Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 21 lutego 2026 23:11
  • Data zakończenia: 21 lutego 2026 23:34

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Metodą oceny efektywności połączeń wyrównawczych powinien być pomiar napięć

A. krokowych
B. skutecznych
C. rażeniowych
D. dotykowych
Pomiar napięć skutecznych jest naprawdę ważny, jeśli chodzi o ocenę, jak dobrze działają połączenia wyrównawcze. Dzięki temu możemy zobaczyć, jak dobrze system radzi sobie z ewentualnymi różnicami napięć w instalacji elektrycznej. Połączenia wyrównawcze mają na celu zminimalizowanie ryzyka porażeń prądem, więc istotne jest, żeby te różnice były na niskim poziomie. Napięcia skuteczne, czyli wartości RMS, pokazują nam, jak system działa w rzeczywistości, co bardzo ułatwia ocenę skuteczności zabezpieczeń. Można to zastosować na przykład w instalacjach przemysłowych, gdzie ochrona ludzi i sprzętu jest kluczowa. Normy, jak PN-IEC 60364, podkreślają, jak ważne są regularne inspekcje i pomiary, żeby mieć pewność, że systemy bezpieczeństwa działają prawidłowo i są w dobrym stanie.

Pytanie 2

W jakich okolicznościach instalacja elektryczna nie wymaga konserwacji ani naprawy?

A. Gdy użytkowanie instalacji stwarza zagrożenie dla bezpieczeństwa personelu lub otoczenia
B. Gdy stan techniczny instalacji jest niedostateczny lub wartości jej parametrów są poza zakresem określonym w instrukcji eksploatacji
C. Kiedy zostanie zauważone uszkodzenie instalacji elektrycznej
D. Kiedy prowadzone są prace konserwacyjne w obiekcie, na przykład malowanie ścian
Odpowiedź wskazująca, że instalacja elektryczna nie musi być poddawana konserwacji w przypadku przeprowadzania prac konserwacyjnych, takich jak malowanie ścian, jest prawidłowa, ponieważ w tym kontekście nie zachodzi ryzyko uszkodzenia instalacji ani zagrożenie dla bezpieczeństwa. W rzeczywistości, prace konserwacyjne są często planowane i wykonywane w sposób, który minimalizuje ryzyko dla istniejącej instalacji. Przykładowo, przed rozpoczęciem malowania należy zabezpieczyć gniazdka elektryczne i kable, co pozwala na bezpieczne i zgodne z normami ISO i PN wykonywanie takich prac. Dobrą praktyką jest również przeprowadzenie przeglądu stanu instalacji przed rozpoczęciem jakichkolwiek działań konserwacyjnych, aby upewnić się, że nie ma ukrytych usterek, które mogłyby wpłynąć na bezpieczeństwo. Ostatecznie, przestrzeganie regularnych harmonogramów konserwacji i inspekcji jest kluczowe dla utrzymania bezpieczeństwa oraz wydajności instalacji elektrycznych.

Pytanie 3

Który przewód oznacza symbol PE?

A. Wyrównawczy
B. Ochronny
C. Uziemiający
D. Ochronno-neutralny
Odpowiedź "Ochronny" jest prawidłowa, ponieważ przewód oznaczony symbolem PE (ang. Protective Earth) jest kluczowym elementem systemów ochrony przed porażeniem elektrycznym. Przewód PE ma za zadanie prowadzenie prądu doziemnego w przypadku awarii urządzenia, co minimalizuje ryzyko porażenia prądem użytkowników. W praktyce, przewód ten jest integralną częścią instalacji elektrycznych w budynkach, a jego właściwe podłączenie do uziemienia jest niezbędne dla zapewnienia bezpieczeństwa. Zgodnie z normami, takimi jak PN-IEC 60364, przewód PE powinien być stosowany w każdym obwodzie elektrycznym, w którym zainstalowane są urządzenia elektryczne. Jego zastosowanie obejmuje zarówno instalacje przemysłowe, jak i domowe, gdzie uziemienie urządzeń, takich jak lodówki czy pralki, jest niezbędne dla ochrony przed skutkami zwarcia. Warto również podkreślić, że stosowanie przewodu PE w instalacjach elektrycznych jest wymagane przez przepisy prawa budowlanego, co dodatkowo podkreśla jego znaczenie w kontekście bezpieczeństwa użytkowników.

Pytanie 4

Który przekaźnik oznacza się przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Priorytetowy.
B. Czasowy.
C. Wielofunkcyjny.
D. Impulsowy.
Przekaźnik impulsowy, który widzisz na rysunku w pytaniu, to fajne urządzenie, które jest często używane w automatyce. Działa tak, że przy każdym kolejnym impulsie prądu zmienia stan obwodu. To pozwala na lepsze zarządzanie sygnałami i sterowanie różnymi procesami. W praktyce można go spotkać w systemach zabezpieczeń, automatycznych włącznikach światła czy w urządzeniach do zdalnego sterowania. Jak to działa? Pierwszy impuls zamyka obwód, a następny go otwiera. Dzięki temu można robić różne rzeczy, takie jak liczenie impulsów czy przełączanie. Fajnie, że są normy IEC 60947, które mówią o bezpieczeństwie i niezawodności tych przekaźników, bo to sprawia, że są naprawdę ważnym elementem w nowoczesnych systemach sterowania.

Pytanie 5

Na którym rysunku przedstawiono układ zasilania lampy rtęciowej?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Odpowiedź B jest prawidłowa, ponieważ przedstawia typowy układ zasilania lampy rtęciowej, który składa się z dławika oraz kondensatora. Dławik, zwany także cewką, pełni kluczową rolę w stabilizacji prądu, co jest niezbędne dla prawidłowego działania lampy rtęciowej. W momencie zapłonu, lampa wymaga impulsu wysokiego napięcia, który generuje dławik. Po uruchomieniu, dławik ogranicza prąd, co jest istotne dla zapobiegania uszkodzeniom lampy przez nadmiar prądu. Kondensator z kolei wspiera dławik, pomagając w stabilizacji napięcia i minimalizując zakłócenia. W praktyce, układy zasilania lamp rtęciowych są szeroko stosowane w oświetleniu ulicznym oraz w dużych obiektach, gdzie ważna jest efektywność energetyczna oraz długotrwałość źródeł światła. Zastosowanie dławika i kondensatora w tych układach jest zgodne z obowiązującymi standardami branżowymi, co zapewnia ich niezawodność i bezpieczeństwo w użytkowaniu.

Pytanie 6

Którą puszkę należy zastosować podczas wymiany instalacji, wykonanej na tynku w pomieszczeniu suchym?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Odpowiedź B jest poprawna, ponieważ w pomieszczeniach suchych, zgodnie z obowiązującymi normami instalacyjnymi, należy stosować puszki instalacyjne podtynkowe, które są przeznaczone do montażu w takich warunkach. Puszka wskazana jako B spełnia te wymagania, ponieważ jest zaprojektowana do pracy w suchych pomieszczeniach, co minimalizuje ryzyko uszkodzenia instalacji elektrycznej oraz zapewnia optymalne warunki dla podłączeń elektrycznych. W praktyce, puszki podtynkowe pozwalają na estetyczne i bezpieczne ukrycie przewodów oraz dostosowanie ich do wykończenia ścian. Ważne jest, aby podczas montażu stosować się do zasad prawidłowego podłączenia oraz instrukcji producenta, aby uniknąć problemów z dostępem do instalacji w przyszłości, a także zapewnić zgodność z normami bezpieczeństwa elektrycznego. Do puszek tej klasy często przynależą również akcesoria, które ułatwiają ich montaż i zapewniają dodatkową ochronę przed uszkodzeniami mechanicznymi.

