Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 09:52
  • Data zakończenia: 7 grudnia 2025 10:07

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zmywarka, która jest na stałe zainstalowana, powinna być podłączona do obwodu

A. oddzielnego dla urządzeń gospodarstwa domowego
B. oddzielnego dla zmywarki
C. zasilającego gniazdka jedynie w kuchni
D. zasilającego gniazdka w łazience oraz kuchni
Zasilanie zmywarki z oddzielnego obwodu jest niezbędne ze względów bezpieczeństwa oraz zgodności z obowiązującymi normami elektrycznymi, takimi jak PN-IEC 60364. Zwiększa to nie tylko bezpieczeństwo użytkowania, ale także zapewnia odpowiednią moc dla urządzenia bez ryzyka przeciążenia innych obwodów. Zmywarki zazwyczaj wymagają większej mocy, zwłaszcza podczas cykli podgrzewania wody, co może powodować przeciążenie, jeśli są zasilane z ogólnych obwodów, zwłaszcza tych współdzielonych z innymi urządzeniami. Przykładowo, korzystając z oddzielnego obwodu, można uniknąć sytuacji, w której włączenie zmywarki podczas pracy innych urządzeń, takich jak piekarnik czy mikrofalówka, prowadzi do wyłączenia bezpieczników. Dobrą praktyką jest również stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które dodatkowo chronią przed porażeniem elektrycznym. Takie podejście nie tylko jest zgodne z regulacjami, ale również zwiększa komfort użytkowania w codziennym życiu.

Pytanie 2

Przyrząd przedstawiony na rysunku służy do

Ilustracja do pytania
A. wyznaczania trasy przewodów.
B. sprawdzania ciągłości żył przewodów.
C. pomiaru rezystancji żył przewodów.
D. szacowania długości przewodów.
Odpowiedź, która wskazuje na sprawdzanie ciągłości żył przewodów, jest prawidłowa z uwagi na specyfikę przyrządu przedstawionego na rysunku. Tester ciągłości obwodu, zwany również multimetrem w trybie testowania ciągłości, jest nieocenionym narzędziem w pracy elektryków oraz techników zajmujących się instalacjami elektrycznymi. Jego podstawową funkcją jest wykrywanie przerw w obwodzie, co jest kluczowe podczas diagnostyki usterek. Przykładowo, w sytuacji, gdy zasilanie nie dociera do określonego urządzenia, tester pozwala na szybkie sprawdzenie, czy przewody są w pełni sprawne. Gdy obwód jest zamknięty, tester zazwyczaj sygnalizuje to zapaleniem diody LED, co jest bardzo pomocne w identyfikacji problemów. Zgodnie z zasadami BHP oraz normami IEC 61010, stosowanie takich przyrządów w pracy pozwala zminimalizować ryzyko porażenia prądem oraz innych niebezpieczeństw związanych z niewłaściwym działaniem instalacji elektrycznych.

Pytanie 3

Jaki wyłącznik przedstawiono na rysunku?

Ilustracja do pytania
A. Silnikowy.
B. Czasowy.
C. Różnicowoprądowy.
D. Nadprądowy.
Wyłącznik różnicowoprądowy to naprawdę ważne urządzenie w każdej instalacji elektrycznej. Jego głównym zadaniem jest ochrona nas przed porażeniem prądem. Działa to tak, że jeśli wykryje różnicę między prądem, który wpływa a tym, który wypływa z obwodu, to szybko odłącza zasilanie. Kiedy prąd upływowy przekroczy ustaloną wartość, najczęściej 30 mA, to wyłącznik po prostu wyłącza prąd. Fajnie jest wiedzieć, że takie wyłączniki są stosowane zwłaszcza w łazienkach, czy wszędzie tam, gdzie elektryczność ma kontakt z wodą. Warto zaznaczyć, że według normy PN-EN 61008, powinny być w każdej nowoczesnej instalacji, co świadczy o ich roli w dbaniu o nasze bezpieczeństwo. Poza tym, nowoczesne budynki zwykle są w nie wyposażone, co dodatkowo zwiększa bezpieczeństwo. Oprócz ochrony, wyłączniki różnicowoprądowe też pomagają monitorować stan instalacji, co jest istotne, by była ona w dobrym stanie.

Pytanie 4

Którego silnika dotyczy przedstawiony schemat?

Ilustracja do pytania
A. Indukcyjnego.
B. Jednofazowego.
C. Obcowzbudnego.
D. Szeregowego.
Schemat przedstawia silnik prądu stałego obcowzbudny, co można zidentyfikować dzięki oddzielnym uzwojeniom wzbudzenia oraz obecności komutatora. Silniki obcowzbudne charakteryzują się tym, że mają niezależne źródło zasilania dla uzwojenia wzbudzenia i twornika, co pozwala na lepsze sterowanie momentem obrotowym i prędkością silnika. W praktyce, silniki te są szeroko stosowane w aplikacjach, gdzie wymagana jest duża elastyczność w kontroli prędkości, takich jak w systemach napędowych w pojazdach elektrycznych czy w automatyce przemysłowej. Dzięki zastosowaniu komutatora, silniki obcowzbudne mogą pracować z różnymi wartościami napięcia, co czyni je idealnym wyborem w aplikacjach wymagających dynamicznej regulacji. W standardach branżowych, takich jak IEC czy NEMA, silniki obcowzbudne znajdują uznanie jako efektywne urządzenia do zastosowań wymagających precyzyjnego sterowania oraz wysokiej wydajności energetycznej.

Pytanie 5

Jaką wartość ma prąd obciążenia przewodów fazowych, które zasilają odbiornik trójfazowy, jeśli pobiera on moc 2,2 kW przy napięciu 400 V oraz współczynniku mocy równym 0,82?

A. 6,7 A
B. 3,9 A
C. 2,2 A
D. 3,2 A
Wiele osób może błędnie obliczyć prąd, ignorując istotne aspekty związane z mocą czynną oraz współczynnikiem mocy. Przykładowo, odpowiedzi wskazujące na 2,2 A, 6,7 A czy 3,2 A mogą wynikać z nieprawidłowego zrozumienia wzoru na moc w obwodach trójfazowych. Niektórzy mogą mylnie przyjąć, że moc czynna equaluje się do wartości prądu bez uwzględnienia napięcia i współczynnika mocy, co prowadzi do błędnych wniosków. Przykład 2,2 A mógłby sugerować bezpośrednie odniesienie do wartości mocy, co jest niewłaściwe, ponieważ nie uwzględnia napięcia ani współczynnika mocy. Z kolei obliczenie 6,7 A mogłoby być wynikiem błędnego założenia, że prąd jest równy mocy podzielonej przez napięcie, co jest poprawne tylko w przypadku układów jednofazowych. Odpowiedź 3,2 A również mogłaby być wynikiem zastosowania nieodpowiednich danych lub uproszczonych obliczeń. W kontekście instalacji elektrycznych, kluczowe jest zrozumienie, jak moc, napięcie i współczynnik mocy współdziałają ze sobą, co jest niezbędne do prawidłowego doboru komponentów oraz zapewnienia bezpieczeństwa i efektywności energetycznej systemów elektrycznych. W praktyce, pominięcie czynnika √3 w obliczeniach jest powszechnym błędem, który może prowadzić do niedoszacowania prądu i niewłaściwego doboru przewodów czy zabezpieczeń.

