SSH) jest narzędziem używanym do zdalnego zarządzania systemami komputerowymi, zapewniającym bezpieczną komunikację poprzez szyfrowanie danych. Nie jest on jednak związany z protokołem TLS, który jest przeznaczony przede wszystkim do zabezpieczania komunikacji w sieci, szczególnie w kontekście aplikacji internetowych. Protokół SSH skupia się na zdalnym dostępie i weryfikacji użytkowników, co różni go od zastosowania TLS. Inna odpowiedź, Session Initiation Protocol (SIP), dotyczy zarządzania sesjami komunikacyjnymi, takimi jak połączenia VoIP. SIP nie jest związany z zabezpieczaniem danych ani z transmisją ich w sposób zaszyfrowany, co czyni go nieodpowiednim w kontekście pytania o TLS. Network Terminal Protocol (telnet), z kolei, to stary protokół, który nie oferuje żadnych mechanizmów szyfrowania, przez co jest uznawany za niebezpieczny w nowoczesnych zastosowaniach. Wybór błędnych odpowiedzi często wynika z mylenia różnych protokołów komunikacyjnych oraz ich zastosowań. Kluczowym błędem jest brak zrozumienia, że TLS, jako protokół bezpieczeństwa, koncentruje się na ochronie danych podczas ich transmisji, a nie na zarządzaniu sesjami czy zdalnym dostępie. Wiedza o właściwym zastosowaniu tych protokołów oraz ich funkcjach jest zasadnicza w kontekście bezpieczeństwa w sieci.

Pytanie 6

Na rysunku jest przedstawiony symbol graficzny

Ilustracja do pytania
A. mostu.
B. koncentratora.
C. rutera.
D. przełącznika.
Symbol graficzny przedstawiony na rysunku jest charakterystyczny dla mostu sieciowego, który odgrywa kluczową rolę w architekturze sieci komputerowych. Mosty sieciowe są używane do łączenia dwóch segmentów sieci, co pozwala na efektywniejsze zarządzanie ruchem danych. Działają one na poziomie warstwy łącza danych modelu OSI, co oznacza, że operują na ramkach danych, a ich głównym zadaniem jest filtrowanie i przekazywanie pakietów w oparciu o adresy MAC. Przykładem zastosowania mostu może być sytuacja, w której organizacja ma dwa oddzielne segmenty sieciowe, które muszą współpracować. Most sieciowy pozwala na ich połączenie, co zwiększa przepustowość i redukuje kolizje. Dodatkowo, mosty mogą być używane do segregacji ruchu w dużych sieciach, co przyczynia się do lepszej wydajności oraz bezpieczeństwa. Znajomość tych mechanizmów jest kluczowa dla administratorów sieci, którzy chcą optymalizować infrastrukturę i zapewniać sprawne działanie usług sieciowych.

Pytanie 7

Podaj zakres adresów IP przyporządkowany do klasy A, który jest przeznaczony do użytku prywatnego w sieciach komputerowych?

A. 192.168.0.0-192.168.255.255
B. 172.16.0.0-172.31.255.255
C. 127.0.0.0-127.255.255.255
D. 10.0.0.0-10.255.255.255
Adresy IP klasy A, które są przeznaczone do adresacji prywatnej, obejmują zakres od 10.0.0.0 do 10.255.255.255. Klasa A to jedna z klas adresowych zdefiniowanych w standardzie IPv4, który dzieli adresy IP na różne klasy w zależności od ich pierwszych bitów. Adresy z tej klasy mogą być używane w dużych sieciach korporacyjnych, ponieważ oferują ogromną przestrzeń adresową. W praktyce, adresy prywatne, takie jak te z zakresu 10.0.0.0/8, są często wykorzystywane w sieciach lokalnych (LAN), co pozwala na oszczędność publicznych adresów IP. Takie podejście jest zgodne z zaleceniami IETF (Internet Engineering Task Force) w dokumentach RFC 1918, które definiują prywatne adresy IP. Umożliwia to organizacjom wdrażanie rozwiązań z zakresu NAT (Network Address Translation), co dodatkowo zwiększa bezpieczeństwo i elastyczność adresacji sieciowej. Wykorzystanie tego zakresu pozwala na jednoczesne korzystanie z wielu adresów IP w różnych oddziałach tej samej firmy bez konfliktów, co jest kluczowe w rozwoju i zarządzaniu złożonymi infrastrukturami IT.

Pytanie 8

Jaką maksymalną liczbę komputerów można zaadresować adresami IP w klasie C?

A. 254 komputery
B. 256 komputerów
C. 252 komputery
D. 255 komputerów
Wybór 256 komputerów jako maksymalnej liczby hostów w sieci klasy C jest błędny z kilku istotnych powodów. Liczba ta wynika z niepełnego zrozumienia struktury adresu IP. Klasa C, zgodnie z definicją, przeznacza 8 bitów na identyfikację hostów, co teoretycznie rzeczywiście daje 256 adresów. Jednak w praktyce dwa z tych adresów są zarezerwowane. Adres sieci, który jest używany do identyfikacji samej sieci, oraz adres rozgłoszeniowy, który służy do komunikacji z wszystkimi hostami w sieci, nie mogą być przydzielane do urządzeń. To fundamentalna zasada w projektowaniu sieci, która często bywa pomijana przez osoby nieposiadające doświadczenia w tej dziedzinie. Wybierając 255 komputerów, również można popełnić błąd w myśleniu, gdyż znów nie uwzględnia to rezerwacji adresu rozgłoszeniowego, a zatem wciąż nie jest to prawidłowa liczba. Podobnie, 252 komputery mogą wydawać się logicznym wyborem, ale nie uwzględnia to pełnej możliwości wykorzystania adresów zarezerwowanych wyłącznie dla hostów. W praktyce, skuteczne zarządzanie adresacją IP wymaga zrozumienia tych zasad oraz ich konsekwencji dla projektowania i operacyjności sieci. Brak tej wiedzy może prowadzić do problemów z komunikacją i zarządzaniem siecią, co jest krytyczne w każdym środowisku IT.

Pytanie 9

Kable światłowodowe nie są często używane w lokalnych sieciach komputerowych z powodu

A. wysokich kosztów elementów pośredniczących w transmisji.
B. niskiej wydajności.
C. niski poziom odporności na zakłócenia elektromagnetyczne.
D. znaczących strat sygnału podczas transmisji.
Kable światłowodowe są efektywnym medium transmisyjnym, wykorzystującym zjawisko całkowitego wewnętrznego odbicia światła do przesyłania danych. Choć charakteryzują się dużą przepustowością i niskimi stratami sygnału na długich dystansach, ich powszechne zastosowanie w lokalnych sieciach komputerowych jest ograniczone przez wysokie koszty związane z elementami pośredniczącymi w transmisji, takimi jak przełączniki i konwertery. Elementy te są niezbędne do integrowania technologii światłowodowej z istniejącymi infrastrukturami sieciowymi, które często opierają się na kablach miedzianych. W praktyce oznacza to, że organizacje, które pragną zainwestować w sieci światłowodowe, muszą być przygotowane na znaczne wydatki na sprzęt oraz jego instalację. Z drugiej strony, standardy takie jak IEEE 802.3 zdefiniowały wymagania techniczne dla transmisji w sieciach Ethernet, co przyczyniło się do rozwoju technologii światłowodowej, ale nadal pozostaje to kosztowną inwestycją dla wielu lokalnych sieci komputerowych.

