Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 10 lutego 2026 21:26
  • Data zakończenia: 10 lutego 2026 21:56

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Na ilustracji przedstawiono rusztowanie

Ilustracja do pytania
A. wiszące - koszowe.
B. drabinowe.
C. ramowe.
D. na kozłach teleskopowych.
Rusztowanie ramowe, które zostało przedstawione na ilustracji, jest jednym z najczęściej używanych typów rusztowań w branży budowlanej. Charakteryzuje się ono modułową konstrukcją, która umożliwia szybkie i łatwe montowanie oraz demontowanie. Pionowe i poziome ramy tworzą stabilne i wytrzymałe szkielet, co czyni je idealnym rozwiązaniem do prac na wysokości, takich jak malowanie, tynkowanie, czy instalacje elektryczne. Dodatkowo, rusztowania ramowe są zgodne z normami bezpieczeństwa, co jest kluczowe w kontekście ochrony pracowników. Zastosowanie rusztowania ramowego pozwala na efektywne wykorzystanie przestrzeni roboczej, a także umożliwia dostęp do trudno dostępnych miejsc, co jest nieocenione w dużych projektach budowlanych. W praktyce, rusztowania ramowe są często wykorzystywane w budowach komercyjnych, jak również w renowacji budynków zabytkowych, co potwierdza ich wszechstronność i niezawodność.

Pytanie 2

Uszkodzenie tynku przedstawione na rysunku to

Ilustracja do pytania
A. zabrudzenie.
B. wysolenie.
C. pęknięcie.
D. odbarwienie.
Zabrudzenia, pęknięcia i odbarwienia to zjawiska, które mogą występować na tynku, ale nie są one tożsame z wysoleniem i nie wyjaśniają przedstawionego na zdjęciu problemu. Zabrudzenie tynku polega na osadzaniu się na jego powierzchni zanieczyszczeń, takich jak kurz, smog czy plamy, co najczęściej jest efektem eksploatacji budynku. Pęknięcia natomiast są mechanicznymi uszkodzeniami, które mogą być spowodowane ruchem budynku, zmianami temperatury lub niewłaściwą aplikacją tynku, ale nie mają związku z występowaniem wykwitów solnych. Odbarwienie tynku może być wynikiem działania promieni UV, wilgoci czy nieodpowiednich materiałów wykończeniowych, co również nie odpowiada mechanizmowi wysolenia. Błędne przypisanie tych zjawisk do problemu tynku skutkuje brakiem skutecznych rozwiązań i działań naprawczych. Aby uniknąć takich nieporozumień, ważne jest zrozumienie specyfiki każdego z tych zjawisk oraz ich przyczyn, co pozwala na precyzyjne diagnozowanie problemów i skuteczne podejmowanie działań naprawczych. Rozpoznanie i poprawna identyfikacja wysolenia są kluczowe dla zapobiegania dalszym uszkodzeniom budynku oraz zapewnienia jego właściwej konserwacji.

Pytanie 3

Oblicz koszt montażu stolarki okiennej i drzwiowej w remontowanym pomieszczeniu, którego rzut przedstawiono na rysunku, jeżeli koszt jednostkowy montażu okna wraz z obróbką otworu wynosi 140,00 zł/m, a drzwi 290,00 zł/szt.

Ilustracja do pytania
A. 962,00 zł
B. 1456,00 zł
C. 1074,00 zł
D. 1746,00 zł
Analizując pozostałe odpowiedzi, można zauważyć, że błędnie oszacowano koszty montażu. Koszt montażu stolarki okiennej i drzwiowej powinien być obliczany na podstawie precyzyjnych danych dotyczących ilości i rodzaju instalacji. Przyjmując, że w projekcie uwzględniono 8 metrów bieżących okien oraz 5 sztuk drzwi, nieprzemyślane podejścia prowadzą do błędnych wyników. Przykładem może być mylne przyjęcie zbyt niskiej jednostkowej stawki za montaż okien, co może skutkować nieprawidłowym oszacowaniem całkowitych kosztów. Ponadto, niektóre odpowiedzi mogą wynikać z pomyłek w obliczeniach, takich jak nieprawidłowe obliczenie całkowitej ilości okien lub drzwi. Typowe błędy myślowe obejmują również niedostateczne uwzględnienie kosztów obróbek otworów, które mogą znacząco wpłynąć na całkowity koszt montażu. W praktyce budowlanej kluczowe jest, aby przed rozpoczęciem prac dokładnie oszacować koszty, a także być świadomym wszelkich dodatkowych wydatków, takich jak materiały eksploatacyjne, które mogą się pojawić w trakcie realizacji projektu. Właściwe podejście do kalkulacji kosztów oraz współpraca z doświadczonymi wykonawcami mogą pomóc uniknąć błędów, które negatywnie wpływają na budżet i harmonogram remontu.

Pytanie 4

Na podstawie danych zawartych w tabeli określ maksymalną odległość, w której należy wykonać szczeliny dylatacyjne w ścianie jednowarstwowej wymurowanej z pustaków ceramicznych, o spoinach pionowych niewypełnionych.

Rodzaj muruOdległości Ld między szczelinami dylatacyjnymi (w metrach) w ścianach
szczelinowychjedno- lub dwuwarstwowych o spoinach pionowych
warstwa zewnętrznawarstwa wewnętrznawypełnionychniewypełnionych
Z elementów ceramicznych12403025
Z innych elementów murowych8302520
A. 20 metrów.
B. 25 metrów.
C. 12 metrów.
D. 30 metrów.
Wybór odpowiedzi 25 metrów jako maksymalnej odległości, w której należy wykonać szczeliny dylatacyjne w ścianie jednowarstwowej wymurowanej z pustaków ceramicznych, jest zgodny z danymi zawartymi w tabeli. Zgodnie z normami budowlanymi, dylatacje są niezbędne w konstrukcjach, aby zminimalizować ryzyko pęknięć wynikających z rozszerzalności cieplnej materiałów. W przypadku ścian z pustaków ceramicznych, które mają spoiny pionowe niewypełnione, odległość 25 metrów to standardowy parametr, który zapewnia odpowiednią elastyczność konstrukcji oraz umożliwia neutralizację naprężeń. Przykładowo, w praktyce budowlanej zastosowanie dylatacji co 25 metrów jest efektywnym rozwiązaniem, które jest stosowane w projektach budowlanych zarówno dla budynków mieszkalnych, jak i komercyjnych. Dodatkowo, warto zwrócić uwagę na zalecenia w normach PN-EN 1996-1-1, które podkreślają znaczenie takiego rozkładu dylatacji w kontekście trwałości i bezpieczeństwa konstrukcji.

Pytanie 5

Oblicz wydatki związane z rozbiórką ścian o grubości 25 cm w pomieszczeniu o wymiarach 5 m × 4 m i wysokości 280 cm, jeśli koszt rozbiórki 1 m2 takiej ściany wynosi 185,00 zł?

A. 9 324,00 zł
B. 12 950,00 zł
C. 10 360,00 zł
D. 4 662,00 zł
Analizując pozostałe odpowiedzi, możemy zauważyć, że niepoprawne wyniki wynikają głównie z błędnych obliczeń lub założeń dotyczących powierzchni ścian. Wiele osób może błędnie oszacować całkowitą powierzchnię, pomijając istotne czynniki, takie jak wysokość pomieszczenia lub wymiary ścian. Zdarza się, że pomijane są też mniejsze elementy, takie jak okna czy drzwi, które zmieniają całkowitą powierzchnię wyburzenia. Kolejnym typowym błędem jest nieprawidłowe przeliczenie kosztów, gdzie użytkownik błędnie mnoży powierzchnię przez niewłaściwą stawkę lub pomija jednostki. Możliwe jest także, że błędne odpowiedzi są wynikiem niepoprawnego założenia dotyczącego grubości ścian, co wprowadza dodatkowe zamieszanie w kalkulacji. W kontekście branży budowlanej, precyzyjne wyliczenia są kluczowe, gdyż błędne oszacowanie kosztów może prowadzić do poważnych problemów finansowych dla inwestora. Warto również zwrócić uwagę na znaczenie stosowania standardowych metod kalkulacji kosztów budowlanych, które opierają się na ugruntowanych zasadach i praktykach w branży, co znacznie zwiększa dokładność wyliczeń i pomaga uniknąć pułapek błędnych założeń.

