Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 21 grudnia 2025 16:09
  • Data zakończenia: 21 grudnia 2025 16:26

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Włączenie grzejnika skutkuje natychmiastowym działaniem zabezpieczenia nadprądowego. Co to oznacza?

A. uszkodzenie w grzałce
B. uszkodzenie w przewodzie fazowym
C. zwarcie przewodu ochronnego z obudową
D. zwarcie między przewodem fazowym a neutralnym
Zadziałanie zabezpieczenia nadprądowego przy załączeniu grzejnika wskazuje na wystąpienie zwarcia w obwodzie. W przypadku zwarcia przewodu fazowego do neutralnego, prąd przepływający przez obwód gwałtownie wzrasta, co przekracza dopuszczalne wartości dla zabezpieczeń nadprądowych, powodując ich natychmiastowe wyłączenie. Tego rodzaju sytuacje mogą wystąpić w przypadku uszkodzenia instalacji elektrycznej, co może skutkować niebezpiecznymi warunkami pracy urządzeń elektrycznych. Przykładem zastosowania tej wiedzy w praktyce jest regularna kontrola stanu instalacji elektrycznych, w tym grzejników, aby zminimalizować ryzyko zwarć. Standardy branżowe, jak PN-IEC 60364, nakładają obowiązek przeprowadzania okresowych przeglądów oraz stosowania odpowiednich zabezpieczeń, co ma na celu zapewnienie bezpieczeństwa użytkowników oraz utrzymanie sprawności systemów elektrycznych.

Pytanie 2

Jaką liczbę należy zastosować do pomnożenia wartości znamionowego prądu silnika trójfazowego klatkowego, który napędza pompę, aby obliczyć maksymalną dozwoloną wartość nastawy prądu na jego zabezpieczeniu przeciążeniowym?

A. 1,2
B. 2,0
C. 1,1
D. 0,9
Poprawna odpowiedź to 1,1, co oznacza, że wartość znamionowego prądu silnika trójfazowego klatkowego należy pomnożyć przez ten współczynnik, aby obliczyć maksymalną dopuszczalną wartość nastawy prądu na zabezpieczeniu przeciążeniowym. Zastosowanie współczynnika 1,1 wynika z faktu, że silniki elektryczne, w tym silniki klatkowe, mogą mieć chwilowe przeciążenia, które są normalne w czasie rozruchu lub przy zmiennych warunkach pracy. Przyjęcie wartości 1,1 jako mnożnika do prądu znamionowego uwzględnia te momenty, co jest zgodne z praktykami opisanymi w normach IEC 60947-4-1 dotyczących wyłączników silnikowych. Przykładowo, jeśli znamionowy prąd silnika wynosi 10 A, to maksymalna dopuszczalna wartość nastawy na zabezpieczeniu przeciążeniowym wynosi 11 A. Takie ustawienie zabezpieczenia pozwala na bezpieczne działanie silnika, jednocześnie chroniąc go przed uszkodzeniem w wyniku przeciążenia.

Pytanie 3

Jakie mogą być przyczyny nadmiernego iskrzenia szczotek na pierścieniach w silniku pierścieniowym?

A. Brakiem symetrii napięć zasilających.
B. Zbyt słabym dociskiem szczotek do pierścieni
C. Nieprawidłową kolejnością faz.
D. Zbyt wysoką temperaturą otoczenia.
Zbyt słaby docisk szczotek do pierścieni jest kluczowym czynnikiem, który może prowadzić do nadmiernego iskrzenia w silniku pierścieniowym. Właściwy docisk szczotek zapewnia odpowiedni kontakt elektryczny między szczotkami a pierścieniami, co jest niezbędne do prawidłowego działania silnika. Niewystarczający docisk skutkuje nieregularnym przewodnictwem i zwiększonym oporem, co prowadzi do miejscowego przegrzewania się i iskrzenia. Praktyczne przykłady z przemysłu pokazują, że regularne kontrole i właściwa konserwacja komponentów silnika, w tym szczotek i pierścieni, są kluczowe dla utrzymania efektywności pracy oraz minimalizacji uszkodzeń. W branży stosuje się standardy takie jak ISO 9001, które kładą nacisk na ciągłe doskonalenie procesów produkcyjnych, w tym również na monitorowanie stanu technicznego urządzeń. Dbałość o odpowiedni docisk szczotek może znacznie wydłużyć żywotność silnika oraz zminimalizować koszty eksploatacji.

Pytanie 4

Który z wymienionych rozwiązań powinien być zastosowany w warsztacie remontowym, aby zapewnić podstawową ochronę przed porażeniem prądem elektrycznym?

