Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 13 lutego 2026 00:04
  • Data zakończenia: 13 lutego 2026 00:43

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Oblicz, ile moli gazu można zebrać w pipecie gazowej o pojemności 500 cm3, jeśli gaz będzie gromadzony w warunkach normalnych. (W normalnych warunkach jeden mol gazu ma objętość 22,4 dm3)

A. 0,002 mola
B. 0,022 mola
C. 0,100 mola
D. 0,200 mola
Aby obliczyć liczbę moli gazu, który można zebrać w pipecie gazowej o pojemności 500 cm³ w warunkach normalnych, należy skorzystać z faktu, że w tych warunkach jeden mol gazu zajmuje objętość 22,4 dm³. Najpierw przekształcamy objętość pipecie z cm³ na dm³, co daje: 500 cm³ = 0,5 dm³. Następnie stosujemy wzór na obliczenie liczby moli: liczba moli = objętość gazu / objętość jednego mola. W naszym przypadku to będzie: liczba moli = 0,5 dm³ / 22,4 dm³/mol = 0,022 mól. To obliczenie jest zgodne z zasadami chemii gazów idealnych i przydatne w różnych zastosowaniach laboratoryjnych, takich jak przygotowywanie roztworów, gdzie precyzyjne dawkowanie reagentów jest kluczowe. Zrozumienie tego zagadnienia jest istotne nie tylko w chemii, ale również w dziedzinach pokrewnych, takich jak inżynieria chemiczna czy biotechnologia, gdzie kontrola warunków reakcji jest niezbędna dla uzyskania optymalnych wyników.

Pytanie 2

W jakim stosunku objętościowym należy połączyć roztwór o stężeniu 5 mol/dm3 z wodą destylowaną, aby uzyskać roztwór o stężeniu 3 mol/dm3?

A. 3:5
B. 5:3
C. 3:2
D. 2:3
Aby obliczyć stosunek objętościowy roztworu o stężeniu 5 mol/dm³ do wody destylowanej, który pozwoli uzyskać roztwór o stężeniu 3 mol/dm³, możemy zastosować zasadę rozcieńczania. Z definicji stężenia molowego wynika, że ilość moli substancji rozpuszczonej w danej objętości roztworu jest kluczowa. Z równania: C1V1 = C2V2, gdzie C1 to stężenie początkowe (5 mol/dm³), C2 to stężenie końcowe (3 mol/dm³), a V1 i V2 to odpowiednie objętości roztworów, możemy przekształcić wzór, aby znaleźć stosunek objętości V1 (roztwór 5 mol/dm³) do V2 (woda destylowana). Przekształcając wzory, otrzymujemy stosunek V1:V2 równy 3:2. Taki sposób przygotowania roztworu jest standardowo stosowany w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne stężenia roztworów mają kluczowe znaczenie w procesach chemicznych i biologicznych. Przykładem może być przygotowanie buforów czy roztworów do analiz spektroskopowych.

Pytanie 3

Jaką masę siarczanu(VI) miedzi(II)-woda(1/5) należy poddać suszeniu, aby otrzymać 300 g soli bezwodnej?

CuSO4 · 5H2O → CuSO4 + 5H2O
(MCuSO4·5H2O = 249,5 g/mol, MCuSO4 = 159,5 g/mol, MH2O = 18,0 g/mol)
A. 390,5 g
B. 469,3 g
C. 210,0 g
D. 584,1 g
Odpowiedź 469,3 g jest prawidłowa, ponieważ obliczenia opierają się na stosunku mas molowych soli bezwodnej i uwodnionej. Siarczan(VI) miedzi(II) w postaci uwodnionej (CuSO4·5H2O) zawiera cząsteczki wody, które muszą zostać usunięte podczas procesu suszenia, aby uzyskać sól bezwodną (CuSO4). Masy molowe: CuSO4 wynoszą około 159,61 g/mol, a CuSO4·5H2O to 249,68 g/mol. Stosując proporcje, można ustalić, że masa siarczanu(VI) miedzi(II)-woda, potrzebna do uzyskania 300 g soli bezwodnej, wynosi około 469,3 g. Praktyczne zastosowanie tej wiedzy jest istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów i soli jest kluczowe dla uzyskania wiarygodnych wyników badań. Dobre praktyki laboratoryjne sugerują, aby zawsze przeprowadzać obliczenia masy przed rozpoczęciem doświadczenia, co pozwala uniknąć błędów i strat materiałowych.

Pytanie 4

Sód metaliczny powinien być przechowywany w laboratorium

A. w butlach metalowych z wodą destylowaną
B. w szklanych naczyniach
C. w butelkach plastikowych
D. w szklanych pojemnikach wypełnionych naftą
Sód metaliczny należy przechowywać w szklanych butlach wypełnionych naftą, ponieważ ma on silne właściwości reaktywne, szczególnie w kontakcie z wodą i powietrzem. Sód reaguje z wodą, wytwarzając wodór i ciepło, co może prowadzić do niebezpiecznych eksplozji. Nafta, jako substancja organiczna, skutecznie izoluje sód od kontaktu z wodą i wilgocią, co zapobiega jego utlenianiu oraz niebezpiecznym reakcjom chemicznym. Ponadto, szklane pojemniki są neutralne chemicznie i nie wchodzą w reakcje z sodem, co czyni je odpowiednim materiałem do przechowywania. Tego rodzaju praktyki są zgodne z normami bezpieczeństwa w laboratoriach chemicznych, gdzie szczególną uwagę zwraca się na odpowiednie metody przechowywania substancji niebezpiecznych. Warto również zauważyć, że w wielu laboratoriach stosuje się podobne metody przechowywania innych reaktywnych metali, aby zminimalizować ryzyko ich reakcji z substancjami zewnętrznymi.