Pytanie 10

Który z poniższych dokumentów nie wchodzi w skład dokumentacji powykonawczej lokalnej sieci komputerowej?

A. Dokumentacja techniczna kluczowych elementów systemu
B. Lista użytych nazw użytkowników oraz haseł
C. Plan rozmieszczenia sieci LAN
D. Dokumentacja materiałowa
Dokumentacja powykonawcza lokalnej sieci komputerowej powinna obejmować wszystkie istotne aspekty zrealizowanej instalacji, a jej kluczowym celem jest zapewnienie przyszłych referencji oraz ułatwienie zarządzania infrastrukturą. Niektóre elementy, które mogą wydawać się istotne, jednak nie pasują do tej klasyfikacji, to specyfikacja techniczna głównych elementów systemu oraz specyfikacja materiałowa. Specyfikacja techniczna dostarcza szczegółowego opisu urządzeń, takich jak routery, przełączniki, serwery, a także ich parametrów technicznych oraz interakcji w sieci. Tego typu dokumenty są zgodne z dobrą praktyką projektowania systemów i są kluczowe dla administratorów sieci, którzy mogą potrzebować zrozumieć, jak poszczególne elementy współpracują w celu zapewnienia efektywności i wydajności całego systemu. Z kolei specyfikacja materiałowa określa szczegółowo, jakie komponenty zostały wykorzystane w budowie sieci, co jest niezwykle ważne w kontekście przyszłych aktualizacji czy konserwacji. Użytkownicy często mylą te pojęcia z wykazem nazw użytkowników i haseł, sądząc, że są one równie istotne dla dokumentacji powykonawczej, co dokumenty techniczne. Jednakże, nazwy użytkowników i hasła to dane wrażliwe, które powinny być zarządzane zgodnie z politykami bezpieczeństwa, a ich uwzględnienie w dokumentacji powykonawczej mogłoby prowadzić do nieautoryzowanego dostępu do sieci. Z tego powodu nie są one uwzględniane w dokumentacji powykonawczej, a ich przechowywanie powinno odbywać się w bezpiecznych lokalizacjach, aby zminimalizować ryzyko wycieku informacji.

Pytanie 11

Użytkownicy z grupy Pracownicy nie mają możliwości drukowania dokumentów za pomocą serwera wydruku na systemie operacyjnym Windows Server. Przydzielone mają tylko uprawnienia "Zarządzanie dokumentami". Co należy wykonać, aby rozwiązać ten problem?

A. Należy dla grupy Pracownicy anulować uprawnienia "Zarządzanie dokumentami"
B. Należy dla grupy Administratorzy anulować uprawnienia "Zarządzanie drukarkami"
C. Należy dla grupy Administratorzy usunąć uprawnienia "Drukuj"
D. Należy dla grupy Pracownicy przypisać uprawnienia "Drukuj"
Aby umożliwić użytkownikom z grupy Pracownicy drukowanie dokumentów, niezbędne jest nadanie im odpowiednich uprawnień. Uprawnienie 'Drukuj' jest kluczowe, ponieważ pozwala na wysyłanie dokumentów do drukarki. W przypadku, gdy użytkownik ma przydzielone wyłącznie uprawnienia 'Zarządzanie dokumentami', może jedynie zarządzać już wydrukowanymi dokumentami, ale nie ma możliwości ich drukowania. Standardową praktyką w zarządzaniu dostępem do zasobów jest stosowanie zasady minimalnych uprawnień, co oznacza, że użytkownik powinien mieć tylko te uprawnienia, które są niezbędne do wykonywania jego zadań. W sytuacji, gdy użytkownicy nie mogą drukować, kluczowe jest zrozumienie, że ich ograniczenia w zakresie uprawnień są główną przyczyną problemu. Nadanie uprawnienia 'Drukuj' użytkownikom z grupy Pracownicy pozwoli im na wykonywanie niezbędnych operacji, co jest zgodne z najlepszymi praktykami zarządzania systemami operacyjnymi i serwerami wydruku.

Pytanie 12

Powyżej przedstawiono fragment pliku konfiguracyjnego usługi serwerowej w systemie Linux. Jest to usługa

authoritative;
ddns-update-style ad-hoc;
subnet 192.168.1.0 netmask 255.255.255.0 {
    range 192.168.1.2 192.168.1.100;
    option domain-name "egzamin.edu.pl";
    option netbios-name-servers 192.168.1.1;
    option domain-name-servers 194.204.159.1, 194.204.152.34;
    default-lease-time 90000;
    option routers 192.168.1.1;
    option subnet-mask 255.255.255.0;
    option broadcast-address 192.168.1.255;
}
A. SSH2
B. TFTP
C. DDNS
D. DHCP
Wybór odpowiedzi SSH2, DDNS, czy TFTP wskazuje na pewne nieporozumienie związane z rolą i funkcjonalnością protokołów oraz serwisów sieciowych. SSH2 (Secure Shell) jest protokołem służącym do bezpiecznego zdalnego logowania oraz zarządzania systemami, co nie ma żadnego związku z przydzielaniem adresów IP. Użytkownicy, którzy myślą o SSH2 w kontekście konfiguracji sieci, mogą mylnie zakładać, że dotyczy to zarządzania adresacją, podczas gdy jego główną funkcją jest zapewnienie bezpiecznej komunikacji. Z kolei DDNS (Dynamic Domain Name System) jest technologią, która umożliwia dynamiczne aktualizowanie rekordów DNS, co jest przydatne w przypadku, gdy adres IP zmienia się często. Użytkownicy mogą mylić DDNS z DHCP, zakładając, że obie usługi pełnią podobne funkcje w zakresie zarządzania adresami. TFTP (Trivial File Transfer Protocol) to prosty protokół transferu plików, który nie ma funkcji przydzielania adresów IP ani zarządzania konfiguracją sieci, co czyni go nieadekwatnym w tym kontekście. Mylenie tych protokołów często wynika z braku zrozumienia ich specyficznych zastosowań oraz funkcjonalności w architekturze sieciowej. Aby uniknąć takich nieporozumień, istotne jest zrozumienie, że każdy z tych protokołów pełni inną rolę, a ich zastosowanie powinno być ściśle związane z wymaganiami i celami konkretnej usługi sieciowej.

Pytanie 13

W sieci lokalnej serwer ma adres IP 192.168.1.103 a stacja robocza 192.168.1.108. Wynik polecenia ping wykonanego na serwerze i stacji roboczej jest pokazany na zrzucie ekranowym. Co może być przyczyną tego, że serwer nie odpowiada na to polecenie?