A. Wyłączniki różnicowoprądowe
B. Miejscowe połączenia wyrównawcze
C. Separacja elektryczna
D. Obudowy i osłony
Miejscowe połączenia wyrównawcze, separacja elektryczna oraz wyłączniki różnicowoprądowe to metody ochrony przed porażeniem prądem, które są istotne, jednak nie stanowią podstawowego zabezpieczenia w kontekście warsztatu remontowego. Miejscowe połączenia wyrównawcze są stosowane w celu eliminacji różnic potencjałów między elementami instalacji, co może być istotne w sytuacjach, gdy różne części instalacji mogą mieć inne napięcia. To podejście nie eliminuje jednak bezpośredniego ryzyka kontaktu z elementami pod napięciem. Separacja elektryczna, z kolei, polega na oddzieleniu obwodów elektrycznych od innych obwodów, co również nie wystarcza jako główna forma ochrony, gdyż nie zabezpiecza przed przypadkowym dotknięciem żywych części. Wyłączniki różnicowoprądowe, choć bardzo ważne w systemach zabezpieczeń elektrycznych, działają jako dodatkowa warstwa ochrony, a nie jako podstawowe zabezpieczenie. Ich funkcja polega na szybkim odcięciu zasilania w przypadku wykrycia różnicy między prądem wpływającym a prądem wypływającym, co nie zastąpi fizycznej ochrony urządzeń poprzez obudowy i osłony. Te metody powinny być traktowane jako uzupełnienie, a nie substytut dla podstawowego zabezpieczenia, jakim są obudowy i osłony, które chronią przed bezpośrednim dotykiem.

Pytanie 5

Jakie z wymienionych uszkodzeń można zidentyfikować podczas przeglądów instalacji?

A. Pogorszenie stanu mechanicznego złącz przewodów
B. Brak ciągłości przewodu ochronnego
C. Zbyt wysoka rezystancja przewodu uziemiającego
D. Brak ciągłości przewodu neutralnego
Prawidłowa odpowiedź to pogorszenie się stanu mechanicznego połączeń przewodów, ponieważ jest to problem, który można łatwo zauważyć podczas oględzin instalacji. Oględziny polegają na wizualnej inspekcji elementów instalacji, co pozwala na identyfikację widocznych uszkodzeń, takich jak korozja, luzne złącza czy pęknięcia. Te defekty mogą prowadzić do zwiększonego oporu elektrycznego, co z kolei wpływa na wydajność i bezpieczeństwo całego systemu. Zgodnie z normą PN-IEC 60364, regularne przeglądy instalacji elektrycznych są kluczowe dla zapewnienia ich bezpieczeństwa i sprawności. Przykładem praktycznym może być inspekcja połączeń w rozdzielnicach, gdzie luźne przewody mogą powodować przegrzewanie się i ryzyko pożaru. Dlatego identyfikacja pogorszenia stanu mechanicznego połączeń jest niezbędna w celu zapobiegania awariom i zapewnienia ciągłości działania instalacji.

Pytanie 6

Jakie będą konsekwencje obniżenia wartości napięcia zasilającego silnik indukcyjny o kilka procent, gdy pracował on z napięciem znamionowym i obciążeniem mocą nominalną przy niezmiennej częstotliwości i stałym, niezależnym od prędkości obrotowej momencie obciążenia?

A. Wzrost przeciążalności silnika oraz prądu pobieranego z sieci
B. Spadek przeciążalności silnika oraz wzrostu prądu pobieranego z sieci
C. Spadek przeciążalności silnika oraz prądu pobieranego z sieci
D. Wzrost przeciążalności silnika oraz spadek prądu pobieranego z sieci
Zmniejszenie napięcia zasilającego silnik indukcyjny prowadzi do obniżenia momentu obrotowego, co skutkuje zmniejszeniem przeciążalności silnika. Tego rodzaju silniki są projektowane w taki sposób, aby pracować w określonym zakresie napięcia. Obniżenie napięcia wpływa negatywnie na wydajność silnika, co może prowadzić do błędnego założenia, że przeciążalność wzrośnie. Odpowiedzi, które sugerują zwiększenie przeciążalności silnika, wynikają z nieporozumienia dotyczącego charakterystyki pracy silników indukcyjnych. Zwiększenie prądu pobieranego z sieci nie jest w rezultacie zjawiskiem korzystnym, gdyż może prowadzić do przegrzewania się uzwojeń i uszkodzenia izolacji. Producenci silników podkreślają, że przy spadku napięcia musimy też brać pod uwagę spadek sprawności samego urządzenia. Zmniejszenie napięcia nie tylko wpływa na prąd, ale również na aspekty termiczne silnika, co jest szczególnie istotne w kontekście standardów bezpieczeństwa. W praktyce, przy obciążeń przekraczających nominalne, silnik nie jest w stanie przenieść momentu obrotowego, co prowadzi do ryzyka jego uszkodzenia. W branżach, gdzie wymagane są precyzyjne parametry pracy, takie jak przemysł spożywczy czy chemiczny, zachowanie odpowiednich wartości napięcia zasilania jest kluczowe dla bezpieczeństwa i efektywności procesów produkcyjnych.

