Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 grudnia 2025 09:10
  • Data zakończenia: 8 grudnia 2025 09:23

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Analogowy czujnik ultradźwiękowy umożliwia bezdotykowy pomiar odległości przeszkody od samego czujnika. Zjawisko, które jest tu wykorzystywane, polega na tym, że fala o wysokiej częstotliwości, napotykając przeszkodę, ulega

A. odbiciu
B. wzmocnieniu
C. rozproszeniu
D. pochłonięciu
Ultradźwiękowy czujnik analogowy działa na fajnej zasadzie odbicia fal dźwiękowych, które są praktycznie niesłyszalne dla nas, ale doskonale sprawdzają się w pomiarze odległości. Kiedy czujnik wysyła impuls ultradźwiękowy w stronę jakiejś przeszkody, to ta fala odbija się od niej i wraca. Mierzymy czas, jaki upływa od momentu wysłania sygnału do powrotu i na tej podstawie obliczamy, jak daleko jest ta przeszkoda. Tego typu czujniki wykorzystujemy w różnych dziedzinach, na przykład w robotyce, automatyce czy w systemach parkowania. Dobrym przykładem może być monitorowanie poziomu cieczy w zbiornikach – czujnik świetnie określa poziom wody, mierząc czas, który falę zajmuje na pokonanie drogi tam i z powrotem. W motoryzacji też są popularne, bo pomagają kierowcom parkować, informując ich o odległości do przeszkód. Ogólnie, użycie ultradźwiękowych czujników jest zgodne z normami jakości i bezpieczeństwa, jak na przykład ISO 9001, co gwarantuje, że są one naprawdę niezawodne.

Pytanie 2

Ile wynosi wartość rezystancji zastępczej obwodu elektrycznego przedstawionego na rysunku?

Ilustracja do pytania
A. 2R
B. R
C. ½R
D. 1½R
Wartości rezystancji zastępczej obwodu elektrycznego mogą być mylone przez nieprawidłowe interpretacje zasad dotyczących łączenia rezystorów. Na przykład, odpowiedzi sugerujące wartości takie jak 2R czy ½R mogą wynikać z nieprawidłowego zrozumienia zasad szeregowego i równoległego łączenia rezystorów. W przypadku połączeń szeregowych, całkowita rezystancja jest sumą poszczególnych rezystancji, co może prowadzić do wyższych wartości niż pojedyncza rezystancja. Z kolei w połączeniach równoległych stosuje się formułę, w której rezystancja zastępcza jest mniejsza od najniższej rezystancji w obwodzie, co mogłoby sugerować odpowiedzi oparte na ½R. Zrozumienie, że rezystancja zastępcza nie może być wartością większą niż najniższa pojedyncza rezystancja, jest kluczowe. Często błędy te wynikają z mylnej interpretacji schematów obwodów oraz z braku praktycznego doświadczenia w obliczaniu rezystancji. Aby uniknąć tych pomyłek, ważne jest, aby dokładnie przeanalizować każdy element obwodu oraz zastosować poprawne zasady obliczeń, co jest niezbędne w praktycznych zastosowaniach inżynieryjnych i projektowych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Do montażu pneumatycznego zaworu rozdzielającego za pomocą wkrętu przedstawionego na rysunku należy użyć wkrętaka typu

Ilustracja do pytania
A. Torx.
B. Philips.
C. Pozidriv.
D. Tri-Wing.
Odpowiedź "Tri-Wing" to strzał w dziesiątkę! Gniazdo wkrętu na zdjęciu super pasuje do wkrętaka Tri-Wing. Te wkręty mają trzy skrzydła, co daje lepsze dopasowanie i kontrolę podczas wkręcania. To bardzo ważne, zwłaszcza w aplikacjach pneumatycznych, gdzie wszystko musi być precyzyjnie zamocowane, żeby działało jak należy. Używanie wkrętaka Tri-Wing do montażu pneumatycznego zaworu rozdzielającego to dobry wybór, bo pozwala na skuteczne przenoszenie momentu obrotowego, a przy tym nie ryzykuje się uszkodzenia gniazda. Wkrętaki Tri-Wing często można spotkać w elektronice i w różnych konstrukcjach mechanicznych, gdzie precyzja to podstawa. Warto zawsze dobierać odpowiednie narzędzie do danego wkrętu, bo to zgodne z najlepszymi praktykami inżynieryjnymi, a wpływa to na wydajność pracy i bezpieczeństwo.