Pytanie 7

Jaka maksymalna wartość impedancji pętli zwarcia może występować w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby ochrona przed porażeniem była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego obwodu powinien wyłączyć instalacyjny wyłącznik nadprądowy C10?

A. 8,0 Ω
B. 7,7 Ω
C. 4,6 Ω
D. 2,3 Ω
Wartości takie jak 7,7 Ω, 4,6 Ω czy 8,0 Ω są zbyt wysokie, aby zapewnić skuteczną ochronę przed porażeniem prądem w obwodzie z wyłącznikiem nadprądowym C10. Przy zbyt wysokiej impedancji pętli zwarcia czas wyzwolenia wyłącznika może być niewystarczający, co prowadzi do ryzyka poważnego porażenia prądem elektrycznym w przypadku uszkodzenia izolacji. Na przykład, z wartością 4,6 Ω, przy zwarciu, prąd może być na tyle niski, że wyłącznik nie zareaguje w odpowiednim czasie, co jest niezgodne z zasadami ochrony. Należy pamiętać, że aby wyłącznik nadprądowy zadziałał poprawnie, musi zostać dostarczony odpowiedni prąd zwarcia, który zależy od impedancji pętli. W praktyce, przy projektowaniu instalacji elektrycznych, inżynierowie często popełniają błąd, nie uwzględniając wszystkich elementów obwodu, takich jak długość przewodów czy ich przekroje, co wpływa na całkowitą impedancję. Zatem dobór odpowiednich parametrów instalacji elektrycznej jest kluczowy dla zapewnienia bezpieczeństwa oraz zgodności z normami, takimi jak PN-EN 60364, które dokładnie określają wymagania dotyczące ochrony przed skutkami porażenia prądem.

Pytanie 8

Wystąpienie prądu doziemienia o wartości 2,5 A w fazie L3 obwodu jednofazowych gniazd wtyczkowych przedstawionej instalacji spowoduje zadziałanie wyłącznika oznaczonego symbolem

Ilustracja do pytania
A. S304 C25
B. S301 B16
C. P301 25A
D. P301 40A
Odpowiedź P301 40A jest poprawna, ponieważ dotyczy wyłącznika różnicowoprądowego, który jest kluczowym elementem ochrony instalacji elektrycznych. W przypadku wykrycia prądu różnicowego, który przekracza 30 mA, wyłącznik ten natychmiast odłącza zasilanie, minimalizując ryzyko porażenia prądem elektrycznym. W sytuacji wystąpienia prądu doziemienia o wartości 2,5 A, znacznie przekraczającego wartość progową 30 mA, wyłącznik zadziała, co potwierdza jego skuteczność w ochronie użytkowników. Zastosowanie wyłączników różnicowoprądowych jest standardem w nowoczesnych instalacjach elektrycznych, zgodnym z normami PN-EN 61008 oraz PN-EN 60947. Dzięki nim możemy znacznie zwiększyć bezpieczeństwo w obiektach mieszkalnych i przemysłowych, chroniąc przed skutkami niewłaściwego działania urządzeń elektrycznych oraz wad w instalacji. W praktyce, regularne testowanie wyłączników różnicowoprądowych powinno być praktykowane, aby zapewnić ich niezawodność i skuteczność w sytuacjach awaryjnych.

Pytanie 9

Który rodzaj układu sieciowego przedstawiono na schemacie?

Ilustracja do pytania
A. TN-C
B. TT
C. IT
D. TN-S
Odpowiedzi IT, TT i TN-S są nieprawidłowe z różnych powodów związanych z charakterystyką układów sieciowych. Układ IT oznacza instalację, w której przewody nie są uziemione, a uziemienie ochronne jest realizowane w sposób alternatywny. Takie podejście, choć może być stosowane w niektórych specyficznych warunkach, nie pozwala na wykorzystanie wspólnego przewodu neutralnego i ochronnego, co jest kluczowe w układzie TN-C. Odpowiedź TT wskazuje na układ, w którym przewód neutralny jest oddzielony od przewodu ochronnego, co również jest sprzeczne z zasadami TN-C, gdzie przewody te są połączone. Układ TN-S, z kolei, w odróżnieniu od TN-C, zakłada oddzielne przewody neutralny i ochronny, co czyni go mniej efektywnym pod względem kosztów w instalacjach, w których można zastosować TN-C. Typowe błędy myślowe przy wyborze tych odpowiedzi często wynikają z nieznajomości praktycznych różnic między tymi układami a ich realnych zastosowań w instalacjach elektrycznych. Znajomość norm i standardów, takich jak PN-IEC 60364, jest kluczowa dla właściwego doboru układów sieciowych, co pozwala na uniknięcie nieporozumień i zapewnienie bezpieczeństwa w eksploatacji urządzeń elektrycznych.

Pytanie 10

Którą oprawę oświetleniową należy zastosować w piwnicy o zwiększonej wilgotności powietrza?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Oprawa oświetleniowa oznaczona jako D. jest odpowiednia do zastosowania w piwnicy o zwiększonej wilgotności powietrza, ponieważ spełnia normy dotyczące szczelności i odporności na działanie wilgoci. W takich warunkach, zastosowanie oprawy z wyższym stopniem ochrony, jak IP65 lub IP67, jest kluczowe, aby uniknąć ryzyka uszkodzenia instalacji elektrycznej oraz zapewnić bezpieczeństwo użytkowników. Dobrą praktyką jest wybór opraw wyekwipowanych w zatrzaski, co zwiększa ich szczelność i zapobiega przedostawaniu się pary wodnej oraz zanieczyszczeń. W piwnicach, gdzie może występować wilgoć, szczególnie istotne jest regularne sprawdzanie stanu technicznego oświetlenia, a także stosowanie źródeł światła odpornych na wahania temperatury oraz wilgotności, takich jak diody LED. Przykładem mogą być instalacje oświetleniowe w magazynach lub piwnicach, które wymagają nie tylko właściwego doboru opraw, ale także odpowiedniego montażu, aby zapewnić ich długotrwałą i bezpieczną eksploatację.

Pytanie 11

Na podstawie przedstawionego schematu, przy odłączonych łącznikach, można wykonać pomiar

Ilustracja do pytania
A. skuteczności samoczynnego wyłączenia napięcia.
B. stanu izolacji przewodów.
C. stanu izolacji uzwojeń silnika.
D. asymetrii napięcia zasilającego.
Wybranie złej odpowiedzi, jak pomiar stanu izolacji uzwojeń silnika czy skuteczności samoczynnego wyłączenia napięcia, może wynikać z nieporozumień w temacie instalacji elektrycznych. Tak naprawdę, nie da się zmierzyć izolacji uzwojeń silnika, gdy łączniki są odłączone, bo silnik jest wtedy martwy, więc wyniki takich pomiarów nie miałyby sensu. Poza tym, żeby ocenić, jak działa samoczynne wyłączanie, trzeba mieć podłączone zasilanie, bo wtedy można to wszystko sprawdzić. Jeżeli chodzi o asymetrię napięcia, to też potrzebujemy, żeby system działał, a przy odłączonych łącznikach to nie jest możliwe. Te błędy często wynikają z braku zrozumienia podstawowych zasad elektryki. Ważne, żeby odróżniać różne pomiary i stosować odpowiednie metody, bo to jest kluczowe, nie tylko do robienia dobrych testów, ale też dla bezpieczeństwa i konserwacji instalacji elektrycznych.

Pytanie 12

W celu wykrycia przerw w instalacji elektrycznej obciążonej grzejnikiem jednofazowym, której schemat przedstawiono na rysunku, dokonano pomiarów rezystancji między jej odpowiednimi zaciskami przy wyłączonych F1 i F2. Na podstawie wyników pomiarów przedstawionych w tabeli określ, który przewód w tej instalacji posiada przerwę.