Pytanie 7

Który z poniższych środków ostrożności nie jest wymagany do bezpiecznego przeprowadzenia prac na linii napowietrznej odłączonej od zasilania?

A. Używanie sprzętu izolacyjnego
B. Zarządzanie pracą w grupie
C. Ogrodzenie obszaru pracy
D. Uziemienie odłączonej linii
Odpowiedź 'Stosowanie sprzętu izolacyjnego' jest prawidłowa, ponieważ w przypadku prac przy linii napowietrznej, która jest wyłączona spod napięcia, nie ma konieczności stosowania sprzętu izolacyjnego. Sprzęt izolacyjny, taki jak rękawice i narzędzia, jest niezbędny w sytuacjach, gdy istnieje ryzyko wystąpienia wysokiego napięcia. W przypadku linii, która jest bezpiecznie wyłączona, nie ma takiego ryzyka, co oznacza, że użycie sprzętu izolacyjnego nie jest wymagane. Mimo to, w praktyce zaleca się stosowanie sprzętu ochronnego dla pewności, zwłaszcza gdy pracownicy nie mają pełnej pewności co do stanu instalacji. Dodatkowo, w wielu branżach stosuje się zasady BHP, które zalecają zachowanie ostrożności i przygotowanie do ewentualnych awarii, nawet gdy urządzenia są wyłączone. Standardy, takie jak normy ISO i PN, podkreślają znaczenie bezpieczeństwa pracy oraz stosowania odpowiednich procedur i praktyk przy wszelkich czynnościach związanych z energią elektryczną.

Pytanie 8

W jakim układzie sieciowym wyłączniki różnicowoprądowe nie mogą być używane jako elementy ochrony przed porażeniem w przypadku awarii?

A. TN-S
B. TT
C. IT
D. TN-C
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym nie można stosować wyłączników różnicowoprądowych (WRP) jako elementów ochrony przeciwporażeniowej. W systemie TN-C, gdzie neutralny przewód (N) oraz ochronny przewód (PE) są połączone w jeden przewód (PEN), istnieje ryzyko, że WRP nie zadziała w przypadku uszkodzenia. Dzieje się tak, ponieważ wszelkie prądy upływowe mogą być zrównoważone przez prąd neutralny i nie będą rejestrowane przez wyłącznik. Przykładowo, w instalacjach przemysłowych lub budowlanych z układem TN-C, zastosowanie WRP może prowadzić do sytuacji, w których osoba dotykająca części metalowe staje się narażona na porażenie prądem, ponieważ WRP nie wykryje niewielkich różnic prądowych. Dobrymi praktykami w systemach TN-C są stosowanie dodatkowych środków ochrony, takich jak zabezpieczenia przez izolację oraz odpowiednie uziemienie, które mogą zminimalizować ryzyko porażenia. Zgodnie z normą PN-IEC 60364, zaleca się użycie układów TN-S lub TT, gdzie separacja przewodów PE i N pozwala na skuteczne działanie WRP.

Pytanie 9

Która z podanych przyczyn prowadzi do włączenia przekaźnika Buchholtza w celu odłączenia transformatora?

A. Niesymetryczne obciążenie transformatora
B. Przerwa w uzwojeniu pierwotnym
C. Przerwa w uziemieniu neutralnego punktu
D. Zwarcie pomiędzy uzwojeniem pierwotnym a wtórnym
Zwarcie między uzwojeniem pierwotnym a wtórnym transformatora jest jednym z najpoważniejszych zagrożeń, które mogą prowadzić do uszkodzenia urządzenia. Przekaźnik Buchholtza działa jako ochrona transformatora przed skutkami zwarcia, gdyż monitoruje przepływ oleju w transformatorze. W przypadku zwarcia, dochodzi do nagłego wzrostu temperatury i ciśnienia, co powoduje ruch oleju, a to z kolei uruchamia przekaźnik. Odpowiedź na to pytanie odnosi się do podstawowych zasad ochrony urządzeń elektrycznych. Działanie przekaźnika Buchholtza jest zgodne z normami IEC 60214, które określają wymagania dla transformatorów olejowych. W praktyce, stosowanie przekaźników Buchholtza pozwala na wczesne wykrywanie problemów oraz minimalizowanie ryzyka poważnych awarii, co jest kluczowe dla zapewnienia ciągłości pracy systemów energetycznych. W przypadku zadziałania przekaźnika, operator jednostki powinien niezwłocznie przeprowadzić diagnostykę w celu ustalenia przyczyny i podjąć odpowiednie działania naprawcze.