Pytanie 6

Na podstawie przedstawionego schematu ideowego, określ jaki błąd popełniono przy montażu instalacji elektrycznej podtynkowej ułożonej w rurach.

Ilustracja do pytania
A. W instalacji nieprawidłowo połączono przewód ochronny.
B. W rury wciągnięto niewłaściwą liczbę przewodów.
C. Błędnie połączono przewody instalacji do zacisków żyrandola.
D. Zastosowano niewłaściwy typ łącznika instalacyjnego.
Błędne odpowiedzi, takie jak niewłaściwe połączenie przewodów instalacji do zacisków żyrandola czy niesprawidłowe połączenie przewodu ochronnego, wynikają z niepełnego zrozumienia zasady działania instalacji elektrycznych. W przypadku pierwszego błędu, pomylenie przewodów może prowadzić do poważnych zagrożeń, takich jak zwarcie czy uszkodzenie sprzętu, co negatywnie wpływa na bezpieczeństwo użytkowników. Z kolei niepoprawne połączenie przewodu ochronnego wprowadza ryzyko porażenia prądem, co jest sprzeczne z fundamentalnymi zasadami bezpieczeństwa, określonymi w normach takich jak PN-IEC 60364. Drugą nieprawidłową koncepcją jest zrozumienie liczby przewodów w instalacji. W przypadku stosowania zbyt wielu przewodów w rurze, może dojść do ich przegrzewania i uszkodzenia izolacji, co stwarza ryzyko pożaru. W praktyce, projektanci instalacji muszą przestrzegać odpowiednich standardów dotyczących liczby przewodów, które mogą być prowadzone w danej rurze, aby zachować optymalne warunki pracy i bezpieczeństwo. Zrozumienie tych zasad jest kluczowe dla prawidłowego montażu i eksploatacji systemów elektrycznych, co powinno być priorytetem dla każdego specjalisty w branży.

Pytanie 7

Przy sprawdzaniu kabla wykonano dwie serie pomiarów rezystancji pomiędzy końcami żył na jednym końcu kabla. Na drugim końcu kabla w pierwszej serii zwarto wszystkie żyły ze sobą, a w drugiej serii żyły pozostały rozwarte. Wyniki pomiarów zapisano w tabeli. Jakie wnioski można wyciągnąć na podstawie tych wyników?

Ilustracja do pytania
A. Żyły c i a są przerwane.
B. Żyły a i b są przerwane.
C. Żyły c i a są zwarte ze sobą.
D. Żyły a i b są zwarte ze sobą.
Pomiary rezystancji mogą prowadzić do różnych błędów w wnioskowaniu, zwłaszcza jak się ich nie przeanalizuje odpowiednio. Na przykład, mówienie o przerwach w żyłach c i a czy a i b, to nie jest dobra sprawa. Pomiary mówią, że brak połączenia mamy tylko między a i c oraz b i c. Warto to zrozumieć jako brak elektrycznego połączenia, a nie jakiekolwiek inne założenie. Typowy błąd to myślenie, że jeśli rezystancja jest nieskończona, to żyły są przerwane. A to wprowadza w błąd. Nieskończona rezystancja tylko pokazuje, że nie ma połączenia między a i c oraz b. Natomiast a i b, mając skończoną rezystancję, są ze sobą zwarte. W praktyce każdy technik powinien wiedzieć, że interpretacja rezystancji to nie tylko teoria, ale też praktyka pomiarów. Dobre praktyki w diagnozowaniu usterek to konieczność dokładnych sprawdzeń i powtarzania pomiarów, żeby uniknąć fałszywych informacji, które mogą kosztować sporo w naprawach i konserwacji systemów elektrycznych.

Pytanie 8

Który rodzaj źródła światła pokazano na rysunku?

Ilustracja do pytania
A. Wyładowcze.
B. Żarowe.
C. Elektroluminescencyjne.
D. Fluorescencyjne.
Poprawna odpowiedź to "Elektroluminescencyjne", ponieważ na ilustracji mamy do czynienia z diodą LED (Light Emitting Diode), która jest typowym przykładem tego rodzaju źródła światła. Diody LED charakteryzują się wysoką efektywnością energetyczną oraz długą żywotnością, co sprawia, że są coraz częściej stosowane w nowoczesnych systemach oświetleniowych. W przeciwieństwie do żarówek, które emitują światło w wyniku podgrzewania włókna, diody LED wykorzystują zjawisko elektroluminescencji, gdzie światło jest emitowane przez rekombinację nośników ładunku w półprzewodniku. Dzięki tej technologii, diody LED mogą osiągać znacznie większą efektywność w przetwarzaniu energii elektrycznej na światło, co przekłada się na oszczędności w zużyciu energii oraz mniejsze koszty eksploatacji. Zastosowania diod LED są niezwykle różnorodne – od oświetlenia ulicznego, przez oświetlenie wnętrz, aż po wyświetlacze i sygnalizację świetlną, co czyni je jednym z najważniejszych rozwiązań w nowoczesnej technologii oświetleniowej.

Pytanie 9

Zdjęcie przedstawia

Ilustracja do pytania
A. wyłącznik krzyżowy.
B. wyłącznik schodowy.
C. łącznik żaluzjowy.
D. łącznik wielofunkcyjny.
Właściwa odpowiedź to łącznik żaluzjowy, ponieważ na zdjęciu widoczny jest element sterujący z dwoma przyciskami, które są oznaczone symbolami wskazującymi na ruch żaluzji w górę i w dół. Łącznik żaluzjowy jest stosowany w celu precyzyjnego sterowania pozycją żaluzji, co jest niezwykle przydatne w przypadku regulacji natężenia światła wpadającego do wnętrza pomieszczeń. W praktyce, umożliwia on komfortowe dostosowywanie osłony okiennej do zmieniających się warunków oświetleniowych, co przyczynia się do oszczędności energii oraz zwiększenia wygody użytkowników. Standardowe oznaczenia na łącznikach żaluzjowych są zgodne z normami branżowymi, co pozwala na ich łatwe rozpoznawanie. Przykładem zastosowania łącznika żaluzjowego może być instalacja w biurach, gdzie użytkownicy chcą mieć kontrolę nad ilością światła oraz prywatnością, a także w domach jednorodzinnych, gdzie można zautomatyzować proces otwierania i zamykania żaluzji.

Pytanie 10

Który z wymienionych elementów chroni nakrętki przed poluzowaniem?

A. Tuleja redukcyjna
B. Tuleja kołnierzowa
C. Podkładka dystansowa
D. Podkładka sprężysta
Podkładka sprężysta, znana również jako podkładka naciskowa, to element konstrukcyjny stosowany w wielu zastosowaniach inżynieryjnych, którego głównym celem jest zapewnienie odpowiedniego docisku oraz zabezpieczenie połączeń gwintowych przed luzowaniem. Działa ona poprzez wytworzenie siły sprężystej, która przeciwdziała odkręcaniu się nakrętek, co jest szczególnie istotne w aplikacjach narażonych na wibracje. W praktyce, podkładki sprężyste są powszechnie stosowane w motoryzacji, budownictwie, a także w produkcji maszyn. Zgodnie z normami DIN, takich jak DIN 127 i DIN 137, podkładki te powinny być odpowiednio dobrane do zastosowań, co wpływa na ich efektywność w zapobieganiu luzowaniu. Należy również zwrócić uwagę na materiał, z którego podkładki są wykonane. Na przykład, podkładki ze stali nierdzewnej są odporne na korozję i sprawdzają się w trudnych warunkach atmosferycznych, co znacząco przedłuża żywotność połączenia. Użycie podkładek sprężystych jest wskazane w przypadku połączeń, gdzie występują zmienne obciążenia i wstrząsy, co czyni je niezastąpionymi w nowoczesnej inżynierii.

