Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 10:33
  • Data zakończenia: 7 grudnia 2025 10:41

Egzamin niezdany

Wynik: 10/40 punktów (25,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w ramce?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony podstawowej.
B. Ochrony przez zastosowanie bardzo niskiego napięcia.
C. Ochrony uzupełniającej.
D. Ochrony przy uszkodzeniu (dodatkowej).
Odpowiedź wskazująca na ochronę uzupełniającą jest poprawna, ponieważ środki ochrony opisane w ramce, takie jak urządzenia różnicowoprądowe i dodatkowe połączenia wyrównawcze, pełnią kluczową rolę w zapewnieniu bezpieczeństwa użytkowników instalacji elektrycznych. Urządzenia różnicowoprądowe działają na zasadzie wykrywania różnicy w prądzie płynącym przez przewody fazowy i neutralny. W przypadku wykrycia nieprawidłowości, urządzenie natychmiast odłącza zasilanie, co zapobiega porażeniom prądem. Dodatkowe połączenia wyrównawcze są stosowane, aby zminimalizować potencjalne różnice napięcia między różnymi elementami instalacji. W sytuacji uszkodzenia izolacji dodatkowa ścieżka dla prądu zapewnia, że nie wystąpi niebezpieczne napięcie, co zwiększa ogólny poziom bezpieczeństwa. Zgodnie z normą PN-IEC 60364, te metody ochrony są klasyfikowane jako uzupełniające i są rekomendowane w instalacjach narażonych na wysokie ryzyko porażenia prądem. W praktyce, ich zastosowanie w budynkach mieszkalnych oraz obiektach użyteczności publicznej jest standardem, co potwierdza ich niezawodność i efektywność.

Pytanie 2

Jaką liczbę klawiszy oraz zacisków ma typowy pojedynczy łącznik schodowy?

A. Jeden klawisz i cztery zaciski
B. Jeden klawisz i trzy zaciski
C. Dwa klawisze i cztery zaciski
D. Dwa klawisze i trzy zaciski
Wybór odpowiedzi z dwiema klawiszami jest błędny, ponieważ klasyczny pojedynczy łącznik schodowy z definicji nie może posiadać więcej niż jednego klawisza. Dwa klawisze są charakterystyczne dla łączników podwójnych, które umożliwiają kontrolę dwóch niezależnych obwodów oświetleniowych z jednego miejsca. Takie zamieszanie często wynika z niezrozumienia różnic między różnymi typami łączników. W przypadku łączników schodowych, ich podstawowa rola polega na umożliwieniu włączania i wyłączania światła z dwóch różnych miejsc, co jest realizowane przez połączenie dwóch łączników schodowych w układzie krzyżowym. Jeśli chodzi o zaciski, odpowiedzi sugerujące cztery zaciski lub niepoprawną liczbę trzech zacisków są mylące. Często błędne zrozumienie liczby zacisków wynika z pomylenia łączników schodowych z innymi typami łączników, takimi jak łączniki krzyżowe, które rzeczywiście mogą mieć więcej zacisków. Kluczem do zrozumienia funkcji łączników jest znajomość ich budowy oraz zasad działania w kontekście całego obwodu elektrycznego, co pozwala na ich właściwe wykorzystanie w praktyce.

Pytanie 3

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji podtynkowej, prowadzonej w rurach karbowanych, zauważono, że w wyniku poluzowania zacisku, izolacja jednego z przewodów na długości kilku centymetrów straciła swoją elastyczność i zmieniła kolor. Jak powinno się naprawić to uszkodzenie?

A. Wymienić wszystkie przewody na nowe o większym przekroju
B. Polakierować uszkodzoną izolację przewodu
C. Nałożyć gumowy wąż na uszkodzoną izolację przewodu
D. Wymienić uszkodzony przewód na nowy o takim samym przekroju
Wymiana uszkodzonego przewodu na nowy o takim samym przekroju jest prawidłowym rozwiązaniem, ponieważ uszkodzenie izolacji przewodu może prowadzić do poważnych zagrożeń, takich jak zwarcia, przegrzewanie się oraz porażenia prądem. Przewody elektryczne muszą spełniać określone normy techniczne, a ich izolacja powinna być w dobrym stanie, aby zapewnić bezpieczeństwo użytkowania instalacji. W przypadku uszkodzenia izolacji, jak w tym przypadku, zaleca się wymianę całego przewodu, aby uniknąć ryzyka. Przykład zastosowania tej zasady można znaleźć w przepisach elektrycznych, takich jak normy PN-IEC dotyczące instalacji elektrycznych. Warto również pamiętać o tym, że przewody o różnym przekroju mają różne właściwości prądowe, co oznacza, że wymiana na przewód o innym przekroju może prowadzić do przekroczenia dopuszczalnych obciążeń prądowych. Dobrą praktyką w takich sytuacjach jest również przeprowadzenie przeglądu całej instalacji, aby zidentyfikować inne potencjalne problemy.

Pytanie 4

Które z poniższych oznaczeń dotyczy wyłącznika silnikowego?

A. Z-MS-16/3
B. Ex9BP-N 4P C10
C. SM 25-40
D. FRCdM-63/4/03
Pozostałe oznaczenia, takie jak SM 25-40, Ex9BP-N 4P C10 oraz FRCdM-63/4/03, nie odnoszą się do wyłączników silnikowych, co może prowadzić do nieporozumień w zakresie ich funkcji i zastosowania. Oznaczenie SM 25-40 zazwyczaj odnosi się do styczników, które służą do załączania i wyłączania obwodów elektrycznych, ale nie mają funkcji ochrony silnika przed przeciążeniem lub zwarciem. Styki w takich urządzeniach są zaprojektowane do pracy w określonych warunkach, lecz nie zrealizują funkcji zabezpieczenia, jaką oferuje wyłącznik silnikowy. Z kolei Ex9BP-N 4P C10 to oznaczenie wyłącznika automatycznego, który może być używany w obwodach elektrycznych, ale nie są one dedykowane do ochrony silników. Zastosowanie tego typu wyłącznika do zabezpieczenia silników może prowadzić do niewłaściwego działania i potencjalnych uszkodzeń. Natomiast oznaczenie FRCdM-63/4/03 wskazuje na urządzenie, które najprawdopodobniej jest wyłącznikiem różnicowoprądowym, stosowanym głównie do ochrony przed porażeniem prądem elektrycznym, a nie przed przeciążeniem silników. Tego typu wyłączniki mają zupełnie inne zastosowanie i nie spełniają wymogów ochrony silników. Właściwe rozróżnienie pomiędzy tymi urządzeniami jest kluczowe w kontekście bezpieczeństwa oraz efektywności pracy instalacji elektrycznych. Użytkownicy powinni być świadomi, że niewłaściwe dobranie urządzenia ochronnego może prowadzić do poważnych konsekwencji, zarówno w aspekcie bezpieczeństwa, jak i wydajności systemów elektrycznych.

Pytanie 5

Wybierz z tabeli numer katalogowy wtyczki, która wraz przewodem wystarczy do zasilenia betoniarki z silnikiem trójfazowym pobierającym w warunkach pracy znamionowej moc 12 kVA. Maszyna sterowana jest stycznikiem z cewką na napięcie 230 V i zasilana z sieci TN-S o napięciu 230/400 V.

Ilustracja do pytania
A. 014-6
B. 015-6
C. 025-6
D. 024-6
Wybór niewłaściwej wtyczki, takiej jak 014-6, 015-6 lub 024-6, może wydawać się na pierwszy rzut oka odpowiedni, jednakże przy bliższym przyjrzeniu się okazuje się, że każda z tych opcji nie spełnia podstawowych wymagań dla urządzenia o mocy 12 kVA. Wtyczka 014-6 jest zaprojektowana na niższe obciążenia, co oznacza, że jej maksymalna wartość prądu jest niewystarczająca dla betoniarki, która wymaga 17,32 A. Z kolei wtyczka 015-6 również nie jest przystosowana do pracy z takim obciążeniem, co może prowadzić do niebezpiecznych sytuacji związanych z przegrzewaniem i uszkodzeniem wtyczki. W przypadku wtyczki 024-6, choć może ona mieć nieco wyższe parametry, wciąż nie osiąga wymaganej wydajności prądowej. Użycie niewłaściwej wtyczki może skutkować nie tylko awarią sprzętu, ale także naruszeniem przepisów BHP, które wymuszają stosowanie odpowiednich, certyfikowanych komponentów do zasilania maszyn przemysłowych. Warto pamiętać, że każde urządzenie elektryczne powinno być zasilane zgodnie z jego specyfikacją, co obejmuje również właściwy dobór wtyczek oraz przewodów, aby zminimalizować ryzyko awarii i zapewnić bezpieczeństwo użytkowania.