Pytanie 5

Rozdział składników mieszaniny w chromatografii odbywa się dzięki ich różnym

A. rozpuszczalności
B. adsorpcji
C. absorpcji
D. lotności
Chromatograficzny rozdział składników mieszaniny oparty jest na różnicy w adsorpcji tych składników na fazie stacjonarnej i fazie ruchomej. Adsorpcja to proces, w którym cząsteczki substancji przyczepiają się do powierzchni innej substancji. W chromatografii, różne substancje mają różne właściwości adsorpcyjne, co prowadzi do ich odmiennych czasów przejścia przez kolumnę chromatograficzną. Na przykład, w chromatografii cienkowarstwowej (TLC) różne związki chemiczne mogą rozdzielać się na podstawie ich zdolności do adsorbowania się na warstwie stałej (np. silica gel) w porównaniu do ich rozpuszczalności w fazie ruchomej (np. rozpuszczalnik). Zrozumienie procesu adsorpcji jest kluczowe w zastosowaniach takich jak oczyszczanie substancji chemicznych, identyfikacja związków w analizach laboratoryjnych oraz w przemyśle farmaceutycznym do analizy jakości leków. Dobre praktyki chromatograficzne wymagają znajomości parametrów adsorpcyjnych różnych substancji, co umożliwia optymalne warunki rozdziału.

Pytanie 6

Jakie substancje są potrzebne do uzyskania nierozpuszczalnego wodorotlenku cynku?

A. chlorek cynku i wodorotlenek sodu
B. chlorek cynku i wodę
C. tlenek cynku i wodorotlenek sodu
D. cynk i wodę
Chlorek cynku (ZnCl2) w reakcji z wodorotlenkiem sodu (NaOH) prowadzi do powstania wodorotlenku cynku (Zn(OH)2), który jest nierozpuszczalny w wodzie. W reakcjach chemicznych, w których powstaje osad, takie jak ta, kluczowe jest zrozumienie zasad rozpuszczalności związków. Wodorotlenek cynku wytrąca się z roztworu, co można zobaczyć jako białe zabarwienie. Jest to ważne w wielu zastosowaniach, na przykład w chemii analitycznej do oznaczania cynku w różnych próbkach. Zastosowanie wodorotlenku cynku znajduje się także w przemyśle farmaceutycznym, kosmetycznym oraz w produkcji materiałów budowlanych. Znajomość takich reakcji jest istotna dla chemików, którzy pracują nad syntezami nowych związków oraz w procesach kontroli jakości. Zawężając się do dobrych praktyk, zawsze należy przeprowadzać te reakcje w odpowiednich warunkach laboratoryjnych, dbając o bezpieczeństwo i właściwe postępowanie z odpadami chemicznymi.

Pytanie 7

W laboratorium chemicznym systemy wodne zazwyczaj oznacza się kolorem zielonym

A. przeciwpożarową
B. ściekową
C. wodną
D. parową
W laboratoriach chemicznych, zgodnie z międzynarodowymi standardami oznakowania instalacji, kolor zielony jest przypisany do systemów wodnych. Wszystkie rurociągi i instalacje, które transportują wodę, powinny być oznakowane tym kolorem, co zwiększa bezpieczeństwo i efektywność operacyjną. Oznaczenie wodnych instalacji jest szczególnie istotne w kontekście wypadków i awarii, gdzie szybka identyfikacja systemu może uratować życie. Na przykład, w przypadku pożaru, personel musi wiedzieć, które rurociągi prowadzą do źródeł wody, aby skutecznie przeprowadzić akcję gaśniczą. W praktyce oznakowanie to opiera się na normach takich jak ISO 7010 oraz ANSI Z535, które definiują kolorystykę i sposób oznaczania systemów w różnych środowiskach. W związku z tym, rozumienie i przestrzeganie tych standardów jest kluczowe dla zapewnienia bezpieczeństwa w laboratoriach chemicznych oraz minimalizacji ryzyka związanego z niewłaściwym podłączeniem lub pomyleniem instalacji.

Pytanie 8

Jakie jest stężenie roztworu HNO3, który powstał w wyniku połączenia 50 cm3 roztworu HNO3 o stężeniu 0,2 mol/dm3 oraz 25 cm3 roztworu HNO3 o stężeniu 0,5 mol/dm3?

A. 0,003 mol/dm3
B. 0,3 mol/dm3
C. 0,03 mol/dm3
D. 0,0003 mol/dm3
Aby dowiedzieć się, jakie stężenie będzie miała mieszanka roztworów HNO3, najlepiej zacząć od obliczenia, ile moli kwasu azotowego mamy w każdym z roztworów. W pierwszym roztworze z objętością 50 cm³ i stężeniem 0,2 mol/dm³ wychodzi, że mamy 0,01 mol: 0,2 mol/dm³ * 0,050 dm³ = 0,01 mol. W drugim roztworze, przy 25 cm³ i stężeniu 0,5 mol/dm³, obliczamy to jako 0,0125 mol: 0,5 mol/dm³ * 0,025 dm³ = 0,0125 mol. Jak to dodamy, to razem dostajemy 0,0225 mol. A całkowita objętość po zmieszaniu to 75 cm³, czyli 0,075 dm³. Z tego obliczamy stężenie końcowe: C = n/V, czyli 0,0225 mol / 0,075 dm³ = 0,3 mol/dm³. To, jakie stężenie otrzymasz, jest naprawdę ważne w laboratoriach, bo dokładne przygotowywanie roztworów pozwala uzyskać powtarzalne wyniki. W chemii, jak i w przemyśle, musisz znać te stężenia, żeby mieć pewność, że wszystko idzie zgodnie z planem.

Pytanie 9

Ile masy kwasu mrówkowego jest wymagane do uzyskania 11,2 dm3 tlenku węgla(II) (w warunkach normalnych) w procesie odwodnienia kwasu mrówkowego (M = 46 g/mol) za pomocą kwasu siarkowego(VI), zakładając efektywność procesu na poziomie 70%?

A. 32,9 g
B. 18,6 g
C. 16,1 g
D. 23,1 g
Aby obliczyć masę kwasu mrówkowego potrzebnego do otrzymania 11,2 dm³ tlenku węgla(II) w warunkach normalnych, możemy skorzystać z zależności gazów doskonałych oraz stochiometrii reakcji chemicznych. W warunkach normalnych 1 mol gazu zajmuje objętość 22,4 dm³. Stąd dla 11,2 dm³ tlenku węgla(II) potrzebujemy 0,5 mola CO. Reakcja odwodnienia kwasu mrówkowego (HCOOH) przy użyciu kwasu siarkowego(VI) prowadzi do powstania tlenku węgla(II) oraz wody. Równanie reakcji chemicznej można zapisać jako: HCOOH → CO + H₂O. Z równania wynika, że 1 mol kwasu mrówkowego daje 1 mol tlenku węgla(II). Skoro potrzebujemy 0,5 mola CO, to oznacza, że potrzebujemy 0,5 mola HCOOH. Molarna masa kwasu mrówkowego wynosi 46 g/mol, więc masa potrzebnego kwasu wynosi: 0,5 mol × 46 g/mol = 23 g. Z uwagi na to, że proces ma wydajność 70%, rzeczywista masa kwasu mrówkowego, którą musimy zastosować, wynosi: 23 g / 0,7 = 32,9 g. Ta odpowiedź jest zatem prawidłowa i opiera się na standardach obliczeń chemicznych oraz praktykach laboratoryjnych, które uwzględniają wydajność reakcji. W praktyce, takie obliczenia są kluczowe w przemyśle chemicznym oraz laboratoriach badawczych.