Ilustracja do pytania
A. Zablokowane połączenie dla protokołu ICMP na stacji roboczej.
B. Wyłączona zapora sieciowa na serwerze.
C. Zablokowane połączenie dla protokołu ICMP na serwerze.
D. Wyłączona zapora sieciowa na stacji roboczej.
W przypadku zablokowanej zapory sieciowej na stacji roboczej, nie jest to przyczyna problemu z pingowaniem serwera, ponieważ to serwer nie odpowiada na żądanie, a stacja robocza je wysyła. Podobnie, wyłączona zapora na stacji roboczej nie wpływa na to, czy serwer będzie odpowiadał na ping. W rzeczywistości, jeśli zapora na stacji roboczej byłaby wyłączona, jej obecność nie blokowałaby ruchu ICMP do serwera. Warto zaznaczyć, że blokowanie protokołu ICMP na stacji roboczej mogłoby zablokować pingowanie z innych urządzeń w sieci do tej stacji. Jednak w omawianym przypadku to serwer nie wysyła odpowiedzi, co oznacza, że problem leży po jego stronie. W kontekście zarządzania siecią, ważne jest, aby administratorzy rozumieli, że różne urządzenia mogą mieć różne polityki bezpieczeństwa, ale to zapora na serwerze ma decydujący wpływ na możliwość odpowiedzi na zapytania ping. Ponadto, wyłączenie zapory na serwerze mogłoby potencjalnie rozwiązać ten problem, ale nie jest to zalecane w praktyce, ponieważ może narazić serwer na inne zagrożenia. Właściwe zarządzanie polityką bezpieczeństwa wymaga zrozumienia, w jaki sposób każdy element infrastruktury sieciowej wpływa na ogólną funkcjonalność oraz dostępność. Dlatego każda decyzja powinna być podejmowana po dokładnej analizie rzeczywistych potrzeb i zagrożeń.

Pytanie 14

Jakie polecenie powinno być użyte w systemie Windows, aby uzyskać informacje o adresach wszystkich kolejnych ruterów przekazujących dane z komputera do celu?

A. tracert
B. ping
C. ipconfig
D. arp
Istnieje kilka narzędzi, które mogą być mylone z poleceniem tracert, a ich zastosowanie może prowadzić do nieporozumień dotyczących ich funkcji. Narzędzie ping, na przykład, jest używane do sprawdzenia osiągalności określonego hosta w sieci, wysyłając do niego pakiety ICMP Echo Request. Choć ping informuje nas, czy urządzenie docelowe jest dostępne, nie pokazuje trasy, jaką pakiety przebywają, ani nie identyfikuje poszczególnych ruterów na tej trasie. Z kolei komenda arp (Address Resolution Protocol) służy do mapowania adresów IP na adresy MAC, co jest przydatne w lokalnej sieci, ale nie dostarcza informacji o trasie pakietów w Internecie. Natomiast ipconfig to polecenie używane do wyświetlenia konfiguracji IP lokalnego komputera, a nie do analizy ścieżki pakietów. Wiele osób może popełniać błąd, przypisując tym narzędziom funkcje, które w rzeczywistości im nie przysługują, co prowadzi do nieefektywnej diagnostyki problemów sieciowych. Kluczowe w zarządzaniu siecią jest zrozumienie, które narzędzia są odpowiednie do określonych zadań, oraz umiejętność ich właściwego zastosowania w praktyce, co jest fundamentem skutecznej administracji sieciowej.

Pytanie 15

Ile równych podsieci można utworzyć z sieci o adresie 192.168.100.0/24 z wykorzystaniem maski 255.255.255.192?

A. 2 podsieci
B. 8 podsieci
C. 16 podsieci
D. 4 podsieci
Odpowiedź 4 podsieci jest poprawna, ponieważ zastosowanie maski 255.255.255.192 (czyli /26) do adresu 192.168.100.0/24 znacząco wpływa na podział tej sieci. W masce /24 mamy 256 adresów IP (od 192.168.100.0 do 192.168.100.255). Zastosowanie maski /26 dzieli tę przestrzeń adresową na 4 podsieci, z każdą z nich zawierającą 64 adresy (2^(32-26) = 2^6 = 64). Te podsieci będą miały adresy: 192.168.100.0/26, 192.168.100.64/26, 192.168.100.128/26 oraz 192.168.100.192/26. Taki podział jest przydatny w praktyce, na przykład w sytuacjach, gdzie potrzebujemy odseparować różne działy w firmie lub w przypadku przydzielania adresów dla różnych lokalizacji geograficznych. Dobrą praktyką w zarządzaniu adresami IP jest używanie podsieci, co ułatwia organizację ruchu w sieci oraz zwiększa bezpieczeństwo poprzez segmentację. Właściwe planowanie podsieci pozwala również zminimalizować marnotrawstwo adresów IP.

Pytanie 16

Jakie oprogramowanie odpowiada za funkcję serwera DNS w systemie Linux?

A. vsftpd
B. apache
C. samba
D. bind
Samba, vsftpd i Apache to oprogramowanie, które pełni zupełnie inne funkcje i nie są one związane z rolą serwera DNS. Samba jest narzędziem do współdzielenia plików i drukarek w sieciach Windows i Unix/Linux, co umożliwia integrację z systemami operacyjnymi Windows. W związku z tym, w kontekście DNS, Samba nie ma żadnych zastosowań, a jej funkcjonalności skupiają się na protokołach SMB/CIFS. Vsftpd, z drugiej strony, to serwer FTP, który umożliwia przesyłanie plików przez protokół FTP. Choć jest to ważne narzędzie do zarządzania plikami na serwerze, nie ma ono nic wspólnego z rozwiązywaniem nazw domenowych ani obsługą DNS. Apache to serwer HTTP, który hostuje strony internetowe, jednak również nie pełni roli serwera DNS. Typowym błędem myślowym jest mylenie usług sieciowych, takich jak hosting aplikacji webowych czy transfer plików, z usługami związanymi z systemem nazw. Każda z wymienionych technologii ma swoje specyficzne przeznaczenie i nie mogą być stosowane zamiennie w kontekście zarządzania DNS. Zrozumienie różnorodności zastosowań różnych technologii sieciowych jest kluczowe dla prawidłowego projektowania architektury systemów informatycznych.

Pytanie 17

Jakie rekordy DNS umożliwiają przesyłanie wiadomości e-mail do odpowiednich serwerów pocztowych w danej domenie?

A. CNAME
B. SOA
C. MX
D. PTR
Rekordy SOA (Start of Authority) są podstawowym typem rekordu DNS, który definiuje główne informacje o strefie DNS, takie jak adres serwera nazw i dane kontaktowe administratora. Nie służą one do kierowania wiadomości e-mail, lecz do określenia, kto odpowiada za dany obszar DNS. Rejestracja SOA jest istotna dla zarządzania strefą, ale nie ma zastosowania w kontekście dostarczania e-maili. Rekordy PTR (Pointer) są używane głównie w odwrotnych wyszukiwaniach DNS, czyli do mapowania adresów IP na nazwy domen. Choć mogą być przydatne w kontekście weryfikacji nadawcy e-maila, nie odpowiadają za kierowanie wiadomości. Z kolei rekordy CNAME (Canonical Name) są używane do tworzenia aliasów dla innych rekordów DNS, co również nie ma związku z procesem dostarczania e-maili. Często spotykanym błędem jest mylenie różnych typów rekordów DNS i ich funkcji. Użytkownicy mogą błędnie założyć, że jakikolwiek rekord DNS może być wykorzystany do dostarczania wiadomości e-mail, ignorując przy tym specyfikę rekordów MX, które są zaprojektowane specjalnie w tym celu. Zrozumienie różnicy między tymi rekordami jest kluczowe dla efektywnego zarządzania systemem pocztowym i unikania problemów z dostarczaniem e-maili.