Pytanie 6

Na podstawie fragmentu instrukcji producenta oblicz, ile kilogramów zaprawy murarskiej potrzeba do wymurowania jednej ściany grubości 25 cm, długości 12 m i wysokości 3 m.

Fragment instrukcji producenta
Grubość ściany
z cegły pełnej
Zużycie suchej zaprawy
[kg/m²]
½ cegłyok. 40
1 cegłaok. 100
A. ok. 360 kg
B. ok. 1440 kg
C. ok. 900 kg
D. ok. 3600 kg
Wszystkie błędne odpowiedzi wynikają z nieprawidłowego podejścia do obliczeń dotyczących ilości zaprawy murarskiej. Kluczowym aspektem jest zrozumienie, jak obliczyć powierzchnię ściany oraz jak zastosować normy zużycia materiałów budowlanych. W przypadku odpowiedzi, które wskazują na zbyt niskie wartości zaprawy, jak np. 900 kg czy 360 kg, można zaobserwować typowy błąd związany z pomijaniem ważnych obliczeń lub zaniżeniem standardowego zużycia. Zastosowanie normy 100 kg/m² dla ściany o grubości jednej cegły jest istotne, ponieważ pozwala na właściwe oszacowanie potrzebnej ilości zaprawy. Z kolei odpowiedzi takie jak 1440 kg mogą wynikać z błędnego przeliczenia powierzchni ściany lub niepoprawnego użycia danych dotyczących zużycia. W budownictwie kluczowe jest nie tylko poprawne obliczenie, ale także uwzględnienie wszelkich norm oraz standardów, aby osiągnąć pożądane efekty w zakresie jakości i trwałości konstrukcji. Prawidłowe podejście do takich zadań jest fundamentalne w pracy każdego inżyniera budowlanego oraz wykonawcy, dlatego warto zwracać szczególną uwagę na szczegóły i przyjmować dobrze uzasadnione dane.

Pytanie 7

Kiedy powinno się dokonać pomiaru robót rozbiórkowych ścian?

A. Po finalizacji rozbiórki ścian
B. W trakcie wykonywania robót rozbiórkowych
C. Przed przystąpieniem do robót rozbiórkowych
D. Po zakończeniu rozbiórki ścian oraz usunięciu gruzu
Przeprowadzenie obmiaru robót rozbiórkowych ścian przed rozpoczęciem prac jest kluczowym krokiem w procesie planowania i realizacji projektu budowlanego. Obmiar pozwala na dokładne określenie zakresu prac, co jest niezbędne do wyceny projektu oraz przygotowania odpowiednich zasobów. W praktyce, przed rozpoczęciem rozbiórki, należy zmierzyć nie tylko powierzchnię ścian, ale również uwzględnić dodatkowe czynniki, takie jak izolacje, rodzaj materiałów użytych w budowie oraz wszelkie elementy instalacyjne, które mogą wpłynąć na proces rozbiórki. Dobrą praktyką jest sporządzenie dokumentacji fotograficznej i rysunkowej stanu istniejącego, co pomoże w analizie i późniejszym rozliczeniu prac. Zgodnie z normami budowlanymi, obmiar powinien być przeprowadzany zgodnie z obowiązującymi przepisami, co zapewnia nie tylko bezpieczeństwo, ale również zgodność z projektem. Takie podejście pozwala na identyfikację potencjalnych problemów przed rozpoczęciem prac, co z kolei może prowadzić do ograniczenia kosztów i czasu realizacji projektu.

Pytanie 8

Jakim narzędziem należy oceniać konsystencję zapraw budowlanych?

A. czerpakiem murarskim
B. aparatem Vicata
C. młotkiem Szmidta
D. stożkiem pomiarowym
Stożek pomiarowy jest standardowym narzędziem używanym do oceny konsystencji zapraw budowlanych, takich jak zaprawy cementowe czy tynki. Metoda ta polega na wypełnieniu stożka zaprawą i następnie podniesieniu go, co powoduje, że materiał osiada. Głębokość osiadania zaprawy pozwala na ocenę jej płynności i konsystencji. Zgodnie z normami, takimi jak PN-EN 1015-3, właściwa konsystencja zaprawy ma kluczowe znaczenie dla trwałości budowli oraz jakości wykonania. W praktyce, pomiar konsystencji wykonuje się przed aplikacją zaprawy, co umożliwia dostosowanie proporcji składników, jeśli okazuje się, że materiał jest zbyt suchy lub zbyt płynny. Przykładowo, w przypadku tynków zewnętrznych, odpowiednia konsystencja jest niezbędna, aby zapewnić ich przyczepność oraz odporność na warunki atmosferyczne.

Pytanie 9

Który rysunek przedstawia schemat wiązania blokowego?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Wybór nieprawidłowej odpowiedzi może wynikać z niepełnego zrozumienia zasad wiązania blokowego. Każdy z pozostałych rysunków przedstawia inne rodzaje wiązań, które nie spełniają kryteriów charakterystycznych dla wiązania blokowego. Na przykład, możliwe, że rysunki A, B, lub D ukazują wiązania w innych konfiguracjach, takich jak wiązanie w styk, które polega na układaniu cegieł w bezpośrednim sąsiedztwie, co może prowadzić do koncentracji obciążeń w miejscach styku. Taki sposób układania cegieł jest mniej stabilny i narażony na pęknięcia, co jest sprzeczne z zasadami dobrego budownictwa. Często podczas nauki o różnych rodzajach wiązań cegieł, nie zwraca się uwagi na praktyczne konsekwencje ich wyboru, co prowadzi do błędnych wniosków. Ważne jest, aby pamiętać, że każde wiązanie ma swoje specyficzne zastosowania oraz ograniczenia, a ich stosowanie powinno być zgodne z obowiązującymi normami budowlanymi. Zrozumienie tych różnic jest kluczowe dla właściwego projektowania i wykonawstwa, a także dla zapewnienia trwałości i bezpieczeństwa konstrukcji. Warto zatem zgłębić temat różnych rodzajów wiązań, aby umiejętnie je stosować w praktyce budowlanej, przyczyniając się tym samym do podniesienia jakości realizowanych projektów.

Pytanie 10

Aby naprawić uszkodzony narożnik muru, w którym konieczna jest wymiana cegieł, zbudowanego z cegły ceramicznej pełnej klasy 15 na zaprawie cementowo-wapiennej M15, należy użyć cegieł

A. ceramiczne pełne klasy 20
B. klinkierowe klasy 20
C. kratówki klasy 15
D. ceramiczne pełne klasy 15
Wybór cegieł kratowych klasy 15 nie jest zasadny, ponieważ cegły kratowe, w przeciwieństwie do pełnych cegieł ceramicznych, mają inną strukturę i właściwości. Cegły kratowe są stosowane głównie w konstrukcjach, gdzie kluczowe są ich właściwości izolacyjne i lekkość, co nie ma zastosowania w przypadku trwałych murów. W kontekście naprawy narożnika, ich zastosowanie mogłoby osłabić strukturę całego muru. Wybór cegły klinkierowej klasy 20 również nie jest właściwy. Cegły klinkierowe są bardziej odporne na wilgoć i mają wyższą wytrzymałość, ale ich zastosowanie w naprawie muru ceramicznego może prowadzić do różnic w rozszerzalności cieplnej oraz zmiany w estetyce muru, co jest niewłaściwe w przypadku renowacji. Co więcej, cegły ceramiczne pełne klasy 20, mimo że również wykonane z ceramiki, mają wyższą wytrzymałość, co sprawia, że mogą wprowadzać dodatkowe naprężenia, prowadząc do uszkodzeń oryginalnej struktury. Praktyczne podejście do naprawy muru polega na zachowaniu materiałów i klas, które były pierwotnie zastosowane, aby zapewnić długoterminową trwałość i stabilność konstrukcji. Wybierając niewłaściwe materiały, ryzykujemy osłabienie całej struktury, co może prowadzić do kosztownych napraw w przyszłości.