Pytanie 10

Na zdjęciu przedstawiono proces

Ilustracja do pytania
A. dyfuzji.
B. sublimacji.
C. resublimacji.
D. okluzji.
Dyfuzja jest procesem, w którym cząsteczki substancji samorzutnie rozprzestrzeniają się w przestrzeni, co zachodzi w wyniku ich ruchu cieplnego. Obserwowany na zdjęciu proces rozprzestrzeniania się barwnika w wodzie idealnie ilustruje ten fenomen. W praktyce dyfuzja ma kluczowe znaczenie w wielu dziedzinach, takich jak chemia, biologia czy inżynieria materiałowa. Na przykład, w procesach biologicznych, takich jak wymiana gazów w płucach, dyfuzja pozwala na efektywne przenikanie tlenu i dwutlenku węgla przez błony komórkowe. W przemyśle chemicznym dyfuzja jest również istotna w kontekście reakcji chemicznych, gdzie odpowiednie stężenie reagentów może wpływać na szybkość reakcji. Zrozumienie tego procesu jest kluczowe dla efektywnego projektowania i zarządzania różnymi systemami, w których interakcje molekularne odgrywają fundamentalną rolę.

Pytanie 11

Na rysunku przedstawiono urządzenie służące do poboru próbek

Ilustracja do pytania
A. ciekłych.
B. stałych.
C. proszkowych.
D. sypkich.
Podane odpowiedzi dotyczące sypkich, proszkowych oraz stałych materiałów są nieodpowiednie w kontekście opisanego urządzenia do poboru próbek. Urządzenia przeznaczone do próbek sypkich zwykle mają inny system działania, który polega na wykorzystaniu specjalnych mechanizmów w celu uniknięcia pylenia i utraty materiału podczas procesu pobierania. W przypadku urządzeń do próbek proszkowych istotne jest, by zapewnić szczelność i zapobiec ich rozsypywaniu, co czyni je zupełnie innymi w budowie i funkcji od urządzeń do poboru próbek cieczy. Ponadto, urządzenia do pobierania próbek stałych często używają adapterów, które pozwalają na efektywne i bezpieczne wydobycie materiału z zamkniętych pojemników, co jest sprzeczne z konstrukcją przedstawionego urządzenia. Typowe błędy myślowe w tym przypadku mogą wynikać z mylenia właściwości fizycznych różnych stanów skupienia materii. Użytkownik mógł zakładać, że wszystkie urządzenia do poboru próbek działają na tej samej zasadzie, co prowadzi do nieprawidłowych wniosków. Kluczowe jest zrozumienie różnic w mechanizmach pobierania próbek w zależności od ich formy, co w praktyce przekłada się na jakość i reprezentatywność analizowanych materiałów. Zgodność z normami branżowymi jest niezbędna dla zapewnienia rzetelnych wyników analizy.

Pytanie 12

Symbol "In" znajduje się na

A. biuretach i oznacza sprzęt kalibrowany "na wlew"
B. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wylew"
C. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wlew"
D. pipetach i oznacza sprzęt kalibrowany "na wylew"
Dobra robota! Odpowiedź, którą wybrałeś, jest całkiem trafna. Symbol 'In' rzeczywiście oznacza kolby miarowe, które służą do dokładnego mierzenia objętości cieczy. Kalibracja 'na wlew' jest kluczowa, bo chodzi o to, żeby zmierzyć ciecz do poziomu krawędzi menisku. To ma ogromne znaczenie, zwłaszcza w chemii, gdzie precyzja jest na wagę złota. W laboratoriach często korzysta się z kolb, żeby mieć pewność, że każdy eksperyment jest powtarzalny i wyniki są wiarygodne. Jak napełniasz kolbę do oznaczenia, to wiesz, że używasz całej tej objętości cieczy, co minimalizuje ryzyko błędów. Dlatego warto znać te symbole, bo to podstawa w pracy każdego chemika.

Pytanie 13

Przy transporcie próbek wody zaleca się, aby próbki były

A. zalkalizowane
B. zakwaszone do pH < 6
C. schłodzone do temperatury 2 - 5°C
D. narażone na działanie światła
Schłodzenie próbek wody do temperatury 2 - 5°C to naprawdę ważny krok, gdy transportujemy te próbki. Chodzi o to, żeby zmniejszyć wszelkie zmiany w ich składzie chemicznym i biologicznym. Niska temperatura spowalnia mikroorganizmy i różne reakcje chemiczne, które mogą zniszczyć próbki. W praktyce, według wytycznych takich organizacji jak EPA albo ISO, próbki powinny być transportowane w termosach czy chłodnicach, żeby zachować ich właściwości fizykochemiczne. Na przykład, jeśli analizujemy wodę pitną, to dobre utrzymanie temperatury jest konieczne dla dokładnych wyników badań, co jest kluczowe dla zdrowia publicznego. Dodatkowo, schłodzenie próbek pomaga też w zachowaniu ich wartości analitycznej, co jest ważne, zwłaszcza w kontekście monitorowania jakości wód w środowisku. Dlatego naprawdę trzeba trzymać się tych standardów, żeby uzyskać wiarygodne wyniki.