Pytanie 18

Za pomocą polecenia netstat w systemie Windows można zweryfikować

A. zapisy w tablicy routingu komputera
B. aktywną komunikację sieciową komputera
C. parametry interfejsów sieciowych komputera
D. ścieżkę połączenia z wybranym adresem IP
Wybór odpowiedzi dotyczących ustawień interfejsów sieciowych, zapisków w tablicy routingu lub trasy połączenia z wybranym adresem IP wskazuje na pewne nieporozumienia dotyczące funkcjonalności narzędzia 'netstat'. Ustawienia interfejsów sieciowych komputera są zarządzane poprzez inne narzędzia, takie jak 'ipconfig' w systemach Windows, które pokazują szczegóły konfiguracji interfejsów. Z kolei tablica routingu, która określa, jak pakiety danych są kierowane w sieci, może być sprawdzana za pomocą polecenia 'route', a nie 'netstat'. Co więcej, możliwość śledzenia trasy połączeń realizuje narzędzie 'tracert', które umożliwia zobaczenie drogi, jaką pokonują pakiety danych do danego adresu IP. Te błędne odpowiedzi sugerują mylne zrozumienie specyfiki działania narzędzi sieciowych oraz ich zastosowań. Aby skutecznie zarządzać siecią, istotne jest zrozumienie, które narzędzia są odpowiednie do określonych zadań, co jest kluczowe w administracji systemów i sieci komputerowych.

Pytanie 19

Która z par: protokół – odpowiednia warstwa, w której funkcjonuje dany protokół, jest właściwie zestawiona zgodnie z modelem TCP/IP?

A. DNS - warstwa aplikacji
B. RARP – warstwa transportowa
C. DHCP – warstwa dostępu do sieci
D. ICMP - warstwa Internetu
ICMP (Internet Control Message Protocol) jest protokołem, który działa w warstwie Internetu w modelu TCP/IP. Jego główną funkcją jest przesyłanie komunikatów kontrolnych i diagnostycznych, które są niezbędne do monitorowania i zarządzania działaniem sieci. Przykładem użycia ICMP jest polecenie ping, które wysyła pakiety ICMP Echo Request do określonego hosta w celu sprawdzenia jego dostępności oraz mierzenia czasu odpowiedzi. ICMP umożliwia także przesyłanie informacji o błędach, takich jak Destination Unreachable, co pomaga w identyfikacji problemów w trasie pakietów. Zgodność ICMP z RFC 792 podkreśla jego znaczenie w komunikacji w sieciach IP oraz w praktycznym zarządzaniu siecią, stanowiąc istotny element standardów internetowych.

Pytanie 20

Użytkownicy należący do grupy Pracownicy nie mają możliwości drukowania dokumentów za pomocą serwera wydruku w systemie operacyjnym Windows Server. Dysponują jedynie uprawnieniami do 'Zarządzania dokumentami'. Co należy uczynić, aby rozwiązać ten problem?

A. Dla grupy Administratorzy należy usunąć uprawnienia 'Drukuj'
B. Dla grupy Administratorzy należy cofnąć uprawnienia 'Zarządzanie drukarkami'
C. Dla grupy Pracownicy należy przyznać uprawnienia 'Drukuj'
D. Dla grupy Pracownicy należy cofnąć uprawnienia 'Zarządzanie dokumentami'
Odpowiedź 'Dla grupy Pracownicy należy nadać uprawnienia "Drukuj"' jest jak najbardziej na miejscu. Dlaczego? Bo użytkownicy z grupy Pracownicy, którzy mają tylko uprawnienia do 'Zarządzania dokumentami', nie mogą faktycznie drukować dokumentów. W praktyce, te uprawnienia dają im jedynie możliwość zarządzania dokumentami w kolejce drukarskiej – czyli mogą je zatrzymywać czy usuwać, ale już nie wydrukują. Żeby pracownicy mogli sensownie korzystać z serwera wydruku, to muszą mieć to uprawnienie 'Drukuj'. Dobrym nawykiem w zarządzaniu uprawnieniami jest to, żeby przydzielać tylko te, które są naprawdę potrzebne do wykonania zadań. Dzięki temu można poprawić bezpieczeństwo systemu i zmniejszyć ryzyko jakichś błędów. Na przykład, gdyby zespół administracyjny dał uprawnienia 'Drukuj' pracownikom, to mogliby oni swobodnie korzystać z drukarek, co jest niezbędne w ich codziennej pracy. Warto też pomyśleć o szkoleniu pracowników, żeby wiedzieli, jak korzystać z zasobów sieciowych, co na pewno zwiększy wydajność ich pracy.

Pytanie 21

Jakiego protokołu dotyczy port 443 TCP, który został otwarty w zaporze sieciowej?

A. DNS
B. SMTP
C. NNTP
D. HTTPS
Odpowiedź 'HTTPS' jest poprawna, ponieważ port 443 jest standardowym portem używanym przez protokół HTTPS (Hypertext Transfer Protocol Secure). HTTPS jest rozszerzeniem protokołu HTTP, które wykorzystuje SSL/TLS do szyfrowania danych przesyłanych pomiędzy serwerem a klientem. Dzięki temu, komunikacja jest zabezpieczona przed podsłuchiwaniem i manipulacją. W praktyce, gdy przeglądasz strony internetowe, które zaczynają się od 'https://', twoje połączenie wykorzystuje port 443. Ponadto, w kontekście dobrych praktyk branżowych, stosowanie HTTPS stało się standardem, zwłaszcza w przypadku stron wymagających przesyłania poufnych informacji, takich jak dane logowania czy dane osobowe. Warto także zauważyć, że wyszukiwarki internetowe, takie jak Google, preferują strony zabezpieczone HTTPS, co wpływa na pozycjonowanie w wynikach wyszukiwania.

Pytanie 22

Jaką funkcję punkt dostępu wykorzystuje do zabezpieczenia sieci bezprzewodowej, aby jedynie urządzenia z określonymi adresami fizycznymi mogły się z nią połączyć?

A. Radius (Remote Authentication Dial In User Service)
B. Uwierzytelnianie
C. Filtrowanie adresów MAC
D. Nadanie SSID
Filtrowanie adresów MAC to technika zabezpieczania sieci bezprzewodowej, która polega na zezwalaniu na dostęp tylko dla urządzeń o określonych adresach MAC, czyli fizycznych adresach sprzętowych. W praktyce, administrator sieci tworzy listę dozwolonych adresów MAC, co pozwala na kontrolowanie, które urządzenia mogą łączyć się z siecią. To podejście jest często stosowane w małych i średnich przedsiębiorstwach, gdzie istnieje potrzeba szybkiego działania i uproszczonego zarządzania dostępem. Należy jednak pamiętać, że mimo iż filtrowanie MAC zwiększa bezpieczeństwo, nie jest to metoda absolutna. Złośliwi użytkownicy mogą skanować sieć i kopiować adresy MAC, co czyni tę metodę podatną na ataki. Dobrym rozwiązaniem jest stosowanie filtrowania MAC w połączeniu z innymi mechanizmami zabezpieczeń, takimi jak WPA3 (Wi-Fi Protected Access 3) lub uwierzytelnianie 802.1X, co znacznie podnosi poziom ochrony sieci.