Pytanie 11

Aby zbudować murowane ścianki działowe o grubości do 12 cm i jak najmniejszym ciężarze objętościowym, należy zastosować cegłę

A. dziurawki
B. ceramicznej pełnej
C. silikatową pełną
D. klinkierową
Wybór cegły silikatowej pełnej do budowy murowanych ścianek działowych nie jest optymalny, ponieważ te cegły, pomimo swojej wysokiej wytrzymałości, charakteryzują się dużym ciężarem objętościowym. W praktyce oznacza to, że ściany wykonane z tego materiału będą miały znaczący wpływ na obciążenie całej konstrukcji budynku, co może prowadzić do problemów z fundamentami. Z kolei cegła klinkierowa, mimo że estetyczna i bardzo trwała, jest zbyt ciężka oraz kosztowna do stosowania w konstrukcjach działowych, gdzie kluczowym czynnikiem są parametry ciężaru oraz kosztów. Cegła ceramiczna pełna również nie jest odpowiednia ze względu na swoją gęstość, co negatywnie wpływa na obciążenia statyczne. W kontekście budowlanym, typowe błędy myślowe obejmują mylenie zastosowań materiałów budowlanych; niektóre cegły, chociaż wytrzymałe, nie nadają się do lekkich konstrukcji działowych. Właściwe podejście do projektowania wymaga analizy wszystkich właściwości materiałów, a nie tylko ich wytrzymałości, co jest kluczowe dla uzyskania optymalnych efektów w budownictwie.

Pytanie 12

Jakie kruszywo wykorzystuje się do produkcji ciepłochronnych zapraw murarskich?

A. Kruszywo piaskowe
B. Perlit
C. Pospółka
D. Kruszywo żwirowe
Perlit to materiał o doskonałych właściwościach izolacyjnych, który jest powszechnie stosowany do produkcji ciepłochronnych zapraw murarskich. Jego unikalna struktura, powstała w wyniku poddania wysokiej temperaturze naturalnego wulkanicznego szkła, sprawia, że perlit ma niską przewodność cieplną. Dzięki temu, zaprawy murarskie z dodatkiem perlitu skutecznie ograniczają straty ciepła, co jest istotne w kontekście budownictwa energooszczędnego. Przykłady zastosowania perlitu obejmują budowę domów pasywnych, gdzie kluczowe jest osiągnięcie jak najniższego zapotrzebowania na energię. Standardy branżowe, takie jak PN-EN 998-1, podkreślają znaczenie jakości izolacji w budynkach, a użycie perlitu w zaprawach murarskich jest zgodne z najlepszymi praktykami w tej dziedzinie. Warto dodać, że perlit jest materiałem ekologicznym, co dodatkowo zwiększa jego atrakcyjność w nowoczesnym budownictwie.

Pytanie 13

Jaką ilość zaprawy należy nabyć do zbudowania ścian o grubości ½ cegły oraz powierzchni 28 m2, przy założeniu, że zużycie wskazane przez producenta wynosi 35 kg zaprawy na 1 m2 ściany tej grubości?

A. 980 m2
B. 490 m2
C. 490 kg
D. 980 kg
Aby obliczyć, ile zaprawy potrzebujemy do wymurowania ścian o powierzchni 28 m² i grubości ½ cegły, musimy pomnożyć zużycie zaprawy przez powierzchnię. Producent podaje, że na 1 m² ściany o tej grubości potrzebne jest 35 kg zaprawy. Zatem, dla 28 m² obliczenia będą wyglądać następująco: 28 m² * 35 kg/m² = 980 kg. To oznacza, że do wykonania tego zadania musimy zakupić 980 kg zaprawy. W praktyce, znajomość zużycia materiałów budowlanych na jednostkę powierzchni jest kluczowa dla prawidłowego planowania budowy. Umożliwia to nie tylko skuteczne zarządzanie kosztami, ale także minimalizowanie odpadów materiałowych. Dobrą praktyką jest zawsze uwzględnienie dodatkowego zapasu zaprawy, aby pokryć ewentualne straty podczas transportu oraz nieprzewidziane okoliczności na budowie, takie jak błędy w obliczeniach lub zmiany w planie budowy.

Pytanie 14

Cementową zaprawę wykorzystuje się do budowy ścian

A. nośnych wewnętrznych
B. fundamentowych
C. nośnych zewnętrznych
D. działowych
Zaprawa cementowa jest kluczowym materiałem budowlanym, szczególnie w kontekście murowania fundamentów. Jej zastosowanie w fundamentach wynika z konieczności zapewnienia stabilności i wytrzymałości konstrukcji. Zaprawy cementowe charakteryzują się dużą odpornością na działanie sił zewnętrznych oraz na wilgoć, co jest szczególnie istotne w przypadku fundamentów, które są narażone na działanie wód gruntowych i zmienne warunki atmosferyczne. W praktyce często stosuje się zaprawy o odpowiedniej klasie wytrzymałości, zgodnej z normami budowlanymi, co zapewnia ich długotrwałość. Ważnym aspektem jest również prawidłowe przygotowanie zaprawy, które powinno odbywać się zgodnie z zaleceniami producenta, aby osiągnąć optymalne właściwości mechaniczne i fizyczne. Dobrą praktyką jest również zastosowanie dodatków chemicznych, które mogą poprawić właściwości zaprawy, takie jak jej plastyczność czy odporność na wodę. Warto również zwrócić uwagę na techniki murowania, które mają kluczowe znaczenie dla trwałości i stabilności fundamentów.

Pytanie 15

W trakcie realizacji tynków wewnętrznych wykorzystuje się rusztowania

A. drabinowe
B. na kozłach
C. na wysuwnicach
D. stojakowe
Odpowiedzi, które nie uwzględniają zastosowania kozłów tynkarskich, często prowadzą do mylnych wniosków na temat efektywności oraz bezpieczeństwa pracy przy tynkowaniu. Drabiny, mimo że mogą być stosowane w niektórych przypadkach, ograniczają mobilność i zwiększają ryzyko upadków. Użytkownik pracujący na drabinie nie ma stabilnej platformy roboczej, co utrudnia precyzyjne nakładanie tynku oraz może prowadzić do niebezpiecznych sytuacji. Z kolei rusztowania na wysuwnicach, chociaż oferują pewną elastyczność, mogą być nieodpowiednie do tynków wewnętrznych z uwagi na ich konstrukcję, która nie zawsze zapewnia odpowiednią stabilność przy niestabilnych lub nierównych powierzchniach. Stojakowe rusztowania, choć czasami stosowane, nie są optymalne do prac wewnętrznych, gdzie z reguły wymagane jest dostosowanie wysokości oraz stabilność. Kluczowym błędem myślowym jest nieuznawanie, że odpowiedni dobór narzędzi i sprzętu ma kluczowe znaczenie dla bezpieczeństwa oraz efektywności pracy. Prawidłowe wykorzystanie kozłów tynkarskich zgodnie z normami BHP zwiększa wydajność i zmniejsza ryzyko urazów, co czyni je najbardziej odpowiednim rozwiązaniem dla tego typu prac.