Pytanie 6

Które z podanych narzędzi nie jest potrzebne do zamontowania listew elektroinstalacyjnych na ścianach z użyciem kołków rozporowych?

A. Piła do metalu
B. Poziomnica
C. Młotek
D. Ściągacz izolacji
Ściągacz izolacji to narzędzie, które głównie służy do ściągania izolacji z przewodów elektrycznych, ale do montażu listew elektroinstalacyjnych nie będzie potrzebny. Podczas montażu najważniejsze jest, żeby dobrze umiejscowić listwy na ścianie i upewnić się, że są równo przyczepione. Do tego wystarczą podstawowe narzędzia, jak poziomnica, młotek czy kołki rozporowe. ściągacz nie jest tu konieczny, bo nie pracujemy bezpośrednio z przewodami. Warto korzystać z odpowiednich narzędzi do danego zadania, bo to poprawia efektywność pracy i zmniejsza ryzyko uszkodzeń. Dlatego przy montażu listew najważniejsze są poziomica i młotek do wbijania kołków, żeby wszystko było stabilne i na poziomie.

Pytanie 7

Prace przeprowadzane pod napięciem w instalacji domowej wymagają użycia narzędzi izolowanych o minimalnym poziomie napięcia izolacji

A. 1000 V
B. 500 V
C. 250 V
D. 120 V
Wybór wartości poniżej 500 V jako minimalnego napięcia izolacji narzędzi przy pracach pod napięciem w instalacjach elektrycznych jest nieodpowiedni i może prowadzić do poważnych zagrożeń. Odpowiedzi takie jak 120 V, 250 V czy 1000 V nie uwzględniają kluczowych aspektów bezpieczeństwa. Narzędzia izolowane muszą oferować odpowiednią ochronę, a zbyt niska wartość napięcia izolacji, taka jak 120 V czy 250 V, może nie zapewnić wystarczającej ochrony przy standardowych napięciach w domowych instalacjach elektrycznych, które często sięgają 230 V. Z kolei przyjęcie 1000 V jako minimalnej wartości wydaje się przesadzone w kontekście standardowych prac w instalacjach mieszkaniowych, co może prowadzić do niepotrzebnego obciążenia techników i zwiększenia kosztów narzędzi. Kluczową zasadą jest stosowanie narzędzi, które są odpowiednio dopasowane do warunków pracy i napięcia, w jakim będą używane. Zastosowanie narzędzi o odpowiedniej izolacji, zgodnych z normami, jest niezbędne dla zapewnienia bezpieczeństwa i ochrony przed porażeniem prądem elektrycznym. Ignorowanie tych zasad naraża pracowników na ryzyko i może prowadzić do wypadków, co podkreśla znaczenie wiedzy na temat specyfikacji sprzętu w kontekście bezpieczeństwa elektrycznego.

Pytanie 8

Kontrola instalacji elektrycznych, które są narażone na szkodliwe działanie warunków atmosferycznych lub destrukcyjne oddziaływanie czynników występujących podczas eksploatacji budynku, powinna odbywać się nie rzadziej niż raz na

A. 2 lata
B. 4 lata
C. rok
D. kwartał
Wybór nieodpowiedniego okresu pomiędzy kontrolami instalacji elektrycznych może prowadzić do poważnych konsekwencji zarówno dla bezpieczeństwa użytkowników, jak i dla stanu technicznego budynku. Decydując się na kontrolę co kwartał, można błędnie zakładać, że tak częste inspekcje są niezbędne dla zapewnienia bezpieczeństwa. Takie podejście może prowadzić do niepotrzebnych kosztów i obciążenia dla właścicieli budynków, które mogą być nadmierne w porównaniu do rzeczywistych potrzeb. Z drugiej strony, wybierając okres dwóch lub czterech lat, użytkownicy mogą nie dostrzegać, że instalacje elektryczne, szczególnie te narażone na działanie czynników atmosferycznych, mogą ulegać szybkiemu zużyciu. Statystyki pokazują, że awarie elektryczne często występują w wyniku zaniedbania regularnych kontroli, co może skutkować nie tylko stratami materialnymi, ale i zagrożeniem dla życia ludzi. Dlatego istotne jest, aby nie opierać się na subiektywnych odczuciach co do stanu technicznego instalacji, lecz kierować się zaleceniami norm branżowych, które wskazują na konieczność przeprowadzania kontroli co roku. Umożliwia to nie tylko zachowanie bezpieczeństwa, ale również utrzymanie instalacji w odpowiednim stanie technicznym przez długi czas.

Pytanie 9

Oprawy oświetleniowe opatrzone symbolem przedstawionym na ilustracji

Ilustracja do pytania
A. wymagają uziemienia obudowy.
B. muszą być zasilane wyłącznie z sieci PELV.
C. muszą być zasilane wyłącznie przez transformator separacyjny.
D. mają wzmocnioną izolację.
Wybór odpowiedzi wskazujących na konieczność zasilania opraw oświetleniowych wyłącznie przez transformator separacyjny lub z sieci PELV oraz wymaganie uziemienia obudowy wynika z niewłaściwego zrozumienia zasad klasyfikacji urządzeń elektrycznych. Oprawy z symbolem podwójnej izolacji nie wymagają separacji zasilania, ponieważ ich konstrukcja zapewnia wystarczający poziom ochrony przed porażeniem prądem. Transformator separacyjny jest stosowany w urządzeniach, które nie mają podwójnej izolacji i wymagają dodatkowego zabezpieczenia, co oznacza, że jego zastosowanie w przypadku opraw z wzmocnioną izolacją jest zbędne. Ponadto, zasada dotycząca uziemienia nie ma zastosowania w przypadku urządzeń klasy II, ponieważ ich konstrukcja nie przewiduje tego typu zabezpieczeń. Zamiana zasilania na system PELV, który bazuje na niskich napięciach, również jest nieadekwatna, ponieważ oprawy z podwójną izolacją są projektowane do pracy w standardowych warunkach zasilania. Takie nieporozumienia mogą prowadzić do niebezpiecznych praktyk montażowych oraz użytkowania, w których bezpieczeństwo użytkowników może być zagrożone. Kluczowe jest zrozumienie, że podwójna izolacja sama w sobie stanowi wystarczający poziom ochrony, eliminując potrzebę stosowania dodatkowych zabezpieczeń, które są dedykowane innym klasom ochronności.

Pytanie 10

Którego z wymienionych urządzeń pomiarowych powinno się użyć do przeprowadzenia pomiarów rezystancji izolacji w domowej instalacji elektrycznej?

A. Amperomierza cęgowego
B. Mostka prądu zmiennego
C. Omomierza szeregowego
D. Megaomomierza induktorowego
Megaomomierz induktorowy to naprawdę fajne urządzenie do pomiaru rezystancji izolacji w instalacjach elektrycznych. Głównie pomaga ocenić, w jakim stanie jest izolacja przewodów, co jest bardzo ważne dla bezpieczeństwa i dobrej pracy instalacji. W przeciwieństwie do zwykłych omomierzy, które działają na niskich wartościach, megaomomierz potrafi wygenerować wysokie napięcie, na przykład od 250 do 1000V. Dzięki temu da się zauważyć różne problemy z izolacją, takie jak uszkodzenia czy nieszczelności. Z mojego doświadczenia wynika, że regularne pomiary są kluczowe, zwłaszcza w domach. Są normy, jak PN-IEC 60364, które mówią, że trzeba to robić przynajmniej co pięć lat, a w niektórych miejscach nawet częściej. Dzięki tym pomiarom można zapobiec poważnym awariom i zagrożeniom pożarowym związanym z uszkodzoną izolacją.

Pytanie 11

Stosując kryterium obciążalności prądowej, dobierz na podstawie tabeli minimalny przekrój przewodu do zasilenia grzejnika elektrycznego o danych: PN = 4,6 kW, UN = 230 V.