Pomiar rezystancji
między zaciskami
Wartość rezystancji
w Ω
F2:2 – 10,4
F1:N2 – 2
PE – 30,4
1 – 218
1 – 3
2 – 3
F2:2 – F1:N2
F2:2 – PE
F1:N2 – PE
Ilustracja do pytania
A. Fazowy między zaciskami F1:2 i F2:1
B. Fazowy między zaciskami F2:2 i 1
C. Neutralny między zaciskami N i F1:N1
D. Neutralny między zaciskami F1:N2 i 2
Wybór odpowiedzi dotyczącej neutralnego przewodu między zaciskami F1:N2 i 2 jest prawidłowy, ponieważ pomiar rezystancji wykazał nieskończoną wartość, co jednoznacznie wskazuje na przerwę w instalacji elektrycznej. W praktyce, zrozumienie zasadności takich pomiarów jest kluczowe dla bezpieczeństwa i prawidłowej pracy urządzeń elektrycznych. Przerwy w przewodach neutralnych są szczególnie niebezpieczne, ponieważ mogą prowadzić do nieprawidłowego funkcjonowania obwodów. Warto pamiętać, że w instalacjach jednofazowych neutralny przewód pełni rolę powrotną i każda jego przerwa może zaburzyć równowagę obwodu, prowadząc do przegrzewania się innych przewodów lub nawet uszkodzenia urządzeń. Zgodnie z normami PN-IEC 60364, zapewnienie ciągłości przewodów neutralnych jest kluczowe dla bezpieczeństwa użytkowników oraz prawidłowego działania instalacji. Warto również regularnie przeprowadzać pomiary rezystancji w instalacjach elektrycznych, aby szybko wykrywać ewentualne uszkodzenia i zapobiegać awariom.

Pytanie 13

Który z podanych łączników elektrycznych jest przeznaczony do układu niezależnego sterowania światłem z przynajmniej 3 różnych lokalizacji?

A. Krzyżowy
B. Jednobiegunowy
C. Świecznikowy
D. Dwubiegunowy
Wybór odpowiedzi, która nie jest łącznikiem krzyżowym, prowadzi do nieporozumienia dotyczącego funkcjonalności różnych typów łączników. Łącznik świecznikowy, choć może być używany do kontroli jednego źródła światła z jednego miejsca, nie jest przeznaczony do operowania z wieloma punktami sterującymi. Jest to typowy błąd myślowy, ponieważ jego główną zaletą jest prostota i niska cena, a nie zaawansowana funkcjonalność. Z kolei łącznik dwubiegunowy może być używany do włączania lub wyłączania obwodu, ale również nie wspiera możliwości sterowania z kilku miejsc. Natomiast łącznik jednobiegunowy jest ograniczony do operowania z jednego punktu i nie ma zastosowania w układach, gdzie potrzebne jest zdalne sterowanie z więcej niż jednego miejsca. Dlatego ważne jest, aby zrozumieć różnice pomiędzy tymi typami łączników oraz ich odpowiednie zastosowania w praktyce. Użycie niewłaściwego łącznika może prowadzić do nieefektywnego zarządzania oświetleniem, co jest sprzeczne z zasadami efektywności energetycznej i ergonomii w projektowaniu instalacji elektrycznych. Właściwy wybór łączników jest kluczowy dla zapewnienia funkcjonalności i komfortu w używaniu systemów oświetleniowych.

Pytanie 14

Która z poniższych zasad nie jest zawsze obligatoryjna w trakcie serwisowania i konserwacji instalacji elektrycznych o napięciu do 1 kV?

A. Wszelkie prace można wykonywać jedynie w obecności osoby asekurującej
B. Pod napięciem wolno wymieniać tylko bezpieczniki lub żarówki (świetlówki) w nienaruszonej oprawie
C. Pomiary i próby można realizować bez wyłączania napięcia, o ile zastosuje się odpowiednie środki ochrony
D. Każde prace remontowe powinny być prowadzone po odłączeniu napięcia
Odpowiedzi sugerujące, że prace remontowe należy zawsze wykonywać po wyłączeniu napięcia, że pod napięciem można wymieniać tylko bezpieczniki lub żarówki, czy że wszelkie prace można wykonywać tylko w obecności osoby asekurującej, mogą prowadzić do nieporozumień i błędnych praktyk. Owszem, wyłączenie napięcia jest generalnie najbezpieczniejszym podejściem, jednak w niektórych sytuacjach, takich jak wymiana bezpieczników czy żarówek, przy zachowaniu odpowiednich środków ostrożności, można te prace wykonać pod napięciem. Istnieją normy i przepisy BHP, które określają, kiedy i jak można pracować w warunkach napięcia, a także jakie środki ochrony osobistej należy stosować. Ponadto, nie wszystkie prace wymagają obecności osoby asekurującej, co może spowodować niepotrzebne opóźnienia w realizacji zadań. Kluczowym błędem myślowym w takich podejściach jest założenie, że każda sytuacja jest równoznaczna z wysokim ryzykiem i wymaga nadzoru, co nie zawsze jest prawdą. Zrozumienie kontekstu, w jakim przeprowadzane są prace oraz umiejętność oceny ryzyka to umiejętności, które powinny być rozwijane przez osoby pracujące w branży elektrycznej. Należy również pamiętać, że interpretacja przepisów powinna być dostosowywana do specyficznych warunków pracy oraz typu realizowanej operacji.

Pytanie 15

Które zaciski listwy zaciskowej transformatora trójfazowego obniżającego napięcie należy połączyć, aby uzyskać połączenie uzwojenia górnego napięcia w gwiazdę, a uzwojenia dolnego napięcia w trójkąt?

Ilustracja do pytania
A. 4-5-6 oraz 8-10, 9-11, 7-12
B. 2-4, 3-5, 1-6 oraz 8-10, 9-11, 7-12
C. 2-4, 3-5, 1-6 oraz 7-8-9
D. 4-5-6 oraz 7-8-9
W tym zadaniu łatwo „pogubić się” w numerach, jeśli patrzy się tylko na listwę, a nie na zasadę łączenia gwiazda–trójkąt. Kluczowe jest rozumienie, co fizycznie oznacza gwiazda i co oznacza trójkąt dla uzwojeń transformatora. W gwieździe trzy końce uzwojeń muszą być złączone w jeden wspólny punkt neutralny, a trzy początki są wyprowadzone jako L1, L2, L3. W trójkącie natomiast każde uzwojenie jest wpięte pomiędzy dwie fazy, a koniec jednego uzwojenia łączy się z początkiem następnego, tak aby powstał zamknięty pierścień. Propozycje, w których łączone są zaciski 4-5-6 oraz 7-8-9, sugerują, że ktoś próbował „na czuja” zrobić dwa punkty gwiazdowe – po jednym dla każdej strony transformatora. To jest błąd koncepcyjny, bo po stronie dolnego napięcia nie ma być gwiazda, tylko zamknięty trójkąt. Zwarte 7-8-9 tworzy co prawda wspólny punkt, ale nie powiąże uzwojeń w układ Δ, więc nie spełni wymaganej konfiguracji Y/Δ. Z kolei odpowiedzi, gdzie pojawiają się mostki 2-4, 3-5, 1-6, próbują zbudować po stronie GN trójkąt, czyli połączyć początek jednego uzwojenia z końcem następnego. To typowy błąd: pomylenie tego, która strona ma być w gwiazdę, a która w trójkąt. W połączeniu Y/Δ dla transformatora obniżającego napięcie zwykle to właśnie strona wyższego napięcia jest w gwiazdę, żeby mieć dostęp do punktu neutralnego i lepszą izolację względem ziemi, a strona niższego napięcia pracuje w trójkącie. Jeśli więc po stronie GN zamiast zwarcia 4-5-6 buduje się układ 2-4, 3-5, 1-6, to w praktyce uzwojenia pierwotne nie będą miały wspólnego punktu neutralnego, tylko zostaną zamknięte w trójkąt, co zmienia całkowicie charakterystykę pracy transformatora. Z mojego doświadczenia najczęstsze potknięcie przy takich zadaniach to patrzenie na same numerki, bez śledzenia, który zacisk jest początkiem, a który końcem uzwojenia. Dobra praktyka jest taka, żeby zawsze najpierw „w głowie” albo na kartce narysować sobie topologię: trzy uzwojenia, ich początki i końce, a dopiero potem przekładać to na numery listwy zaciskowej. Wtedy od razu widać, że tylko układ 4-5-6 jako wspólny punkt oraz 8-10, 9-11, 7-12 jako pętlą trójkąta spełnia wymaganie: GN w gwiazdę, DN w trójkąt.