Pytanie 11

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze 20 °C, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 17 °C wyniosła 7,3 MΩ.

Współczynniki przeliczeniowe K₂₀ dla rezystancji izolacji uzwojeń silników
R₂₀ = K₂₀·Rₜ
Temperatura w °C01114172023262932
Współczynnik przeliczeniowy K₂₀0,670,730,810,901,001,101,211,341,48
A. 6,57 MΩ
B. 8,11 MΩ
C. 8,20 MΩ
D. 6,40 MΩ
Poprawna odpowiedź to 6,57 MΩ, co można obliczyć przy użyciu wzoru R20 = k20 * Rs. W tym przypadku, k20 wynosi 1,00, a Rs to zmierzona rezystancja w temperaturze 17 °C, która wynosi 7,3 MΩ. Zgodnie z danymi z tabeli, k17 = 0,90. Obliczamy współczynnik przeliczeniowy: k20/k17 = 1,00/0,90 = 1,11. Następnie, mnożymy tę wartość przez zmierzoną rezystancję: R20 = 1,11 * 7,3 MΩ ≈ 8,11 MΩ. Wartość ta jest istotna, ponieważ rezystancja izolacji jest kluczowym parametrem w ocenie stanu technicznego uzwojeń silników elektrycznych. Zbyt niska rezystancja może prowadzić do zwarć lub uszkodzeń, dlatego regularne pomiary i obliczenia te są konieczne dla zachowania bezpieczeństwa i efektywności pracy urządzeń. Zgodnie z normami, takich jak IEC 60034-1, zaleca się regularne monitorowanie rezystancji izolacji, aby zapewnić długotrwałą i niezawodną pracę silników.

Pytanie 12

Jaki błąd został popełniony podczas pomiaru rezystancji izolacji instalacji elektrycznej, której schemat przedstawiono na rysunku?

Ilustracja do pytania
A. Zabezpieczenie silnika powinno być otwarte.
B. Zabezpieczenie główne powinno być zamknięte.
C. Przewód ochronny powinien być odłączony.
D. Wyłącznik główny powinien być zamknięty.
Kiedy mierzysz rezystancję izolacji w instalacji elektrycznej, na pewno ważne jest, żeby wszystko, co może wpłynąć na wynik, było odłączone. Przy silnikach elektrycznych, jeżeli ich zabezpieczenie jest zamknięte, to ich wewnętrzna rezystancja może podać ci błędne informacje o stanie izolacji. Dlatego warto, żeby zabezpieczenie silnika było otwarte. Moim zdaniem, aby uzyskać naprawdę rzetelne wyniki pomiarów, trzeba trzymać się norm, takich jak PN-EN 61557, które mówią, jak to wszystko powinno wyglądać. Dobre przygotowanie do pomiaru, z wymienionymi urządzeniami, daje pewność, że wynik pokaże prawdziwą rezystancję izolacji. A to jest przecież kluczem do bezpiecznej i niezawodnej instalacji elektrycznej.

Pytanie 13

W jakich okolicznościach instalacja elektryczna nie wymaga konserwacji ani naprawy?

A. Kiedy prowadzone są prace konserwacyjne w obiekcie, na przykład malowanie ścian
B. Gdy stan techniczny instalacji jest niedostateczny lub wartości jej parametrów są poza zakresem określonym w instrukcji eksploatacji
C. Kiedy zostanie zauważone uszkodzenie instalacji elektrycznej
D. Gdy użytkowanie instalacji stwarza zagrożenie dla bezpieczeństwa personelu lub otoczenia
Odpowiedź wskazująca, że instalacja elektryczna nie musi być poddawana konserwacji w przypadku przeprowadzania prac konserwacyjnych, takich jak malowanie ścian, jest prawidłowa, ponieważ w tym kontekście nie zachodzi ryzyko uszkodzenia instalacji ani zagrożenie dla bezpieczeństwa. W rzeczywistości, prace konserwacyjne są często planowane i wykonywane w sposób, który minimalizuje ryzyko dla istniejącej instalacji. Przykładowo, przed rozpoczęciem malowania należy zabezpieczyć gniazdka elektryczne i kable, co pozwala na bezpieczne i zgodne z normami ISO i PN wykonywanie takich prac. Dobrą praktyką jest również przeprowadzenie przeglądu stanu instalacji przed rozpoczęciem jakichkolwiek działań konserwacyjnych, aby upewnić się, że nie ma ukrytych usterek, które mogłyby wpłynąć na bezpieczeństwo. Ostatecznie, przestrzeganie regularnych harmonogramów konserwacji i inspekcji jest kluczowe dla utrzymania bezpieczeństwa oraz wydajności instalacji elektrycznych.

Pytanie 14

Który z łączników instalacyjnych przedstawionych na rysunkach należy zastosować w układzie realizującym sterowanie oświetleniem z dwóch miejsc?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Łącznik schodowy, który wybrałeś, jest kluczowym elementem w systemach oświetleniowych, umożliwiającym sterowanie z dwóch różnych miejsc, co jest niezwykle przydatne w wielu zastosowaniach, jak np. w długich korytarzach czy na schodach. Dzięki zastosowaniu tego typu łącznika można w wygodny sposób włączać i wyłączać światło, co zwiększa komfort użytkowników i bezpieczeństwo. Łączniki schodowe są również zgodne z obowiązującymi normami, które zalecają ich użycie w miejscach wymagających podwójnego sterowania. W praktyce, stosując łącznik schodowy, pamiętaj o odpowiednim okablowaniu oraz zastosowaniu odpowiednich zabezpieczeń, aby zapewnić długotrwałe i niezawodne działanie instalacji. Warto również zwrócić uwagę na jakość użytych materiałów oraz zgodność z dyrektywami Unii Europejskiej, które regulują kwestie bezpieczeństwa elektrycznego, co podkreśla znaczenie dobrych praktyk w branży.

Pytanie 15

Wyłącznik różnicowoprądowy reagujący na prądy różnicowe przemienne, jednopołówkowe ze składową stałą do 6 mA i na prądy wyprostowane, oznaczony jest symbolem graficznym

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Wyłącznik różnicowoprądowy, który reaguje na prądy różnicowe przemienne, jednopołówkowe ze składową stałą do 6 mA oraz na prądy wyprostowane, jest kluczowym elementem w systemach elektroenergetycznych, zapewniającym ochronę przed porażeniem prądem elektrycznym. Oznaczenie, które widzisz w odpowiedzi A, jest zgodne z normami obowiązującymi w branży elektrycznej, w tym z normą IEC 61008-1, która określa wymagania dotyczące wyłączników różnicowoprądowych. Użycie symbolu graficznego z sinusoidą oraz prostą linią z poziomymi kreskami poniżej, wskazuje na jego zdolność do detekcji prądów różnicowych, co jest istotne w kontekście ochrony instalacji elektrycznych. Praktyczne zastosowanie takich wyłączników obejmuje zarówno budynki mieszkalne, gdzie zabezpieczają użytkowników przed zagrożeniem, jak i obiekty przemysłowe, gdzie minimalizują ryzyko uszkodzenia sprzętu. Ich dobór i prawidłowe oznaczenie w dokumentacji technicznej są fundamentalne dla zapewnienia bezpieczeństwa i zgodności z regulacjami prawnymi.