S, mm21,01,52,54,06,0
Idd, A1519243242
A. 2,5 mm2
B. 6,0 mm2
C. 4,0 mm2
D. 1,5 mm2
Dobra robota z wybraniem przekroju przewodu 2,5 mm²! Z tego co pamiętam, taki przekrój jest ok, gdy chodzi o obciążalność prądową. Kiedy obliczamy prąd dla grzejnika elektrycznego 4,6 kW przy 230 V, to wychodzi nam około 20 A. Jak spojrzysz na tabelę obciążalności przewodów, to zobaczysz, że 2,5 mm² spokojnie wytrzyma do 24 A, co oznacza, że jest to bezpieczny wybór. Moim zdaniem, dobrze dobrany przekrój przewodu to klucz do efektywnej pracy urządzenia i bezpieczeństwa naszych instalacji. Taki przekrój jest także często używany w instalacjach oświetleniowych czy przy zasilaniu urządzeń o podobnych parametrach. Zawsze warto mieć na uwadze tabele obciążalności i normy, jak PN-IEC 60364 – to pomoże uniknąć problemów w przyszłości.

Pytanie 12

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Zatrzymuje łuk elektryczny
B. Napina sprężynę napędu
C. Rozpoznaje zwarcia
D. Rozpoznaje przeciążenia
Wykrywanie przeciążenia przez wyzwalacz elektromagnetyczny w wyłączniku nadprądowym to często mylony temat. Chociaż wyzwalacz elektromagnetyczny jest kluczowym elementem w systemach zabezpieczeń, jego główną funkcją nie jest identyfikacja przeciążenia, lecz detekcja zwarć, które następują przy znacznie większych prądach. Przeciążenie oznacza, że prąd roboczy jest wyższy od nominalnego, ale wciąż niższy od wartości, która spowodowałaby bezpośrednie uszkodzenie obwodu. W takich sytuacjach wyzwalacze termiczne, a nie elektromagnetyczne, są odpowiedzialne za monitorowanie długotrwałego wzrostu temperatury, co związane jest z przeciążeniem. Z kolei gasi łuk elektryczny i naciąga sprężynę napędu to funkcje, które również nie są charakterystyczne dla wyzwalacza elektromagnetycznego. Gasi łuk elektryczny w wyłącznikach nadprądowych jest realizowane zazwyczaj przez specjalne mechanizmy, takie jak komory gaszenia, które mają na celu zminimalizowanie ryzyka powstania łuku podczas rozłączenia obwodu. Naciąganie sprężyny napędu dotyczy mechanizmów działania wyłączników, ale nie jest jednym z zadań wyzwalacza elektromagnetycznego. Stąd wynika, że pomylenie funkcji różnych komponentów wyłącznika nadprądowego może prowadzić do niewłaściwego zrozumienia ich roli w systemach elektrycznych.

Pytanie 13

Na rysunku przedstawiono oprawę oświetleniową

Ilustracja do pytania
A. lampy przenośnej warsztatowej.
B. wewnętrzną do lampy sodowej.
C. lampy biurowej z odbłyśnikiem.
D. wewnętrzną do lampy punktowej.
Wybór pozostałych odpowiedzi wskazuje na niepełne zrozumienie charakterystyki opraw oświetleniowych oraz ich zastosowania. Odpowiedź wskazująca na lampę biurową z odbłyśnikiem nie uwzględnia faktu, że biurowe źródła światła są zazwyczaj projektowane do pracy w stabilnych warunkach z zachowaniem estetyki oraz ergonomii, a nie do intensywnego użytkowania w zmiennych warunkach, jak ma to miejsce w przypadku lamp przenośnych. Ponadto, lampy biurowe nie są wyposażone w dodatkowe zabezpieczenia przed uszkodzeniami mechanicznymi, co jest kluczowe w przypadku opraw przeznaczonych do warsztatów. Również, wybór lampy wewnętrznej do lampy sodowej jest błędny, ponieważ lampy sodowe są stosowane głównie w przestrzeniach zewnętrznych, takich jak ulice czy parkingi, co nie jest zgodne z kontekstem przedstawionym na zdjęciu. Z kolei lampa punktowa jest projektowana do oświetlania konkretnego miejsca, a nie do rozproszonego oświetlenia w trudnych warunkach, co również przeczy charakterystyce lampy przenośnej warsztatowej. Te nieprawidłowe odpowiedzi wynikają z braku uwzględnienia praktycznych zastosowań oraz specyfikacji technicznych różnych typów oświetlenia, co jest kluczowe w ich poprawnym odróżnianiu w kontekście zastosowań w przemyśle i codziennym życiu.

Pytanie 14

Który z wymienionych czynników wpływa na częstotliwość, z jaką powinno się przeprowadzać okresowe kontrole instalacji elektrycznej?

A. Warunki zewnętrzne, którym instalacja jest poddawana
B. Metoda montażu instalacji
C. Kształt budynku w przestrzeni
D. Liczba urządzeń zasilanych z tej instalacji
Koncepcje związane z innymi czynnikami, takimi jak liczba odbiorników zasilanych z instalacji, kształt przestrzenny budynku czy sposób montażu instalacji, nie mają decydującego wpływu na częstotliwość okresowych kontroli instalacji elektrycznej. Liczba odbiorników, mimo że wpływa na obciążenie systemu, nie przekłada się bezpośrednio na warunki, które mogą prowadzić do uszkodzeń instalacji. Zwiększona liczba urządzeń nie oznacza, że instalacja będzie bardziej narażona na awarie. Natomiast kształt budynku, chociaż może wpływać na dystrybucję energii i projekt instalacji, nie jest czynnikiem wpływającym na de facto potrzebę częstszych kontroli, ponieważ nie zmienia on warunków eksploatacyjnych, w jakich znajduje się instalacja. Z kolei sposób montażu instalacji, chociaż istotny dla bezpieczeństwa i funkcjonalności systemu, nie determinujący częstotliwości przeglądów. Często spotykanym błędem jest mylenie częstotliwości przeglądów z jakością wykonania instalacji. Dlatego tak ważne jest, aby skupić się na warunkach, w jakich instalacja pracuje, ponieważ to one ostatecznie wpływają na jej trwałość i bezpieczeństwo. Przykłady z praktyki pokazują, że instalacje narażone na trudne warunki atmosferyczne, takie jak wilgoć czy zanieczyszczenia, muszą być szczególnie regularnie kontrolowane, aby zminimalizować ryzyko awarii, co nie może być zrealizowane przez analizowanie tylko innych wymienionych czynników.

Pytanie 15

Jakiego koloru jest wskaźnik wkładki topikowej o nominalnym natężeniu prądu wynoszącym 6 A?

A. szary
B. zielony
C. żółty
D. niebieski
Wkładki topikowe są kluczowymi elementami w systemach zabezpieczeń elektrycznych, a ich kolorystyka jest ściśle zdefiniowana normami, co pozwala na łatwe identyfikowanie wartości prądowych. W przypadku wkładek o wartości prądu znamionowego 6 A, kolor zielony jest odpowiedni według międzynarodowych standardów, takich jak IEC 60127. Ta norma definiuje kolory wkładek w zależności od ich wartości prądowej, co skutkuje uniknięciem błędów podczas wyboru odpowiednich komponentów. Przykładem zastosowania wkładek topikowych o wartości 6 A z zielonym oznaczeniem jest ich wykorzystanie w układach zasilających urządzenia o niskim poborze mocy, gdzie istotne jest zabezpieczenie przed przeciążeniem. Wiedza na temat właściwego doboru wkładek jest kluczowa dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych, dlatego warto regularnie konsultować się z dokumentacją techniczną oraz stosować się do obowiązujących norm.

Pytanie 16

Jaką minimalną wartość powinno mieć napięcie probiercze miernika używanego do pomiaru rezystancji izolacji w instalacji elektrycznej pracującej pod napięciem 230/400 V?