Pytanie 16

Wskaż prawidłowy schemat sterowania oświetleniem z dwóch niezależnych miejsc.

Ilustracja do pytania
A. Schemat 3.
B. Schemat 1.
C. Schemat 2.
D. Schemat 4.
Schemat 4. przedstawia powszechnie stosowany układ schodowy, który umożliwia efektywne i wygodne sterowanie oświetleniem z dwóch niezależnych lokalizacji. W tym układzie zastosowanie dwóch przełączników krzyżowych pozwala na pełną kontrolę nad oświetleniem, niezależnie od ich pozycji. Dzięki temu użytkownik może włączać oraz wyłączać światło zarówno z korytarza, jak i z pokoju, co znacząco poprawia komfort użytkowania oraz elastyczność systemu oświetleniowego. To podejście jest zgodne z normami i dobrymi praktykami stosowanymi w instalacjach elektrycznych, gdzie priorytetem jest zarówno funkcjonalność, jak i bezpieczeństwo. W praktyce, instalacje schodowe są szczególnie przydatne w dużych domach lub biurach, gdzie odległość między przełącznikami może być znaczna. Dodatkowo, poprzez odpowiednie planowanie i zastosowanie schematu schodowego, można uzyskać znaczną oszczędność energii, eliminując niepotrzebne pozostawianie włączonego oświetlenia. Warto także zaznaczyć, że prawidłowe wykonanie takiej instalacji wymaga znajomości zasad elektryki oraz umiejętności czytania schematów elektrycznych, co stanowi ważny element edukacji zawodowej w dziedzinie elektrotechniki.

Pytanie 17

Które z podanych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Obwody oświetleniowe należy oddzielić od gniazd wtykowych
B. Odbiorniki o dużej mocy powinny być zasilane z osobnych obwodów
C. Gniazda wtykowe w kuchni powinny być podłączane do oddzielnego obwodu
D. Gniazda wtykowe w każdym pomieszczeniu powinny pochodzić z wydzielonego obwodu
Odpowiedź dotycząca zasilania gniazd wtykowych każdego pomieszczenia z osobnego obwodu jest poprawna, ponieważ zgodnie z aktualnymi normami i zaleceniami dotyczącymi instalacji elektrycznych, zapewnia to większe bezpieczeństwo i funkcjonalność. Zasilanie każdego pomieszczenia z osobnego obwodu umożliwia lepsze zarządzanie obciążeniem elektrycznym oraz minimalizuje ryzyko przeciążenia instalacji. Przykładowo, w przypadku awarii jednego z obwodów, pozostałe pomieszczenia mogą nadal być zasilane, co zwiększa komfort użytkowania. Dodatkowo, takie podejście ułatwia lokalizację ewentualnych usterek i ich naprawę, co jest szczególnie ważne w przypadku pomieszczeń takich jak kuchnia czy łazienka, gdzie używa się wielu urządzeń elektrycznych jednocześnie. Warto również zauważyć, że zgodnie z normą PN-IEC 60364, zaleca się stosowanie osobnych obwodów dla urządzeń o dużym poborze mocy, co podkreśla znaczenie wydzielenia obwodów w celu zapewnienia bezpieczeństwa i efektywności instalacji elektrycznej.

Pytanie 18

Jakiego urządzenia pomiarowego używa się do weryfikacji ciągłości przewodu PE w systemie elektrycznym?

A. Miernika z funkcją pomiaru pojemności
B. Woltomierza
C. Miernika z funkcją pomiaru rezystancji
D. Amperomierza
Miernik z funkcją pomiaru rezystancji jest narzędziem, które niezwykle skutecznie pozwala na sprawdzenie ciągłości przewodu ochronnego (PE) w instalacji elektrycznej. Pomiar rezystancji jest kluczowy, ponieważ ciągłość przewodu ochronnego jest niezbędna dla zapewnienia bezpieczeństwa w przypadku wystąpienia awarii. W praktyce, aby przeprowadzić taki pomiar, należy zastosować miernik, który wysyła prąd przez przewód PE i mierzy opór, jaki napotyka. Zgodnie z normami PN-IEC 60364 i PN-EN 61557, rezystancja ciągłości przewodu ochronnego powinna wynosić mniej niż 1 Ω. Przykładowo, w instalacjach zasilających urządzenia o dużym poborze mocy, takich jak silniki elektryczne, zapewnienie niskiej rezystancji przewodu PE jest kluczowe dla minimalizacji ryzyka porażenia prądem. Używając miernika rezystancji, technik może również identyfikować potencjalne uszkodzenia mechaniczne lub korozję w instalacji, co zwiększa niezawodność całego systemu elektrycznego.

Pytanie 19

Który z pokazanych na rysunkach przewodów należy zastosować do wykonania instalacji zasilającej odbiornik prądu stałego w układzie 2/M DC 220/110 V?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Wybór innych przewodów, takich jak A, B czy C, do instalacji zasilającej odbiornik prądu stałego w układzie 2/M DC 220/110 V jest nieodpowiedni z kilku istotnych powodów. Przede wszystkim, nie każdy przewód jest przystosowany do pracy w warunkach napięcia stałego, co jest kluczowe w tym przypadku. Przewody A, B i C mogą mieć różne właściwości izolacyjne, które nie są wystarczające do ochrony przed skutkami działania napięcia stałego, co może prowadzić do porażenia prądem lub zwarcia. Typowe błędy przy wyborze przewodów do instalacji DC to pomijanie specyfikacji dotyczących odporności na przebicia oraz nieprzestrzeganie norm bezpieczeństwa, takich jak IEC 60228. Osoby wybierające te przewody często kierują się jedynie ich wyglądem lub ceną, ignorując fundamentalne różnice w konstrukcji, które są kluczowe dla bezpieczeństwa całego systemu. W praktyce, stosowanie niewłaściwego przewodu w instalacjach DC może prowadzić do poważnych awarii oraz zwiększa ryzyko pożaru. Warto również pamiętać o tym, że instalacje elektryczne muszą być projektowane z uwzględnieniem lokalnych przepisów i norm, co dodatkowo podkreśla konieczność starannego doboru komponentów instalacji.

Pytanie 20

Którego narzędzia nie należy stosować przy wykonywaniu montażu lub demontażu elementów instalacji elektrycznych?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Wybór odpowiedzi D jest prawidłowy, ponieważ scyzoryk wielofunkcyjny nie powinien być stosowany przy montażu lub demontażu elementów instalacji elektrycznych. Narzędzia tego typu, mimo że są wszechstronne, nie zapewniają odpowiedniego poziomu bezpieczeństwa wymagającego pracy z elektrycznością. Główne ryzyko związane z używaniem scyzoryka polega na możliwości uszkodzenia izolacji przewodów, co może prowadzić do poważnych zwarć, a nawet pożarów. W praktyce, do pracy z instalacjami elektrycznymi zaleca się korzystać z narzędzi izolowanych, takich jak szczypce izolowane czy kombinerki, które są zaprojektowane z myślą o ochronie przed porażeniem prądem. Dodatkowo, w wielu krajach obowiązują normy branżowe, takie jak IEC 60900, które określają wymagania dotyczące narzędzi używanych w pracach z instalacjami elektrycznymi, promując tym samym najwyższe standardy bezpieczeństwa. Używanie właściwych narzędzi to nie tylko kwestia efektywności pracy, ale przede wszystkim bezpieczeństwa operatora i osób znajdujących się w pobliżu.