Pytanie 23

Aby stworzyć las w strukturze katalogowej AD DS (Active Directory Domain Services), konieczne jest zrealizowanie co najmniej

A. czterech drzew domeny
B. dwóch drzew domeny
C. trzech drzew domeny
D. jednego drzewa domeny
Błędne odpowiedzi opierają się na niepełnym zrozumieniu struktury Active Directory oraz roli lasów i drzew domeny. Zakładając, że do utworzenia lasu wymagana jest większa liczba drzew domeny, można mylnie sugerować, że każdy las musi mieć co najmniej dwa lub więcej drzew. W rzeczywistości, las to hierarchiczna struktura, w której może istnieć jedno lub więcej drzew, a każde drzewo może składać się z jednej lub wielu domen. Typowym błędem myślowym jest mylenie hierarchii lasów i drzew z koniecznością posiadania wielu drzew w każdej organizacji. W praktyce, większość małych i średnich organizacji może skutecznie zarządzać swoimi zasobami wykorzystując tylko jedno drzewo w lesie. Tworzenie dodatkowych drzew jest zazwyczaj uzasadnione tylko w przypadku specyficznych potrzeb, takich jak różnice w politykach bezpieczeństwa, wymagania dotyczące zarządzania użytkownikami lub potrzeba izolacji zasobów. Wprowadzenie zbyt wielu drzew domeny prowadzi do nadmiernej złożoności oraz trudności w administracji, co jest sprzeczne z najlepszymi praktykami. Stąd, odpowiedzi sugerujące więcej niż jedno drzewo, wyrażają mylne przekonanie o konieczności skomplikowanej struktury w każdej organizacji, co nie znajduje odzwierciedlenia w rzeczywistej architekturze AD DS.

Pytanie 24

Aby chronić sieć przed zewnętrznymi atakami, warto rozważyć nabycie

A. serwera proxy
B. przełącznika warstwy trzeciej
C. skanera antywirusowego
D. sprzętowej zapory sieciowej
Skaner antywirusowy, choć ważny w ekosystemie zabezpieczeń, nie jest wystarczającym rozwiązaniem w kontekście ochrony całej sieci przed atakami z zewnątrz. Jego głównym zadaniem jest wykrywanie i neutralizowanie złośliwego oprogramowania na poziomie końcówek, a nie kontrola ruchu sieciowego. Również serwer proxy, choć może oferować pewne zabezpieczenia, głównie skupia się na zarządzaniu dostępem do zasobów zewnętrznych, a nie na blokowaniu nieautoryzowanego ruchu. Przełącznik warstwy trzeciej, będący urządzeniem sieciowym, które łączy funkcje przełączania i routingu, nie jest przeznaczony do zwalczania zagrożeń z zewnątrz, a jego główną rolą jest efektywne przekazywanie danych między różnymi segmentami sieci. Użytkownicy często popełniają błąd, uważając, że wystarczy jedna forma zabezpieczenia, aby zapewnić kompleksową ochronę. W rzeczywistości, skuteczna strategia zabezpieczeń sieciowych wymaga wielowarstwowego podejścia, które integruje różnorodne mechanizmy ochrony, w tym sprzętowe zapory, skanery antywirusowe oraz systemy IDS/IPS. Zrozumienie różnic między tymi rozwiązaniami i ich rolą w architekturze bezpieczeństwa jest kluczowe dla skutecznej ochrony przed atakami zewnętrznymi.

Pytanie 25

Jakie oprogramowanie do wirtualizacji jest dostępne jako rola w systemie Windows Server 2019?

A. VMware
B. Virtual Box
C. Virtual PC
D. Hyper-V
Wybór VMware, Virtual PC i Virtual Box jako oprogramowania do wirtualizacji dostępnego w Windows Serwer 2019 wynika z pewnych nieporozumień co do charakterystyki i przeznaczenia tych rozwiązań. VMware to ogólny termin odnoszący się do różnych produktów wirtualizacyjnych tej firmy, z których wiele działa niezależnie od systemu Windows, co sprawia, że nie może być uznawane za rolę w samej platformie Windows Server 2019. Virtual PC, z kolei, to starsza technologia wirtualizacji stworzona przez Microsoft, która nie jest już rozwijana i nie oferuje funkcji dostępnych w nowoczesnych rozwiązaniach jak Hyper-V, co czyni ją mało praktycznym wyborem w kontekście nowoczesnych środowisk serwerowych. Virtual Box, stworzony przez Oracle, także nie jest zintegrowany z Windows Server 2019 w sposób, który pozwalałby na jego użycie jako roli systemowej. Wybór tych technologii może wynikać z braku zrozumienia ich funkcji oraz ograniczeń, które może prowadzić do nieoptymalnych decyzji w zakresie zarządzania infrastrukturą IT. Dla organizacji, które chcą zapewnić wysoką dostępność oraz efektywność operacyjną, kluczowe jest, aby w pełni zrozumieć różnice między tymi rozwiązaniami a Hyper-V. Ignorowanie tych różnic może prowadzić do problemów z wydajnością oraz trudności w zarządzaniu zasobami, co jest niezgodne z dobrymi praktykami zarządzania infrastrukturą IT.

Pytanie 26

Aby serwer DNS mógł poprawnie przekształcać nazwy domenowe na adresy IPv6, konieczne jest skonfigurowanie rekordu

A. MX
B. A
C. AAAA
D. CNAME
Wybór rekordu MX, CNAME czy A zamiast AAAA do odwzorowania nazw domen na adresy IPv6 to spora pomyłka. Rekord MX to przecież serwery pocztowe dla danej domeny, więc w ogóle się nie nadaje do adresów IP. Z kolei rekordy CNAME służą do aliasowania nazw, co też nie ma sensu w tym kontekście. Rekord A również nie jest pomocny, bo on działa tylko z IPv4. Zrozumienie tych różnic jest kluczowe, bo brak odpowiedniego rekordu AAAA w DNS sprawi, że użytkownicy z IPv6 nie będą mogli się połączyć z serwisem. To częsty błąd – myślenie, że wszystkie rekordy DNS mają takie same zastosowania. W rzeczywistości każdy typ rekordu ma swój cel, a korzystanie z nich na właściwy sposób to podstawa w administrowaniu siecią.

Pytanie 27

Jakie protokoły sieciowe są typowe dla warstwy internetowej w modelu TCP/IP?

A. DHCP, DNS
B. TCP, UDP
C. HTTP, FTP
D. IP, ICMP
IP (Internet Protocol) i ICMP (Internet Control Message Protocol) to protokoły, które odgrywają kluczową rolę w warstwie internetowej modelu TCP/IP. IP odpowiedzialne jest za adresowanie i przesyłanie danych między różnymi urządzeniami w sieci, co umożliwia komunikację między komputerami w różnych lokalizacjach. Kluczowe dla zrozumienia działania IP jest pojęcie adresowania, które wykorzystuje unikalne adresy IP do identyfikacji urządzeń. Z kolei ICMP, wykorzystywane do przesyłania komunikatów kontrolnych, takich jak informowanie o błędach, jest niezbędne do diagnostyki i zarządzania siecią. Przykładami zastosowania protokołów IP i ICMP są operacje ping oraz traceroute, które służą do testowania dostępności hostów oraz analizy ścieżek transmisji danych w sieci. Zrozumienie działania tych protokołów jest zgodne z najlepszymi praktykami w administracji siecią, ponieważ pozwala na efektywne rozwiązywanie problemów i optymalizację ruchu sieciowego.