A. 500 V
B. 250 V
C. 2 500 V
D. 1 000 V
Minimalna wartość napięcia probierczego miernika używanego do pomiaru rezystancji izolacji w instalacjach elektrycznych o napięciu 230/400 V powinna wynosić 500 V. Taka wartość jest zgodna z międzynarodowymi standardami, takimi jak IEC 61557, które określają wymagania dotyczące pomiaru rezystancji izolacji. Przy napięciu probierczym wynoszącym 500 V, można skutecznie ocenić stan izolacji przewodów oraz innych elementów instalacji, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Pomiar przy tym napięciu pozwala na wykrycie potencjalnych uszkodzeń izolacji, które mogą prowadzić do zwarć czy porażenia prądem. W praktyce, testowanie izolacji w instalacjach elektrycznych wykonywane jest regularnie, szczególnie przed oddaniem do użytkowania nowych instalacji oraz podczas przeglądów okresowych. Użycie napięcia 500 V zapewnia odpowiednią reprezentatywność stanu izolacji, co jest istotne dla dalszej eksploatacji i bezpieczeństwa całej instalacji elektrycznej.

Pytanie 17

Jaką wartość bezwzględną ma błąd pomiaru natężenia prądu, jeżeli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla używanego zakresu pomiarowego jako ±(1 % +2) cyfry?

A. ±0,35 mA
B. ±0,37 mA
C. ±2,35 mA
D. ±0,02 mA
W przypadku obliczania błędu pomiarowego, niektóre osoby mogą błędnie interpretować podaną dokładność miernika. Zwykle błąd pomiarowy składa się z dwóch komponentów: błędu procentowego oraz wartości stałej. W opisywanym przypadku, dokładność miernika wynosi ±(1 % +2), co oznacza, że należy to wyraźnie zrozumieć, jako wpływ zarówno względny, jak i bezwzględny na dokładność pomiaru. Wybór wartości ±0,35 mA jako błędu pomiarowego może sugerować, że osoba skupia się wyłącznie na składniku procentowym, ignorując istotny dodatek 2 mA. Takie podejście prowadzi do zaniżenia rzeczywistego błędu, co może skutkować niepoprawnymi wnioskami w analizach eksperymentalnych. Inna niepoprawna odpowiedź, która sugeruje ±2,35 mA, wynika z nieprawidłowego zrozumienia granic błędu pomiarowego; wartość ta jest zbyt wysoka w odniesieniu do rzeczywistych pomiarów, ponieważ przy podanych wartościach, jak 35 mA, błąd powinien być znacznie mniejszy. Osoby myślące, że błąd pomiarowy może być tak duży, mogą nie zrozumieć zasadniczej różnicy pomiędzy błędem całkowitym a rzeczywistym błędem odczytu. W kontekście praktycznym, takie błędne interpretacje mogą prowadzić do efektywnych strat w projektach inżynieryjnych, gdzie dokładność pomiarów jest kluczowa dla bezpieczeństwa i efektywności urządzeń. Warto zaznaczyć, że każdy pomiar powinien być analizowany zarówno pod kątem błędów systematycznych, jak i losowych, co jeszcze bardziej podkreśla znaczenie dokładności w kontekście zastosowań przemysłowych.

Pytanie 18

Do pomiaru napięć stałych należy użyć miernika elektrycznego o ustroju, którego symbol graficzny przedstawiono na rysunku

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Odpowiedź D jest prawidłowa, ponieważ symbol graficzny przedstawiony przy tej opcji to standardowy symbol miernika analogowego, powszechnie używanego do pomiaru napięć stałych. Mierniki te są kluczowym narzędziem w elektrotechnice, umożliwiającym dokładne pomiary w obwodach elektrycznych. W praktyce, miernik analogowy potrafi zmierzyć napięcie stałe w różnych aplikacjach, takich jak diagnostyka układów zasilających oraz pomiar parametrów akumulatorów. Warto zaznaczyć, że korzystanie z miernika analogowego wymaga umiejętności odczytu wskazań wskazówki na skali, co może być mniej intuicyjne niż w przypadku nowoczesnych multimetra cyfrowego. Jednakże, w pewnych aplikacjach, analogowy miernik może zapewnić lepszą wizualizację zmian napięcia w czasie. Dlatego znajomość tego symbolu i umiejętność korzystania z takiego sprzętu jest fundamentalna dla każdego technika elektryka.

Pytanie 19

Do czynności związanych z oględzinami instalacji elektrycznej nie należy

A. ocena dostępności urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
B. sprawdzenie prawidłowości oznaczeń przewodów neutralnych oraz ochronnych
C. weryfikacja oznaczeń obwodów oraz zabezpieczeń
D. pomiar rezystancji uziemienia
W kontekście oględzin instalacji elektrycznej, każdy z wymienionych elementów pełni kluczową rolę w zapewnieniu jej prawidłowego funkcjonowania oraz bezpieczeństwa. Sprawdzanie oznaczeń obwodów i zabezpieczeń jest niezwykle istotne, ponieważ umożliwia właściwe zidentyfikowanie obwodów zasilających. Niewłaściwe oznaczenia mogą prowadzić do poważnych błędów w eksploatacji, takich jak przypadkowe wyłączenie zasilania czy trudności w identyfikacji obwodów w sytuacjach awaryjnych. Również ocena dostępu do urządzeń jest kluczowa, ponieważ instalacje elektryczne muszą być łatwo dostępne dla personelu serwisowego oraz użytkowników. Zbyt mała przestrzeń lub trudności w dostępie mogą uniemożliwić prawidłową konserwację, co zwiększa ryzyko awarii. Sprawdzanie poprawności oznaczenia przewodów neutralnych i ochronnych jest kolejnym elementem, który jest niezbędny w celu zapewnienia prawidłowego działania instalacji oraz ochrony przed porażeniem elektrycznym. Normy, takie jak PN-IEC 60364, kładą nacisk na znaczenie poprawnego oznakowania przewodów, co jest kluczowe dla prawidłowej identyfikacji ich funkcji oraz zapewnienia bezpieczeństwa użytkowników. Dlatego w kontekście oględzin instalacji elektrycznej, każdy z wymienionych elementów jest niezbędny i nie można ich pomijać.

Pytanie 20

Którą wstawkę kalibrową należy zastosować do podstawy bezpiecznikowej przeznaczonej dla wkładki topikowej typu D o oznaczeniu literowym gG i prądzie znamionowym 25 A?

Ilustracja do pytania
A. Wstawkę 2.
B. Wstawkę 1.
C. Wstawkę 4.
D. Wstawkę 3.
Wybór niewłaściwej wstawki kalibrowej często wynika z braku zrozumienia zasad działania wkładek topikowych i ich klasyfikacji. Użytkownicy mogą błędnie sądzić, że dowolna wstawka kalibrowa, np. wstawkę 1 lub 2, mogłaby spełniać wymagania dla wkładki topikowej 25 A. W rzeczywistości każda wstawka ma swoje specyficzne parametry prądowe i napięciowe, które są krytyczne dla bezpieczeństwa instalacji. Wstawki, które nie są odpowiednio dobrane, mogą nie zadziałać w sytuacji przeciążenia, co prowadzi do poważnych awarii. Przykładowo, zastosowanie wstawki 1, która ma inne parametry prądowe, może skutkować brakiem ochrony w razie zwarcia, co naraża instalację na ryzyko uszkodzenia sprzętu lub pożaru. Warto również pamiętać, że normy IEC 60269 wyraźnie określają, jakie wstawki powinny być używane z określonymi wkładkami topikowymi. Ignorowanie tych norm i zasad może prowadzić do nieodwracalnych konsekwencji. Dlatego kluczowe jest, aby przed dokonaniem wyboru wstawki kalibrowej dokładnie zapoznać się z dokumentacją techniczną oraz standardami dotyczącymi zabezpieczeń elektrycznych.