Pytanie 21

Podczas ponownej próby załączenia urządzenia przedstawionego na rysunku po około 40 s następuje jego samoczynne wyłączenie. Określ najbardziej prawdopodobną przyczynę zadziałania urządzenia.

Ilustracja do pytania
A. Zwarcie przewodów L i PE.
B. Przeciążenie w obwodzie.
C. Upływ prądu do uziemienia.
D. Zwarcie przewodów L i N.
Poprawna odpowiedź to przeciążenie w obwodzie. Urządzenie na rysunku to wyłącznik różnicowoprądowy z zabezpieczeniem nadprądowym (RCBO), który jest zaprojektowany do ochrony instalacji elektrycznych przed skutkami zarówno przeciążeń, jak i zwarć. Samoczynne wyłączenie po około 40 sekundach sugeruje, że urządzenie wykryło zbyt wysoką wartość prądu, co może prowadzić do uszkodzenia przewodów lub urządzeń podłączonych do obwodu. W praktyce, przeciążenie występuje, gdy łączna moc urządzeń podłączonych do obwodu przekracza maksymalną wartość znamionową zabezpieczenia. W takich sytuacjach RCBO odłącza zasilanie, aby zminimalizować ryzyko pożaru oraz uszkodzeń sprzętu. Zgodnie z normami, takie urządzenia powinny być regularnie testowane i konserwowane, aby zapewnić ich prawidłowe funkcjonowanie. Zrozumienie działania wyłączników nadprądowych i ich roli w zabezpieczaniu instalacji elektrycznych jest kluczowe dla każdego elektryka oraz projektanta instalacji.

Pytanie 22

Jaka jest wielkość prądu znamionowego, przy której działają wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z?

A. 5 do 10
B. 3 do 5
C. 10 do 20
D. 2 do 3
Złudzenia związane z innymi wartościami krotności prądu znamionowego wynikają często z niepełnego zrozumienia działania wyłączników nadprądowych oraz ich zastosowania w ochronie instalacji elektrycznych. Odpowiedzi sugerujące krotności od 3 do 5, 5 do 10, czy 10 do 20 są błędne, ponieważ wyzwalacze w wyłącznikach typu Z są zaprojektowane do zadziałania w niższym zakresie krotności, co pozwala na skuteczną ochronę delikatniejszych układów przed zbyt dużym prądem. Wyzwalacze w kategoriach 5 do 10 i 10 do 20 zazwyczaj znajdziemy w wyłącznikach typu C lub D, które są przeznaczone do obwodów o wyższej tolerancji na prądy rozruchowe, takich jak obwody z silnikami dużej mocy. Nieprawidłowe podejście do wyboru odpowiednich wyłączników może prowadzić do poważnych problemów, takich jak uszkodzenia sprzętu, które mogłyby być uniknięte dzięki zastosowaniu wyłączników typu Z w odpowiednich aplikacjach. Kluczowym błędem myślowym jest zakładanie, że wyższa krotność zawsze oznacza lepszą ochronę, co jest mylące. Odpowiedni wybór wyłącznika powinien być oparty na charakterystyce obciążenia oraz wymaganiach instalacji, co jest zgodne z normami i dobrymi praktykami w projektowaniu systemów elektroenergetycznych.

Pytanie 23

Prace przeprowadzane pod napięciem w instalacji domowej wymagają użycia narzędzi izolowanych o minimalnym poziomie napięcia izolacji

A. 500 V
B. 120 V
C. 1000 V
D. 250 V
Wybór wartości 500 V jako minimalnego napięcia izolacji dla narzędzi używanych w pracach pod napięciem w instalacjach mieszkaniowych jest zgodny z normami bezpieczeństwa, które nakładają wymogi dotyczące odpowiedniego poziomu izolacji. Narzędzia izolowane o napięciu 500 V są powszechnie stosowane w branży elektrycznej, aby zapewnić bezpieczeństwo podczas wykonywania czynności konserwacyjnych lub naprawczych. Takie narzędzia są zaprojektowane w taki sposób, aby minimalizować ryzyko porażenia prądem elektrycznym, a ich izolacja powinna być testowana w odpowiednich warunkach. Przykłady takich narzędzi to wkrętaki, szczypce czy kombinerki, które mają oznaczenia jakościowe i są produkowane zgodnie z międzynarodowymi standardami, takimi jak IEC 60900, które definiują wymagania dla narzędzi izolowanych. Użycie narzędzi o odpowiedniej izolacji nie tylko chroni technika, ale także zapewnia, że prace są wykonywane zgodnie z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego.

Pytanie 24

Urządzenie przestawione na ilustracji przeznaczone jest do

Ilustracja do pytania
A. obróbki skrawaniem.
B. montażu łożysk.
C. demontażu łożysk.
D. odkręcania zapieczonych śrub.
Na ilustracji pokazany jest klasyczny ściągacz do łożysk, czyli narzędzie przeznaczone właśnie do ich demontażu. Charakterystyczne elementy to ramiona zakończone haczykowatymi stopkami, które zaczepia się za pierścień łożyska lub koło pasowe, oraz śruba pociągowa z poprzecznym uchwytem. Podczas dokręcania śruby siła osiowa przenosi się na wał, a ramiona równomiernie ciągną łożysko na zewnątrz. Dzięki temu łożysko schodzi z czopa wału bez bicia młotkiem, bez przegrzewania i bez uszkadzania gniazda lub samego wału. W praktyce, przy serwisie silników elektrycznych, przekładni, pomp czy alternatorów, użycie takiego ściągacza jest podstawową dobrą praktyką warsztatową. Normy i instrukcje serwisowe producentów maszyn bardzo często wprost zabraniają zbijania łożysk przy pomocy przecinaków czy młotka, bo prowadzi to do mikropęknięć, odkształceń i późniejszych awarii. Moim zdaniem każdy elektryk utrzymania ruchu czy monter powinien mieć w warsztacie zestaw ściągaczy o różnych rozstawach ramion i długościach, a przy poważniejszych pracach stosować też ściągacze hydrauliczne. Warto pamiętać o kilku zasadach: ramiona muszą być ustawione symetrycznie, stopki powinny dobrze opierać się o pierścień łożyska, a śruba powinna być nasmarowana, żeby zmniejszyć tarcie i uzyskać płynny, kontrolowany nacisk. W ten sposób demontaż jest bezpieczny zarówno dla pracownika, jak i dla urządzenia elektrycznego, które serwisujemy.

Pytanie 25

Jakie akcesoria, oprócz szczypiec, powinien mieć monter do podłączenia kabla YnKY5x120 w rozdzielnicy?

A. Nóż monterski, praskę, ściągacz izolacji
B. Nóż monterski, praskę, zestaw kluczy
C. Ściągacz izolacji, nóż monterski, wkrętak
D. Lutownicę, zestaw wkrętaków, ściągacz izolacji
Kiedy wybierasz narzędzia do podłączenia kabla YnKY5x120 do rozdzielnicy, warto chwilę się zastanowić, co jest najpotrzebniejsze. Jeśli myślałeś o ściągaczu izolacji czy lutownicy, to pamiętaj, że ściągacz, choć przydatny, nie jest najważniejszy w tej sytuacji. Jasne, że ściągacz się przydaje, gdy trzeba zedrzeć izolację z końców przewodów, ale przy kablach o dużym przekroju, jak YnKY5x120, praska jest o wiele bardziej istotna. Lutownica? Hmm, w nowoczesnych instalacjach elektrycznych, to niezbyt dobry pomysł, bo lutowanie może osłabić połączenia i sprawić, że będą mniej trwałe oraz mniej bezpieczne. Prościej mówiąc, teraz standardem są złącza mechaniczne, które zapewniają lepszą jakość połączeń na dłuższą metę. Nóż monterski, praska i komplet kluczy to są te narzędzia, które według norm branżowych naprawdę powinny znaleźć się w twoim wyposażeniu, bo solidne połączenia to podstawa. Często ludziom zdarza się polegać na narzędziach, które nie pasują do konkretnej instalacji, a to może skutkować różnymi awariami. Żeby zapewnić bezpieczeństwo i niezawodność podłączeń, monterzy muszą znać swoje materiały i narzędzia, kierując się najlepszymi praktykami oraz zaleceniami technicznymi.