Pytanie 5

W trakcie inspekcji efektywności systemu sterującego urządzeń transportujących elementy aluminiowe, w środowisku produkcyjnym o podwyższonym poziomie hałasu powinno się używać

A. okularów ochronnych
B. kasku ochronnego
C. ochronników słuchu
D. rękawic dielektrycznych
Ochronniki słuchu są kluczowym elementem ochrony osobistej w środowisku pracy, gdzie poziom hałasu przekracza dopuszczalne normy. W przypadku kontroli sprawności układu sterowania urządzenia transportującego kształtki aluminiowe, które mogą generować wysokie poziomy hałasu, zastosowanie ochronników słuchu jest niezbędne dla minimalizacji ryzyka uszkodzenia słuchu. Zgodnie z normami takimi jak PN-N-01307:2013, każdy pracownik narażony na hałas o poziomie przekraczającym 85 dB powinien stosować odpowiednie środki ochrony. Ochronniki słuchu mogą występować w różnych formach, takich jak nauszniki lub wkładki douszne, dostosowane do specyfiki pracy. W praktyce, ich stosowanie nie tylko chroni zdrowie pracownika, ale również zwiększa komfort pracy, umożliwiając lepszą koncentrację na wykonywanych zadaniach. Dbanie o zdrowie pracowników poprzez stosowanie wymaganych środków ochrony osobistej jest nie tylko kwestią zgodności z przepisami, ale także wpływa na ogólną wydajność i morale w zespole.

Pytanie 6

W celu sprawdzenia poprawności działania układu przedstawionego na schemacie, zmierzono napięcie zasilania. Wskaż wynik pomiaru, który świadczy, że napięcie zasilania jest prawidłowe?

Ilustracja do pytania
A. 230 V
B. 24 V
C. 400 V
D. 380 V
Tak, 230 V to jest właściwe napięcie! Wiesz, w polskich instalacjach jednofazowych właśnie to napięcie jest standardowe. Używamy tego w domach, a także w różnych obiektach przemysłowych średniej wielkości. Jak dobrze się orientujesz, normy europejskie też to potwierdzają. Jak mierzysz napięcie i pokazuje 230 V, to znaczy, że wszystko działa jak należy. Dzięki temu sprzęty, które mamy w domach, jak lampy czy lodówki, funkcjonują bez problemu. Z drugiej strony, 24 V to już inna historia – to napięcie niskonapięciowe, które częściej spotykasz w automatyce. A 380 V czy 400 V to napięcia trójfazowe, które są stosowane w przemyśle, a nie u nas w domach. Więc można by powiedzieć, że 230 V to taki „złoty środek” dla naszych potrzeb elektrycznych.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Na rysunku przedstawiono symbol czujnika

Ilustracja do pytania
A. indukcyjnego.
B. mechanicznego.
C. magnetycznego.
D. ultradźwiękowego.
Symbol przedstawiony na rysunku jest charakterystyczny dla czujników magnetycznych, które są szeroko stosowane w różnych dziedzinach technologii. Czujniki te działają na zasadzie wykrywania obecności pola magnetycznego, co pozwala na monitorowanie i kontrolowanie wielu procesów. Przykładem aplikacji czujników magnetycznych jest automatyka przemysłowa, gdzie są używane do detekcji pozycji elementów maszyn, takich jak drzwi czy klapki. Dodatkowo, w branży motoryzacyjnej czujniki te mogą być wykorzystywane do pomiaru prędkości obrotowej silników oraz w systemach ABS, gdzie monitorują prędkość kół. Warto również zauważyć, że czujniki magnetyczne wykorzystują zasady elektromagnetyzmu, co jest zgodne z normami branżowymi, takimi jak IEC 60947 dla urządzeń elektrycznych. Ich niezawodność i prostota w implementacji sprawiają, że są one preferowanym rozwiązaniem w wielu zastosowaniach inżynieryjnych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Której z podanych metod nie wykorzystuje się do trwałego łączenia elementów wykonanych z plastiku?

A. Zgrzewania
B. Zaginania
C. Klejenia
D. Spawania
Spawanie to technika, która polega na łączeniu dwóch elementów poprzez ich lokalne stopienie, co umożliwia uzyskanie trwałego połączenia. W kontekście tworzyw sztucznych, spawanie często wykorzystuje się w procesach produkcyjnych, gdzie materiał jest podgrzewany do temperatury topnienia, a następnie łączony z innym elementem. Ta metoda jest szczególnie ceniona w przypadku dużych konstrukcji, gdzie wymagana jest wysoka wytrzymałość połączeń. Klejenie, z drugiej strony, polega na zastosowaniu specjalnych substancji, które penetrują powierzchnie materiałów i tworzą silne wiązania chemiczne. Kleje stosowane do tworzyw sztucznych są projektowane tak, aby zapewnić optymalne wiązanie, co czyni je odpowiednimi do użycia w różnych warunkach. Zgrzewanie, podobnie jak spawanie, jest procesem, który wykorzystuje ciepło do połączenia elementów, co sprawia, że jest efektywną techniką w przemyśle, szczególnie przy produkcji komponentów z tworzyw sztucznych. Typowe błędy myślowe, które mogą prowadzić do mylnych wniosków, obejmują mylenie zginania z technikami łączenia. Zginanie, mimo że może być użyteczne w formowaniu materiałów, nie wprowadza trwałych połączeń, co jest kluczowe w kontekście postawionego pytania. W związku z tym, niezrozumienie różnicy pomiędzy modyfikacją kształtu a łączeniem elementów może prowadzić do błędnych wyborów w procesie projektowania i produkcji.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jeśli w trakcie standardowych warunków eksploatacji pneumatyczne urządzenie mechatroniczne generuje duże drgania, to osoba obsługująca powinna być wyposażona w