Pytanie 16

Jeśli wydano 1 000 zł na materiały, a wydatki na robociznę stanowią 80 % kosztów materiałów, to całkowite koszty robocizny i materiałów wynoszą

A. 1 200 zł
B. 1 800 zł
C. 1 080 zł
D. 1 020 zł
W przypadku prób obliczenia łącznych kosztów robocizny i materiałów, niektóre błędne odpowiedzi mogą wynikać z niedostatecznego zrozumienia, jak oblicza się procentowe udziały kosztów. Na przykład, kwota 1 080 zł mogła powstać poprzez błędne dodanie kosztów materiałów i 80 zł jako domyślnej wartości robocizny, co nie oddaje rzeczywistego procentu. Podobnie, 1 200 zł mogło pochodzić z pomyłki w obliczeniach, gdzie użytkownik błędnie pomnożył koszty materiałów przez 1,2, co jest niewłaściwe, ponieważ oznaczałoby to dodanie 20% do całkowitych kosztów, a nie 80% robocizny. Odpowiedź 1 800 zł uwzględnia pełny obraz, w którym obliczamy koszty robocizny jako procentowy udział od rzeczywistych wydatków na materiały. Istotne jest, aby w budżetowaniu projektem uwzględniać wszystkie istotne składniki kosztów, gdyż ich pominięcie może prowadzić do błędnych decyzji finansowych. Efektywne zarządzanie kosztami powinno opierać się na precyzyjnych i rzetelnych obliczeniach, aby uniknąć nieprzewidzianych wydatków podczas realizacji projektu.

Pytanie 17

Na ilustracji przedstawiono fragment lica muru wykonanego w wiązaniu

Ilustracja do pytania
A. krzyżykowym.
B. wozówkowym.
C. kowadełkowym.
D. główkowym.
Wybór odpowiedzi związanych z innymi typami wiązań, takimi jak krzyżykowe, kowadełkowe lub główkowe, wskazuje na pewne nieporozumienia dotyczące technik murowania. Wiązanie krzyżykowe, które charakteryzuje się układaniem cegieł w przeplatane wzory, jest mniej stabilne w porównaniu do wozówkowego. Takie podejście może prowadzić do problemów z równomiernym rozkładem obciążeń, co w dłuższej perspektywie może skutkować uszkodzeniami muru. Z kolei wiązanie kowadełkowe, które polega na układaniu cegieł w sposób, który wygląda jak kowadło, również nie zapewnia takiej samej efektywności strukturalnej jak wozówkowe. Ten typ wiązania może powodować większe obciążenia punktowe, a to z kolei wpływa na trwałość konstrukcji. Wiązanie główkowe polega na układaniu cegieł w taki sposób, że ich krótsze boki są ustawione w kierunku ściany, co również nie jest zgodne z najlepszymi praktykami w budownictwie. Wybór niewłaściwego wiązania może prowadzić do nieefektywności w budowie oraz zwiększonego ryzyka uszkodzeń. Dlatego ważne jest, aby przy wyborze techniki murowania kierować się standardami branżowymi oraz wiedzą na temat ich zastosowania, aby zapewnić zarówno estetykę, jak i funkcjonalność w projektach budowlanych.

Pytanie 18

Jak należy przygotować suchą zaprawę murarską do użycia?

A. wszystkie składniki zaprawy są odważane i mieszane w betoniarni
B. piasek i woda są odmierzane w betoniarni, a na miejscu budowy należy dodać spoiwo i wymieszać
C. spoiwo, piasek oraz ewentualne dodatki są odmierzane na sucho w betoniarni, a na miejscu budowy trzeba jedynie dodać wodę i wymieszać
D. wszystkie składniki zaprawy są odważane i mieszane na miejscu budowy
Wiele z błędnych koncepcji dotyczących przygotowania suchej zaprawy murarskiej wynika z niepełnego zrozumienia procesu technologicznego i wymagań dotyczących jakości materiałów budowlanych. Odmierzanie wszystkich składników na placu budowy, jak wskazuje jedna z odpowiedzi, może prowadzić do niejednorodności mieszanki i błędów w proporcjach, co negatywnie wpłynie na wytrzymałość i trwałość zaprawy. Na placu budowy trudniej jest osiągnąć spójność, ponieważ warunki atmosferyczne mogą wpłynąć na sposób mieszania oraz na ilość wody dodawanej do mieszanki. Ponadto, pominięcie etapu wcześniejszego wymieszania wszystkich składników w betoniarni, gdzie można kontrolować jakość piasku i spoiwa, zwiększa ryzyko wykorzystania materiałów o różnej granulacji czy zanieczyszczeń, co może być szkodliwe dla konstrukcji. Inne nieprawidłowe podejście, polegające na dodawaniu piasku i wody w betoniarni, a następnie dołożeniu spoiwa na placu budowy, prowadzi do problemów z jednorodnością zaprawy. W takiej sytuacji spoiwo może nie zostać dokładnie wymieszane z pozostałymi składnikami, co skutkuje niespójną jakością zaprawy. Kluczowe jest zrozumienie, że każda zmiana w procesie przygotowania materiałów budowlanych może wpłynąć na finalny wynik, a tym samym na bezpieczeństwo i trwałość całej konstrukcji.

Pytanie 19

Na podstawie fragmentu opisu technicznego określ, ile pojemników cementu i wapna należy zużyć do przygotowania zaprawy, jeżeli do jej sporządzenia zaplanowano 20 pojemników piasku?

Opis techniczny
(fragment)
(...) Do wykonania ścian zewnętrznych z pustaków Max należy zastosować zaprawę cementowo-wapienną odmiany E, o proporcji objętościowej składników 1 : 0,5 : 4. (...)
A. 4 pojemniki cementu i 2 pojemniki wapna.
B. 4 pojemniki wapna i 2 pojemniki cementu.
C. 5 pojemników cementu i 2,5 pojemnika wapna.
D. 5 pojemników wapna i 2,5 pojemnika cementu.
Kiedy analizujemy inne dostępne odpowiedzi, możemy zauważyć, że opierają się one na błędnych założeniach dotyczących proporcji składników zaprawy. Niepoprawne odpowiedzi sugerują nieadekwatne ilości wapna lub cementu w stosunku do piasku, co jest kluczowe dla uzyskania pożądanych właściwości zaprawy. Na przykład, jedna z niepoprawnych odpowiedzi może sugerować użycie 4 pojemników cementu i 2 pojemników wapna. Takie proporcje prowadzą do niewłaściwego stosunku składników, co może skutkować zaprawą o obniżonej wytrzymałości. Praktycznie, zbyt mała ilość cementu w mieszance może prowadzić do problemów z wiązaniem, co skutkuje wkrótce po wykonaniu prac budowlanych pęknięciami lub osuwaniem się materiału. Istotne jest, aby rozumieć, że nie tylko ilość materiałów jest ważna, ale także ich odpowiednie proporcje, które determinują jakość końcowego produktu. Ponadto, niewłaściwe zrozumienie proporcji może wynikać z ogólnego braku uwagi na specyfikacje techniczne, co jest częstym błędem wśród osób bez odpowiedniego doświadczenia w budownictwie. Kluczową lekcją, jaką można wyciągnąć z analizy tych błędnych odpowiedzi, jest konieczność dokładnego zapoznania się z dokumentacją techniczną i przestrzegania wskazanych proporcji, aby zapewnić trwałość i bezpieczeństwo konstrukcji.

Pytanie 20

Która z poniższych zapraw jest odporna na wysokie temperatury?

A. Cementowa
B. Wapienna
C. Silikatowa
D. Krzemionkowa
Zaprawa krzemionkowa jest klasyfikowana jako zaprawa ogniotrwała ze względu na wysoką odporność na ekstremalne temperatury oraz zdolność do wytrzymywania obciążeń termicznych. Skład chemiczny zaprawy krzemionkowej, który opiera się na krzemionce (SiO2), sprawia, że materiał ten ma doskonałe właściwości w kontekście izolacji termicznej oraz odporności na działanie wysokotemperaturowych czynników, co jest kluczowe w aplikacjach przemysłowych, takich jak piece hutnicze, kominy, czy piekarnie. W praktyce, zaprawy krzemionkowe są stosowane do murowania elementów narażonych na wysoką temperaturę, a także do wypełniania szwów w strukturach, które muszą wytrzymać znaczące zmiany temperaturowe. W zgodności z normami branżowymi, takimi jak PN-EN 1402, zaprawy te powinny wykazywać minimalne skurcze i pęknięcia w warunkach eksploatacyjnych, co dodatkowo potwierdza ich parametry użytkowe. Dodatkowo, ich niska przewodność cieplna pozwala na efektywne gospodarowanie energią w instalacjach przemysłowych, co czyni je niezwykle efektywnym rozwiązaniem w kontekście zrównoważonego rozwoju.