Pytanie 28

Zrzut ekranowy przedstawia wynik wykonania w systemie z rodziny Windows Server polecenia

Server:  livebox.home
Address:  192.168.1.1

Non-authoritative answer:
dns2.tpsa.pl    AAAA IPv6 address = 2a01:1700:3:ffff::9822
dns2.tpsa.pl    internet address = 194.204.152.34
A. whois
B. ping
C. tracert
D. nslookup
Odpowiedź 'nslookup' jest poprawna, ponieważ polecenie to służy do wykonywania zapytań do systemu DNS, co jest kluczowe w zarządzaniu sieciami komputerowymi. Zrzut ekranu pokazuje wyniki, które zawierają zarówno adres IPv4, jak i IPv6 dla domeny dns2.tpsa.pl. W praktyce, nslookup jest używane do diagnozowania problemów z DNS, umożliwiając administratorom sieci weryfikację, czy dany rekord DNS jest prawidłowo skonfigurowany i dostępny. Przykładem zastosowania nslookup może być sytuacja, gdy użytkownik napotyka problemy z dostępem do określonej strony internetowej – wówczas administrator może użyć tego polecenia, aby sprawdzić, czy DNS poprawnie tłumaczy nazwę domeny na adres IP. Co więcej, nslookup pozwala na testowanie różnych serwerów DNS, co jest zgodne z dobrymi praktykami w zakresie zarządzania ruchem sieciowym i zapewnienia wysokiej dostępności usług. Warto również zaznaczyć, że narzędzie to jest częścią standardowego zestawu narzędzi administratora systemu i znacznie ułatwia pracę w środowisku sieciowym.

Pytanie 29

Jak jest nazywana transmisja dwukierunkowa w sieci Ethernet?

A. Halfduplex
B. Duosimplex
C. Full duplex
D. Simplex
W sieciach Ethernet często spotyka się różne pojęcia opisujące kierunki transmisji, ale łatwo je pomylić i wyciągnąć błędne wnioski. Tryb halfduplex polega na tym, że komunikacja zachodzi w obie strony, ale nie w tym samym czasie – urządzenie najpierw wysyła, a potem odbiera dane, nigdy jednocześnie. Przypomina to trochę korzystanie z krótkofalówki, gdzie wciskasz przycisk i mówisz, a potem słuchasz. To rozwiązanie było powszechne w starszych sieciach, zwłaszcza przy korzystaniu z hubów, ale obecnie jest raczej niezalecane ze względu na ryzyko kolizji i niższą przepustowość. Z kolei pojęcia duosimplex i simplex są często mylące: simplex oznacza transmisję tylko w jedną stronę, jak np. radio czy telewizja – odbiornik tylko słucha i nie może odpowiedzieć. Natomiast duosimplex brzmi logicznie, ale w praktyce nie jest używanym terminem w branży sieciowej, więc jego wybór sugeruje pewne oderwanie od rzeczywistej nomenklatury. Właściwym i praktycznie stosowanym trybem dwukierunkowym jest full duplex – tutaj jednoczesne wysyłanie i odbieranie danych eliminuje problem kolizji i podnosi wydajność sieci. Moim zdaniem najczęstszy błąd polega na myleniu halfduplexu z full duplexem, bo oba pozwalają na komunikację dwustronną, tylko w halfduplex nigdy nie jest ona równoczesna. W dobie nowoczesnych sieci LAN warto przestawić się na myślenie w kategoriach full duplex wszędzie tam, gdzie to możliwe – osiągi i stabilność są tego warte, a sieć po prostu działa sprawniej, co widać na co dzień szczególnie przy większych obciążeniach czy pracy z wymagającymi aplikacjami.

Pytanie 30

Który element zabezpieczeń znajduje się w pakietach Internet Security (IS), ale nie występuje w programach antywirusowych (AV)?

A. Monitor wirusów
B. Skaner wirusów
C. Aktualizacje baz wirusów
D. Zapora sieciowa
Wybór innych opcji, jak skaner antywirusowy czy aktualizacja baz wirusów, to trochę chybiony pomysł, jeśli chodzi o różnice między programami antywirusowymi a pakietami Internet Security. Skaner antywirusowy to taki standard, który znajdziesz w każdym oprogramowaniu zabezpieczającym, bo jego główna rola to wykrywanie i usuwanie wirusów. Niezależnie od tego, czy to programy antywirusowe, czy pakiety Internet Security, skanery są zwyczajnie potrzebne. Monitor antywirusowy też nie jest odrębnym elementem, a jedynie funkcją skanera, pozwalającą na ciągłe obserwowanie systemu. Co do aktualizacji baz wirusów, to jest to ważne dla obu typów oprogramowania, bo przecież muszą być na bieżąco z nowymi zagrożeniami. Tak więc, mylenie tych funkcji jako czegoś unikalnego dla pakietów Internet Security powoduje nieporozumienia, co do tego, jak różne zabezpieczenia naprawdę działają.

Pytanie 31

Aby użytkownicy sieci lokalnej mogli przeglądać strony WWW przez protokoły HTTP i HTTPS, zapora sieciowa powinna pozwalać na ruch na portach

A. 90 i 434
B. 80 i 434
C. 90 i 443
D. 80 i 443
Wybór portów 434, 90 oraz podobnych do 80 i 443 może wynikać z nieporozumień dotyczących standardowych portów przypisanych do protokołów internetowych. Port 434 nie jest standardowym portem do przesyłania danych przez HTTP ani HTTPS, co oznacza, że zapora sieciowa blokując ruch na tym porcie uniemożliwiłaby użytkownikom dostęp do stron internetowych. Z kolei port 90, mimo że może być używany w niektórych aplikacjach, nie jest powszechnie akceptowany jako standardowy port dla protokołu HTTP. Takie podejście może prowadzić do sytuacji, w której użytkownicy doświadczają problemów z łącznością, co może wpływać na efektywność pracy i komunikacji w firmie. Typowym błędem jest mylenie portów specyficznych dla danej aplikacji z portami standardowymi; każdy protokół TCP/IP ma przypisane domyślne porty, które są ustalone przez IANA (Internet Assigned Numbers Authority). Dlatego ważne jest, aby przy konfigurowaniu zapór sieciowych stosować się do tych standardów i upewnić się, że ruch na portach 80 i 443 jest dozwolony, aby umożliwić prace w środowisku internetowym.

Pytanie 32

Poniżej przedstawiono wynik polecenia ipconfig /all Jaką bramę domyślną ma diagnozowane połączenie?

Connection-specific DNS Suffix  . : 
Description . . . . . . . . . . . : Karta Intel(R) PRO/1000 MT Desktop Adapter #2
Physical Address. . . . . . . . . : 08-00-27-69-1E-3D
DHCP Enabled. . . . . . . . . . . : No
Autoconfiguration Enabled . . . . : Yes
Link-local IPv6 Address . . . . . : fe80::d41e:56c7:9f70:a3e5%13(Preferred)
IPv4 Address. . . . . . . . . . . : 70.70.70.10(Preferred)
Subnet Mask . . . . . . . . . . . : 255.0.0.0
IPv4 Address. . . . . . . . . . . : 172.16.0.100(Preferred)
Subnet Mask . . . . . . . . . . . : 255.255.255.0
Default Gateway . . . . . . . . . : 70.70.70.70
DHCPv6 IAID . . . . . . . . . . . : 319291431
DHCPv6 Client DUID. . . . . . . . : 00-01-00-01-28-11-7D-57-08-00-27-EB-E4-76
DNS Servers . . . . . . . . . . . : 8.8.8.8
NetBIOS over Tcpip. . . . . . . . : Enabled
A. 08-00-27-69-1E-3D
B. 70.70.70.70
C. 172.16.0.100
D. fe80::d41e:56c7:9f70:a3e5%13
Bramą domyślną w sieci jest adres IP, który router wykorzystuje do kierowania pakietów do internetu lub do innych sieci. W wyniku polecenia ipconfig /all dla karty Intel(R) PRO/1000 MT Desktop Adapter na ilustracji widoczny jest adres 70.70.70.70 jako brama domyślna. Jest to standardowy sposób identyfikacji urządzeń w sieci lokalnej oraz ich punktów dostępowych do innych sieci. Użycie polecenia ipconfig /all jest kluczowe dla administratorów sieci, gdyż umożliwia uzyskanie szczegółowych informacji o konfiguracji sieci, takich jak adres IP, maska podsieci, brama domyślna oraz serwery DNS. W praktyce, znajomość bramy domyślnej jest niezbędna do rozwiązywania problemów z połączeniem z internetem oraz przy konfigurowaniu urządzeń w sieci. Ponadto, znajomość i umiejętność analizy wyników polecenia ipconfig /all jest jedną z podstawowych umiejętności administracyjnych w kontekście zarządzania siecią, co jest zgodne z najlepszymi praktykami w branży IT.