A. kask zabezpieczający.
B. okulary ochronne.
C. rękawice antywibracyjne.
D. obuwie ochronne.
Rękawice antywibracyjne są kluczowym elementem ochrony osobistej, gdy pracownik obsługuje pneumatyczne urządzenia mechatroniczne, które generują znaczne drgania. Te drgania mogą prowadzić do poważnych urazów, takich jak zespół wibracyjny, który objawia się bólem, mrowieniem i osłabieniem kończyn. Rękawice antywibracyjne są zaprojektowane w taki sposób, aby minimalizować przenoszenie drgań na ręce operatora, co znacząco zmniejsza ryzyko kontuzji. W praktyce, standardy takie jak ISO 10819 dotyczące pomiarów drgań w rękach użytkowników podkreślają znaczenie stosowania odpowiednich środków ochronnych. W przypadku pracy z maszynami, które wytwarzają drgania, inwestycja w wysokiej jakości rękawice antywibracyjne jest nie tylko zgodna z dobrymi praktykami, ale również zapewnia komfort i bezpieczeństwo operatora. Przykładem zastosowania takich rękawic jest praca w branży budowlanej, gdzie narzędzia pneumatyczne, takie jak młoty udarowe, są powszechnie używane. Używanie rękawic antywibracyjnych pozwala pracownikom na dłuższą i bardziej wydajną pracę bez ryzyka zdrowotnego związane z drganiami.

Pytanie 15

Wskaż, który rodzaj siłownika można wykorzystać w układzie zasilanym sprężonym powietrzem o ciśnieniu p = 0,8 MPa, jeśli wymagana jest siła teoretyczna 50 daN oraz przemieszczenie 10 cm?

A. D12, pmax = 10 bar, skok standardowy: 25, 50, 80, 100,125, 160, 200
B. D32, pmax = 10 bar, skok standardowy: 16, 32, 50, 80, 125, 200
C. D32, pmax = 10 bar, skok standardowy: 25, 50, 80, 100,125, 160, 200
D. D25, pmax = 10 bar, skok standardowy: 16, 32, 50, 80, 125, 200
Wybór niewłaściwego siłownika, takiego jak D25, D12 czy D32 z niewłaściwym skokiem, może prowadzić do nieoptymalnych rezultatów w aplikacjach przemysłowych. Siłownik D25, mimo że posiada maksymalne ciśnienie 10 bar, może nie być w stanie wygenerować wymaganej siły teoretycznej 50 daN w kontekście zadanego przemieszczenia. W przypadku siłownika D12, jego parametry mogą być zbyt niskie dla tego zastosowania, przez co nie spełni on oczekiwań w zakresie siły i skoku. Siłownik D32 z nieodpowiednim skokiem (np. 16, 32, 50, 80, 125, 200 mm) również może nie dostarczyć wymaganego przemieszczenia 10 cm, co jest kluczowe dla efektywności operacji. Przykładowe błędy myślowe obejmują nieprzemyślane założenie, że każdy siłownik o podobnym ciśnieniu roboczym jest równoważny w aplikacji, co jest dalekie od rzeczywistości. W praktyce, parametry takie jak średnica tłoka, siła teoretyczna oraz skok mają bezpośredni wpływ na skuteczność działania układów pneumatycznych. Wybór odpowiedniego siłownika powinien być oparty na analizie wymagań konkretnej aplikacji oraz standardów branżowych, aby zapewnić optymalne działanie systemu.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Podzespół instalacji pneumatycznej, którego fragment dokumentacji technicznej przedstawiono poniżej, służy do usuwania

Dane techniczne:

  • całość można rozmontować i użyć jako osobne urządzenia (filtro-reduktor i olejarka)
  • filtr to podstawa do otrzymania czystego powietrza szczególnie w lakiernictwie
  • zalecany dla wszystkich pneumatycznych narzędzi takich jak: klucze, piły pneumatyczne, młotki itd.
  • ciśnienie jest dokładnie ustawialne dzięki zastosowanemu regulatorowi na filtrze
  • można też dokładnie ustawić wielkość mgły olejowej poprzez śrubę regulacyjną
  • filtr jest wyposażony w półautomatyczny spust kondensatu
  • przepływ powietrza na poziomie 750 l/min.
Ilustracja do pytania
A. wilgoci z powietrza oraz stabilizowania jego ciśnienia i temperatury.
B. zanieczyszczeń powietrza w postaci drobin stałych i cząstek oleju.
C. zanieczyszczeń powietrza w postaci drobin stałych, redukowania ciśnienia i naolejania powietrza.
D. oleju, wilgoci i wytwarzania nadciśnienia powietrza.
Poprawna odpowiedź odnosi się do kluczowego zadania podzespołu instalacji pneumatycznej, który obejmuje filtr, reduktor ciśnienia oraz oliwiarkę. Filtr jest odpowiedzialny za eliminację zanieczyszczeń powietrza, takich jak drobiny stałe, które mogą uszkodzić narzędzia pneumatyczne oraz obniżyć ich efektywność. Reduktor ciśnienia umożliwia precyzyjne dostosowanie ciśnienia powietrza, co ma istotne znaczenie w kontekście zapewnienia stabilnych warunków pracy urządzeń pneumatycznych. Zbyt wysokie ciśnienie może prowadzić do uszkodzeń, natomiast zbyt niskie może powodować niewłaściwe działanie. Oliwiarka natomiast odpowiedzialna jest za naolejanie powietrza, co zapewnia właściwe smarowanie ruchomych elementów narzędzi pneumatycznych, zmniejszając ich zużycie i przedłużając żywotność. Wzorcowe praktyki branżowe podkreślają znaczenie regularnej konserwacji tych komponentów, co przyczynia się do zwiększenia efektywności systemów pneumatycznych i zmniejszenia kosztów eksploatacyjnych.

Pytanie 18

Aby dokładnie zmierzyć średnicę wałka, należy użyć

A. mikroskopu technicznego
B. przymiaru kreskowego
C. przymiaru średnicowego
D. śruby mikrometrycznej
Śruba mikrometryczna to narzędzie pomiarowe, które umożliwia uzyskanie wyjątkowo dokładnych wyników pomiarów średnicy wałków oraz innych elementów cylindrycznych. Posiada ona mechaniczną konstrukcję, która pozwala na odczyt wartości z dokładnością do setnych lub nawet tysięcznych części milimetra. Dzięki zastosowaniu śruby mikrometrycznej użytkownik może precyzyjnie ustawić narzędzie na obiekcie pomiarowym, a następnie odczytać wynik z podziałki, co zapewnia wysoką powtarzalność i dokładność. W praktyce, śruby mikrometryczne są powszechnie stosowane w laboratoriach pomiarowych, zakładach produkcyjnych oraz w warsztatach mechanicznych, gdzie precyzja pomiarów jest kluczowa. Przykładem zastosowania może być kontrola średnicy wałków w przemyśle motoryzacyjnym, gdzie tolerancje wymiarowe mają bezpośredni wpływ na bezpieczeństwo i funkcjonalność pojazdów. Biorąc pod uwagę standardy takie jak ISO 2878, precyzyjne pomiary przy użyciu śrub mikrometrycznych są niezbędne do zapewnienia zgodności z wymaganiami jakościowymi.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jakie urządzenia służą do pomiaru wartości przyśpieszenia drgań elektrycznego silnika napędowego pompy hydraulicznej, działającego w systemie mechatronicznym?

A. rotametry
B. akcelerometry
C. galwanometry
D. tensometry
Akcelerometry są urządzeniami pomiarowymi, które służą do pomiaru przyspieszeń oraz drgań w różnych systemach mechanicznych, w tym w elektrycznych silnikach napędowych, jak w przypadku pomp hydraulicznych. Ich działanie polega na rejestrowaniu przyspieszeń w różnych osiach, co pozwala na dokładne monitorowanie stanu technicznego urządzenia. Przykładowo, w przemyśle motoryzacyjnym akcelerometry są powszechnie wykorzystywane do analizy drgań pojazdów, co przyczynia się do poprawy komfortu jazdy oraz bezpieczeństwa. W kontekście układów mechatronicznych, akcelerometry mogą być zintegrowane z systemami kontroli, umożliwiając automatyczne dostosowywanie parametrów pracy maszyny w odpowiedzi na zmieniające się warunki. Zgodnie z normami ISO 5349, które dotyczą pomiaru drgań, akcelerometry stanowią standardowy sposób na zapewnienie precyzyjnych pomiarów, co skutkuje efektywniejszym zarządzaniem procesami przemysłowymi oraz minimalizowaniem ryzyka uszkodzeń sprzętu.

Pytanie 22

Które urządzenie zostało przedstawione na zdjęciu?