Pytanie 14

Transformacja zolu w żel to zjawisko określane jako

A. sedymentacja
B. peptyzacja
C. azulacja
D. koagulacja
Koagulacja jest procesem, w którym cząstki zawieszone w cieczy łączą się w większe agregaty, co prowadzi do utworzenia żelu. W kontekście przemiany zolu w żel, koagulacja jest kluczowym etapem, w którym cząstki zolu zaczynają się łączyć, co prowadzi do strukturalnych zmian w materiale. Przykładem zastosowania tej wiedzy jest produkcja żeli polimerowych, które wykorzystywane są w przemyśle kosmetycznym oraz farmaceutycznym. W tych branżach koagulacja jest istotna, ponieważ kontrolowanie tego procesu pozwala na uzyskanie pożądanej tekstury i stabilności produktu. W praktyce, inżynierowie często stosują techniki, takie jak dodawanie koagulantów, aby przyspieszyć proces koagulacji w złożonych formulacjach. Dobre praktyki w tym zakresie obejmują również optymalizację parametrów procesu, takich jak temperatura i pH, które mogą znacząco wpływać na efektywność koagulacji. Zrozumienie tej przemiany jest kluczowe w wielu dziedzinach inżynierii materiałowej oraz chemicznej.

Pytanie 15

Na podstawie informacji zawartej na pipecie, została ona skalibrowana na

A. wylew.
B. zimno.
C. wlew.
D. gorąco.
Odpowiedź 'wylew' jest prawidłowa, ponieważ oznacza, że pipecie nadano skalę pomiarową, która jest używana do precyzyjnego dozowania cieczy. W kontekście laboratoriów i procedur naukowych, pipecie, zwanej również pipetą, należy przypisać odpowiednią kalibrację, aby zapewnić dokładność i powtarzalność wyników. Standardy ISO oraz normy, takie jak ISO 8655, podkreślają znaczenie kalibracji pipet, co jest kluczowe w analizach chemicznych oraz biologicznych. W praktyce, pipecie skalibrowanej na 'wylew' przypisuje się objętość, którą można precyzyjnie odmierzyć i przenieść z jednego naczynia do drugiego, co ma istotne zastosowanie w produkcji leków oraz testach laboratoryjnych. Przykładem może być przygotowanie roztworu, gdzie każdy mililitr musi być dokładnie odmierzone, by uniknąć błędów w badaniach. Ponadto, kalibracja na 'wylew' pozwala na minimalizację strat cieczy, co jest niezbędne w przypadku drobnych reagentów o wysokich kosztach.

Pytanie 16

Na podstawie informacji zawartych w tabeli określ, który parametr spośród podanych należy oznaczyć w pierwszej kolejności.

Tabela. Sposoby utrwalania próbek wody i ścieków, miejsce analizy, dopuszczalny czas przechowywania próbek
Oznaczany parametrRodzaj naczynia do przechowywania próbkiSposób utrwalania próbkiMiejsce wykonania analizyDopuszczalny czas przechowywania próbki
Chlorkiszklane
lub polietylenowe
-laboratorium96 godzin
Chlor pozostałyszklane-w miejscu
pobrania próbki
-
ChZTszklanezakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium24 godziny
Kwasowośćszklane
lub polietylenowe
schłodzenie
do temperatury 2-5°C
laboratorium4 godziny
Manganszklane
lub polietylenowe
zakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium48 godziny
A. Kwasowość.
B. Chlor pozostały.
C. Chemiczne zapotrzebowanie na tlen (ChZT).
D. Mangan.
Odpowiedź 'Chlor pozostały' jest prawidłowa, ponieważ w kontekście monitorowania jakości wody, zwłaszcza w systemach wodociągowych, oznaczanie pozostałego chloru jest kluczowym wskaźnikiem efektywności dezynfekcji. Chlor pozostały jest to ilość chloru, która pozostaje w wodzie po procesie dezynfekcji i jest niezbędna do zapewnienia, że woda pozostaje wolna od patogenów. Zgodnie z normami, takimi jak PN-EN ISO 7393-2, regularne monitorowanie poziomu chloru pozostałego jest standardem branżowym, aby zapewnić bezpieczeństwo wody pitnej. Niewystarczający poziom chloru może wskazywać na niewłaściwe procesy dezynfekcji, co może prowadzić do zagrożeń zdrowotnych. W praktyce oznaczanie chloru pozostałego powinno być wykonywane systematycznie, a wyniki interpretowane w kontekście całego systemu uzdatniania wody, co pozwala na podejmowanie odpowiednich działań korygujących.

Pytanie 17

Zestaw do filtracji nie zawiera

A. szklanej bagietki
B. metalowego statywu
C. szklanego lejka
D. kolby miarowej
Wybór bagietki szklanej, lejka szklanego lub statywu metalowego jako odpowiedzi na pytanie o brakującą rzecz w zestawie do sączenia jest mylny, ponieważ każde z tych narzędzi pełni istotną rolę w procesie filtracji. Bagietka szklana jest wykorzystywana do precyzyjnego przenoszenia cieczy, co jest kluczowe w wielu protokołach laboratoryjnych, zwłaszcza przy wykonywaniu zadań wymagających dużej staranności, takich jak przenoszenie odczynników. Lejek szklany jest niezbędny do efektywnego sączenia, ponieważ jego kształt umożliwia skierowanie cieczy do naczynia zbiorczego, minimalizując ryzyko rozlania. Statyw metalowy z kolei stabilizuje i utrzymuje różne elementy wyposażenia laboratoryjnego, co jest nieocenione podczas pracy z substancjami chemicznymi w różnych formach. Zrozumienie znaczenia każdego z tych narzędzi pomaga uniknąć typowych błędów w laboratoriach, takich jak niewłaściwe przenoszenie cieczy, co może prowadzić do zanieczyszczenia próbek czy błędnych wyników eksperymentów. Dlatego ważne jest, aby przy wyborze narzędzi kierować się ich funkcjonalnością i zastosowaniem w konkretnych procedurach laboratoryjnych.

Pytanie 18

Na opakowaniu którego odczynnika powinien znaleźć się piktogram przedstawiony na ilustracji?