Pytanie 21

W układzie instalacji mieszkaniowej przedstawionej na rysunku, ochrona wyłącznikiem różnicowoprądowym RCD nie obejmuje gniazd w

Ilustracja do pytania
A. łazience i pokoju 2
B. pokoju 1 i pokoju 2
C. łazience i pokoju 1
D. kuchni i pokoju 2
Twoje odpowiedzi dotyczące gniazd w kuchni, łazience, czy też różnych kombinacji tych pomieszczeń są błędne. Wydaje mi się, że myślisz, że obwody w tych miejscach są objęte ochroną RCD, ale to nie jest prawda. RCD powinno się stosować tam, gdzie ryzyko kontaktu z wodą jest wysokie, co jest naprawdę istotne, żeby zapewnić bezpieczeństwo. Kuchnia i łazienka to miejsca, gdzie wilgoć jest na porządku dziennym, więc ochrona RCD to konieczność. Z kolei twierdzenie, że obwody w pokojach mają taką samą ochronę, może wprowadzać w błąd, bo te przestrzenie nie są tak narażone jak kuchnie czy łazienki. Często też ludzie mogą mylnie sądzić, że RCD powinno być wszędzie w mieszkaniu, co nie zawsze ma sens w praktyce. Dobrze jest montować RCD w obwodach, gdzie mogą być urządzenia używane w wilgotnych warunkach, ale w pokojach, które nie mają tyle wilgoci, można je zabezpieczyć w inny sposób. Ignorowanie tego bezpieczeństwa to ryzykowna sprawa, dlatego istotne jest, by instalacja elektryczna była zgodna z normami.

Pytanie 22

Wskaż prawidłowy schemat sterowania oświetleniem z dwóch niezależnych miejsc?

Ilustracja do pytania
A. Schemat 2.
B. Schemat 3.
C. Schemat 1.
D. Schemat 4.
Często, jak się wybiera zły schemat do sterowania oświetleniem, to wynika to z niezrozumienia podstaw, jak działają przełączniki schodowe i do czego służą. Schematy bez przełączników schodowych nie mogą zapewnić pełnej funkcji, której potrzebujemy, żeby włączać światło z dwóch miejsc. Na przykład te, które mają standardowe przełączniki jednobiegunowe, pozwalają tylko na włączenie lub wyłączenie światła z jednego punktu, co uniemożliwia operowanie z drugiego miejsca. Błąd logiczny często bierze się z mylenia, jak działają przełączniki i jakie mają możliwości. Jeśli zastosujemy złe schematy, to może to prowadzić do złego okablowania, co nie tylko utrudnia korzystanie, ale też może być niebezpieczne. Przy projektowaniu instalacji oświetleniowych warto przestrzegać norm i standardów branżowych, jak PN-EN 60669-1, które mówią o bezpiecznym i efektywnym korzystaniu z układów. Dlatego przed wyborem schematu warto dokładnie przeanalizować jego funkcjonalność i zastosowanie w praktyce.

Pytanie 23

Przy sprawdzaniu kabla wykonano dwie serie pomiarów rezystancji pomiędzy końcami żył na jednym z jego końców. Na drugim końcu kabla w pierwszej serii zwarto wszystkie żyły ze sobą, a w drugiej serii żyły pozostały rozwarte. Wyniki pomiarów zapisano w tabeli. Jakie wnioski można wyciągnąć na podstawie tych wyników?

Ilustracja do pytania
A. Żyły a i b są zwarte ze sobą.
B. Żyły c i a są przerwane.
C. Żyły c i a są zwarte ze sobą.
D. Żyły a i b są przerwane.
Wnioski wyciągnięte z pomiarów rezystancji są kluczowe dla właściwego diagnozowania stanu kabli. Nieprawidłowe interpretacje mogą prowadzić do fałszywych diagnoz, co z kolei może skutkować nieefektywnym użytkowaniem sprzętu lub nawet poważnymi awariami. Na przykład, uznanie, że żyły c i a są przerwane, pomija fakt, że w pierwszej serii pomiarów rezystancja była niska, co wskazuje na ich sprawność. Takie wnioski mogą wynikać z niepełnego zrozumienia zasad działania rezystancji i wpływu zwarcia na pomiary. Z kolei założenie, że żyły a i b są przerwane, jest również błędne, ponieważ ich rezystancja w drugiej serii była zbliżona do wartości ze pierwszej serii, co sugeruje ich zwarte połączenie. Dlatego kluczowe jest, aby technicy byli świadomi różnicy między pomiarami w trybie zwarcia i rozłączenia oraz umieli prawidłowo interpretować otrzymane wyniki. Używanie standardowych procedur pomiarowych, takich jak te określone w normach branżowych, może znacznie zwiększyć dokładność diagnoz. Należy unikać pułapek, w które wpadali technicy, którzy, zamiast analizować dane w kontekście całości, skupili się jedynie na fragmentarycznych wynikach, co prowadzi do błędnych konkluzji.

Pytanie 24

Która z wymienionych przyczyn może spowodować samoczynne wyłączenie wyłącznika nadprądowego obwodu gniazd wtyczkowych kuchni w przedstawionej instalacji?

Ilustracja do pytania
A. Włączenie odbiornika drugiej klasy ochronności.
B. Przerwa w przewodzie uziemiającym instalację.
C. Zwarcie przewodu ochronnego z przewodem neutralnym.
D. Jednoczesne podłączenie odbiorników o zbyt dużej mocy.
Jednoczesne podłączenie odbiorników o zbyt dużej mocy jest kluczowym czynnikiem, który może spowodować samoczynne wyłączenie wyłącznika nadprądowego. Wyłącznik nadprądowy, taki jak B16, jest zaprojektowany w celu ochrony obwodu przed przeciążeniem i zwarciem. Kiedy do obwodu podłączone są urządzenia o dużym zapotrzebowaniu na moc, ich łączny prąd może przekroczyć wartość znamionową wyłącznika, co automatycznie prowadzi do jego zadziałania. Przykładem może być jednoczesne włączenie kuchenki elektrycznej, piekarnika oraz zmywarki, co w wielu przypadkach przekracza 16 A, a tym samym powoduje wyłączenie. Zgodnie z normami PN-IEC 60898, każda instalacja elektryczna powinna być projektowana z uwzględnieniem maksymalnych obciążeń oraz odpowiednich zabezpieczeń, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, aby uniknąć problemów z wyłącznikami, należy świadomie dobierać moc urządzeń oraz rozważać ich jednoczesne użycie.

Pytanie 25

Jakie może być najczęstsze uzasadnienie nadpalenia izolacji jednego z przewodów neutralnych w listwie N rozdzielnicy w mieszkaniu?

A. Zbyt duży przekrój uszkodzonego przewodu
B. Luźne połączenie w listwie neutralnej
C. Zbyt duża moc urządzenia
D. Błędnie dobrana wartość nominalna wyłącznika nadprądowego
Źle dobrana wartość znamionowa wyłącznika nadprądowego nie jest bezpośrednią przyczyną nadpalenia izolacji przewodu neutralnego. Wyłącznik nadprądowy ma na celu ochronę instalacji przed przeciążeniem i zwarciem, a jego dobór powinien być zgodny z wymaganiami obciążeniowymi instalacji, co określa norma PN-IEC 60947. W przypadku, gdy wyłącznik jest zbyt mały, może on zadziałać przy przeciążeniu, ale nie spowoduje bezpośrednio uszkodzenia izolacji przewodu. Zbyt duży przekrój przewodu także nie prowadzi do nadpalenia izolacji; w rzeczywistości, większy przekrój przewodu oznacza mniejsze opory i mniejsze nagrzewanie. Z kolei zbyt duża moc odbiornika może prowadzić do przeciążenia, ale kluczowe jest to, że nie ma to wpływu na przewód neutralny, jeśli instalacja jest poprawnie wykonana i zabezpieczona. W praktyce, nadpalenie izolacji wynika głównie z problemów z połączeniami, a nie z parametrów przewodów czy wyłączników. Należy zatem pamiętać, że każdy komponent w instalacji elektrycznej ma swoje funkcje, a właściwe połączenia są kluczowe dla bezpieczeństwa całej instalacji.

Pytanie 26

W jaki sposób realizowana jest ochrona przed porażeniem elektrycznym poprzez dotyk pośredni w oprawie oświetleniowej drugiej klasy ochronności działającej w sieci TN-S?