Ilustracja do pytania
A. Potencjometr montażowy.
B. Rezystor drutowy.
C. Kondensator nastawny.
D. Przełącznik czteropozycyjny.
Potencjometr montażowy to urządzenie, które rzeczywiście jest przedstawione na zdjęciu. Posiada ruchomy element, zazwyczaj w formie pokrętła, który umożliwia płynne regulowanie oporu w obwodzie elektrycznym. Jego podstawowym zastosowaniem jest kontrola poziomu sygnału, na przykład w regulatorach głośności w urządzeniach audio. Potencjometry montażowe są powszechnie stosowane w urządzeniach elektronicznych, w tym w systemach audio, sprzęcie medycznym oraz w różnorodnych kontrolerach. W praktyce ich użycie pozwala na dostosowywanie parametrów działania urządzeń, co jest kluczowe w inżynierii i projektowaniu obwodów elektronicznych. Ponadto, zgodnie z normami branżowymi, potencjometry powinny być wybierane z uwagi na ich parametry rezystancyjne, tolerancję oraz charakterystykę temperaturową, co zapewnia ich niezawodność i długowieczność. Kluczowe jest również odpowiednie zamocowanie podczas montażu, aby uniknąć uszkodzeń mechanicznych, co ma istotne znaczenie w kontekście użytkowania i awaryjności urządzenia.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Aby zmierzyć napięcie na cewce elektrozaworu o nominalnym Un = 24 V, zastosowano analogowy woltomierz z 75 podziałami na skali, ustawiony na zakres 30 V. Ile podziałów wskaże ten woltomierz, jeśli napięcie na cewce elektrozaworu jest poprawne?

A. 75
B. 30
C. 60
D. 24
Odpowiedzi, które wskazują na 24, 75 lub 30 działek, oparte są na błędnych założeniach dotyczących sposobu pomiaru napięcia. W przypadku odpowiedzi 24 działki, może występować mylne przekonanie, że każda działka odpowiada napięciu 1 V - jednak w rzeczywistości, z uwagi na zakres 30 V i 75 działek, wartość, która przypada na jedną działkę, to 0,4 V. Natomiast odpowiedź 75 działek sugeruje, że woltomierz mógłby wskazać maksymalną wartość zakresu, co nie jest możliwe, gdyż mierzymy napięcie 24 V, a nie jego maksymalne dozwolone napięcie. Z kolei 30 działek odnosi się do błędnego założenia, że napięcie 24 V odpowiada 30% zakresu 30 V, co jest nieprawidłowe, ponieważ stanowiłoby to wartość mniejszą od rzeczywistego odczytu. W praktyce istotne jest zrozumienie, że pomiar napięcia wymaga nie tylko wiedzy na temat używanego narzędzia, ale także o jego właściwościach i układzie skali. Typowe błędy myślowe, które prowadzą do tych niepoprawnych odpowiedzi, to brak zrozumienia mechanizmu działania woltomierzy, co może skutkować nieprawidłową interpretacją danych pomiarowych. Prawidłowe zrozumienie skali oraz wartości mierzonych jest kluczowe, aby uniknąć nieporozumień i zapewnić dokładność pomiarów, co jest niezwykle ważne w inżynierii elektrotechnicznej.

Pytanie 26

Na rysunku przedstawiono tabliczkę znamionową

Ilustracja do pytania
A. transformatora.
B. silnika prądu stałego.
C. autotransformatora.
D. silnik indukcyjnego.
Wybór odpowiedzi związanej z transformatorem, silnikiem prądu stałego lub autotransformatorem wskazuje na pewne nieporozumienia dotyczące podstawowych właściwości tych urządzeń elektrycznych. Transformator, na przykład, jest urządzeniem, które zmienia poziom napięcia w obwodzie prądu przemiennego, a jego tabliczka znamionowa zawiera zazwyczaj informacje na temat przekładni napięciowej oraz mocy. Jeżeli na tabliczce znajduje się moc w kilowatach oraz prędkość obrotowa, to nie są to dane stosowane do transformatorów. Silniki prądu stałego działają na zasadzie innej niż silniki indukcyjne, wykorzystując różne mechanizmy do przemiany energii elektrycznej w mechaniczną. Typowe oznaczenia dla silników prądu stałego obejmują inne parametry, takie jak wartość napięcia oraz charakterystyki prądu, które nie są widoczne w przedstawionym przypadku. Z kolei autotransformator to rodzaj transformatora, który ma wspólne uzwojenie dla obu poziomów napięcia, co również nie odpowiada charakterystyce silnika indukcyjnego. Zrozumienie podstawowych różnic między tymi urządzeniami jest kluczowe dla ich prawidłowego zastosowania w praktyce. Osoby, które mylą te urządzenia, często nie zdają sobie sprawy z ich unikalnych właściwości i zastosowań, co może prowadzić do niewłaściwego doboru sprzętu oraz problemów w działaniu systemów elektrycznych.