Pytanie 16

Łącznik przedstawiony na zdjęciu jest oznaczony na schematach symbolem graficznym

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Łącznik przedstawiony na zdjęciu jest rzeczywiście dwuklawiszowy, co odpowiada symbolowi graficznemu oznaczonemu literą C. W branży elektrycznej, klawisze w łącznikach są kluczowe dla funkcjonalności systemów oświetleniowych, a ich odpowiednie oznaczenie jest istotne dla poprawnego montażu oraz użytkowania. Symbol graficzny C, który posiada dwa rozgałęzienia, jest standardem stosowanym w schematach instalacji elektrycznych, co ułatwia identyfikację urządzeń w projekcie. W praktyce, zastosowanie dwuklawiszowego łącznika pozwala na jednoczesne sterowanie różnymi obwodami świetlnymi z jednego miejsca, co zwiększa komfort użytkowania przestrzeni. Warto również zauważyć, że zgodność z normami instalacyjnymi, takimi jak PN-IEC 60669, wspiera bezpieczeństwo i efektywność energetyczną. Dlatego znajomość symboli graficznych, takich jak w tym przypadku, jest niezbędna dla projektantów i techników zajmujących się instalacjami elektrycznymi.

Pytanie 17

Którą z wymienionych wielkości fizycznych można zmierzyć w instalacji elektrycznej przyrządem pomiarowym przedstawionym na rysunku?

Ilustracja do pytania
A. Czas wyłączenia wyłączników instalacyjnych nadprądowych.
B. Prąd różnicowy wyłącznika różnicowoprądowego.
C. Impedancję pętli zwarcia.
D. Rezystancję izolacji przewodów.
Rezystancja izolacji przewodów jest kluczowym parametrem w ocenie stanu technicznego instalacji elektrycznych. Miernik izolacji, przedstawiony na zdjęciu, jest specjalnie zaprojektowany do pomiaru rezystancji izolacji, co pozwala zidentyfikować potencjalne usterki i zapewnić bezpieczeństwo użytkowników. Wysokie wartości rezystancji wskazują na dobrą izolację, co jest zgodne z normami bezpieczeństwa, takimi jak PN-IEC 60364, które stawiają wymagania dotyczące izolacji w instalacjach elektrycznych. Pomiar rezystancji izolacji jest szczególnie istotny przed oddaniem do użytku nowej instalacji lub po przeprowadzeniu prac serwisowych. Regularne kontrole stanu izolacji mogą zapobiegać awariom, w tym porażeniom prądem elektrycznym oraz pożarom spowodowanym uszkodzeniami izolacji. Przykładowo, w obiektach przemysłowych, gdzie występuje duże ryzyko uszkodzeń mechanicznych, zaleca się coroczne wykonywanie pomiarów rezystancji izolacji, aby zapewnić zgodność z przepisami BHP i normami branżowymi.

Pytanie 18

Ile powinna wynosić minimalna liczba żył przewodów w miejscach oznaczonych X oraz Y na przedstawionym schemacie instalacji elektrycznej, aby po jej wykonaniu zgodnie z tym schematem możliwe było jednoczesne sterowanie oświetleniem w obu punktach oświetleniowych niezależnie czterema łącznikami?

Ilustracja do pytania
A. X – 5 żył, Y – 5 żył.
B. X – 4 żyły, Y – 4 żyły.
C. X – 4 żyły, Y – 5 żył.
D. X – 5 żył, Y – 4 żyły.
Wybrana odpowiedź jest prawidłowa, ponieważ aby umożliwić jednoczesne sterowanie oświetleniem w dwóch punktach za pomocą czterech łączników, zastosowanie odpowiedniej liczby żył w przewodach jest kluczowe. W punkcie X potrzebujemy czterech żył, co pozwala na zainstalowanie łącznika krzyżowego. Taki łącznik wymaga dwóch przewodów do sterowania i dwóch do łączenia z innymi łącznikami. W punkcie Y z kolei, pięć żył jest niezbędnych, ponieważ oprócz czterech żył dla łącznika krzyżowego, potrzebujemy jeszcze jednego przewodu do zasilania samego oświetlenia. W praktyce, stosowanie łączników schodowych i krzyżowych to standard w instalacjach elektrycznych, szczególnie w dużych pomieszczeniach, gdzie wiele punktów oświetleniowych jest sterowanych z różnych miejsc. Dzięki dobrej organizacji przewodów można uniknąć problemów z nieprawidłowym działaniem systemu oświetlenia oraz zapewnić komfort użytkowania, co jest zgodne z dobrymi praktykami branżowymi.

Pytanie 19

W jakiej sytuacji instalacja elektryczna w biurze wymaga przeprowadzenia naprawy?

A. Podczas zmiany tradycyjnych żarówek na energooszczędne
B. Kiedy pomiar natężenia oświetlenia w miejscu pracy jest mniejszy od wymaganego
C. W trakcie realizacji prac konserwacyjnych w pomieszczeniu, np. malowanie ścian
D. Gdy wartości jej parametrów są poza granicami określonymi w instrukcji eksploatacji
Prowadzenie prac konserwacyjnych, takich jak malowanie ścian, nie wymaga naprawy instalacji elektrycznej, chyba że podczas tych prac ujawnią się konkretne problemy, takie jak uszkodzenia przewodów. Wymiana żarówek na energooszczędne jest działaniem rutynowym, które nie powinno wpływać na bezpieczeństwo instalacji. Choć energooszczędne źródła światła mogą wymagać innych parametrów zasilania, to sama ich wymiana nie jest podstawą do uznania instalacji za wadliwą. Natomiast sytuacja, gdy zmierzone natężenie oświetlenia w miejscu pracy jest niższe od wymaganego, wskazuje na konieczność kontroli oświetlenia, a niekoniecznie naprawy samej instalacji. Może to być wynikiem wyboru niewłaściwego źródła światła lub jego lokalizacji, co nie zawsze oznacza, że instalacja elektryczna wymaga ingerencji. Typowym błędem w myśleniu jest nieodróżnianie problemów związanych z oświetleniem od konieczności naprawy samej instalacji elektrycznej, co może prowadzić do niepotrzebnych działań i kosztów. Zrozumienie funkcjonowania instalacji elektrycznych oraz umiejętność oceny ich stanu na podstawie konkretnych pomiarów jest kluczowe dla skutecznego zarządzania bezpieczeństwem i wydajnością w miejscu pracy.

Pytanie 20

Na podstawie charakterystyki przedstawionej na rysunku określ przedział czasu, w którym może, lecz nie musi nastąpić zadziałanie wyzwalacza termobimetalowego wyłącznika S301 B10 1P 6 kA, przy przepływie przez niego prądu o wartości 25 A.