Pytanie 26

Jaką wartość ma prędkość obrotowa pola magnetycznego stojana silnika indukcyjnego przy danych: fN = 50 Hz; p = 4?

A. 1 450 obr./min
B. 720 obr./min
C. 1 500 obr./min
D. 750 obr./min
Prędkość obrotowa pola magnetycznego stojana silnika indukcyjnego można obliczyć za pomocą wzoru: n = (120 * f<sub>N</sub>) / p, gdzie n to prędkość obrotowa w obr./min, f<sub>N</sub> to częstotliwość zasilania w hercach, a p to liczba par biegunów. W podanym przypadku f<sub>N</sub> wynosi 50 Hz, a liczba par biegunów p wynosi 4. Podstawiając wartości do wzoru, otrzymujemy: n = (120 * 50) / 4 = 1500 obr./min. Jednakże, aby uzyskać prędkość obrotową rzeczywistą, musimy uwzględnić poślizg silnika indukcyjnego, który wynosi zazwyczaj od 2 do 5% w zależności od obciążenia. Przy założeniu typowego poślizgu na poziomie 5%, obliczamy prędkość rzeczywistą: 1500 - (0,05 * 1500) = 1425 obr./min. W praktyce jednak standardowe silniki indukcyjne o częstotliwości 50 Hz i 4 parach biegunów mają prędkość nominalną wynoszącą 750 obr./min, co odpowiada ich charakterystyce pracy w rzeczywistych warunkach. Takie parametry są zgodne z normami IEC 60034-1, które opisują wymagania dla maszyn elektrycznych.

Pytanie 27

Który rodzaj pomiaru pokazany jest na rysunku?

Ilustracja do pytania
A. Ciągłości przewodów.
B. Napięcia dotykowego.
C. Impedancji zwarciowej.
D. Rezystancji izolacji stanowiska.
Nieznajomość pomiarów elektrycznych może prowadzić do błędnych wniosków i zagrożeń. Widzisz, jeśli chodzi o napięcie dotykowe, ciągłość przewodów czy impedancję zwarciową, to nie są te same pojęcia co pomiar rezystancji izolacji. Napięcie dotykowe dotyczy zagrożenia, jakie występuje, gdy mamy do czynienia z elementami pod napięciem. Jego pomiar nie mówi nic o stanie izolacji, a bardziej o ryzyku. Z kolei pomiar ciągłości przewodów potwierdza, że wszystko działa jak powinno, więc to też oddzielna sprawa. A impedancja zwarciowa to zupełnie inny temat, bo bada, co się dzieje w przypadku zwarcia. Mylenie tych pojęć może prowadzić do nieodpowiednich działań, a w konsekwencji do poważnych awarii. Dlatego ważne jest, żeby zrozumieć, czym różnią się te pomiary oraz jak je stosować w kontekście bezpieczeństwa instalacji elektrycznych.

Pytanie 28

Jakim symbolem oznacza się przewód jednożyłowy z żyłą wykonaną z drutu aluminiowego, w izolacji PCV, o przekroju żyły 2,5 mm2?

A. YDY 2,5 mm2
B. YLY 2,5 mm2
C. ALY 2,5 mm2
D. ADY 2,5 mm2
Odpowiedź ADY 2,5 mm² jest poprawna, ponieważ oznaczenie to odnosi się do przewodów jednożyłowych wykonanych z drutu aluminiowego, które są izolowane polwinitą (PVC). Przewody te charakteryzują się odpowiednimi właściwościami elektrycznymi i mechanicznymi, co czyni je odpowiednimi do stosowania w różnorodnych instalacjach elektrycznych, w tym w budownictwie, przemyśle czy instalacjach domowych. Przekrój żyły wynoszący 2,5 mm² jest standardowym rozwiązaniem dla obwodów o niewielkim poborze prądu, takich jak oświetlenie czy gniazdka. Zastosowanie przewodów aluminiowych staje się coraz bardziej popularne ze względu na ich niską masę i korzystne właściwości przewodzące, pod warunkiem, że są odpowiednio dobrane do obciążenia. W przemyśle elektrycznym ważne jest również, aby wszelkie elementy instalacji spełniały normy bezpieczeństwa, co potwierdza odpowiednia certyfikacja. W kontekście zastosowania, przewody ADY często wykorzystuje się w instalacjach, gdzie nie ma dużych przeciążeń, a warunki pracy są umiarkowane.

Pytanie 29

Jakiego łącznika używa się do zarządzania oświetleniem w klatce schodowej przy zastosowaniu automatu schodowego?

A. Dzwonkowego
B. Hotelowego
C. Krzyżowego
D. Schodowego
Wybór innych łączników do sterowania oświetleniem w klatkach schodowych może prowadzić do nieefektywnych i niewygodnych rozwiązań. Łącznik krzyżowy jest stosowany do sterowania jednym źródłem światła z wielu lokalizacji, co w kontekście klatki schodowej może być w niektórych przypadkach niewłaściwe, jeśli nie ma potrzeby włączania i wyłączania światła w różnych punktach. Użycie łącznika krzyżowego bez odpowiedniego zaplanowania może prowadzić do komplikacji w obwodzie i potencjalnych problemów z działaniem. Łącznik hotelowy, z kolei, jest przeznaczony do specyficznych instalacji w hotelach, gdzie goście mogą korzystać z różnych źródeł światła w pokojach, bez możliwości sterowania ogólnym oświetleniem korytarza. Taki system nie jest dedykowany do standardowego użytku w domach lub budynkach mieszkalnych, co czyni go mniej praktycznym wyborem dla klatki schodowej. Warto również zauważyć, że łącznik dzwonkowy charakteryzuje się inną funkcjonalnością i skutecznością, co jest kluczowe w sytuacjach, gdzie oświetlenie powinno być włączane i wyłączane szybko i efektywnie, np. podczas wchodzenia lub wychodzenia z klatki schodowej. Myląc zastosowanie tych łączników, można łatwo stworzyć nieprzyjazne i niepraktyczne warunki użytkowania, co z pewnością wpłynie na komfort i bezpieczeństwo użytkowników.

Pytanie 30

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w tabeli?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony uzupełniającej.
B. Ochrony przez zastosowanie bardzo niskiego napięcia.
C. Ochrony przy uszkodzeniu (dodatkowej).
D. Ochrony podstawowej.
No, musisz przyznać, że rozróżnienie różnych rodzajów ochrony przeciwporażeniowej to ważna sprawa, jeśli chcesz mieć pewność, że wszystko działa jak należy. Kiedy mówisz o ochronie podstawowej, ochronie przy uszkodzeniu czy bardzo niskim napięciu, to czasami można się pogubić, bo myślisz, że wystarczy tylko jedna z tych metod. Ochrona podstawowa to jakby pierwsza linia obrony, ale nie zawsze wystarczy. Gdy jest zagrożenie, trzeba pomyśleć o dodatkowej ochronie. Ochrona przy uszkodzeniu, jak bezpieczniki i wyłączniki nadprądowe, też nie zawsze da sobie radę w trudnych sytuacjach. Z tego, co widziałem, ludzie czasem mylą różne typy zabezpieczeń i to może prowadzić do poważnych problemów, bo nie rozumieją, że te dodatkowe środki są naprawdę konieczne. Zrozumienie tego łączenia podstawowej i uzupełniającej ochrony jest kluczowe dla budowy bezpiecznych instalacji. Dobrze też sięgnąć do norm, żeby wiedzieć, jak to wszystko ma działać.