Pytanie 21

Fragment muru przedstawiony na rysunku wykonany jest w wiązaniu

Ilustracja do pytania
A. polskim.
B. weneckim.
C. pospolitym.
D. amerykańskim.
Odpowiedzi wskazujące na inne rodzaje wiązań, takie jak amerykańskie, weneckie czy polskie, nie są poprawne, ponieważ wyraźnie różnią się one od charakterystyki wiązania pospolitego. Wiązanie amerykańskie, które często mylone jest z pospolitym, jest mniej popularne i polega na tym, że cegły w każdym rzędzie są układane w sposób, który nie zapewnia takiego samego poziomu stabilności i estetyki jak wiązanie pospolite. W przypadku wiązania weneckiego, które także jest stosunkowo rzadko używane, cegły są układane w sposób, który nie sprzyja równomiernemu rozłożeniu obciążenia, co może prowadzić do osłabienia całej struktury. Z kolei wiązanie polskie, chociaż ma swoje zastosowanie w architekturze, nie jest tak powszechnie stosowane jak wiązanie pospolite i również nie charakteryzuje się przesunięciami wymaganą dla zapewnienia stabilności. Typowe błędy myślowe prowadzące do wyboru tych niepoprawnych odpowiedzi często wynikają z pomylenia cech poszczególnych typów wiązań lub z braku zrozumienia ich praktycznych zastosowań w kontekście budownictwa. Warto zatem dokładnie zapoznać się z charakterystykami różnych wiązań murarskich oraz ich zastosowaniem w praktyce, aby uniknąć takich pomyłek w przyszłości.

Pytanie 22

Jakim preparatem powinno się pokryć powierzchnię pylistego tynku, aby zwiększyć jego wytrzymałość?

A. Antyadhezyjnym
B. Gruntującym
C. Barwiącym
D. Penetrującym
Preparat gruntujący to naprawdę ważna rzecz, gdy chodzi o wzmacnianie powierzchni pylącego tynku. Gruntowanie to po prostu nałożenie specjalnego preparatu, który sprawia, że kolejne warstwy lepiej się przyczepiają do podłoża, a do tego redukuje pylenie. Te preparaty penetrują w tynk, co poprawia jego właściwości mechaniczne i zmniejsza problem z wchłanianiem wody. To istotne dla trwałości i odporności na wilgoć. Z moich doświadczeń wynika, że użycie gruntów akrylowych lub żywicznych faktycznie poprawia jakość kolejnych warstw, takich jak farby czy tynki dekoracyjne. W branży budowlanej często zaleca się stosowanie gruntów przed nałożeniem mineralnych czy syntetycznych materiałów wykończeniowych. Po gruntowaniu można uzyskać ładniejszą, jednolitą strukturę powierzchni, co działa lepiej na ogólny wygląd.

Pytanie 23

Obrzutkę na stropie z cegły wykonuje się z

A. gęstej zaprawy wapiennej
B. rzadkiej zaprawy wapiennej
C. rzadkiej zaprawy cementowej
D. gęstej zaprawy cementowej
Wybór gęstej zaprawy cementowej lub wapiennej do wykonania obrzutki na stropie ceglanym oparty jest na pewnych błędnych założeniach. Gęsta zaprawa cementowa charakteryzuje się zbyt dużą lepkością, co sprawia, że nie przylega ona prawidłowo do chropowatej powierzchni cegły. W wyniku tego mogą pojawić się odspojenia, co doprowadzi do osłabienia całej konstrukcji. Z kolei gęsta zaprawa wapienna, pomimo że ma swoje zalety, nie zapewnia odpowiedniej przyczepności oraz elastyczności, które są kluczowe w przypadku stropów narażonych na zmienne obciążenia. Rzadka zaprawa wapienna, podobnie jak gęsta, nie dostarcza wymaganej twardości i odporności na działanie wilgoci, co również negatywnie wpływa na trwałość stropu. Typowym błędem, który prowadzi do takich niepoprawnych wniosków, jest niedostateczne zrozumienie roli, jaką zaprawa odgrywa w przenoszeniu obciążeń oraz jak jej właściwa konsystencja może wpływać na stabilność całej konstrukcji. Warto zaznaczyć, że zgodnie z zasadami budownictwa, obrzutka powinna być wykonana z materiałów o właściwościach dostosowanych do specyfiki zastosowania, co w przypadku stropów ceglanych oznacza użycie rzadkiej zaprawy cementowej.

Pytanie 24

Do czego jest używana poziomica wężowa?

A. Do kontrolowania grubości muru w ścianie
B. Do wyznaczania i przenoszenia poziomu murowanej ściany na odległość
C. Do sprawdzania pionowości murowanej ściany
D. Do określania zewnętrznej krawędzi warstw muru
Poziomica wężowa to naprawdę przydatne narzędzie, które pozwala na precyzyjne wyznaczanie poziomu murowanych ścian. Działa na zasadzie hydrostatyki, co oznacza, że woda w rurce ustawia się na równym poziomie, niezależnie od tego, jak trzymamy poziomicę. To mega ważne, zwłaszcza przy dużych budowach, gdzie precyzja ma kluczowe znaczenie. Czasem tradycyjne poziomice nie są wystarczające, szczególnie w trudnym terenie. Dobrze jest wiedzieć, że poziomica wężowa świetnie sprawdzi się przy ustawianiu fundamentów, bo dokładne przeniesienie poziomu z jednego miejsca na drugie zabezpiecza stabilność budowli. W branży budowlanej trzymanie się norm i dobrych praktyk to podstawa, żeby zbudować coś, co posłuży przez lata i będzie bezpieczne.

Pytanie 25

Jaką metodę stosujemy do badania konsystencji zaprawy?

A. stożka diamentowego
B. prasy hydraulicznej
C. objętości omierza
D. penetrometru
Wybór innej metody pomiaru konsystencji zaprawy, jak stożek diamentowy, prasa hydrauliczna czy objętość omierza, jest nieadekwatny do rzeczywistych potrzeb oceny właściwości świeżych zapraw. Stożek diamentowy, choć stosowany w innych kontekstach, nie jest narzędziem do pomiaru konsystencji zapraw budowlanych. Zamiast tego, jego zastosowanie bardziej odnosi się do testów dotyczących twardości materiałów, co może prowadzić do błędnych wniosków w przypadku zapraw, które wymagają oceny urabialności. Prasa hydrauliczna, choć skuteczna w ocenie wytrzymałości materiałów, nie mierzy bezpośrednio ich konsystencji. Tego rodzaju urządzenia służą do testowania wytrzymałości na ściskanie, a nie do oceny, jak łatwo materiał można rozprowadzić. Podobnie, objętość omierza to metoda, która nie daje informacji o konsystencji, lecz o objętości materiału, co jest zupełnie innym parametrem. W praktyce, błędne zrozumienie roli każdego z tych narzędzi może prowadzić do nieprawidłowych ocen jakości zapraw, co z kolei wpływa na bezpieczeństwo i trwałość konstrukcji. Znajomość standardów i zastosowań odpowiednich narzędzi pomiarowych jest kluczowa dla profesjonalistów w branży budowlanej, aby uniknąć takich nieporozumień.