A. Użycie napięcia zasilania o zmniejszonej wartości
B. Zastosowanie podwójnej warstwy izolacji
C. Połączenie obudowy z przewodem ochronnym sieci
D. Zasilanie z transformatora izolacyjnego
W kontekście ochrony przed dotykiem pośrednim, wiele podejść może wydawać się atrakcyjnych, jednak nie są one wystarczające do zapewnienia właściwego poziomu bezpieczeństwa. Zastosowanie napięcia zasilającego o obniżonej wartości, choć teoretycznie może zredukować ryzyko porażenia, nie eliminuje go całkowicie, ponieważ w przypadku awarii izolacji nadal może wystąpić ryzyko niebezpiecznego napięcia. Zasilanie z transformatora separacyjnego również nie stanowi pełnej odpowiedzi na problem, gdyż chociaż transformator ten ogranicza ryzyko porażenia, to nie jest to rozwiązanie wystarczające w przypadku urządzeń, które nie są dostatecznie izolowane. Połączenie obudowy z przewodem ochronnym sieci jest bardziej charakterystyczne dla urządzeń klasy I, gdzie niezbędne jest uziemienie, natomiast w oprawach klasy II, które są projektowane bez przewodu ochronnego, takie podejście jest nieadekwatne. Te nieprawidłowe koncepcje często wynikają z braku zrozumienia zasad klasyfikacji sprzętu elektrycznego oraz norm bezpieczeństwa, takich jak IEC 61140, które jasno definiują wymagania dotyczące ochrony przeciwporażeniowej. Właściwe zrozumienie i zastosowanie zasad dotyczących izolacji oraz konstrukcji sprzętu jest kluczowe dla zapewnienia bezpieczeństwa użytkowników, co jest często pomijane w praktycznych zastosowaniach.

Pytanie 27

Które żyły przewodów należy połączyć ze sobą w puszce rozgałęźnej układu elektrycznego, przedstawionej na rysunku, aby połączenie zapewniało sterowanie oświetleniem i było zgodne ze sztuką monterską?

Ilustracja do pytania
A. L z 3, N z 2, 1 z 4
B. L z 1, N z 3, 2 z 4
C. L z 4, N z 1, 2 z 3
D. L z 1, N z 4, 2 z 3
Wybór niewłaściwej kombinacji przewodów może prowadzić do poważnych problemów w instalacji elektrycznej. Na przykład, w przypadku połączenia L z 3, N z 2 oraz 1 z 4, przewód fazowy (L) zostaje połączony z niewłaściwym punktem, co nie tylko może uniemożliwić włączenie oświetlenia, ale także stwarza ryzyko niebezpiecznych sytuacji, takich jak zwarcie czy porażenie prądem. Przewód neutralny (N) w takim układzie może pozostać niepodłączony lub niewłaściwie połączony, co zakłóca prawidłowy przepływ prądu. W praktyce, połączenie przewodów w puszce rozgałęźnej jest kluczowe do zapewnienia, że wszystkie elementy działają w zgodzie ze sobą. Zdarza się, że osoby wykonujące instalacje pomijają te fundamentalne zasady, co prowadzi do typowych błędów, takich jak nieprawidłowe łączenie przewodów, nieprzestrzeganie kolorów przewodów (np. nieodpowiednie użycie przewodu neutralnego), czy niezrozumienie roli przełącznika. Należy pamiętać, że każde połączenie powinno być zgodne z obowiązującymi normami, aby zapewnić bezpieczeństwo oraz efektywność całego obwodu. Z tego powodu kluczowe jest zrozumienie podstawowych zasad i standardów montażu elektrycznego, aby uniknąć takich pomyłek.

Pytanie 28

Do czego służy złączka przedstawiona na ilustracji?

Ilustracja do pytania
A. Do łączenia przewodów dowolnego typu.
B. Do wykonywania połączeń bez zdejmowania izolacji.
C. Do zdejmowania izolacji z przewodów dwużyłowych.
D. Do zaciskania końcówek tulejkowych na przewodach.
Wybór innej odpowiedzi może być spowodowany jakimś nieporozumieniem odnośnie funkcji złączek elektrycznych. Na przykład, mylenie łączenia bez zdejmowania izolacji to błąd, bo złączki WAGO wymagają, żeby izolacja była odpowiednio ścięta, żeby połączenie było pewne. Z kolei mówienie, że łączą przewody dowolnego typu jest trochę na wyrost, bo niektóre złączki są projektowane do konkretnych zastosowań. Poza tym, stosowanie ich do zaciskania końcówek tulejkowych to też nie najlepszy pomysł, bo WAGO do tego się nie nadają – mogą przez to wystąpić błędy w połączeniach i ryzyko awarii. No i sugerowanie, że złączka służy do zdejmowania izolacji z przewodów dwużyłowych, to chyba jakieś nieporozumienie, bo do tego trzeba użyć odpowiednich narzędzi, a nie złączek. Dlatego warto zrozumieć, jak te złączki działają w praktyce i jakie są podstawowe zasady ich stosowania w elektryce.

Pytanie 29

Która z wymienionych list czynności opisuje w jakiej kolejności demontuje się elementy stojana silnika indukcyjnego z uzwojeniem wsypywanym w celu jego przezwojenia?

1odcięcie połączeń czołowychodcięcie połączeń czołowychusunięcie izolacji żłobkowejusunięcie uzwojenia
2usunięcie izolacji żłobkowejusunięcie uzwojeniaodcięcie połączeń czołowychodcięcie połączeń czołowych
3usunięcie uzwojeniausunięcie izolacji żłobkowejusunięcie uzwojeniausunięcie izolacji żłobkowej
ABCD
A. C.
B. B.
C. D.
D. A.
Wybór niewłaściwej odpowiedzi często wynika z niepełnego zrozumienia procesu demontażu stojana silnika indukcyjnego. Wiele osób może pomylić kolejność czynności, co prowadzi do nieprawidłowych praktyk. Na przykład, jeśli demontaż rozpoczyna się od usunięcia uzwojenia przed odcięciem połączeń czołowych, naraża to technika na niebezpieczeństwo, ponieważ może dojść do niezamierzonego kontaktu z prądem. Kolejnym częstym błędem jest pomijanie etapu odcięcia zasilania, co jest kluczowe dla zapewnienia bezpieczeństwa. Bezpieczeństwo przy pracy z urządzeniami elektrycznymi powinno być zawsze na pierwszym miejscu. Ważne jest, aby również zrozumieć, że niewłaściwa kolejność demontażu może prowadzić do uszkodzenia elementów silnika, co z kolei zwiększa koszty naprawy i przestojów w pracy. Każda z tych czynności ma swoje uzasadnienie w kontekście mechaniki oraz elektryki i jest zgodna z obowiązującymi normami i standardami bezpieczeństwa, takimi jak normy IEC (Międzynarodowej Komisji Elektrotechnicznej). Dlatego kluczowe jest, aby przed przystąpieniem do demontażu, każdy technik był dokładnie przeszkolony w zakresie procedur demontażu i był świadomy zagrożeń związanych z niewłaściwym postępowaniem.

Pytanie 30

Jakie mogą być przyczyny nadmiernego przegrzewania się wyłącznika nadmiarowo-prądowego podczas długotrwałego zasilania sprawnego odbiornika?

A. Niewłaściwe napięcie zasilania
B. Zbyt wysoka moc zasilanego odbiornika
C. Zbyt niski prąd znamionowy wyłącznika
D. Słabo dokręcone złącza wyłącznika
Nieodpowiednie napięcie zasilające, za mały prąd znamionowy wyłącznika oraz zbyt duża moc zasilanego odbiornika mogą wydawać się logicznymi przyczynami nadmiernego nagrzewania się wyłącznika nadmiarowo-prądowego, jednak nie są one bezpośrednio związane z tym zjawiskiem w kontekście długotrwałego zasilania sprawnego odbiornika. Niewłaściwe napięcie zasilające może prowadzić do problemów z wydajnością urządzeń, jednak niekoniecznie skutkuje to nadmiernym nagrzewaniem się samego wyłącznika. Prąd znamionowy wyłącznika jest zaprojektowany tak, aby tolerować określone wartości prądu, a jego nadmierne obciążenie może rzeczywiście prowadzić do przegrzewania, lecz w przypadku sprawnego odbiornika działającego w granicach norm, nie powinno to być problemem. Z kolei zbyt duża moc zasilanego odbiornika może sprawić, że wyłącznik zareaguje i zadziała, co ochroni obwód, a nie spowoduje jego przegrzania. W praktyce, najczęściej występującym problemem jest właśnie niewłaściwe dokręcenie zacisków, co podkreśla rolę odpowiedniego montażu i konserwacji w zapewnieniu bezpieczeństwa i efektywności systemów elektrycznych.

Pytanie 31

Jaka maksymalna wartość impedancji pętli zwarcia jest dopuszczalna w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, jeżeli wiadomo, że zasilanie tego obwodu ma odłączyć instalacyjny wyłącznik nadprądowy B20?