Pytanie 33

Atak mający na celu zablokowanie dostępu do usług dla uprawnionych użytkowników, co skutkuje zakłóceniem normalnego działania komputerów oraz komunikacji w sieci, to

A. Brute force
B. Denial of Service
C. Man-in-the-Middle
D. Ping sweeps
Atak typu Denial of Service (DoS) polega na uniemożliwieniu dostępu do usług i zasobów sieciowych dla legalnych użytkowników poprzez przeciążenie systemu, co prowadzi do jego awarii lub spowolnienia. Tego rodzaju atak może być realizowany na różne sposoby, na przykład poprzez wysyłanie ogromnej liczby żądań do serwera, co skutkuje jego zablokowaniem. W praktyce, ataki DoS są szczególnie niebezpieczne dla organizacji, które polegają na ciągłej dostępności swoich usług, takich jak bankowość internetowa, e-commerce czy usługi chmurowe. Aby chronić się przed takimi atakami, organizacje powinny stosować różnorodne strategie, takie jak filtry ruchu, mechanizmy wykrywania intruzów oraz odpowiednie konfiguracje zapór sieciowych. Dobrą praktyką jest także implementacja systemów przeciwdziałania atakom DDoS (Distributed Denial of Service), które są bardziej skomplikowane i wymagają współpracy wielu urządzeń. Standardy branżowe, takie jak ISO/IEC 27001, podkreślają znaczenie zarządzania ryzykiem i wdrażania polityk bezpieczeństwa, aby zminimalizować skutki ataków DoS.

Pytanie 34

Aby funkcja rutingu mogła prawidłowo funkcjonować na serwerze, musi być on wyposażony

A. w dodatkowy dysk twardy
B. w drugą kartę sieciową
C. w dodatkową pamięć RAM
D. w szybszy procesor
Wybór odpowiedzi związanej z szybszym procesorem to chyba nie do końca dobry kierunek, jeśli mówimy o funkcji rutingu. Jasne, że moc procesora wpływa na ogólną pracę serwera, ale sama funkcja rutingowa nie potrzebuje aż tak dużej mocy do działania. Ważniejsze są stabilność i ciągłość połączenia. Dodatkowy dysk twardy może się przydać do przechowywania danych, ale na zdolności rutingowe serwera nie ma za bardzo wpływu. Wiesz, ruting to głównie kierowanie pakietów danych przez sieć, co dzieje się na poziomie warstwy drugiej i trzeciej modelu OSI, a nie zależy od mocy procesora. A pamięć RAM, która przechowuje dane operacyjne, też nie jest kluczowa w kontekście samego rutingu. Czasem takie błędne myślenie może wynikać z przekonania, że więcej sprzętu zawsze znaczy lepsza wydajność, ale to się nie sprawdza w przypadku specyficznych zadań sieciowych. Ważne przy rutingu jest nie tylko, jak go zrealizować, ale także jak zarządzać połączeniami sieciowymi, co wymaga dobrego sprzętu sieciowego, a nie tylko mocnego komputera.

Pytanie 35

Ransomware to rodzaj szkodliwego oprogramowania, które

A. używa zainfekowanego komputera do rozsyłania wiadomości spam.
B. ukrywa pliki lub procesy, aby wspierać kontrolę nad zainfekowanym komputerem.
C. rejestruje naciskane przez użytkownika klawisze.
D. szyfruje lub blokuje dane w celu wyłudzenia okupu.
Zrozumienie zagrożeń związanych z cyberbezpieczeństwem wymaga szczegółowego przemyślenia różnych typów złośliwego oprogramowania, w tym ransomware, które nie należy mylić z innymi formami ataków. Oprogramowanie, które wykorzystuje zainfekowany komputer do rozsyłania spamu, to typ malware znany jako botnet, który działa na zupełnie innych zasadach, koncentrując się na wykorzystaniu mocy obliczeniowej zainfekowanych urządzeń do masowych ataków, takich jak spamowanie lub przeprowadzanie ataków DDoS. Z kolei rejestrowanie sekwencji klawiszy, czyli keylogging, to technika stosowana przez niektóre rodzaje złośliwego oprogramowania, ale nie jest to związane z ransomware. Keyloggerzy zbierają dane osobowe użytkowników, takie jak hasła, co prowadzi do kradzieży tożsamości, ale nie blokują ani nie szyfrują danych. Ukrywanie plików lub procesów w celu utrzymania kontroli nad zainfekowanym systemem jest z kolei charakterystyczne dla rootkitów, które mają na celu ukrywanie obecności złośliwego oprogramowania w systemie, co także jest różne od działania ransomware. Warto zrozumieć, że każdy typ złośliwego oprogramowania ma swoje unikalne cele oraz metody działania, co podkreśla znaczenie zróżnicowanego podejścia do zabezpieczeń. Aby skutecznie bronić się przed zagrożeniami, organizacje powinny przyjąć kompleksowe strategie oparte na aktualnych standardach branżowych, takich jak NIST Cybersecurity Framework, oraz wprowadzić wielowarstwowe zabezpieczenia.

Pytanie 36

Fragment specyfikacji którego urządzenia sieciowego przedstawiono na ilustracji?

L2 Features• MAC Address Table: 8K
• Flow Control
   • 802.3x Flow Control
   • HOL Blocking Prevention
• Jumbo Frame up to 10,000 Bytes
• IGMP Snooping
   • IGMP v1/v2 Snooping
   • IGMP Snooping v3 Awareness
   • Supports 256 IGMP groups
   • Supports at least 64 static multicast addresses
   • IGMP per VLAN
   • Supports IGMP Snooping Querier
• MLD Snooping
   • Supports MLD v1/v2 awareness
   • Supports 256 groups
   • Fast Leave
• Spanning Tree Protocol
   • 802.1D STP
   • 802.1w RSTP
• Loopback Detection
• 802.3ad Link Aggregation
   • Max. 4 groups per device/8 ports per group (DGS-1210-08P)
   • Max. 8 groups per device/8 ports per group (DGS-1210-
     16/24/24P)
   • Max. 16 groups per device/8 ports per group (DGS-1210-48P)
• Port Mirroring
   • One-to-One, Many-to-One
   • Supports Mirroring for Tx/Rx/Both
• Multicast Filtering
   • Forwards all unregistered groups
   • Filters all unregistered groups
• LLDP, LLDP-MED
A. Zapora sieciowa.
B. Przełącznik.
C. Ruter.
D. Koncentrator.
Przełącznik, jako urządzenie sieciowe funkcjonujące na warstwie drugiej modelu OSI, jest kluczowym elementem w zarządzaniu ruchem danych w sieciach lokalnych. Na ilustracji widoczne są istotne funkcje, takie jak MAC Address Table, która pozwala na efektywne kierowanie pakietów danych do odpowiednich odbiorców na podstawie adresów MAC urządzeń. Flow Control zapewnia kontrolę nad przepływem danych, co zapobiega utracie pakietów w przypadku przeciążenia sieci. Jumbo Frame umożliwia przesyłanie większych ram, co zwiększa wydajność w przypadku transferów dużych plików. IGMP Snooping jest używany do zarządzania ruchem multicastowym, co jest istotne w aplikacjach takich jak strumieniowanie wideo. Przełączniki obsługują również protokoły VLAN i STP, co pozwala na tworzenie odseparowanych sieci w ramach jednej infrastruktury oraz zapobieganie pętli w sieci. W praktyce przełączniki są powszechnie wykorzystywane w biurach i centrach danych do łączenia serwerów, komputerów oraz innych urządzeń końcowych, co czyni je fundamentalnym elementem współczesnych sieci komputerowych.