Pytanie 27

Nie wolno stosować gaśnicy do gaszenia pożaru sprzętu elektrycznego, który jest pod napięciem

A. halonowej
B. śniegowej
C. proszkowej
D. pianowej
Użycie gaśnic halonowych, proszkowych czy śniegowych do gaszenia pożarów urządzeń elektrycznych pod napięciem jest niewłaściwe z kilku powodów. Gaśnice halonowe, choć skuteczne w gaszeniu pożarów, nie są już produkowane z uwagi na ich negatywny wpływ na warstwę ozonową. Ponadto, w przypadku halonu, nie ma pewności co do pełnego usunięcia zagrożenia elektrycznego, co może prowadzić do groźnych sytuacji. Gaśnice proszkowe, mimo że mogą gasić pożary elektryczne, pozostawiają po sobie resztki chemiczne, które mogą być szkodliwe dla delikatnych urządzeń elektronicznych i mogą prowadzić do ich uszkodzenia. Dodatkowo, proszek jest materiałem, który, w przypadku niewłaściwego użycia, może prowadzić do rozprzestrzenienia ognia lub zwiększenia ryzyka porażeń prądem. Użycie gaśnic śniegowych, które wykorzystują dwutlenek węgla, również niesie ze sobą ryzyko, ponieważ CO2 nie ma żadnych właściwości izolacyjnych i może nie być wystarczające w sytuacjach z wyższym napięciem. Powszechnym błędem jest mylenie skuteczności różnych typów gaśnic w kontekście ich zastosowania w pożarach elektrycznych. Wiedza na temat odpowiedniego typu gaśnicy ma kluczowe znaczenie dla zapewnienia bezpieczeństwa, a niewłaściwy wybór może prowadzić do poważnych konsekwencji.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Potrojenie natężenia prądu przepływającego przez rezystor o niezmiennej rezystancji spowoduje, że ilość ciepła wydzielającego się w nim wzrośnie

A. sześciokrotnie
B. dziewięciokrotnie
C. trzykrotnie
D. dwukrotnie
Wybór odpowiedzi, która zakłada trzykrotny, sześciokrotny lub dwukrotny wzrost wydzielającego się ciepła w wyniku trzykrotnego zwiększenia natężenia prądu, opiera się na błędnym zrozumieniu zależności między mocą, natężeniem prądu a rezystancją. Warto pamiętać, że zgodnie z prawem Joule'a, moc wydzielająca się w rezystorze jest proporcjonalna do kwadratu natężenia prądu. Jeśli ktoś uważa, że moc wzrasta tylko trzykrotnie, myli się, ponieważ moc nie jest liniowo związana z natężeniem prądu. Dla natężenia prądu wynoszącego "I", moc wynosi P = I²R, a dla natężenia "3I", moc wynosi P' = (3I)²R = 9I²R. To oznacza, że moc wzrasta dziewięciokrotnie, a nie trzykrotnie, jak sugeruje błędne odpowiedzi. W praktyce, takie nieporozumienia mogą prowadzić do niewłaściwego projektowania obwodów elektrycznych, co z kolei może prowadzić do przegrzewania się komponentów i ich uszkodzeń. Zrozumienie tych kluczowych zasad jest niezbędne dla inżynierów i techników pracujących z urządzeniami elektrycznymi. Warto podkreślić, że ignorowanie takich relacji między parametrami obwodów może skutkować niebezpiecznymi sytuacjami oraz zwiększeniem kosztów eksploatacji związanych z koniecznością naprawy lub wymiany uszkodzonych elementów.

Pytanie 30

Kolejność montażu silnika elektrycznego w wiertarce stołowej powinna być następująca:

A. zamocować silnik w obudowie wiertarki przy użyciu śrub, podłączyć źródło zasilania, założyć pasek klinowy
B. zamocować silnik w obudowie wiertarki przy użyciu śrub, założyć pasek klinowy, podłączyć źródło zasilania
C. podłączyć źródło zasilania, założyć pasek klinowy, zamocować silnik w obudowie wiertarki przy użyciu śrub
D. podłączyć źródło zasilania, zamocować silnik w obudowie wiertarki przy użyciu śrub, założyć pasek klinowy
Montaż silnika elektrycznego w wiertarce stołowej powinien być przeprowadzany w określonej kolejności, aby zapewnić prawidłowe działanie urządzenia oraz bezpieczeństwo użytkownika. Pierwszym krokiem jest zamocowanie silnika w obudowie wiertarki przy pomocy śrub. Taka procedura zapewnia stabilność silnika, co jest kluczowe dla jego prawidłowego funkcjonowania oraz minimalizuje ryzyko uszkodzenia mechanicznego. Następnie zakłada się pasek klinowy, który łączy silnik z wrzecionem wiertarki. Pasek klinowy przenosi moc z silnika na narzędzie wiertarskie, dlatego jego prawidłowe umiejscowienie i napięcie są istotne dla efektywności pracy. Ostatnim krokiem jest podłączenie źródła zasilania. Przy takim podejściu unikamy sytuacji, w której silnik mógłby pracować bez odpowiedniego połączenia mechanicznego, co mogłoby prowadzić do uszkodzeń. Zgodność z tymi krokami uznaje się za najlepsze praktyki w branży montażu urządzeń elektrycznych, co zapewnia nie tylko ich wydajność, ale również bezpieczeństwo użytkowników.