A. 3,8 Ω
B. 2,3 Ω
C. 6,6 Ω
D. 4,0 Ω
Wybór innych wartości impedancji pętli zwarcia, takich jak 3,8 Ω, 4,0 Ω czy 6,6 Ω, jest nieodpowiedni w kontekście ochrony przeciwporażeniowej w systemach elektrycznych. Wartości te są wyższe niż dopuszczalne limity określone w normach, co może prowadzić do poważnych konsekwencji dla bezpieczeństwa. W przypadku impedancji powyżej 2,3 Ω, czas reakcji wyłącznika nadprądowego może być wydłużony. Na przykład, wyłączniki o wyższych wartościach impedancji pętli zwarcia mogą zadziałać z opóźnieniem, co w sytuacji kontaktu z uszkodzoną instalacją stwarza ryzyko porażenia prądem. Powszechnym błędem myślowym jest założenie, że im wyższa impedancja, tym lepsza ochrona. W rzeczywistości, skuteczność ochrony przed porażeniem prądem elektrycznym jest ściśle związana z szybkością reakcji systemów zabezpieczających. W obwodach o napięciu 230/400 V zastosowanie wyłączników B20 bez odpowiedniego nadzoru nad wartością impedancji pętli zwarcia może prowadzić do sytuacji, w której użytkownik doświadczy porażenia prądem, zanim zasilanie zostanie odcięte. Dlatego ważne jest, aby regularnie przeprowadzać pomiary i poddawać instalacje elektryczne ocenie, co zgodne jest z wymaganiami normatywnymi, takimi jak PN-EN 61140, które jasno określają maksymalne wartości impedancji dla skutecznej ochrony przeciwporażeniowej.

Pytanie 32

Który z podanych materiałów charakteryzuje się najwyższą właściwą przewodnością elektryczną?

A. Stal
B. Aluminium
C. Miedź
D. Brąz
Aluminium, brąz i stal mają swoje zastosowania, ale ich przewodność elektryczna jest znacznie gorsza niż miedzi. Aluminium niby jest okej, ale nie dorównuje miedzi, co jest istotne, gdy chodzi o efektywność przewodzenia. Często ludzie mylą niską masę aluminium z jego przewodnością, a to nie jest to samo; lżejsze aluminium ma gorszą przewodność, co w dłuższej perspektywie może prowadzić do większych strat energii. Brąz, który jest stopem miedzi, ma lepsze właściwości mechaniczne, ale przewodność elektryczna jest niższa od czystej miedzi. Stal to materiał budowlany, ale ma najniższą przewodność z wymienionych. Często nie zwraca się uwagi na różnice w przewodności, a to może skutkować wyborem niewłaściwych materiałów, co prowadzi do problemów jak nadmierne straty energii czy przegrzewanie. Dlatego ważne jest, aby znać właściwości materiałów i odpowiednio je dobierać, co jest teoretycznie zgodne z najlepszymi praktykami w inżynierii.

Pytanie 33

Jaka jest maksymalna moc kuchni elektrycznej zamontowanej w lokalu zasilanym napięciem 400/230V, jeśli obwód zasilający jest chroniony przez wyłącznik nadprądowy typu S-303 CLS6-C10/3?

A. 3,9 kW
B. 6,9 kW
C. 9,6 kW
D. 2,9 kW
W przypadku odpowiedzi, które wskazują na inne wartości mocy, istotne jest zrozumienie kilku kluczowych zasad dotyczących obliczeń mocy oraz właściwego doboru zabezpieczeń dla urządzeń elektrycznych. Na przykład, wiele osób może błędnie sądzić, że maksymalna moc kuchenki elektrycznej może być wyższa niż wskazywana przez wyłącznik, nie uwzględniając, że każdy obwód zasilający ma swoje ograniczenia wynikające z zastosowanych zabezpieczeń. Warto również zauważyć, że przy zasilaniu z napięcia 230 V, przy założeniu, że używamy wyłącznika o prądzie znamionowym 10 A, obliczona moc wynosi tylko 2,3 kW, co jest znacznie poniżej potrzebnej mocy dla typowej kuchenki, która zazwyczaj wymaga większej mocy do efektywnego gotowania. Z kolei założenie, że można użyć wartości mocy 9,6 kW, jest niezgodne z parametrami wyłącznika, co może prowadzić do niebezpieczeństwa przeciążenia i awarii instalacji. Warto pamiętać, że każda instalacja elektryczna powinna być projektowana zgodnie z obowiązującymi normami, a także z praktykami, które zapewniają nie tylko skuteczność, ale przede wszystkim bezpieczeństwo użytkowników. Ustalając maksymalną moc dla urządzeń elektrycznych, należy zawsze odnosić się do specyfikacji producenta oraz obowiązujących przepisów, co pozwoli uniknąć nieprzewidzianych problemów i zagrożeń.

Pytanie 34

Na którym rysunku przedstawiono schemat montażowy zgodny z przedstawionym planem instalacji?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Odpowiedź A jest poprawna, ponieważ zgodnie z przedstawionym planem instalacji, schemat montażowy A odpowiada wymaganym połączeniom przewodów PE (ochronny), N (neutralny) oraz L (fazowy). W instalacjach elektrycznych niezwykle istotne jest przestrzeganie standardów, takich jak normy PN-EN 60364, które określają zasady projektowania i wykonania instalacji elektrycznych. W schemacie A przewody są właściwie oznaczone i połączone w taki sposób, że zapewniają bezpieczeństwo użytkowania oraz minimalizują ryzyko zwarcia lub awarii. Przykładowo, prawidłowe połączenie przewodu ochronnego z uziemieniem jest kluczowe dla bezpieczeństwa instalacji, ponieważ chroni użytkowników przed porażeniem prądem. Ponadto, schemat A pokazuje prawidłowe rozmieszczenie gniazd wtyczkowych, co jest zgodne z zasadą dostępu do źródeł zasilania w wygodny sposób. Zastosowanie takich praktyk w rzeczywistych instalacjach przyczynia się do ich niezawodności oraz zgodności z obowiązującymi przepisami prawa budowlanego.

Pytanie 35

Którego z wymienionych narzędzi należy użyć do połączenia przewodów przy użyciu złączki przedstawionej na rysunku?

Ilustracja do pytania
A. Szczypiec uniwersalnych.
B. Lutownicy.
C. Praski hydraulicznej.
D. Wkrętaka.
Wybór narzędzi, które nie są przeznaczone do zaciskania złączek tulejowych, prowadzi do nietrwałych połączeń oraz potencjalnych awarii. Wkrętaka nie stosuje się do tego celu, ponieważ jego funkcja ogranicza się do wkręcania i wykręcania śrub, a nie do zaciskania elementów. Użycie lutownicy wydaje się być zrozumiałe, jednak lutowanie nie jest zalecaną metodą w przypadku złączek tulejowych, które zostały zaprojektowane do mechanicznych połączeń, a lutowanie może osłabić przewód i wprowadzać dodatkowe problemy z przewodnictwem elektrycznym. Szczypce uniwersalne również nie są odpowiednie, ponieważ nie oferują wymaganej siły i precyzji, które są niezbędne do prawidłowego zaciskania. Warto również zwrócić uwagę na standardy ochrony elektrycznej, które wymagają, aby wszelkie połączenia były wykonane zgodnie z wytycznymi zapewniającymi ich trwałość i bezpieczeństwo. Użycie niewłaściwego narzędzia może prowadzić do zwarć, uszkodzeń, a nawet pożarów, co jest poważnym zagrożeniem w instalacjach elektrycznych. Dlatego istotne jest, aby dobierać stosowne narzędzia zgodnie z przeznaczeniem oraz przestrzegać dobrych praktyk, które pozwolą osiągnąć bezpieczne i niezawodne połączenia elektryczne.

Pytanie 36

Co symbolizuje kod literowo-cyfrowy C10, umieszczony na wyłączniku nadmiarowo-prądowym?