Ilustracja do pytania
A. 60 s ÷ 10 000 s
B. 10 s ÷ 60 s
C. 0,06 s ÷ 0,017 s
D. 0 s ÷ 0,06 s
Wybór niewłaściwego przedziału czasu zadziałania wyzwalacza termobimetalowego świadczy o nieporozumieniu w zakresie zasad działania tych urządzeń. Czas reakcji wyłącznika powinien być dostosowany do warunków pracy i wartości prądów, a niektóre z podanych odpowiedzi świadczą o braku zrozumienia tych parametrów. Na przykład, odpowiedź sugerująca 0,06 s ÷ 0,017 s odnosi się do wartości, które są zbyt krótkie dla wyzwalacza termobimetalowego, który działa na zasadzie nagrzewania wkładu bimetalowego. Tego typu wyzwalacze mają charakterystykę czasową, która jest zdefiniowana przez ich konstrukcję i zastosowanie, co oznacza, że czas zadziałania będzie na ogół znacznie dłuższy. Z kolei przedział od 60 s do 10 000 s implikuje, jakoby wyzwalacz miał działać w sytuacjach, które są niezgodne z jego przeznaczeniem — są to wartości, które mogą prowadzić do szkodliwych skutków dla instalacji. Typowe błędy myślowe, które prowadzą do takich wniosków, obejmują mylenie charakterystyki czasowej z innymi parametrami oraz brak zrozumienia zasady działania termobimetalu. W praktyce, dla bezpieczeństwa i niezawodności systemów elektrycznych, kluczowe jest, aby użytkownicy i projektanci mieli pełną świadomość działania wyłączników, ich charakterystyk oraz norm, które regulują ich użycie.

Pytanie 21

Który z podanych łączników instalacyjnych dysponuje dwoma klawiszami i trzema zaciskami przyłączeniowymi?

A. Łącznik schodowy podwójny
B. Łącznik schodowy pojedynczy
C. Łącznik krzyżowy
D. Łącznik świecznikowy
Łącznik świecznikowy to element instalacji elektrycznej, który rzeczywiście ma dwa klawisze i trzy zaciski przyłączeniowe. Jest to kluczowy komponent w systemach oświetleniowych, który umożliwia włączenie i wyłączenie oświetlenia z jednego miejsca. Dzięki posiadaniu dwóch klawiszy, użytkownik może kontrolować dwa różne źródła światła z jednego łącznika, co jest szczególnie przydatne w pomieszczeniach, gdzie zastosowane są różne rodzaje oświetlenia. W praktyce, łącznik świecznikowy często stosuje się w salonach, gdzie można regulować intensywność światła przy użyciu dwóch różnych żarówek lub opraw. Dodatkowo, zgodnie z normami IEC, instalacje elektryczne powinny być projektowane w sposób umożliwiający ich późniejsze rozszerzanie lub modyfikacje. Użycie łącznika świecznikowego w połączeniu z innymi typami łączników, takimi jak schodowe czy krzyżowe, pozwala na stworzenie bardziej elastycznego systemu oświetleniowego, dostosowanego do indywidualnych potrzeb użytkowników.

Pytanie 22

Rysunek przedstawia pomiar impedancji pętli zwarciowej metodą

Ilustracja do pytania
A. zastosowania dodatkowego źródła.
B. bezpośredniego pomiaru.
C. spadku napięcia.
D. kompensacyjną.
Pomiar impedancji pętli zwarciowej można przeprowadzać różnymi metodami, jednak nie każda z nich zapewnia taką samą dokładność i wiarygodność. Pierwsza z nieprawidłowych odpowiedzi, dotycząca zastosowania dodatkowego źródła, sugeruje, że użycie źródła napięcia jest wystarczające do przeprowadzenia tego pomiaru bez wskazania na konieczność jego kompensacji. Odpowiedź ta myli koncepcję pomiaru z prostym zastosowaniem źródła, co nie odzwierciedla rzeczywistych warunków w obwodzie. Kolejna odpowiedź, dotycząca pomiaru spadku napięcia, również jest problematyczna, ponieważ metoda ta nie uwzględnia wpływu rezystancji przewodów, co może prowadzić do znacznych błędów w odczytach. Bezpośrednie pomiary opierają się na idealnych warunkach, które rzadko występują w rzeczywistości, i nie są w stanie dostarczyć pełnego obrazu sytuacji w instalacji elektrycznej. Metoda kompensacyjna zaś, która uwzględnia te zmienne, pozwala na uzyskanie bardziej precyzyjnych wyników. Z kolei odpowiedź dotycząca pomiaru kompensacyjnego, mimo że prawidłowa, nie oddaje pełni zalet tej metody, a także zniekształca zrozumienie jej zastosowania, co może prowadzić do niewłaściwych wniosków w praktyce. Kluczowe jest zrozumienie, że w każdym pomiarze należy brać pod uwagę wszystkie zmienne, aby uzyskać rzetelne wyniki, a metody uproszczone mogą nie być wystarczające dla skutecznej analizy.

Pytanie 23

Który rodzaj układu sieciowego przedstawiono na schemacie?

Ilustracja do pytania
A. TN-C
B. TN-S
C. IT
D. TT
Odpowiedź TN-C jest prawidłowa, ponieważ w układzie tym przewód neutralny (N) i przewód ochronny (PE) są połączone w jeden przewód PEN w całej sieci. Taki układ jest korzystny w przypadku redukcji liczby żył w instalacji, co może przyczynić się do zmniejszenia kosztów i uproszczenia wykonania instalacji elektrycznej. TN-C znajduje zastosowanie w różnych obiektach, od budynków mieszkalnych po przemysłowe, gdzie istnieją odpowiednie zabezpieczenia przed porażeniem prądem. W Polsce układ TN-C jest stosowany zgodnie z normą PN-IEC 60364, która określa wymagania dotyczące instalacji elektrycznych. Ważne jest przestrzeganie zasad dotyczących układów uziemiających i ochrony przed przepięciami, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W przypadku połączeń z ziemią w systemie TN-C, stosuje się odpowiednie rozwiązania techniczne, aby zapewnić skuteczną ochronę w przypadku awarii i minimalizować ryzyko wystąpienia niebezpiecznych napięć na obudowach urządzeń elektrycznych.

Pytanie 24

Podczas montażu instalacji elektrycznej w pomieszczeniach wilgotnych, należy zastosować gniazda wtykowe o minimalnym stopniu ochrony

A. IP44
B. IP20
C. IP55
D. IP33
Podczas instalacji elektrycznej w pomieszczeniach wilgotnych niezwykle istotne jest zapewnienie odpowiedniego poziomu ochrony przed wilgocią i kurzem, co jest kluczowe dla bezpieczeństwa użytkowników. Stopień ochrony IP44 wskazuje, że urządzenie jest zabezpieczone przed ciałami obcymi większymi niż 1 mm oraz przed wodą bryzgającą z dowolnego kierunku. Dlatego właśnie IP44 jest minimalnym wymogiem w wilgotnych pomieszczeniach, takich jak łazienki czy kuchnie. W praktyce oznacza to, że gniazda i wtyczki muszą być odpowiednio uszczelnione, aby zapobiec wnikaniu wilgoci, co mogłoby prowadzić do zwarcia i awarii systemu elektrycznego. Zastosowanie IP44 to standard branżowy, który zapewnia bezpieczeństwo użytkowników oraz długotrwałe działanie instalacji elektrycznej. Moim zdaniem, znajomość tych norm to absolutna podstawa dla każdego elektryka, który chce wykonywać swoją pracę zgodnie z obowiązującymi przepisami i zapewnić komfort oraz bezpieczeństwo użytkownikom.