Ilustracja do pytania
A. Glukozy.
B. Stearynianu sodu.
C. Wodorotlenku sodu.
D. Chlorku sodu.
Prawidłowa odpowiedź to wodorotlenek sodu, ponieważ piktogram przedstawiony na ilustracji symbolizuje substancje żrące. Wodorotlenek sodu (NaOH) jest silną zasadą, która wykazuje właściwości żrące, co sprawia, że jest niezwykle ważne, aby był odpowiednio oznaczony na opakowaniu. W praktyce, wodorotlenek sodu jest szeroko stosowany w przemyśle chemicznym, w produkcji mydeł oraz jako środek czyszczący w gospodarstwie domowym. Zgodnie z przepisami dotyczącymi substancji niebezpiecznych, takie jak Rozporządzenie (WE) nr 1272/2008, każda substancja żrąca musi być oznaczona odpowiednim piktogramem, aby ułatwić identyfikację zagrożeń i zapewnić bezpieczeństwo użytkowników. Ponadto, stosowanie odpowiednich środków ochrony osobistej, takich jak rękawice i gogle ochronne, jest zalecane przy pracy z wodorotlenkiem sodu, aby zminimalizować ryzyko poważnych obrażeń. Dlatego zrozumienie symboli na etykietach jest kluczowe dla bezpiecznego obchodzenia się z substancjami chemicznymi.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Połączono równe ilości cynku i bromu, a następnie poddano je reakcji Zn + Br2 → ZnBr2. W tych warunkach stopień reakcji cynku wynosi (masy atomowe: Zn – 65u, Br – 80u)?

A. 0,4
B. 1,0
C. 0,8
D. 0,6
Odpowiedź 0,4 jest poprawna, ponieważ obliczenia wskazują, że stosunek molowy cynku do bromu w reakcji wynosi 1:1. W przypadku reakcji, gdzie mamy do czynienia z równowagą stechiometryczną, kluczowe jest zrozumienie, że dla 1 mola Zn potrzeba 1 mola Br<sub>2</sub>. Zastosowane masy atomowe (Zn – 65u, Br – 80u) pozwalają na określenie, ile moli każdej substancji mamy w danej reakcji. Wymieszenie równych mas cynku i bromu, na przykład 65 g cynku i 80 g bromu, prowadzi do sytuacji, w której cynk jest reagentem ograniczającym, ponieważ mamy mniej moli cynku (1 mol) niż bromu (1,0 mol). W wyniku tego, tylko część bromu będzie reagować z cynkiem. Obliczając stopień przereagowania cynku, stwierdzamy, że 0,4 wynika z faktu, iż 0,4 mola cynku zareaguje całkowicie, a pozostałe 0,6 mola bromu nie znajdzie reagentu do reakcji. Takie analizy są kluczowe w praktyce chemicznej i inżynieryjnej, gdzie precyzyjne obliczenia dają podstawy do skutecznego projektowania procesów chemicznych.

Pytanie 21

Jakie urządzenie wykorzystuje się do pobierania próbek gazów?

A. barometr
B. czerpak
C. pojemnik
D. aspirator
Aspirator jest urządzeniem zaprojektowanym do pobierania próbek gazów w sposób kontrolowany i skuteczny. Jego działanie opiera się na zasadzie podciśnienia, które umożliwia pobieranie gazów bez narażania ich na zanieczyszczenia czy straty. W praktyce, aspiratory są wykorzystywane w laboratoriach analitycznych, przemyśle chemicznym oraz w monitorowaniu jakości powietrza. Użycie aspiratora pozwala na precyzyjne pobieranie próbek z określonych lokalizacji, co jest kluczowe w analizach, takich jak badanie emisji z kominów, czy ocena stężenia substancji szkodliwych w atmosferze. Standardy, takie jak ISO 17025, podkreślają znaczenie urządzeń do pobierania próbek w kontekście wiarygodności wyników badań. Należy również pamiętać, że aspiratory są często stosowane w połączeniu z odpowiednimi filtrami, co dodatkowo zwiększa jakość pobieranych próbek. Takie podejście zapewnia integrację metod analitycznych z procedurami zapewnienia jakości.

Pytanie 22

W wypadku oblania skóry kwasem mrówkowym należy

Wyciąg z karty charakterystyki
Skład: kwas mrówkowy 80%, woda 11-20%
Pierwsza pomoc.
Po narażeniu przez drogi oddechowe. Natychmiast wezwać lekarza.
Po kontakcie ze skórą. Zanieczyszczoną skórę natychmiast przemyć dużą ilością wody.
A. przemyć skórę dużą ilością wody.
B. zastosować na skórę mydło w płynie.
C. podać do picia dużą ilość schłodzonej wody.
D. polać skórę środkiem zobojętniającym.
Przemycie skóry dużą ilością wody w przypadku kontaktu z kwasem mrówkowym jest kluczowym działaniem, które ma na celu minimalizację uszkodzeń. Woda działa jak rozcieńczalnik, co pozwala na szybsze usunięcie szkodliwej substancji z powierzchni skóry. Zgodnie z wytycznymi zawartymi w standardach pierwszej pomocy, każdy przypadek kontaktu skóry z substancjami żrącymi powinien być traktowany jako sytuacja wymagająca natychmiastowej reakcji. W praktyce, jeśli dojdzie do kontaktu z kwasem mrówkowym, należy jak najszybciej przemyć zanieczyszczoną skórę wodą o temperaturze pokojowej przez co najmniej 15 minut. Ważne jest, aby nie stosować innych substancji ani środków chemicznych, które mogłyby reagować z kwasem, co mogłoby prowadzić do powstania dodatkowych, szkodliwych związków chemicznych. Warto również pamiętać, że w przypadku poważniejszych oparzeń chemicznych należy zawsze skontaktować się z profesjonalną pomocą medyczną, aby ocenić stan pacjenta i podjąć dalsze działania. Przechowywanie odpowiednich materiałów pierwszej pomocy w miejscach, gdzie mogą wystąpić takie wypadki, jest również zalecane jako dobra praktyka. Przykładem zastosowania jest sytuacja w laboratoriach chemicznych, gdzie pracownicy są szkoleni w zakresie reagowania na wypadki z substancjami chemicznymi.

Pytanie 23

Użycie płuczek jest konieczne w trakcie procesu

A. krystalizacji
B. oczyszczania gazów
C. destylacji
D. flotacji
Płuczkami, czyli urządzeniami stosowanymi do oczyszczania gazów, posługujemy się w celu usunięcia zanieczyszczeń oraz toksycznych substancji z gazów odpadowych. W procesie tym gaz przepływa przez ciecz, najczęściej wodę lub roztwory chemiczne, które absorbują zanieczyszczenia. Przykładem zastosowania płuczek jest przemysł chemiczny, gdzie gazy powstałe w wyniku reakcji chemicznych często zawierają szkodliwe dla środowiska substancje. Płuczki są zgodne z normami ochrony środowiska, takimi jak dyrektywy unijne dotyczące emisji gazów do atmosfery. Dzięki zastosowaniu nowoczesnych technologii płuczek, można osiągnąć wysoką efektywność oczyszczania, co przyczynia się do zmniejszenia emisji zanieczyszczeń i ochrony zdrowia publicznego. W praktyce płuczkami można również oczyszczać gazy przemysłowe, co jest kluczowe w kontekście zrównoważonego rozwoju i odpowiedzialności ekologicznej przedsiębiorstw.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jakim kolorem zazwyczaj oznacza się przewody w instalacji gazowej w laboratorium?