Pytanie 31

Rezystor o wartości znamionowej 1,2 kΩ i tolerancji 2% ma kod barwny

KolorWartośćMnożnikTolerancja
1 pasek2 pasek3 pasek4 pasek
brak---± 20 %
srebrny--10-2 Ω± 10 %
złoty--10-1 Ω± 5 %
czarny-0100 Ω-
brązowy11101 Ω± 1 %
czerwony22102 Ω± 2 %
pomarańczowy33103 Ω-
żółty44104 Ω-
zielony55105 Ω± 0,5 %
niebieski66106 Ω± 0,25 %
fioletowy77107 Ω± 0,1 %
szary88108 Ω± 0,05 %
biały99109 Ω-
A. czerwony, brązowy, czerwony, czerwony.
B. brązowy, brązowy, czerwony, czerwony.
C. brązowy, czerwony, czerwony, złoty.
D. brązowy, czerwony, czerwony, czerwony.
Poprawna odpowiedź to brązowy, czerwony, czerwony, czerwony, która odpowiada rezystorowi o wartości znamionowej 1,2 kΩ z tolerancją 2%. W kodzie barwnym pierwszy pasek, brązowy, reprezentuje cyfrę 1, drugi pasek, czerwony, oznacza cyfrę 2, a trzeci pasek, również czerwony, to mnożnik ×100. Mnożąc wartość 12 przez 100, otrzymujemy 1200 Ω, co jest równoważne 1,2 kΩ. Czwarty pasek, czerwony, wskazuje na tolerancję 2%, co oznacza, że wartość rezystora może wahać się w granicach ±2% od nominalnej wartości. Zrozumienie kodu barwnego rezystorów jest kluczowe w elektronice, ponieważ pozwala na szybkie i efektywne identyfikowanie wartości komponentów. W praktyce, znajomość tych zasad pozwala inżynierom i technikom na właściwe dobieranie rezystorów do układów elektronicznych, co jest niezwykle istotne w projektowaniu obwodów elektronicznych. Warto również zaznaczyć, że prawidłowa interpretacja kodu barwnego jest zgodna z normą IEC 60062, która standaryzuje sposób oznaczania wartości rezystorów.

Pytanie 32

Parametr określający zakres roboczy działania siłownika to

A. skok siłownika
B. maksymalne ciśnienie
C. teoretyczna siła pchająca
D. średnica cylindra
Skok siłownika jest kluczowym parametrem w określaniu obszaru roboczego działania siłownika. Definiuje on maksymalną odległość, na jaką tłok siłownika może się poruszać, co bezpośrednio wpływa na zakres ruchu, który siłownik może wykonać. W praktyce oznacza to, że im większy skok, tym większa możliwość wykonania zadań, takich jak podnoszenie, przesuwanie czy wciskanie elementów. Przykładem może być zastosowanie siłowników hydraulicznych w maszynach budowlanych, gdzie skok siłownika wpływa na wysokość podnoszenia ładunków. W branży automatyki przemysłowej odpowiedni dobór skoku siłownika do aplikacji ma kluczowe znaczenie, aby zapewnić efektywność i precyzję operacji. W standardach branżowych, takich jak ISO 6020, zwraca się uwagę na konieczność odpowiedniego doboru skoku siłownika w kontekście jego zastosowania oraz oczekiwanych parametrów roboczych, co przekłada się na zwiększoną efektywność systemów automatyzacji.

Pytanie 33

Co należy zrobić w przypadku urazu kolana u pracownika po upadku z wysokości?

A. wyregulować nogę, lekko ciągnąc ją w dół.
B. unieruchomić staw kolanowy na jakimkolwiek podparciu, nie zmieniając jego pozycji.
C. umieścić poszkodowanego w ustalonej pozycji bocznej.
D. nałożyć bandaż na kolano po delikatnym wyprostowaniu nogi.
W przypadku urazu kolana, szczególnie po upadku z wysokości, kluczowe jest unieruchomienie stawu w jego naturalnym ustawieniu. Ta technika ma na celu ograniczenie dalszego uszkodzenia tkanek oraz zmniejszenie bólu. Gdy kości stawu kolanowego są unieruchomione w ich fizjologicznym położeniu, minimalizujemy ryzyko przemieszczenia uszkodzonych struktur oraz ewentualnych powikłań związanych z nieprawidłowym ułożeniem. Praktyczne zastosowanie tej metody obejmuje użycie szyn, bandaży czy innych dostępnych materiałów, które stabilizują staw. Warto podkreślić, że według wytycznych organizacji zajmujących się pierwszą pomocą, tak jak np. Czerwony Krzyż, unieruchomienie powinno być wykonane jak najszybciej i z zachowaniem ostrożności. Istotne jest także, aby nie próbować prostować lub manipulować urazem, co może prowadzić do dalszych urazów i komplikacji. Po unieruchomieniu należy jak najszybciej wezwać pomoc medyczną, aby zapewnić dalszą opiekę nad poszkodowanym.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Wartość mocy czynnej wskazana przez watomierz wynosi