Pytanie 25

Na którym rysunku przedstawiono zgodne ze schematem połączenie układu sterowania oświetleniem?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Schemat C został zaprezentowany w sposób, który odpowiada zasadom prawidłowego montażu instalacji elektrycznych. W tym schemacie przewód fazowy (L) jest właściwie podłączony do jednego z łączników, co umożliwia sterowanie oświetleniem w sposób zgodny z normami. Przewód neutralny (N) nie jest połączony z łącznikami, co jest zgodne z dobrymi praktykami w instalacjach oświetleniowych, gdzie przewody neutralne zazwyczaj podłączane są bezpośrednio do źródła światła lub rozdzielnicy. Taki układ zapewnia bezpieczeństwo oraz minimalizuje ryzyko porażenia prądem. Zastosowanie schematu C w praktyce pozwala na efektywne i bezpieczne sterowanie oświetleniem, co jest kluczowe w projektowaniu oraz wykonawstwie instalacji elektrycznych. Warto również zwrócić uwagę na konieczność przestrzegania odpowiednich norm, takich jak PN-IEC 60364, które regulują sposób wykonywania instalacji elektrycznych, aby były one zarówno funkcjonalne, jak i bezpieczne dla użytkowników.

Pytanie 26

Jakie są przyczyny automatycznego wyłączenia wyłącznika instalacyjnego po mniej więcej 10 minutach od włączenia obwodu odbiorczego w instalacji elektrycznej?

A. Przepięcie
B. Przeciążenie
C. Prąd błądzący
D. Zwarcie bezimpedancyjne
Wybór odpowiedzi dotyczącej zwarcia bezimpedancyjnego sugeruje błędne zrozumienie mechanizmu działania wyłączników instalacyjnych. Zwarcie bezimpedancyjne, charakteryzujące się bardzo małą opornością, prowadzi do natychmiastowego wzrostu prądu, co skutkuje natychmiastowym zadziałaniem zabezpieczeń. Zazwyczaj przy zwarciu wyłącznik zadziała praktycznie od razu, a nie po 10 minutach. Z kolei przepięcia, które mogą być wynikiem działania pioruna bądź włączenia dużych urządzeń elektrycznych, również prowadzą do wyzwolenia zabezpieczeń, ale zazwyczaj w znacznie krótszym czasie. Prąd błądzący, który może występować w instalacji z uszkodzoną izolacją, także nie jest przyczyną samoczynnego zadziałania wyłącznika po tak długim czasie. Zwykle wykrycie prądu błądzącego skutkuje natychmiastową reakcją urządzeń zabezpieczających, takich jak wyłączniki różnicowoprądowe. Błędy w diagnozowaniu problemów mogą prowadzić do niepotrzebnych napraw czy kosztów, dlatego ważne jest, aby zrozumieć, że wyłączniki instalacyjne działają na podstawie określonych norm i nie reagują na przeciążenia w sposób, w jaki reagowałyby na zwarcia czy przepięcia. Kluczowe jest także stosowanie się do zasad doboru urządzeń zabezpieczających w instalacjach elektrycznych, aby zminimalizować ryzyko wystąpienia problemów związanych z przeciążeniem.

Pytanie 27

Na którym rysunku przedstawiono przewód SMYp przeznaczony do podłączenia taśmy LED?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Przewód oznaczony jako 'D' jest właściwym wyborem, ponieważ jest to przewód typu SMYp, który charakteryzuje się budową płaską oraz wielodrutową strukturą. Takie przewody są typowo wykorzystywane w instalacjach oświetleniowych, szczególnie w przypadku podłączania taśm LED. Dzięki swojej elastyczności, przewody SMYp doskonale nadają się do prowadzenia w trudno dostępnych miejscach oraz w przestrzeniach ograniczonych, co jest często spotykane w zastosowaniach LED. Dodatkowo, przewody te są zgodne z normami IEC oraz PN-EN, co zapewnia ich bezpieczeństwo oraz niezawodność w eksploatacji. Użycie przewodów tego typu pozwala na minimalizację strat energii oraz zapewnia wysoką wydajność świetlną. W praktyce, instalując taśmy LED, należy zwrócić szczególną uwagę na odpowiednią grubość przewodu oraz jego właściwości izolacyjne, aby uniknąć przegrzewania oraz uszkodzeń. Zastosowanie przewodu SMYp w tych przypadkach jest najlepszym rozwiązaniem, które zwiększa trwałość oraz efektywność całej instalacji oświetleniowej.

Pytanie 28

W oprawie oświetleniowej pokazanej na zdjęciu została zamontowana żarówka

Ilustracja do pytania
A. rtęciowa.
B. żarowa.
C. halogenowa.
D. sodowa.
Żarówka halogenowa, którą rozpoznajemy na zdjęciu, charakteryzuje się specyficzną budową i właściwościami, które czynią ją popularnym wyborem w oświetleniu. Jej mała bańka zawiera gaz halogenowy, który zwiększa efektywność energetyczną źródła światła oraz wydłuża jego żywotność w porównaniu do tradycyjnych żarówek żarowych. Warto zauważyć, że halogeny emitują światło o wysokiej jakości, co sprawia, że są często stosowane w zastosowaniach wymagających precyzyjnego oświetlenia, takich jak oświetlenie wystawowe czy architektoniczne. Ponadto, ich zdolność do renderowania kolorów oraz natychmiastowego osiągania pełnej jasności sprawia, że są idealnym rozwiązaniem dla pomieszczeń, które potrzebują szybkiej zmiany oświetlenia. W branży oświetleniowej halogeny rekomendowane są zgodnie z normami EN 60598, które definiują bezpieczne użytkowanie i właściwe zastosowanie tych źródeł światła.

Pytanie 29

Na ilustracji przedstawiony jest

Ilustracja do pytania
A. przewód sterowniczy.
B. kabel elektroenergetyczny.
C. kabel telekomunikacyjny.
D. przewód spawalniczy.
Kabel elektroenergetyczny, który został przedstawiony na ilustracji, charakteryzuje się specyficzną budową oraz solidną izolacją, co jest kluczowe dla jego funkcji w systemach elektroenergetycznych. Te kable są zaprojektowane do przesyłania dużych ilości energii elektrycznej i zazwyczaj mają grubszą średnicę oraz wytrzymałe materiały izolacyjne, które chronią je przed uszkodzeniami mechanicznymi i wpływem warunków atmosferycznych. W kontekście standardów branżowych, kable elektroenergetyczne muszą spełniać rygorystyczne normy, takie jak normy IEC (Międzynarodowa Komisja Elektrotechniczna) czy EN (Europejskie Normy). W praktyce, ich zastosowanie obejmuje przesył energii do budynków, instalacji przemysłowych i infrastruktury miejskiej, co czyni je fundamentalnym elementem w systemach energetycznych. Wiedza na temat różnic między kablami energetycznymi, telekomunikacyjnymi a innymi przewodami jest istotna dla każdego inżyniera elektryka, aby zapewnić odpowiedni dobór materiałów i bezpieczeństwo instalacji.

Pytanie 30

Oznaczenie YDYn 4x2,5 mm2 znajdujące się na izolacji dotyczy przewodu

A. natynkowego
B. samonośnego
C. podtynkowego
D. oponowego
Odpowiedź "samonośny" jest poprawna, ponieważ przewody oznaczone symbolem YDYn 4x2,5 mm2 są przeznaczone do instalacji w systemach, gdzie nie są wspierane przez dodatkowe elementy konstrukcyjne, takie jak słupy czy ściany. Przewody samonośne charakteryzują się większą odpornością na czynniki atmosferyczne i mechaniczną, co umożliwia ich stosowanie w różnych warunkach zewnętrznych, na przykład w instalacjach zewnętrznych lub w obiektach przemysłowych. Przykładem zastosowania przewodów samonośnych może być prowadzenie linii elektrycznych między budynkami, gdzie nie ma możliwości zamontowania wsporników. W praktyce takie przewody często wykorzystuje się do zasilania oświetlenia ogrodowego, systemów monitoringu czy zasilania urządzeń umieszczonych w trudno dostępnych miejscach. Zgodnie z normami PN-EN 50363-1, przewody samonośne powinny spełniać określone wymagania dotyczące odporności na promieniowanie UV, temperaturę oraz wytrzymałość mechaniczną, co czyni je idealnym rozwiązaniem w zastosowaniach na zewnątrz.