Pytanie 26

Gąbkowanie gipsowego tynku, które polega na nawilżeniu tynku rozproszonym strumieniem wody oraz wygładzaniu pacą gąbkową, jest przeprowadzane w celu

A. przygotowania powierzchni do finalnego wygładzenia
B. zebrania nadmiaru zaprawy
C. wstępnego wyrównania nawierzchni tynku
D. usunięcia nadmiaru drobnoziarnistego kruszywa
Gąbkowanie powierzchni tynku gipsowego jest kluczowym procesem przygotowawczym, mającym na celu umożliwienie uzyskania gładkiej i estetycznej powierzchni przed nałożeniem ostatecznej warstwy wykończeniowej. Poprzez zroszenie tynku rozproszonym strumieniem wody, materiał staje się bardziej plastyczny, co pozwala na łatwiejsze zacieranie pacą gąbkową. To działanie nie tylko nawilża powierzchnię, ale także sprzyja lepszemu związaniu cząstek tynku, eliminując mikropęknięcia i nierówności, które mogą pojawić się w procesie tynkowania. Gąbkowanie przygotowuje podłoże do aplikacji farb, tynków dekoracyjnych czy innych materiałów wykończeniowych, co jest zgodne z zaleceniami norm budowlanych dotyczących jakości powierzchni. Ponadto, dobrze przeprowadzone gąbkowanie zapewnia lepszą przyczepność kolejnych warstw, co jest kluczowe dla trwałości całej konstrukcji. W praktyce, gąbkowanie staje się nieodłącznym elementem procesu wykańczania wnętrz, gdzie estetyka i jakość powierzchni odgrywają kluczową rolę.

Pytanie 27

Na podstawie przedstawionej receptury roboczej oblicz ilość piasku potrzebną do wykonania 1,5 mieszanki betonowej.

Receptura robocza wykonania 1 m3 mieszanki betonowej
cement 42,5430 kg
piasek320 kg
żwir578 kg
woda267 l
A. 480 kg
B. 645 kg
C. 867 kg
D. 320 kg
Wybór innej odpowiedzi może wynikać z nieporozumienia dotyczącego proporcji składników betonu. Obliczając ilość piasku potrzebną do wykonania 1,5 m³ mieszanki betonowej, kluczowe jest zrozumienie, że ilość piasku na jednostkę objętości (czyli na 1 m³) powinna być pomnożona przez objętość, którą chcemy uzyskać. Wiele osób mogą mylić całkowitą objętość mieszanki z ilościami poszczególnych składników, co prowadzi do błędnych wyników. Na przykład, wybór 645 kg zakłada zbyt dużą ilość piasku, co może skutkować zbyt „mokrym” betonem, a tym samym obniżoną wytrzymałością po wyschnięciu. Z kolei 320 kg wskazuje na zbyt małą ilość, co również będzie negatywnie wpływać na jakość betonu, prowadząc do jego pęknięć i osłabienia struktury. Odpowiednie proporcje są nie tylko ważne dla uzyskania betonu o pożądanych właściwościach, ale również są one zgodne z najlepszymi praktykami inżynieryjnymi. Standardy branżowe, takie jak PN-EN 206, podkreślają znaczenie precyzyjnych obliczeń, które muszą być przeprowadzane na podstawie receptur roboczych. Dlatego tak istotne jest zrozumienie procesu obliczeń i stosowanie się do sprawdzonych metod, aby uniknąć typowych błędów oraz zapewnić optymalną jakość mieszanki betonowej.

Pytanie 28

Określenie lokalizacji nowych ścianek działowych w renowowanym obiekcie następuje na podstawie

A. specyfikacji technicznej wykonania i odbioru robót
B. założeń do kosztorysu
C. projektu budowlanego
D. warunków technicznych wykonania i odbioru robót
Projekt budowlany jest kluczowym dokumentem w procesie przebudowy budynku, ponieważ określa on szczegółowe rozwiązania architektoniczne oraz konstrukcyjne, w tym lokalizację nowych ścianek działowych. Zawiera on rysunki techniczne, które ilustrują układ pomieszczeń, a także specyfikacje materiałowe i technologiczne. Przykładowo, w przypadku przekształcenia przestrzeni biurowej, projekt budowlany pomoże zdecydować, gdzie najlepiej umieścić ścianki działowe, aby zachować optymalną funkcjonalność oraz estetykę. Ponadto, każda realizacja powinna być zgodna z obowiązującymi normami budowlanymi i technicznymi, które są zawarte w planie. Stosowanie się do zatwierdzonego projektu budowlanego minimalizuje ryzyko konfliktów z przepisami prawa budowlanego, co może prowadzić do kosztownych opóźnień w realizacji projektu oraz konieczności wprowadzenia zmian w już zrealizowanych elementach budowlanych.

Pytanie 29

Do zbudowania nadproża sklepionego (łęku) należy użyć cegły

A. szczelinówki
B. kratówki
C. pełnej
D. dziurawki
Wybieranie złej cegły do nadproża sklepionego może naprawdę namieszać wszystko w konstrukcji. Cegła szczelinówka, mimo że jest lżejsza, nie daje rady z nośnością, więc to nie jest dobry wybór do przenoszenia obciążeń, które mają nadproża. Jej ścianki są zazwyczaj cieńsze, przez co ma niższą wytrzymałość na ściskanie. Cegła kratówka, choć czasem jest używana w budowlance, to nie zapewnia stabilności i odporności na odkształcenia, które są kluczowe w nadprożach. To nie to miejsce, gdzie można ją stosować. Cegła dziurawka, będąca lżejszą opcją, też nie spełnia wymogów, bo nie przenosi ciężarów pionowych tak, jak powinna. Używanie takich materiałów do nadproża może doprowadzić do pęknięć czy nawet zawalenia się konstrukcji, jeśli obciążenia będą zbyt duże. Widziałem już budynki, gdzie zastosowano niewłaściwe materiały i to miało naprawdę fatalne skutki. Dlatego tak ważne jest, żeby używać cegły pełnej, bo to materiał zgodny z budowlanymi normami i dobrymi praktykami inżynieryjnymi.

Pytanie 30

Przedstawiona na rysunku łata typu H służy do

Ilustracja do pytania
A. zaciągania tynku bezpośrednio po nałożeniu zaprawy.
B. gładzenia tynku po zwilżeniu jego powierzchni.
C. wyrównywania tynku po lekkim związaniu.
D. nakładania poszczególnych warstw tynku.
Zrozumienie zastosowania łaty typu H jest kluczowe dla skutecznego tynkowania. Wybór odpowiedzi dotyczących wyrównywania tynku po lekkim związaniu, nakładania poszczególnych warstw tynku, czy gładzenia tynku po zwilżeniu jego powierzchni opiera się na nieprawidłowym zrozumieniu funkcji tego narzędzia. W przypadku wyrównywania tynku po związaniu, narzędzie o innej konstrukcji, takie jak paca, jest bardziej odpowiednie, ponieważ łata H jest zaprojektowana do działania na świeżo nałożonym tynku. Co więcej, nakładanie poszczególnych warstw tynku wymaga precyzyjnego dozowania materiału, co również nie jest funkcją łaty H, gdyż jej głównym celem jest zaciąganie tynku, a nie jego nakładanie. Gładzenie tynku po zwilżeniu jego powierzchni może być mylnie postrzegane jako zadanie dla łaty, jednak w rzeczywistości, dla uzyskania gładkiej powierzchni po wyschnięciu, najczęściej stosuje się pacy gładkie lub inne narzędzia. Typowe błędy myślowe, prowadzące do takich niepoprawnych wniosków, obejmują mylenie różnych etapów procesu tynkowania, a także niepoprawne przypisanie funkcji narzędzi do ich rzeczywistych zastosowań w budownictwie. Kluczowe jest zrozumienie specyfiki każdego narzędzia i jego optymalnego zastosowania, co ma fundamentalne znaczenie dla uzyskania wysokiej jakości wykończenia.