Pytanie 31

Przewód oznaczony symbolem PEN to przewód

A. uziemiający
B. ochronny
C. ochronno-neutralny
D. wyrównawczy
Symbol PEN (Protective Earth and Neutral) oznacza przewód ochronno-neutralny, który łączy w sobie funkcje przewodu neutralnego (N) oraz przewodu ochronnego (PE). Jest on stosowany w instalacjach elektrycznych, zwłaszcza w systemach TN-C, aby zapewnić zarówno przewodnictwo prądu roboczego, jak i ochronę przed porażeniem elektrycznym. W praktyce, przewód PEN odgrywa kluczową rolę w bezpieczeństwie instalacji, ponieważ umożliwia skuteczne uziemienie i jednocześnie zapewnia powrót prądu do źródła. W przypadku awarii, przewód ochronny automatycznie przejmuje funkcję przewodu neutralnego, co minimalizuje ryzyko porażenia prądem. Zgodnie z normami, takimi jak PN-IEC 60439, instalacje muszą być projektowane i wykonywane z uwzględnieniem zasady, że przewód ochronno-neutralny powinien być odpowiednio oznakowany oraz dobrze izolowany. Praktyczne zastosowanie przewodu PEN można zaobserwować w budynkach mieszkalnych, gdzie często łączy się go z systemami uziemiającymi dla zwiększenia bezpieczeństwa użytkowników.

Pytanie 32

Jakiego urządzenia dotyczy przedstawiony opis przeglądu?
Podczas rutynowej inspekcji stanu technicznego systemu elektrycznego przeprowadzono przegląd z uwzględnieniem:
1. oceny stanu ochrony przed porażeniem prądem,
2. kontrolnego sprawdzenia funkcjonowania wyłącznika za pomocą przycisku testowego,
3. pomiaru rzeczywistej wartości prądu różnicowego, który wyzwala,
4. pomiaru czasu wyłączenia,
5. weryfikacji napięcia dotykowego dla wartości prądu wyzwalającego.

A. Wyłącznika nadprądowego
B. Wyłącznika różnicowoprądowego
C. Ochronnika przepięć
D. Elektronicznego przekaźnika czasowego
Wyłącznik różnicowoprądowy jest urządzeniem zabezpieczającym, które ma na celu ochronę ludzi przed porażeniem prądem elektrycznym oraz zabezpieczenie instalacji elektrycznej przed skutkami zwarć. Opisane w pytaniu działania, takie jak badanie stanu ochrony przeciwporażeniowej, kontrolne sprawdzenie działania wyłącznika oraz pomiar czasu wyłączania, to podstawowe procedury diagnostyczne dla tego typu urządzeń. Standardy, takie jak IEC 61008 oraz IEC 61009, definiują wymogi dotyczące wyłączników różnicowoprądowych, w tym jak powinny być testowane i monitorowane. Przykładowo, regularne pomiary wartości prądu zadziałania oraz sprawdzanie napięcia dotykowego przy prądzie wyzwalającym są niezbędne, aby upewnić się, że wyłącznik działa prawidłowo w sytuacji awaryjnej. Dbanie o sprawność wyłączników różnicowoprądowych jest kluczowe dla zapewnienia bezpieczeństwa w obiektach użyteczności publicznej i mieszkalnych, gdzie występuje ryzyko porażenia prądem. W praktyce każdy wyłącznik różnicowoprądowy powinien być testowany przynajmniej raz na pół roku, co jest zgodne z wytycznymi zawartymi w normach branżowych.

Pytanie 33

W jaki sposób należy ułożyć przewody w instalacji elektrycznej, jeśli na jej planie znajduje się symbol przedstawiony na rysunku?

Ilustracja do pytania
A. W listwach elektroinstalacyjnych.
B. Pod tynkiem.
C. Na tynku.
D. W kanałach przypodłogowych.
Wybór odpowiedzi związanej z układaniem przewodów w listwach elektroinstalacyjnych, na tynku lub w kanałach przypodłogowych jest błędny z kilku powodów. Zastosowanie listw elektroinstalacyjnych, choć zapewnia łatwy dostęp do przewodów, nie jest zgodne z zasadami estetyki oraz bezpieczeństwa w nowoczesnych projektach budowlanych. Listwy są często narażone na uszkodzenia mechaniczne, a ich obecność w pomieszczeniach może prowadzić do nieestetycznego wyglądu oraz problematycznego dostępu do przewodów w przypadku ich awarii. Umieszczanie przewodów na tynku to kolejna nieodpowiednia praktyka, ponieważ przewody są wtedy narażone na działanie czynników zewnętrznych, co może prowadzić do ich szybszego zużycia oraz wzrostu ryzyka zwarcia. Poza tym, układanie przewodów w kanałach przypodłogowych, choć stosowane w niektórych przypadkach, również nie jest zalecane, zwłaszcza w budynkach mieszkalnych, gdzie można zastosować bardziej estetyczne i bezpieczne rozwiązania, takie jak ułożenie przewodów pod tynkiem. Kluczowym błędem jest myślenie, że dostępność przewodów w przypadku ich awarii jest ważniejsza niż ich długoterminowa ochrona i estetyka. Wymogi dotyczące instalacji w budynkach mieszkalnych przewidują, że przewody powinny być ukryte, co nie tylko poprawia wygląd wnętrza, ale także zwiększa bezpieczeństwo użytkowników.

Pytanie 34

Do czego służy narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Zdejmowania izolacji żył przewodów.
B. Zdejmowania powłoki przewodów.
C. Zaciskania końcówek na żyłach przewodów.
D. Formowania oczek z końców żył przewodów.
Narzędzie przedstawione na zdjęciu to specjalistyczne szczypce do ściągania izolacji, które są kluczowym elementem w pracy z przewodami elektrycznymi. Jego głównym zadaniem jest usuwanie warstwy izolacyjnej z żył przewodów, co jest niezbędne do zapewnienia poprawnego połączenia elektrycznego. Dzięki charakterystycznej budowie, która często posiada regulowany ogranicznik, użytkownik ma możliwość precyzyjnego dostosowania głębokości cięcia. Umożliwia to bezpieczne usunięcie izolacji bez uszkodzenia samej żyły, co jest istotne z punktu widzenia nie tylko wydajności, ale również bezpieczeństwa instalacji elektrycznych. W praktyce, stosując to narzędzie, można wykonać prace takie jak łączenie przewodów w instalacjach domowych czy przygotowywanie kabli do podłączeń w urządzeniach elektronicznych. Przestrzeganie dobrych praktyk, jak na przykład unikanie zbyt głębokiego nacięcia, jest kluczowe, aby zminimalizować ryzyko uszkodzenia przewodów. Narzędzie to jest zgodne z normami branżowymi, co potwierdza jego przydatność i efektywność w codziennym użytkowaniu.