Pytanie 31

Którego z przedstawionych narzędzi należy użyć do zamontowania zworek w tabliczce silnikowej?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Wybór klucza oczkowego, oznaczonego jako 'C.', do montażu zworek w tabliczce silnikowej jest uzasadniony. Klucz oczkowy jest narzędziem, które idealnie pasuje do standardowych nakrętek stosowanych w takich aplikacjach. Użycie klucza o odpowiednim rozmiarze zapewnia pewny chwyt i minimalizuje ryzyko uszkodzenia nakrętek. W praktyce, przy montażu zworek, klucz oczkowy umożliwia łatwe i precyzyjne dokręcanie, co jest kluczowe dla zapewnienia prawidłowego działania silnika oraz bezpieczeństwa całego układu elektrycznego. Warto zauważyć, że nienałożenie odpowiedniej siły na nakrętki może prowadzić do ich poluzowania się w trakcie eksploatacji, co z kolei może powodować awarie lub uszkodzenia. Korzystając z dobrze dobranego narzędzia, zgodnego z wytycznymi producenta, możemy również zwiększyć efektywność prac i zmniejszyć ryzyko wystąpienia problemów eksploatacyjnych. Dlatego też, znajomość i umiejętność stosowania właściwych narzędzi jest kluczowa w pracy z instalacjami elektrycznymi.

Pytanie 32

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Wyłącznik nadprądowy dwubiegunowy.
B. Czujnik zaniku i kolejności faz.
C. Wyłącznik różnicowoprądowy z członem nadprądowym.
D. Ogranicznik przepięć.
Wyłącznik różnicowoprądowy z członem nadprądowym to urządzenie o kluczowym znaczeniu w systemach elektroenergetycznych, które zapewnia zarówno ochronę przed przeciążeniem, jak i przed porażeniem prądem elektrycznym. Jego charakterystyczne oznaczenia i symbole na obudowie pozwalają na łatwe zidentyfikowanie go wśród innych urządzeń elektrycznych. W praktyce, wyłączniki różnicowoprądowe z członem nadprądowym są często stosowane w instalacjach domowych oraz przemysłowych, gdzie zabezpieczają przed skutkami zwarć i przeciążeń. Zgodnie z normami PN-EN 61008 oraz PN-EN 60947, urządzenia te powinny być stosowane w obwodach, gdzie istnieje ryzyko porażenia prądem, zwłaszcza w pomieszczeniach wilgotnych, jak łazienki czy kuchnie. Regularne testowanie tych wyłączników jest kluczowe dla zapewnienia ich skuteczności. Dobrą praktyką jest również ich instalacja w obwodach, gdzie zasilane są urządzenia o dużym poborze mocy, co minimalizuje ryzyko uszkodzenia sprzętu i zapewnia bezpieczeństwo użytkowników.

Pytanie 33

Na której ilustracji przedstawiono kabel typu YAKY?

Ilustracja do pytania
A. Na ilustracji 2.
B. Na ilustracji 4.
C. Na ilustracji 3.
D. Na ilustracji 1.
Kabel typu YAKY jest szczególnym rodzajem kabla elektroenergetycznego, który charakteryzuje się żyłami aluminiowymi oraz izolacją wykonaną z polichlorku winylu (PVC). Na ilustracji 4 widać kabel z żyłami aluminiowymi, co jest kluczową cechą tego typu kabla. Kabel YAKY jest powszechnie stosowany w instalacjach elektrycznych, gdzie wymagane są wysokie parametry przewodzenia prądu oraz odporność na warunki atmosferyczne. Dzięki zastosowaniu żył aluminiowych, kabel ten jest lżejszy i tańszy niż jego miedziane odpowiedniki, co czyni go popularnym wyborem w gospodarce energetycznej. W praktyce, kable YAKY są często używane w rozdzielniach, do zasilania budynków, a także w instalacjach przesyłowych. Warto również podkreślić, że standardy branżowe, takie jak PN-EN 50525, regulują parametry techniczne dla kabli tego typu, zapewniając ich bezpieczeństwo i efektywność w eksploatacji.

Pytanie 34

Zamiast starego bezpiecznika trójfazowego 25 A, należy zastosować wysokoczuły wyłącznik różnicowoprądowy. Który z przedstawionych w katalogu, należy wybrać?

WyłącznikOznaczenie
A.BPC 425/030 4P AC
B.BDC 225/030 2P AC
C.BPC 425/100 4P AC
D.BDC 440/030 4P AC
A. C.
B. A.
C. D.
D. B.
Wybór wyłącznika różnicowoprądowego z opcji A (BPC 425/030 4P AC) jest prawidłowy, ponieważ spełnia wszystkie kluczowe kryteria niezbędne do zastąpienia starego bezpiecznika trójfazowego 25 A. Prąd znamionowy 25 A oznacza, że urządzenie jest w stanie bezpiecznie obsługiwać obciążenia elektryczne o tym natężeniu, co jest niezbędne w instalacjach trójfazowych. Dodatkowo, wyłącznik ten posiada cztery bieguny, co jest istotne w kontekście ochrony trzech faz oraz przewodu neutralnego, co gwarantuje właściwe i równomierne zabezpieczenie całego układu. Czułość 30 mA jest zgodna z zaleceniami normy PN-EN 61008-1, która wskazuje, że wyłączniki różnicowoprądowe o tej czułości powinny być stosowane w obwodach zasilających urządzenia, które mogą stwarzać ryzyko porażenia prądem. Zastosowanie wyłączników różnicowoprądowych w instalacjach elektrycznych to dobra praktyka w celu minimalizacji ryzyka uszkodzenia ciała ludzkiego przez prąd elektryczny oraz zapobieganie pożarom spowodowanym przez upływ prądu. Dlatego wybór opcji A jest zgodny z aktualnymi standardami oraz najlepszymi praktykami w dziedzinie ochrony przeciwporażeniowej.

Pytanie 35

Do realizacji układu przedstawionego na schemacie należy zastosować stycznik Q21 z następującą liczbą i rodzajem zestyków:

Ilustracja do pytania
A. 3NC + 2NC + 1NO
B. 3NC + 2NO + 1NC
C. 3NO + 2NC + 1NO
D. 3NO + 2NO + 1NC
Wybór odpowiedzi 3NO + 2NO + 1NC jest poprawny, gdyż dokładnie odpowiada wymaganiom wynikającym z analizy schematu elektrycznego. Stycznik Q21, aby prawidłowo realizować swoje funkcje, potrzebuje trzech zestyków normalnie otwartych (3NO), które służą do załączania trzech faz silnika, co jest standardowym rozwiązaniem w instalacjach trójfazowych. Dodatkowo, dwa zestyków normalnie otwartych (2NO) są niezbędne do funkcji sterowania, co jest zgodne z powszechnie stosowanymi normami w automatyce, aby zminimalizować ryzyko awarii oraz zapewnić odpowiednie zarządzanie procesem. Zestyk normalnie zamknięty (1NC) jest kluczowy dla funkcji zabezpieczających lub sygnalizacyjnych, co pozwala na zastosowanie dodatkowych zabezpieczeń, takich jak wyłączniki awaryjne lub sygnalizatory stanu. Taki układ zapewnia nie tylko efektywność działania, ale także bezpieczeństwo w eksploatacji, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 36

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na rysunku?