Pytanie 31

Spoiwa hydrauliczne to zestaw spoiw, które po zmieszaniu z wodą twardnieją i wiążą

A. na powietrzu i pod wodą
B. tylko w czasie polewania wodą
C. pod wpływem wzrostu temperatury
D. wyłącznie na powietrzu
Spoiwa hydrauliczne, takie jak cement czy zaprawy murarskie, są unikalną grupą materiałów budowlanych, które mają zdolność wiązania zarówno w warunkach atmosferycznych, jak i pod wodą. Ta właściwość wynika z ich składników chemicznych, które reagują z wodą, tworząc trwałe i mocne połączenia. Przykładem mogą być zaprawy cementowe stosowane w konstrukcjach hydrotechnicznych, gdzie konieczne jest uzyskanie odpowiedniej wytrzymałości w warunkach stale narażonych na wodę. W praktyce oznacza to, że spoina hydrauliczna nie tylko wiąże w powietrzu, ale także może utwardzać się pod wodą, co jest niezbędne w przypadku budowy tam, mostów czy fundamentów w trudnych warunkach. Stosowanie spoiów hydraulicznych w inżynierii lądowej i wodnej jest zgodne z normami PN-EN 197-1, które określają wymagania dla cementów stosowanych w budownictwie. Wdrożenie tych materiałów zapewnia nie tylko wytrzymałość konstrukcji, ale także ich odporność na działanie wody i innych niekorzystnych warunków atmosferycznych.

Pytanie 32

Na podstawie danych zawartych w tablicy z KNR 2-02, oblicz wynagrodzenie tynkarza za wykonywanie tynku zwykłego kategorii III na ścianach o powierzchni 200 m2, jeżeli stawka godzinowa pracy tynkarza wynosi 25,00 zł.

Nakłady na 100 m²na podstawie Tablicy 0802
Lp.WyszczególnienieJednostki miary,
oznaczenia
Ściany i słupy
symbole
eto
rodzaje zawodów,
materiałów i maszyn
cyfroweliterowekategoria tynku
IIIII
abcde0102
01999Robotnicy149r-g45,9053,80
A. 2475,00 zł
B. 2690,00 zł
C. 2295,00 zł
D. 2915,00 zł
Odpowiedź 2690,00 zł jest prawidłowa, ponieważ obliczenia opierają się na standardach zawartych w KNR 2-02, które określają, że dla tynku zwykłego kategorii III na 100 m² przypada 53,80 roboczogodzin. W przypadku powierzchni 200 m², liczba roboczogodzin wynosi 107,6 (czyli 53,80 roboczogodzin pomnożone przez 2). Następnie, mnożąc tę wartość przez stawkę godzinową 25,00 zł, otrzymujemy 2690,00 zł. Tego typu obliczenia są kluczowe w branży budowlanej, gdzie precyzyjne kalkulacje kosztów pracy mają zasadnicze znaczenie dla efektywności finansowej projektu. Zastosowanie danych z KNR 2-02 jest zgodne z najlepszymi praktykami w zakresie ustalania wynagrodzeń dla pracowników budowlanych, zapewniając rzetelność i transparentność w procesie kalkulacji kosztów.

Pytanie 33

Aby przygotować 1 worek (25 kg) zaprawy tynkarskiej, trzeba zastosować

A. betoniarkę przeciwbieżną
B. wiertarkę z mieszadłem
C. betoniarkę wolnospadową
D. agregat tynkarski
Betoniarka przeciwbieżna do mieszania zaprawy tynkarskiej to nie najlepszy wybór. Ta maszyna jest raczej przystosowana do dużych ilości betonu, a nie do tynków. Betoniarka działa na zasadzie przeciwstawnych ruchów bębna i jest ok, ale jej jakość mieszanki tynkarskiej może być kiepska. Przy zaprawach ważne jest, żeby uzyskać jednorodną konsystencję, a z betoniarką czasem mogą być z tym problemy. Agregaty tynkarskie, mimo że są do aplikacji tynków, nie służą do początkowego mieszania. W sumie używa się ich do transportu gotowej zaprawy, a nie do jej przygotowania. Betoniarki wolnospadowe też najlepiej nie używać do takich cienkich materiałów, jak tynki, bo są raczej zbudowane do betonu. To typowy błąd, że myślisz, że każde urządzenie do mieszania można stosować zamiennie, a tak nie jest. Nieodpowiednie narzędzie do rozrabiania zaprawy może spowodować różne problemy, jak trudności w aplikacji, brzydki wygląd tynku, a nawet obniżoną trwałość. Lepiej postawić na to, co jest przeznaczone do tynków!

Pytanie 34

Krążyna stanowi element wspierający, który umożliwia realizację

A. stropów gęstożebrowych
B. stropów Kleina
C. gzymsów oraz cokołów
D. sklepień i łuków
Odpowiedzi gzymsów i cokołów, stropów Kleina oraz stropów gęstożebrowych wskazują na szereg nieporozumień dotyczących funkcji krążyn. Gzymsy są elementami architektonicznymi, które pełnią rolę estetyczną i ochronną, odprowadzając wodę deszczową z elewacji budynków. Nie mają one jednak charakterystyki wspierającej dla sklepienia czy łuku. Cokół natomiast, będący podstawą ściany, nie pełni funkcji podporowych dla wyżej wymienionych konstrukcji, a jego zadaniem jest zabezpieczenie dolnej części budynku przed wilgocią i uszkodzeniami mechanicznymi. W odniesieniu do stropów Kleina, warto zauważyć, że są to stropy o charakterze płaskim, które nie wymagają krążyn do stabilizacji, ponieważ ich konstrukcja opiera się na zupełnie innych zasadach. Stropy gęstożebrowe, z kolei, charakteryzują się zastosowaniem żebrowania dla podparcia, co również nie wiąże się z krążynami. Właściwe zrozumienie funkcji każdej konstrukcji jest kluczowe w procesie projektowania budynków, aby uniknąć błędnych założeń dotyczących ich zastosowania oraz interakcji z innymi elementami architektonicznymi. Zwykle błędne odpowiedzi wynikają z mylnego przekonania, że różne elementy budowlane pełnią podobne funkcje, co prowadzi do uproszczeń i nieprawidłowych interpretacji ich roli w konstrukcji.

Pytanie 35

Na rysunku przedstawiono szczegół oparcia stropu gęstożebrowego na ścianie zewnętrznej z betonu komórkowego. Całkowita wysokość tego stropu wynosi

Ilustracja do pytania
A. 300 mm
B. 220 mm
C. 190 mm
D. 250 mm
Wybór odpowiedzi 190 mm, 300 mm lub 250 mm może wynikać z kilku powszechnych mylnych przekonań. Zbyt niski wymiar, jak w przypadku 190 mm, może pochodzić z niewłaściwego odczytu rysunku lub braku zrozumienia, że wysokość stropu gęstożebrowego jest mierzona w kontekście całkowitym, a nie tylko w odniesieniu do jednego z jego komponentów. Odpowiedź 300 mm może sugerować nadmierne przewidywanie, które nie znajduje odzwierciedlenia w rzeczywistości, ponieważ standardowe stropy gęstożebrowe rzadko przekraczają tę wartość w typowych zastosowaniach budowlanych. Wysokość 250 mm, z kolei, może wynikać z ogólnego błędnego założenia, że stropy muszą być zawsze szersze dla lepszej nośności, co jest niezgodne z zasadami projektowania zgodnymi z normami budowlanymi. Kluczowe jest zrozumienie, że wybór odpowiednich wymiarów stropów powinien być oparty na dokładnych danych i analizach, a nie na subiektywnych osądach. Podczas projektowania konstrukcji powinno się zawsze polegać na precyzyjnych wymiarach i wytycznych branżowych, aby zapewnić bezpieczeństwo oraz funkcjonalność budowlanych rozwiązań.

Pytanie 36

Na której ilustracji przedstawiono cegłę, którą należy zastosować do wykonania zewnętrznych ścian nośnych piwnicy?