Pytanie 10

Określ prawidłową sekwencję działań przy wymianie uszkodzonego łącznika świecznikowego w instalacji elektrycznej.
włączenie napięcia, sprawdzenie prawidłowości działania.

A. Sprawdzenie prawidłowości działania, włączenie napięcia, stwierdzenie braku napięcia, demontaż łącznika, montaż łącznika, wyłączenie napięcia
B. Wyłączenie napięcia, demontaż łącznika, montaż łącznika, sprawdzenie prawidłowości działania, stwierdzenie braku napięcia, włączenie napięcia
C. Wyłączenie napięcia, stwierdzenie braku napięcia, demontaż łącznika, montaż łącznika, włączenie napięcia, sprawdzenie prawidłowości działania
D. Stwierdzenie braku napięcia, wyłączenie napięcia, demontaż łącznika, montaż łącznika, sprawdzenie
Kiedy zabierasz się za wymianę uszkodzonego łącznika świecznikowego, najważniejsze to zacząć od wyłączenia napięcia. Bez tego krok nie tylko porażka może się wydarzyć, ale coś gorszego. Potem, zanim zaczniesz grzebać w instalacji, dobrze jest upewnić się, że naprawdę nie ma napięcia w obwodzie. To trochę jak dobre nawyki, które mogą uratować życie. Jak już to masz za sobą, możesz zająć się demontażem starego łącznika, ale pamiętaj, żeby być ostrożnym – nigdy nie wiadomo, co może się zdarzyć. Po włożeniu nowego łącznika, dopiero wtedy możesz włączyć napięcie i sprawdzić, czy wszystko działa. Taka kolejność jest super ważna i zgadza się z normami bezpieczeństwa, jak PN-IEC 60364, które mówią, jak robić to bezpiecznie. W sumie, w domowym warsztacie to przydatna wiedza, bo często coś się psuje i warto wiedzieć, jak to zrobić porządnie i bezpiecznie.

Pytanie 11

Obwody zasilające gniazda wtyczkowe o maksymalnym prądzie 32 A powinny być chronione przez wyłącznik RCD o prądzie różnicowym nominalnym

A. 500 mA
B. 100 mA
C. 30 mA
D. 1 000 mA
Wyłącznik RCD o znamionowym prądzie różnicowym 30 mA jest zalecany do ochrony osób przed porażeniem elektrycznym, szczególnie w obwodach zasilających gniazda wtyczkowe, gdzie może wystąpić kontakt z wodą lub innymi substancjami przewodzącymi. Zgodnie z normami, takimi jak PN-EN 61008-1, wyłączniki te są projektowane w celu wykrywania niewielkich różnic prądowych, które mogą wskazywać na niebezpieczne sytuacje. Przykładowo, w łazienkach, kuchniach czy miejscach narażonych na wilgoć, użycie RCD 30 mA znacząco zwiększa bezpieczeństwo użytkowników, minimalizując ryzyko porażenia prądem. Dodatkowo, warto zauważyć, że wyłączniki o wyższych wartościach prądów różnicowych, jak 100 mA czy 500 mA, są zazwyczaj stosowane w obwodach ochrony przeciwpożarowej, a nie w zastosowaniach bezpośrednio związanych z użytkownikami, co czyni 30 mA optymalnym wyborem w kontekście ochrony osób.

Pytanie 12

Jakiego urządzenia pomiarowego należy użyć do określenia prędkości obrotowej wału silnika?

A. Higrometru termo.
B. Prądnicy tachometrycznej.
C. Tensometru mostkowego.
D. Pirometru
Prądnica tachometryczna to przyrząd pomiarowy, który jest powszechnie stosowany do pomiaru prędkości obrotowej wałów silników. Działa na zasadzie generowania napięcia elektrycznego proporcjonalnego do prędkości obrotowej wału, co pozwala na łatwe i precyzyjne odczyty. Przykładem zastosowania prądnicy tachometrycznej są silniki elektryczne w przemyśle, gdzie monitorowanie prędkości obrotowej jest kluczowe dla zapewnienia optymalnej pracy maszyny oraz ochrony przed przeciążeniem. Standardy branżowe, takie jak IEC 60034, zalecają stosowanie prądnic tachometrycznych w systemach automatyzacji i sterowania, co podkreśla ich znaczenie w zapewnianiu efektywności energetycznej i bezpieczeństwa eksploatacji. Dodatkowo, prądnice tachometryczne mogą być używane w systemach feedbackowych, co pozwala na automatyczne dostosowywanie parametrów pracy silnika w odpowiedzi na zmieniające się warunki operacyjne.