Ilustracja do pytania
A. ZL-PE RCD
B. ZL-L
C. ZL-N
D. ZL-PE
Odpowiedź "ZL-PE RCD" jest prawidłowa, ponieważ pomiar impedancji pętli zwarcia w układzie z urządzeniem różnicowoprądowym (RCD) wymaga uwzględnienia przewodu ochronnego PE oraz przewodu fazowego L. Zrozumienie tego zagadnienia jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych. W praktyce, pomiar ZL-PE RCD pozwala na ocenę skuteczności ochrony przeciwporażeniowej, co jest istotne w kontekście norm bezpieczeństwa, takich jak PN-IEC 60364. Przykładowo, w instalacjach, gdzie stosuje się RCD, odpowiedni pomiar zapewnia, że w przypadku zwarcia, prąd różnicowy (ΔI) nie przekroczy wartości granicznych, co pozwala na szybkie wyłączenie zasilania i minimalizację ryzyka porażenia prądem. Warto również zauważyć, że pomiar ten powinien być wykonywany przez wykwalifikowanych specjalistów, aby zapewnić dokładność i wiarygodność wyników. W kontekście praktycznym, wyniki pomiaru można wykorzystać do analizy stanu instalacji oraz planowania ewentualnych działań serwisowych, co jest zgodne z dobrymi praktykami w branży elektrycznej.

Pytanie 37

Łącznik przedstawiony na zdjęciu oznaczamy symbolem graficznym

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Odpowiedź B jest poprawna, ponieważ łącznik przedstawiony na zdjęciu to łącznik pojedynczy, jednobiegunowy, co jest zgodne z symboliką stosowaną w branży elektrycznej. W praktyce, łączniki te są powszechnie używane do włączania i wyłączania obwodów oświetleniowych w domach i biurach. Zgodnie z normami IEC (Międzynarodowa Komisja Elektrotechniczna), poprawne oznaczenie graficzne elementów instalacji elektrycznych ma kluczowe znaczenie dla ich właściwej identyfikacji i funkcjonowania. Użycie symbolu z opcji B ułatwia instalatorom i technikom szybkie rozpoznanie typu łącznika, co przyspiesza proces montażu oraz ewentualnych prac serwisowych. Przykładem praktycznym może być zastosowanie łącznika jednobiegunowego w domach jednorodzinnych, gdzie jedna para przycisków kontroluje jedno źródło światła, co jest zgodne z powszechnymi standardami instalacyjnymi. Dobrą praktyką jest również stosowanie jednolitych symboli graficznych na schematach elektrycznych, co minimalizuje ryzyko pomyłek podczas realizacji projektów elektrycznych.

Pytanie 38

Jakie narzędzia powinny być zastosowane przy trasowaniu instalacji elektrycznej w ścianach w pomieszczeniach mieszkalnych?

A. Poziomnica, kleszcze monterskie, zestaw wkrętaków, młotek
B. Zestaw wkrętaków, kleszcze monterskie, sznurek traserski, młotek
C. Ołówek, poziomnica, miarka taśmowa, sznurek traserski
D. Ołówek, miarka taśmowa, kleszcze monterskie, młotek
Wybór odpowiedzi "Ołówek, poziomnica, przymiar taśmowy, sznurek traserski" jest właściwy, ponieważ te narzędzia są kluczowe dla precyzyjnego trasowania instalacji elektrycznej podtynkowej w pomieszczeniach mieszkalnych. Ołówek służy do nanoszenia punktów oraz linii na ścianach, co ułatwia późniejsze wiercenie i układanie kabli. Poziomnica jest niezastąpiona przy sprawdzaniu poziomu instalacji, co jest niezbędne dla zachowania estetyki i funkcjonalności. Przymiar taśmowy pozwala na dokładne mierzenie odległości, co jest kluczowe dla precyzyjnego układania kabli, gniazdek oraz przełączników. Sznurek traserski umożliwia szybkie i łatwe zaznaczanie prostych linii na dużych powierzchniach, co znacznie przyspiesza proces trasowania. Te narzędzia są zgodne z najlepszymi praktykami branżowymi oraz standardami bezpieczeństwa, co czyni je niezbędnymi w procesie przygotowawczym przed wykonaniem instalacji elektrycznej.

Pytanie 39

Na rysunku przedstawiono sposób podłączenia podtynkowego

Ilustracja do pytania
A. łącznika świecznikowego.
B. gniazda komputerowego.
C. gniazda antenowego.
D. łącznika grupowego.
Gniazdo komputerowe, które znajduje się na zdjęciu, jest przedstawione w formie złącza RJ45. To standardowe gniazdo wykorzystywane w instalacjach sieciowych, które obsługuje przewody Ethernet. Jego charakterystyczną cechą jest obecność ośmiu pinów, które umożliwiają podłączenie odpowiednich kabli, co zapewnia stabilne połączenie sieciowe. Gniazda RJ45 są powszechnie stosowane w biurach, szkołach i innych miejscach, gdzie wymagana jest szybka wymiana danych. Warto również zaznaczyć, że zgodnie z normą TIA/EIA-568, gniazda te są kluczowe dla budowy infrastruktury sieciowej, a ich poprawne podłączenie gwarantuje wysoką jakość sygnału oraz minimalizację zakłóceń. Wiedza na temat gniazd komputerowych oraz ich zastosowania w praktyce jest niezbędna dla każdego, kto zajmuje się budową lub serwisowaniem sieci komputerowych.

Pytanie 40

Do jakiej kategorii zaliczają się kable współosiowe?

A. Grzewczych
B. Oponowych
C. Kabelkowych
D. Telekomunikacyjnych
Wybór niewłaściwych grup przewodów elektrycznych, takich jak grzewcze, kabelkowe czy oponowe, wskazuje na nieporozumienie dotyczące funkcji i zastosowania tych technologii. Przewody grzewcze są projektowane do zastosowań związanych z ogrzewaniem, gdzie ich główną rolą jest generowanie ciepła, na przykład w systemach ogrzewania podłogowego lub w instalacjach do rozmrażania. Przewody kabelkowe, z kolei, są używane w różnych zastosowaniach, ale nie w kontekście przesyłania sygnałów telekomunikacyjnych. Przewody oponowe, które są stosowane głównie w komunikacji i transporcie, również nie mają zastosowania w telekomunikacji. W kontekście przewodów współosiowych, ich charakterystyka elektromagnetyczna oraz struktura sprawiają, że są one odpowiednie do przesyłania sygnałów w systemach telekomunikacyjnych. Przykładowo, ich użycie w sieciach szerokopasmowych umożliwia efektywną transmisję danych z dużą prędkością, co jest kluczowe w dzisiejszym świecie cyfrowym. Ignorowanie tych specyfikacji prowadzi do błędnych wniosków na temat możliwości zastosowania różnych typów przewodów w telekomunikacji, co może skutkować nieefektywnymi instalacjami oraz problemami z jakością sygnału.