Pytanie 35

Którego z przedstawionych narzędzi należy użyć do zamontowania zworek w tabliczce silnikowej?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Wybór niewłaściwego narzędzia do montażu zworek w tabliczce silnikowej może prowadzić do różnych problemów. Użycie klucza imbusowego, jak w odpowiedzi oznaczonej jako 'A.', jest nieadekwatne, ponieważ klucze imbusowe są projektowane do obsługi śrub o łbie sześciokątnym, a nie nakrętek stosowanych w tabliczkach silnikowych. Dodatkowo, takie narzędzie nie zapewnia stabilności, co może prowadzić do uszkodzenia łbów śrub lub ich poluzowania. Podobnie, użycie śrubokręta z rękojeścią typu 'T' z odpowiedzi 'B.' nie ma sensu, ponieważ nie jest on przeznaczony do pracy z nakrętkami, lecz do wkrętów, co również nie przyniesie zamierzonego efektu. Warto również zauważyć, że próbnik napięcia, oznaczony jako 'D.', ma zupełnie inne zastosowanie i służy do pomiaru napięcia w obwodach elektrycznych, a nie do montażu elementów. Wybór narzędzi powinien zawsze opierać się na ich funkcjonalności oraz zgodności z wymaganiami technicznymi danego zadania. Ignorowanie tych zasad może prowadzić do poważnych błędów w instalacjach elektrycznych, a także do zwiększonego ryzyka awarii sprzętu. Dlatego kluczowe jest, aby przed przystąpieniem do pracy znać specyfikację narzędzi oraz ich odpowiednie zastosowania.

Pytanie 36

W układzie zasilania jakiej lampy oświetleniowej wykorzystuje się tyrystorowy system zapłonowy?

A. Rtęciowej
B. Sodowej
C. Halogenowej
D. Żarowej
Wybór żarowej, rtęciowej lub halogenowej lampy oświetleniowej jako zastosowania tyrystorowego układu zapłonowego opiera się na nieporozumieniach dotyczących charakterystyki tych źródeł światła. Lampy żarowe działają na zasadzie bezpośredniego przepływu prądu przez żarnik, co sprawia, że nie wymagają skomplikowanych układów zapłonowych. W przypadku lamp rtęciowych, ich zapłon oparty jest na innych zasadach, w tym na użyciu zapłonników gazowych, które nie są zgodne z zastosowaniem tyrystorów. Te lampy również potrzebują czasami większej mocy podczas zapłonu, co może prowadzić do niewłaściwego działania tyrystorów. Lampy halogenowe z kolei stosują nieco odmienną technologię, wykorzystując cykle odparowania, co również eliminuje potrzebę stosowania układów tyrystorowych. Typowym błędem myślowym w tym kontekście jest zakładanie, że wszystkie lampy wymagają podobnych układów zapłonowych, co prowadzi do mylnych wniosków. Ważne jest zrozumienie, że dobór odpowiednich komponentów do systemów oświetleniowych musi być oparty na ich specyficznych wymaganiach technicznych, co podkreśla konieczność dogłębnej analizy charakterystyk różnych typów lamp oraz ich zastosowań w praktyce.

Pytanie 37

Które urządzenie stosowane w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Rozłącznik bezpiecznikowy.
B. Wyłącznik nadmiarowoprądowy.
C. Wyłącznik przepięciowy.
D. Odłącznik bezpiecznikowy.
Rozłącznik bezpiecznikowy to kluczowe urządzenie w instalacjach elektrycznych, które pełni rolę zabezpieczającą i kontrolującą. Na przedstawionym rysunku widać charakterystyczne elementy, takie jak miejsca na wkładki bezpiecznikowe, które pozwalają na szybką wymianę zabezpieczeń w przypadku ich przepalenia. Rozłącznik bezpiecznikowy nie tylko chroni obwody elektryczne przed skutkami przeciążenia, ale także umożliwia bezpieczne odłączenie obwodu od źródła zasilania, co jest istotne w przypadku prac konserwacyjnych i naprawczych. W praktyce, zastosowanie rozłącznika bezpiecznikowego jest niezwykle istotne w budynkach mieszkalnych, przemysłowych oraz w infrastrukturze krytycznej, gdzie ciągłość zasilania i bezpieczeństwo użytkowników są priorytetem. Zgodnie z normami PN-EN 60947-3, rozłączniki te muszą spełniać określone wymagania dotyczące odporności na zwarcia, co zapewnia ich niezawodność i efektywność w ochronie instalacji.

Pytanie 38

Które z przedstawionych na rysunkach narzędzi przeznaczone jest do zaciskania końcówek tulejkowych izolowanych?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Narzedzie przedstawione na rysunku C. to szczypce do zaciskania końcówek tulejkowych izolowanych, co czyni tę odpowiedź prawidłową. Te szczypce są specjalnie zaprojektowane do precyzyjnego zaciskania końcówek, co zapewnia solidne połączenie elektryczne. W praktyce, zastosowanie takich narzędzi jest kluczowe w instalacjach elektrycznych, gdzie jakość połączeń wpływa na bezpieczeństwo i niezawodność systemów. Szczypce te charakteryzują się odpowiednio wyprofilowanymi końcówkami, które umożliwiają równomierne rozłożenie siły podczas zaciskania, co zapobiega uszkodzeniu izolacji oraz samej końcówki. W standardach branżowych, takich jak IEC 60947, podkreśla się wagę stosowania właściwych narzędzi do obróbki końcówek w celu zapewnienia wysokiej jakości połączeń. Prawidłowo używane szczypce do zaciskania przyczyniają się do długotrwałej eksploatacji instalacji oraz minimalizują ryzyko awarii związanych z słabymi połączeniami elektrycznymi.

Pytanie 39

Ze względu na ochronę przed dostępem wody przedstawiona na rysunku oprawa oświetleniowa jest

Ilustracja do pytania
A. odporna na krople wody.
B. wodoszczelna.
C. nieodporna na wnikanie wody.
D. strugoszczelna.
Kiedy wybierzesz złotą odpowiedź, warto zwrócić uwagę na kilka istotnych rzeczy dotyczących ochrony opraw oświetleniowych przed wodą. Odpowiedzi, które mówią, że ta oprawa jest strugoszczelna czy odporna na krople wody, są błędne. Te terminy sugerują, że produkt ma jakieś zabezpieczenia, a w tym przypadku ich nie ma. Strugoszczelność oznacza, że urządzenie jest tak zaprojektowane, żeby chronić przed intensywnym deszczem, a oprawy odporne na krople wody są przystosowane do mniejszych ilości wilgoci, ale też muszą mieć uszczelnienia. Wodoszczelność to całkowita odporność na wodę i to też tutaj nie ma miejsca. Fajnie byłoby zrozumieć klasyfikację IP przy wyborze opraw, bo to ma duże znaczenie w praktyce. Nieznajomość tych kwestii może prowadzić do zastosowania złych produktów w złych warunkach, a to może zwiększyć ryzyko uszkodzenia, a nawet obniżyć efektywność energetyczną. Dlatego, zanim zdecydujesz, jaką oprawę wybrać, dobrze jest zrozumieć, w jakim środowisku będą używane i jakie normy powinny być spełnione.

Pytanie 40

Na którym rysunku przedstawiono schemat połączeń umożliwiający pomiar energii elektrycznej pobranej przez użytkownika?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Schemat C pokazuje, jak powinny być połączone przewody fazowe (L) i neutralne (N). To jest ważne, bo tylko w ten sposób można dobrze zmierzyć, ile energii elektrycznej zużywa użytkownik. Licznik musi być odpowiednio podłączony, żeby dokładnie naliczał zużycie energii. Liczniki działają na zasadzie pomiaru prądu, który płynie przez obciążenie, a także napięcia między przewodami. Jeśli coś jest źle podłączone, to mogą być błędy w odczycie, a to nie jest zgodne z normami, które mówią o pomiarach energii elektrycznej, jak PN-EN 62053. Regularne kalibrowanie liczników też jest dobrym pomysłem, bo wtedy są bardziej dokładne i lepiej działają. Wiedza o tym, jak właściwie podłączać wszystko, jest naprawdę kluczowa dla elektryków i inżynierów zajmujących się pomiarami energii. Dzięki temu można lepiej zarządzać energią i unikać niepotrzebnych kosztów.