A. szarym
B. niebieskim
C. zielonym
D. żółtym
Przewody instalacji gazowej w laboratoriach oznaczone są kolorem żółtym, co jest zgodne z ogólnymi zasadami i normami dotyczącymi oznakowania instalacji gazowych. Kolor żółty symbolizuje substancje niebezpieczne, w tym gazy palne oraz toksyczne, co jest kluczowe dla bezpieczeństwa pracy w laboratoriach. Oznakowanie to ma na celu szybką identyfikację potencjalnych zagrożeń oraz minimalizację ryzyka w przypadku awarii. Przykładem zastosowania tej zasady jest sytuacja, w której technik laboratoryjny musi szybko zlokalizować przewody gazowe, aby przeprowadzić konserwację lub w przypadku awarii. Zgodnie z normami branżowymi (np. PN-EN ISO 7010), oznakowanie instalacji gazowych powinno być wyraźne i czytelne, a także regularnie kontrolowane, aby zapewnić jego aktualność i stan techniczny. Należy także pamiętać, że przestrzeganie zasad dotyczących oznakowania przewodów gazowych nie tylko zwiększa bezpieczeństwo, ale także ułatwia pracownikom szybkie podejmowanie decyzji w sytuacjach kryzysowych.

Pytanie 26

Oblicz, jaką ilość węglanu sodu w gramach należy przygotować, aby uzyskać 500 cm3 roztworu tej soli o stężeniu 0,1000 mol/dm3.
MNa = 23 g/mol, MC = 12 g/mol, MO = 16 g/mol

A. 7,0000 g
B. 7,5000 g
C. 5,3000 g
D. 5,0000 g
Aby obliczyć masę węglanu sodu (Na2CO3) potrzebną do przygotowania 500 cm³ roztworu o stężeniu 0,1000 mol/dm³, należy najpierw obliczyć liczbę moli tej soli. Stężenie 0,1000 mol/dm³ oznacza, że w 1 dm³ (1000 cm³) roztworu znajduje się 0,1000 mola Na2CO3. Zatem, w 500 cm³ roztworu znajdować się będzie 0,0500 mola: 0,1000 mol/dm³ * 0,500 dm³ = 0,0500 mol. Następnie, należy obliczyć masę węglanu sodu, stosując wzór: masa = liczba moli * masa molowa. Masa molowa Na2CO3 wynosi: 23 g/mol (Na) * 2 + 12 g/mol (C) + 16 g/mol (O) * 3 = 106 g/mol. Zatem, masa Na2CO3 potrzebna do przygotowania roztworu wynosi: 0,0500 mol * 106 g/mol = 5,3000 g. Takie obliczenia są powszechnie wykorzystywane w laboratoriach chemicznych i są zgodne z zasadami przygotowywania roztworów. Zachowanie precyzji w obliczeniach jest kluczowe dla uzyskania pożądanych stężeń roztworów w praktyce.

Pytanie 27

Aby oczyścić zwęglone osady w probówce, należy zastosować

A. rozpuszczalnik organiczny
B. słaby kwas
C. słabą zasadę
D. mieszaninę chromową
Mieszanina chromowa składa się z kwasu siarkowego i dichromianu potasu, co czyni ją klasycznym środkiem do oczyszczania powierzchni zanieczyszczonych zwęglonymi osadami. Jej działanie polega na utlenianiu związków organicznych, co umożliwia ich skuteczne usunięcie. Przykładem zastosowania mieszaniny chromowej jest czyszczenie narzędzi laboratoryjnych oraz szkła laboratoryjnego, gdzie trudne do usunięcia resztki organiczne mogą zakłócać eksperymenty. W branży chemicznej stosowanie tej metody jest zgodne z najlepszymi praktykami, ponieważ nie tylko efektywnie usuwa osady, ale również minimalizuje ryzyko kontaminacji kolejnych prób. Ponadto, zgodnie z normami bezpieczeństwa, osoby pracujące z mieszanką chromową powinny stosować odpowiednie środki ochrony osobistej oraz przestrzegać zasad dotyczących zarządzania odpadami chemicznymi, aby zminimalizować wpływ na środowisko. Właściwe korzystanie z mieszaniny chromowej jest kluczowe dla osiągnięcia wysokiej jakości wyników w laboratoriach badawczych.

Pytanie 28

Jakie jest znaczenie skrótu: cz. na etykiecie reagentu chemicznego?

A. Czystość do analizy
B. Czystość spektralna
C. Czystość chemiczna
D. Czysty
Skrót 'cz.' na etykiecie odczynnika chemicznego oznacza 'czysty'. Jest to termin powszechnie używany w chemii, który wskazuje, że dany odczynnik jest odpowiedniej jakości i spełnia określone standardy czystości. Czystość odczynnika jest kluczowym aspektem w badaniach analitycznych, gdyż zanieczyszczenia mogą wpływać na wyniki pomiarów oraz jakość przeprowadzanych reakcji chemicznych. Na przykład w spektroskopii czy chromatografii ważne jest, aby stosowane substancje były jak najbardziej czyste, aby uniknąć interferencji. W praktyce, odczynniki oznaczone jako czyste są używane w laboratoriach do analizy chemicznej, syntezy chemicznej oraz w innych zastosowaniach, gdzie zanieczyszczenia mogą prowadzić do błędnych wyników. Standardy takie jak ASTM i ISO dostarczają wytycznych dotyczących jakości odczynników, co pomaga w zapewnieniu ich odpowiedniej czystości.

Pytanie 29

Przedstawiono wyciąg z karty charakterystyki substancji chemicznej. Na podstawie informacji zawartej w zamieszczonym fragmencie karty wskaż wzór chemiczny substancji, której można użyć jako materiału neutralizującego lodowaty kwas octowy.