Pytanie 37

Aby umożliwić jedynie urządzeniom z określonym adresem fizycznym połączenie z siecią WiFi, trzeba ustawić w punkcie dostępowym

A. firewall
B. filtrację adresów MAC
C. strefę o ograniczonym dostępie
D. bardziej zaawansowane szyfrowanie
Bezpieczniejsze szyfrowanie, strefy zdemilitaryzowane oraz zapory sieciowe to techniki związane z bezpieczeństwem, ale nie są właściwym rozwiązaniem dla problemu ograniczenia dostępu do sieci WiFi na podstawie adresów fizycznych. Szyfrowanie, jak WPA2 czy WPA3, skutecznie chroni dane przesyłane w sieci przed podsłuchiwaniem, ale nie kontroluje, które urządzenia mogą się z nią połączyć. Z kolei strefa zdemilitaryzowana (DMZ) jest koncepcją z zakresu architektury sieci, której celem jest oddzielenie zasobów wewnętrznych od publicznego dostępu, ale nie jest bezpośrednio związana z dostępem do WiFi. Zastosowanie DMZ w kontekście sieci bezprzewodowej jest rzadkie, ponieważ dotyczy głównie ruchu przychodzącego z internetu do sieci lokalnej. Zapora sieciowa (firewall) jest również istotnym elementem zabezpieczeń, ale jej główną rolą jest kontrola ruchu sieciowego na poziomie pakietów, a nie identyfikacja konkretnych urządzeń na podstawie ich adresów MAC. Dlatego ograniczenie dostępu do sieci WiFi przez filtrowanie adresów MAC jest bardziej odpowiednim i skutecznym rozwiązaniem, które pozwala na precyzyjne zarządzanie połączeniami urządzeń w danej sieci.

Pytanie 38

Aby aktywować FTP na systemie Windows, konieczne jest zainstalowanie roli

A. serwera Plików
B. serwera DHCP
C. serwera sieci Web (IIS)
D. serwera DNS
Aby uruchomić FTP (File Transfer Protocol) na serwerze Windows, konieczne jest zainstalowanie roli serwera sieci Web (IIS). IIS (Internet Information Services) to natywna technologia Microsoftu, która pozwala na hostowanie aplikacji webowych oraz obsługę protokołów transmisji danych, w tym FTP. Instalacja tej roli umożliwia skonfigurowanie i zarządzanie serwerem FTP, co jest kluczowe w wielu środowiskach biznesowych, gdzie wymagana jest wymiana plików. Przykładowo, wiele organizacji korzysta z FTP do archiwizacji danych, przekazywania dużych plików między działami lub zewnętrznymi partnerami. Warto również zauważyć, że korzystanie z FTP w połączeniu z zabezpieczeniami TLS/SSL (FTPS) jest zgodne z aktualnymi standardami bezpieczeństwa, co chroni dane przed nieautoryzowanym dostępem. Dobra praktyka to również regularne monitorowanie i aktualizowanie konfiguracji FTP, aby zapewnić bezpieczeństwo i wydajność transferu danych.

Pytanie 39

W ustawieniach haseł w systemie Windows Server aktywowana jest opcja hasło musi spełniać wymagania dotyczące złożoności. Ile minimalnie znaków powinno mieć hasło użytkownika?

A. 5 znaków
B. 6 znaków
C. 12 znaków
D. 10 znaków
Hasło użytkownika w systemie Windows Server musi składać się z co najmniej 6 znaków, aby spełniać wymagania dotyczące złożoności. Złożoność hasła ma na celu zwiększenie bezpieczeństwa systemu, redukując ryzyko nieautoryzowanego dostępu. Wymaganie minimalnej długości hasła to jedna z podstawowych praktyk w zarządzaniu bezpieczeństwem, która pomaga zabezpieczyć konta użytkowników przed atakami typu brute force. Przykładowo, stosując hasła o długości 6 znaków, zaleca się użycie kombinacji wielkich i małych liter, cyfr oraz znaków specjalnych, co znacznie podnosi poziom ochrony. Dla porównania, hasła składające się z zaledwie 5 znaków są mniej bezpieczne, ponieważ łatwiej je złamać przy użyciu odpowiednich narzędzi. Zgodnie z wytycznymi NIST (National Institute of Standards and Technology), złożoność haseł oraz ich długość są kluczowe dla ochrony danych, a stosowanie haseł o minimalnej długości 6 znaków jest powszechnie przyjętą praktyką w branży IT.

Pytanie 40

Do jakiej warstwy modelu ISO/OSI odnosi się segmentacja danych, komunikacja w trybie połączeniowym z użyciem protokołu TCP oraz komunikacja w trybie bezpołączeniowym z zastosowaniem protokołu UDP?

A. Fizycznej
B. Sieciowej
C. Łącza danych
D. Transportowej
Wybór warstwy sieciowej jako odpowiedzi na pytanie o segmentowanie danych oraz komunikację w trybie połączeniowym i bezpołączeniowym wskazuje na nieporozumienie dotyczące ról poszczególnych warstw modelu ISO/OSI. Warstwa sieciowa koncentruje się głównie na trasowaniu pakietów danych oraz adresowaniu logicznym, co oznacza, że jest odpowiedzialna za przesyłanie danych pomiędzy różnymi sieciami, a nie za ich segmentację. Protokół IP, który działa na poziomie warstwy sieciowej, zajmuje się kierowaniem pakietów, ale nie zapewnia mechanizmów kontroli błędów ani segmentacji danych, co jest kluczowe w warstwie transportowej. Wybór fizycznej warstwy również nie ma uzasadnienia, ponieważ ta warstwa dotyczy przesyłania sygnałów przez medium fizyczne, a nie zarządzania komunikacją pomiędzy aplikacjami. Z kolei warstwa łącza danych odpowiada za niezawodne przesyłanie ramek danych na lokalnych sieciach, ale nie obejmuje aspektów segmentowania danych ani protokołów TCP i UDP. Typowe błędy myślowe, które prowadzą do takich niepoprawnych odpowiedzi, to mylenie funkcji zarządzania połączeniami i segmentacji danych z funkcjami routingowymi i adresowymi, co może być wynikiem braku zrozumienia pełnej struktury modelu ISO/OSI oraz zasad jego działania.