A. Rodzaj charakterystyki czasowo-prądowej oraz prąd wyłączeniowy
B. Maksymalny prąd zwarciowy
C. Najwyższy czas zadziałania
D. Rodzaj charakterystyki czasowo-prądowej oraz prąd znamionowy
Wybór odpowiedzi dotyczącej dopuszczalnego prądu zwarciowego nie jest właściwy, ponieważ kod C10 nie odnosi się do tego parametru. Dopuszczalny prąd zwarciowy to maksymalny prąd, który wyłącznik może znieść w przypadku zwarcia, natomiast kod C10 dotyczy charakterystyki czasowo-prądowej i prądu znamionowego, co jest fundamentalnie innym zagadnieniem. Z kolei maksymalny czas zadziałania to parametr, który określa, jak szybko wyłącznik zareaguje na nadmierny prąd; jest to również różne od informacji, które niesie kod C10. Typowa pomyłka polega na myleniu tych dwóch różnych aspektów: charakterystyki czasowo-prądowej, która dotyczy sposobu działania wyłącznika w odpowiedzi na zmiany prądu, z parametrami związanymi z jego wytrzymałością na zwarcia. Ostatecznie, każda z opcji, które podałeś, odnosi się do różnych aspektów funkcjonowania wyłączników, co może prowadzić do nieporozumień, jeśli nie zrozumie się podstawowych różnic między nimi. Właściwe zrozumienie tych parametrów jest kluczowe dla zapewnienia bezpieczeństwa elektrycznego oraz efektywności instalacji, a błąd w ich interpretacji może prowadzić do niewłaściwego doboru wyłączników, co zagraża zarówno sprzętowi, jak i użytkownikom.

Pytanie 37

Podczas przeprowadzania inspekcji instalacji elektrycznej w budynku mieszkalnym nie jest wymagane sprawdzanie

A. poprawności działania wyłącznika różnicowoprądowego
B. stanu obudów wszystkich elementów instalacji
C. wartości rezystancji izolacji przewodów
D. nastaw urządzeń zabezpieczających w instalacji
Wiesz, przy ocenie bezpieczeństwa instalacji elektrycznej często pojawiają się nieporozumienia co do tego, co trzeba sprawdzać. Więc jeśli myślisz, że stan obudów, wyłączniki różnicowoprądowe czy urządzenia zabezpieczające nie są ważne, to musisz to przemyśleć. Sprawdzanie stanu obudów jest mega istotne, żeby nie zdarzył się przypadkowy kontakt z prądem. Jak wyłączniki różnicowoprądowe nie działają, to może być niebezpiecznie. Regularne weryfikowanie ich działania to polecana praktyka. Do tego ustawienia urządzeń zabezpieczających też są kluczowe, bo jak są źle ustawione, to może to doprowadzić do problemów. Ignorowanie takich rzeczy jest ryzykowne, zresztą to może prowadzić do poważnych sytuacji, jak pożary czy porażenia. Każdy z tych elementów to część systemu ochrony, który ma na celu bezpieczne użytkowanie instalacji elektrycznej. Wiedza na ten temat to podstawa dla każdego, kto zajmuje się elektryką.

Pytanie 38

Określ przyczynę nadmiernego wzrostu napięcia na zaciskach odbiornika Z1 przy założeniu, że impedancje Z1, Z2 i Z3 znacznie się różnią.

Ilustracja do pytania
A. Przerwa na zaciskach odbiornika Z2 lub Z3.
B. Zwarcie pomiędzy dwoma przewodami fazowymi.
C. Uszkodzenie przewodu neutralnego.
D. Zwarcie na zaciskach odbiornika Z2 lub Z3.
Patrząc na inne odpowiedzi, to można zauważyć, że zwarcie między dwoma przewodami fazowymi raczej by nie zadziałało tak, jak opisano. Przy zwarciu w fazie napięcie w obwodzie z reguły spada, a zasilanie się wyłącza, więc nie podnosi napięcia na odbiornikach. Jeśli chodzi o zwarcie na zaciskach odbiorników Z2 lub Z3, to wprowadzałoby dodatkowe obciążenie, co też mogłoby obniżyć napięcie, a nie podnieść. No i przerwa na zaciskach Z2 albo Z3 nie tłumaczy wyższego napięcia na Z1, bo w takim przypadku napięcie powinno raczej zniknąć niż wzrosnąć. Błędem jest mylenie skutków zwarć czy przerw z problemami neutralnym. Zrozumienie, jak różne elementy w obwodzie wpływają na napięcia, jest kluczowe, gdy próbujemy zdiagnozować problemy w instalacjach elektrycznych. Dlatego ważne, żeby dokładnie badać przyczyny problemów z napięciem i nie opierać się na nieprawidłowych założeniach o zwarciach czy przerwach.

Pytanie 39

Na podstawie przedstawionego schematu połączeń określ, kiedy nastąpi zadziałanie wyłącznika różnicowoprądowego?

Ilustracja do pytania
A. Po załączeniu wyłącznika w obwodzie łazienki.
B. Po załączeniu wyłącznika w obwodzie gniazd pokoi.
C. Po załączeniu wyłącznika w obwodzie gniazd pokoi i podłączeniu odbiornika.
D. Po załączeniu wyłącznika w obwodzie łazienki i podłączeniu odbiornika.
Zrozumienie zasad działania wyłączników różnicowoprądowych jest kluczowe dla bezpieczeństwa użytkowników instalacji elektrycznych. Odpowiedzi, które nie uwzględniają podłączenia odbiornika lub odnoszą się tylko do samego załączenia wyłącznika, nie uwzględniają rzeczywistych warunków, w jakich wyłącznik różnicowoprądowy zadziała. Wyłącznik różnicowoprądowy jest zaprojektowany do wykrywania różnicy prądów między przewodami fazowym a neutralnym. Kiedy obwód jest załączony, ale nie ma podłączonego odbiornika, nie występuje żaden przepływ prądu przez urządzenie, co oznacza, że nie ma też ryzyka upływu prądu. Ta sytuacja prowadzi do błędnych wniosków, sugerujących, że sama aktywacja wyłącznika w obwodzie gniazd pokoi wystarczy do zadziałania RCD. W rzeczywistości, by wyłącznik mógł zadziałać, muszą być spełnione określone warunki, w tym obecność odbiornika, który może generować upływ prądu. Innym częstym błędem myślowym jest mylenie działania RCD z innymi zabezpieczeniami, takimi jak bezpieczniki, które działają na zasadzie przeciążenia prądowego. Zrozumienie tych różnic jest kluczowe dla bezpiecznego korzystania z instalacji elektrycznych, zgodnie z normami, takimi jak PN-EN 61008, które szczegółowo opisują wymagania dla wyłączników różnicowoprądowych. W związku z tym, odpowiedzi, które ignorują te fundamentalne zasady, mogą prowadzić do niebezpiecznych sytuacji w rzeczywistych instalacjach elektrycznych.

Pytanie 40

Jaki rodzaj wkładki topikowej powinien być użyty do ochrony nadprądowej obwodu jednofazowych gniazd do użytku ogólnego?

A. gG
B. aR
C. gL
D. aM
Wybór wkładek topikowych aM, gL, czy aR w kontekście zabezpieczeń nadprądowych obwodów jednofazowych gniazd ogólnego przeznaczenia jest niewłaściwy, ponieważ każdy z tych typów jest zaprojektowany do innego rodzaju zastosowań i nie spełnia wymagań stawianych wkładkom gG. Wkładki aM służą głównie do zabezpieczania silników, a ich charakterystyka prądowa nie jest dostosowana do ochrony obwodów z gniazdami. W przypadku wkładek gL, ich zastosowanie jest ograniczone do obwodów, w których nie występują duże prądy rozruchowe, co czyni je mniej efektywnymi w obwodach ogólnych. Z kolei wkładki aR są przeznaczone do ochrony układów elektronicznych, a ich charakterystyka może być niewystarczająca dla obwodów z gniazdami, gdzie mogą wystąpić skoki prądu. Zrozumienie różnicy pomiędzy tymi typami wkładek jest kluczowe dla prawidłowego doboru zabezpieczeń. Błędem jest również założenie, że wszystkie typy wkładek działają w podobny sposób; każde z nich ma swoją specyfikę, która musi być brana pod uwagę w procesie projektowania instalacji elektrycznych. Dlatego tak ważne jest, aby przed wyborem wkładki topikowej poznać wymagania konkretnego obwodu oraz zastosowane urządzenia, co pozwoli na odpowiednie zabezpieczenie i zapewnienie bezpieczeństwa użytkowników.