Kwas octowy lodowaty 99,5%

Materiały zapobiegające rozprzestrzenianiu się skażenia i służące do usuwania skażenia

Jeżeli to możliwe i bezpieczne, zlikwidować lub ograniczyć wyciek (uszczelnić, zamknąć dopływ cieczy, uszkodzone opakowanie umieścić w opakowaniu awaryjnym). Ograniczyć rozprzestrzenianie się rozlewiska przez obwałowanie terenu; zebrane duże ilości cieczy odpompować. Małe ilości rozlanej cieczy przysypać niepalnym materiałem chłonnym (ziemia, piasek oraz materiałami neutralizującymi kwasy, np. węglanem wapnia lub sodu, zmielonym wapieniem, dolomitem), zebrać do zamykanego pojemnika i przekazać do zniszczenia.

Zanieczyszczoną powierzchnię spłukać wodą. Popłuczyny zebrać i usunąć jako odpad niebezpieczny.

A. (NH4)2SO>sub>4
B. CaSO4
C. CaCO3 • MgCO3
D. NaCl
Odpowiedź "CaCO3 • MgCO3" jest poprawna, ponieważ wskazuje na zastosowanie dolomitu, który zawiera zarówno węglan wapnia (CaCO3), jak i węglan magnezu (MgCO3). Te substancje są znane z właściwości alkalicznych, co sprawia, że są skutecznymi materiałami neutralizującymi kwasy, takie jak lodowaty kwas octowy. W praktyce, węglan wapnia jest często wykorzystywany w przemysłach chemicznych i budowlanych jako środek neutralizujący, a dolomit znajduje zastosowanie w rolnictwie jako poprawiacz gleby. Neutralizacja kwasów jest kluczowa w procesach przemysłowych, aby zminimalizować ryzyko korozji i uszkodzeń instalacji. Standardy dotyczące stosowania materiałów neutralizujących opierają się na zasadach bezpieczeństwa chemicznego, które wymagają stosowania odpowiednich substancji w celu ochrony zdrowia i środowiska. Zdecydowanie zaleca się korzystanie z tego typu włączy w laboratoriach oraz podczas procesów produkcyjnych, aby zapewnić zgodność z normami ochrony środowiska.

Pytanie 30

Korzystając z danych w tabeli wskaż, ile cm3 36% roztworu HCl należy użyć, aby przygotować 250 cm3 0,1-molowego roztworu tego kwasu.

% wagowy
[%]
d420
[g/cm3]
m HCl
w 100 cm3
[g/100cm3]
CM HCl
[mol/dm3]
301,149234,489,46
321,159337,1010,17
341,169139,7510,90
361,178942,4411,64
A. 2,50 cm3
B. 2,52 cm3
C. 2,13 cm3
D. 2,15 cm3
Aby przygotować 250 cm³ 0,1-molowego roztworu HCl z 36% roztworu, użycie 2,15 cm³ tego roztworu jest poprawne. Obliczenia opierają się na zasadzie rozcieńczenia, która jest kluczowym pojęciem w chemii. Przygotowując roztwory, istotne jest, aby znać stężenie molowe roztworu wyjściowego oraz objętość roztworu, który chcemy uzyskać. W tym przypadku, 36% roztwór HCl ma stężenie molowe wynoszące około 10 mol/dm³. Aby obliczyć, ile tego roztworu potrzeba, stosujemy równanie rozcieńczenia: C1 * V1 = C2 * V2, gdzie C1 to stężenie roztworu wyjściowego, V1 to objętość roztworu wyjściowego, C2 to stężenie roztworu docelowego, a V2 to objętość roztworu docelowego. Po podstawieniu wartości i przekształceniu równania otrzymujemy, że V1 wynosi 2,15 cm³. Praktyczne zastosowanie tej wiedzy jest niezwykle istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników eksperymentalnych. Dobrą praktyką jest również zawsze zwracać uwagę na jednostki oraz dokładność pomiaru, co jest fundamentalne w chemii analitycznej.

Pytanie 31

Wykorzystując pipetę gazową, pobrano próbkę azotu (Mn2 = 28 g/mol) o objętości 250 cm3 w standardowych warunkach. Jaką masę ma zmierzony azot?

A. 3,1250 g
B. 0,1563 g
C. 1,5635 g
D. 0,3125 g
Odpowiedź 0,3125 g jest prawidłowa, ponieważ można ją obliczyć za pomocą wzoru na masę gazu w warunkach normalnych. W warunkach normalnych (0°C i 1 atm) 1 mol gazu zajmuje objętość 22,4 litra (22400 cm³). Mając objętość 250 cm³, możemy obliczyć ilość moli azotu: n = V / V_m, gdzie V_m to objętość molowa gazu. Zatem n = 250 cm³ / 22400 cm³/mol = 0,01116 mol. Następnie, wykorzystując masę molową azotu (28 g/mol), obliczamy masę: m = n * M, co daje m = 0,01116 mol * 28 g/mol = 0,3125 g. W laboratoriach chemicznych, dokładne pomiary masy gazów są kluczowe, szczególnie w reakcjach, które wymagają precyzyjnych ilości reagentów. Zastosowanie pipet gazowych oraz znajomość zależności między objętością, ilością moli a masą jest fundamentalne w analityce chemicznej oraz w syntezach chemicznych, gdzie precyzja wpływa na wyniki eksperymentów oraz ich powtarzalność.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Jaką objętość w warunkach standardowych zajmie 1,7 g amoniaku (masa molowa amoniaku wynosi 17 g/mol)?

A. 22,4 dm3
B. 4,48 dm3
C. 11,2 dm3
D. 2,24 dm3
Aby obliczyć objętość amoniaku w warunkach normalnych (0°C i 1013 hPa), należy skorzystać z prawa gazu idealnego. Masa molowa amoniaku (NH₃) wynosi 17 g/mol, co oznacza, że 1,7 g amoniaku odpowiada 0,1 mola (1,7 g / 17 g/mol = 0,1 mol). W warunkach normalnych 1 mol gazu zajmuje objętość 22,4 dm³. Zatem, aby obliczyć objętość 0,1 mola, należy pomnożyć liczbę moli przez objętość 1 mola: 0,1 mol × 22,4 dm³/mol = 2,24 dm³. Tego rodzaju obliczenia są kluczowe w chemii, zwłaszcza w kontekście reakcji gazowych oraz w przemyśle chemicznym, gdzie znajomość objętości gazów jest niezbędna do odpowiedniego bilansowania reakcji chemicznych. Ponadto, zrozumienie tych zasad pomaga w praktycznych zastosowaniach, takich jak określenie ilości reagentów w syntezach chemicznych oraz w analizach procesów technologicznych.