Ilustracja do pytania
A. 130 W
B. 325 W
C. 65 W
D. 500 W
Wybór innej wartości mocy czynnej, takiej jak 500 W, 130 W czy 65 W, jest wynikiem błędnej interpretacji odczytu watomierza. Odczyt 500 W sugeruje, że mierzone urządzenie zużywa znacznie więcej energii, niż wskazane na zdjęciu, co może prowadzić do niewłaściwej oceny wydajności urządzenia. Odpowiedź 130 W sugeruje zbyt niski poziom zużycia energii, który jest niewłaściwy w kontekście pomiaru, który wykazuje moc czynna na poziomie 325 W. Z kolei wartość 65 W, mogąca wynikać z niepełnego zrozumienia działania watomierza, nie uwzględnia rzeczywistego obciążenia, jakie generuje urządzenie. Często popełnia się błąd w ocenie mocy czynnej jako mocy biernej lub pozornej; jednak te wartości są różne i wymagają innego podejścia do obliczeń. Przy pomiarach mocy czynnej kluczowe jest zrozumienie, że jedynie odczyt rzeczywistej mocy czynnika jest istotny, co potwierdzają standardy branżowe, takie jak PN-IEC 62053, dotyczące mocy czynnej. W praktyce, wiedza o mocy czynnej jest niezbędna do efektywnego zarządzania energią w instalacjach elektrycznych, co wpływa na koszty eksploatacji oraz zmniejszenie emisji zanieczyszczeń.

Pytanie 36

Fotorezystor, o charakterystyce jak na rysunku, zastosowany w układzie do pomiaru natężenia oświetlenia, przy natężeniu 1000 lx ma rezystancję wynoszącą około

Ilustracja do pytania
A. 10 kΩ
B. 100 kΩ
C. 10 Ω
D. 100 Ω
Odpowiedź jest słuszna, ponieważ wynika z analizy charakterystyki fotorezystora, która pokazuje zależność rezystancji od natężenia oświetlenia. W praktyce, przy natężeniu 1000 lx, rezystancja wynosi około 100 Ω. Fotorezystory są szeroko stosowane w różnych aplikacjach, takich jak automatyka domowa, oświetlenie zewnętrzne i systemy detekcji światła. Przykładem może być układ, w którym fotorezystor steruje włączaniem lub wyłączaniem oświetlenia w zależności od poziomu światła dziennego. W branży stosuje się również standardy, które określają charakterystyki takich elementów, aby zapewnić ich niezawodność i wydajność w zastosowaniach inżynieryjnych. Właściwe zrozumienie działania fotorezystorów jest kluczowe dla projektowania efektywnych układów elektronicznych, które reagują na zmiany w natężeniu oświetlenia.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Jakie urządzenia oraz przyrządy pomiarowe są kluczowe do określenia parametrów filtrów pasmowych?

A. Generator fali stojącej oraz woltomierz
B. Amperomierz i oscyloskop
C. Generator i oscyloskop
D. Częstościomierz i miernik uniwersalny
Wybór narzędzi do analizy filtrów pasmowych jest ważny, bo czasem można się pomylić. Amperomierz i oscyloskop przydają się w pomiarze prądu i analizie sygnałów, ale nie wystarczą do określenia parametrów filtrów pasmowych. Amperomierz mierzy tylko prąd, więc nie mówi nic o tym, jak filtr działa w kontekście częstotliwości. Dlatego ważne jest, żeby znać relacje między napięciem a częstotliwością. Z drugiej strony, generator fali stojącej i woltomierz też nie będą dobrym wyborem, bo ten pierwszy nie obsługuje sygnałów o zmiennych częstotliwościach, a to jest kluczowe w analizie filtrów. Miernik uniwersalny, choć może być użyteczny w wielu sytuacjach, nie daje wystarczających informacji o charakterystyce częstotliwościowej. Przez wybór złych narzędzi można przeoczyć ważne aspekty analizy, na przykład pasmo przenoszenia i tłumienie, co może prowadzić do błędnych wniosków o działaniu filtrów. Wiedza o odpowiednich narzędziach jest kluczowa, jeśli chodzi o projektowanie i testowanie układów elektronicznych. Użycie generatora i oscyloskopu w tym kontekście to dobra praktyka.