Ilustracja do pytania
A. Na ilustracji 4.
B. Na ilustracji 1.
C. Na ilustracji 3.
D. Na ilustracji 2.
Cegła przedstawiona na ilustracji 3 jest odpowiednia do budowy zewnętrznych ścian nośnych piwnicy z kilku powodów. Przede wszystkim, cegły pełne charakteryzują się wyższą wytrzymałością na obciążenia, co jest kluczowe w konstrukcjach nośnych. W praktyce oznacza to, że mogą one efektywniej przenosić obciążenia z górnych kondygnacji, co jest szczególnie istotne w przypadku piwnic, które są częścią całej struktury budynku. Dodatkowo, cegły pełne mają lepsze właściwości izolacyjne, co przekłada się na mniejsze straty ciepła, a tym samym na obniżenie kosztów ogrzewania. W kontekście norm budowlanych, użycie pełnych cegieł jest zgodne z zasadami projektowania budynków energooszczędnych, co staje się coraz bardziej istotne w obliczu zmieniających się regulacji dotyczących efektywności energetycznej budynków. Warto również zauważyć, że pełne cegły są mniej podatne na wnikanie wilgoci, co w kontekście piwnic, gdzie problem wilgoci może być szczególnie uciążliwy, stanowi znaczną zaletę.

Pytanie 37

Jakiego spoiwa powinno się użyć do realizacji tynku zewnętrznego w obszarach narażonych na wilgoć?

A. Wapna pokarbidowego
B. Gipsu szpachlowego
C. Wapna hydraulicznego
D. Gipsu budowlanego
Wybór wapna hydraulicznego do wykonania tynku zewnętrznego w miejscach narażonych na działanie wilgoci jest uzasadniony jego właściwościami. Wapno hydrauliczne jest spoiwem, które w przeciwieństwie do wapna gaszonego, może twardnieć zarówno na powietrzu, jak i pod wodą, co czyni je idealnym do zastosowań na zewnątrz budynków. Działa to na korzyść trwałości tynku, który musi znosić zmienne warunki atmosferyczne, w tym deszcz i wilgoć. Przykładem zastosowania wapna hydraulicznego może być tynkowanie fundamentów budynków oraz murów piwnicznych, gdzie narażenie na wodę gruntową jest intensywne. W obiektach zabytkowych, gdzie zachowanie tradycyjnych metod budowlanych jest niezwykle istotne, wapno hydrauliczne jest również preferowane ze względu na swoje właściwości paroprzepuszczalne, co pozwala na odprowadzanie wilgoci bez uszkadzania struktury budynku. Warto również wspomnieć, że zgodnie z normami budowlanymi, stosowanie wapna hydraulicznego spełnia wymogi dotyczące ochrony przed wilgocią, co potwierdzają odpowiednie badania i certyfikaty. Dlatego wapno hydrauliczne stanowi najlepszy wybór do tynków w trudnych warunkach atmosferycznych.

Pytanie 38

Zaprawy szamotowe powinny być wykorzystywane do budowania

A. kanałów wentylacyjnych
B. ścian osłonowych
C. kominów niezwiązanych z budynkiem
D. ścian w piwnicach
Stosowanie zapraw szamotowych w innych elementach budowlanych, takich jak ściany piwniczne, kanały wentylacyjne czy ściany osłonowe, nie jest uzasadnione ich właściwościami. Ściany piwniczne nie są narażone na wysokie temperatury, a ich konstrukcja wymaga zastosowania zapraw cementowych, które zapewniają odpowiednią nośność oraz odporność na wilgoć. W przypadku kanałów wentylacyjnych, kluczowe jest, aby materiał był odporny na korozję chemiczną, a niekoniecznie na wysoką temperaturę, co czyni zaprawy szamotowe niewłaściwym wyborem. Ściany osłonowe, z kolei, pełnią funkcję izolacyjną oraz estetyczną, co także wyklucza wykorzystanie zaprawy szamotowej, gdyż ich głównym zadaniem nie jest wytrzymałość na wysoką temperaturę, lecz skuteczna ochrona przed warunkami atmosferycznymi. Wybór niewłaściwego materiału może prowadzić do uszkodzeń konstrukcji, a tym samym do zwiększenia kosztów napraw oraz obniżenia bezpieczeństwa. Dlatego ważne jest, aby każdy element budowlany był murowany z użyciem materiałów odpowiednio skomponowanych do jego funkcji i miejsca zastosowania.

Pytanie 39

Przygotowanie kruszywa naturalnego do wytworzenia zaprawy tynkarskiej, która ma być użyta do nałożenia tynku zwykłego, polega na

A. przesianiu kruszywa przez sito o oczkach 5 mm
B. przesianiu kruszywa przez sito o oczkach 2 mm
C. ustaleniu stopnia zagęszczenia kruszywa
D. ustaleniu gęstości pozornej kruszywa
Przesiewanie kruszywa przez sito o oczkach 5 mm nie jest odpowiednie dla produkcji zaprawy tynkarskiej, ponieważ nie eliminuje wystarczająco dużych zanieczyszczeń, które mogą negatywnie wpłynąć na jakość tynku. Odpowiedni rozmiar kruszywa ma kluczowe znaczenie dla uzyskania jednorodnej mieszanki, a zbyt duże cząstki mogą przyczynić się do powstawania pęknięć i nierówności na powierzchni tynku. Ustalanie stopnia zagęszczenia kruszywa, choć istotne w kontekście ogólnych właściwości materiału, nie jest kluczowym krokiem w przypadku tynków, gdzie bardziej istotne jest zapewnienie odpowiedniej granulacji kruszywa. Ustalanie gęstości pozornej kruszywa również nie ma bezpośredniego wpływu na przygotowanie zaprawy tynkarskiej, a bardziej odnosi się do ogólnej charakterystyki materiału budowlanego. W kontekście praktycznym, wiele osób myli te aspekty z przygotowaniem betonu, gdzie zagęszczenie może być bardziej kluczowe. Dlatego niepoprawne podejście do wyboru metody przesiania kruszywa może prowadzić do poważnych błędów w wykonawstwie, które skutkują nie tylko niewłaściwymi parametrami technicznymi, ale także zwiększonymi kosztami napraw w przyszłości.

Pytanie 40

Na podstawie danych zawartych w tabeli oblicz całkowity koszt materiałów potrzebnych do wykonania 1 m2 tynku mozaikowego.

Rodzaj materiałuPojemność opakowaniaCena za
1 opakowanie
Wydajność
zaprawa tynkarska25 kg150,00 zł3 kg/m²
preparat gruntujący4 l30,00 zł0,4 l/m²
A. 6,00 zł
B. 18,00 zł
C. 21,00 zł
D. 9,00 zł
Niewłaściwe odpowiedzi na to pytanie mogą wynikać z kilku podstawowych błędów w obliczeniach oraz zrozumieniu kosztów materiałów. Często zdarza się, że osoby odpowiedzialne za obliczenia pomijają niektóre składniki kosztów, co prowadzi do zaniżenia całkowitego kosztu. Na przykład, odpowiedzi takie jak 6,00 zł czy 9,00 zł sugerują, że osoba udzielająca odpowiedzi nie uwzględniła pełnego zakresu wymaganych materiałów. Koszt zaprawy tynkarskiej, który wynosi 18,00 zł/m², jest kluczowy i nie może być zignorowany, ponieważ stanowi główny element kosztorysu. Z kolei koszt preparatu gruntującego, który wynosi 3,00 zł/m², również jest niezbędny do prawidłowego wykonania tynku. Wiele osób błędnie zakłada, że zaprawa tynkarska wystarczy sama, co jest niezgodne z praktykami budowlanymi. Dobór właściwych materiałów i ich pełne uwzględnienie w kosztorysie to jedna z podstawowych zasad tworzenia rzetelnych budżetów w projektach budowlanych. Ignorowanie tych zasad prowadzi do poważnych dysproporcji w oszacowaniu wydatków oraz może skutkować problemami w realizacji projektu, takimi jak braki materiałowe lub przeciąganie terminów. Warto zawsze przeanalizować wszystkie koszty i dążyć do jak najbardziej dokładnych obliczeń, aby uniknąć takich sytuacji.