Pytanie 35

Mianowanie roztworu o stężeniu przybliżonym można wykonać poprzez

A. miareczkowanie tym samym roztworem mianowanym o ściśle określonym stężeniu.
B. zmierzenie gęstości tego roztworu.
C. miareczkowanie innym roztworem, który nie jest mianowany.
D. miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu.
Mianowanie roztworu o stężeniu przybliżonym można skutecznie przeprowadzić poprzez miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu, ponieważ pozwala to na precyzyjne określenie ilości molesów substancji czynnej w analizowanym roztworze. W praktyce, podczas miareczkowania wykorzystuje się znany roztwór o dokładnie zmierzonym stężeniu, co pozwala na dokładne obliczenia i analizę wyników. Na przykład, w laboratoriach chemicznych często wykorzystuje się miareczkowanie kwasu solnego roztworem wodorotlenku sodu o znanym stężeniu, co umożliwia precyzyjne określenie stężenia kwasu. Zgodnie z normami branżowymi, takimi jak ISO 8655, precyzyjne miareczkowanie jest kluczowe dla uzyskania wiarygodnych wyników analitycznych. Dodatkowo, stosowanie roztworów mianowanych eliminuje wiele zmiennych, które mogłyby wpłynąć na wynik, takich jak niejednorodność roztworów niemianowanych, co czyni je bardziej niezawodnymi w kontekście stosowania w analizach laboratoryjnych.

Pytanie 36

Próbka laboratoryjna posiadająca cechy higroskopijne powinna być pakowana

A. w torby papierowe
B. w skrzynie drewniane
C. w szczelne opakowania
D. w torby jutowe
Odpowiedź "w hermetyczne opakowania" jest prawidłowa, ponieważ próbki laboratoryjne o właściwościach higroskopijnych wykazują silną tendencję do absorbcji wilgoci z otoczenia, co może prowadzić do ich degradacji lub zmian w składzie chemicznym. Hermetyczne opakowania zapewniają skuteczną barierę przed wilgocią, co jest kluczowe dla zachowania integralności takich próbek. Przykładem zastosowania hermetycznych opakowań są próbki soli, które muszą być przechowywane w suchym środowisku, aby uniknąć ich aglomeracji lub rozpuszczenia. Zgodnie z wytycznymi ISO 17025 dotyczącymi akredytacji laboratoriów, zaleca się stosowanie hermetycznych pojemników jako standardowej praktyki w celu zapewnienia, że wyniki analizy są wiarygodne i powtarzalne. Ponadto, hermetyczne opakowania mogą być również stosowane w transporcie próbek, co zmniejsza ryzyko ich kontaminacji i utraty właściwości.

Pytanie 37

Gęstość cieczy w próbce określa się bezpośrednio za pomocą

A. kolorymetru
B. konduktometru
C. areometru
D. potencjometru
Areometr to urządzenie służące do pomiaru gęstości cieczy. Działa na zasadzie wyporu, co oznacza, że jego zasada działania opiera się na Archimedesie. Areometr jest zanurzany w cieczy, a jego zanurzenie jest proporcjonalne do gęstości tej cieczy. Im większa gęstość, tym mniejsze zanurzenie. To narzędzie jest powszechnie wykorzystywane w laboratoriach chemicznych, przemysłowych i w gospodarstwie domowym, na przykład do pomiaru gęstości roztworów cukru, alkoholu czy innych cieczy. W praktyce, areometry są kalibrowane do konkretnych temperatur, co jest ważnym aspektem ich użytkowania, ponieważ gęstość cieczy zmienia się wraz z temperaturą. Użycie areometru, zamiast innych urządzeń, jest zgodne z najlepszymi praktykami laboratoryjnymi, ponieważ zapewnia dokładne pomiary w różnych zastosowaniach, takich jak kontrola jakości w przemyśle spożywczym czy chemicznym.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Sączenie osadów kłaczkowatych odbywa się przy użyciu sączków

A. bardzo gęste
B. twarde
C. rzadkie
D. średnio gęste
Odpowiedź 'rzadkie' jest poprawna, ponieważ do sączenia osadów kłaczkowatych, takich jak osady z procesu oczyszczania ścieków czy osady w laboratoriach chemicznych, najczęściej stosuje się sączki rzadkie, które charakteryzują się większymi porami. Rzadkie sączki pozwalają na skuteczne oddzielanie cząstek stałych od cieczy, minimalizując przy tym ryzyko zatykania się materiału filtracyjnego. Stosowane są w różnych aplikacjach, w tym w analizach chemicznych oraz w przemyśle, gdzie kluczowe jest szybkie i efektywne usuwanie osadów. Zgodnie z normami ISO 4788, które dotyczą sprzętu laboratoryjnego, dobór odpowiedniego sączka jest istotny dla uzyskania precyzyjnych wyników analitycznych. Przykładem zastosowania mogą być laboratoria zajmujące się badaniem wody, gdzie osady kłaczkowate mogą wpływać na jakość wyników analizy i dlatego ważne jest, aby używać sączków o odpowiedniej gęstości, aby uniknąć błędów w pomiarach.

Pytanie 40

Zbiór próbek pierwotnych tworzy próbkę

A. analityczną
B. laboratoryjną
C. ogólną
D. jednostkową
Próbka ogólna to zbiór próbek pierwotnych, które reprezentują szerszą populację danego materiału lub substancji. W kontekście badań laboratoryjnych, próba ogólna jest kluczowa, ponieważ ma na celu uzyskanie wiarygodnych wyników analitycznych, które można ekstrapolować na całość populacji. Na przykład, w przemyśle spożywczym, podczas kontroli jakości, pobiera się próbki ogólne z różnych partii produktów, aby ocenić ich jakość i bezpieczeństwo. Według standardów ISO 2859, próby ogólne powinny być pobierane w sposób losowy, aby zminimalizować ryzyko błędów systematycznych w ocenie. Spojrzenie na próbkę jako całość pozwala na lepszą interpretację danych oraz podejmowanie świadomych decyzji dotyczących procesów produkcyjnych i kontroli jakości. Dlatego zrozumienie różnicy między próbką ogólną a innymi typami próbek, takimi jak próbki jednostkowe, jest fundamentalne w zarządzaniu jakością oraz w badaniach naukowych.