Pytanie 13

Który z podanych sposobów ochrony przed porażeniem elektrycznym pełni rolę zabezpieczenia dodatkowego w przypadku uszkodzenia instalacji elektrycznych niskonapięciowych?

A. Separacja elektryczna odbiornika
B. Ochronne miejscowe połączenia wyrównawcze
C. Umieszczenie części czynnych poza zasięgiem ręki
D. Podwójna lub wzmocniona izolacja elektryczna
Odpowiedzi takie jak podwójna lub wzmocniona izolacja elektryczna, separacja elektryczna odbiornika oraz umieszczenie części czynnych poza zasięgiem ręki, są istotnymi elementami ochrony przeciwporażeniowej, lecz nie spełniają roli uzupełniającej w kontekście uszkodzeń w instalacjach niskonapięciowych. Podwójna lub wzmocniona izolacja może rzeczywiście skutecznie chronić przed porażeniem, jednak w przypadku jej uszkodzenia nie zapewnia dodatkowej ochrony, ponieważ nie ma możliwości odprowadzenia prądu do ziemi. Separacja elektryczna, polegająca na oddzieleniu odbiornika od źródła zasilania, może zredukować ryzyko, ale nie eliminuje go całkowicie i nie zapewnia dodatkowego zabezpieczenia w przypadku awarii izolacji. Umieszczenie części czynnych poza zasięgiem ręki to praktyka prewencyjna, która ma na celu zminimalizowanie ryzyka dostępu do niebezpiecznych elementów, jednak nie odpowiada na sytuacje, gdy dojdzie do awarii systemu. Kluczowym błędem w myśleniu jest skupienie się na pojedynczych metodach ochrony, zamiast na kompleksowym podejściu do bezpieczeństwa elektrycznego. Właściwe wdrożenie połączeń wyrównawczych, zgodnie z normami EN 61140, ma fundamentalne znaczenie w kontekście całościowego bezpieczeństwa instalacji elektrycznych.

Pytanie 14

W tabeli przedstawiono wyniki pomiarów napięć między przewodami w sieci typu TN-C-S. Jakie uszkodzenie występuje w instalacji?

L1-N240 V
L2-N240 V
L3-N240 V
PEN-N0 V
PEN-PE10 V
A. Uszkodzenie przewodu N
B. Przebicie izolacji między L1-N
C. Brak ciągłości przewodu PE
D. Zwarcie między fazami L1-L2
Brak ciągłości przewodu PE w instalacjach TN-C-S jest kluczowym problemem, który może prowadzić do poważnych zagrożeń dla bezpieczeństwa. W sieci TN-C-S przewód PEN pełni podwójną rolę: przewodu neutralnego oraz ochronnego. Przykładowo, w sytuacji, gdy napięcie między przewodem PEN a PE wynosi 10 V, wskazuje to na brak ciągłości w przewodzie PE. W idealnych warunkach napięcie to powinno wynosić 0 V, co oznacza, że przewód ochronny jest prawidłowo uziemiony i pełni swoją funkcję zabezpieczającą. W przypadku braku ciągłości przewodu PE, istnieje ryzyko, że metalowe obudowy urządzeń mogą stać się naładowane, co stwarza niebezpieczeństwo porażenia prądem. W praktyce, wszelkie prace w instalacjach elektrycznych powinny być prowadzone zgodnie z normami, takimi jak PN-IEC 60364, które podkreślają znaczenie prawidłowego uziemienia i ochrony przeciwporażeniowej. Regularne pomiary i inspekcje mogą pomóc w identyfikacji takich problemów, co jest zgodne z zaleceniami zawartymi w dokumentach branżowych.

Pytanie 15

Która z poniższych czynności nie jest częścią badań eksploatacyjnych silnika elektrycznego?

A. Przeprowadzenie próbnego rozruchu urządzenia
B. Pomiar rezystancji uzwojeń stojana
C. Weryfikacja stanu ochrony przeciwporażeniowej
D. Pomiar napięcia zasilającego
Analizując pozostałe czynności, które zostały wymienione, można zauważyć, że zarówno pomiar rezystancji uzwojeń stojana, jak i sprawdzenie stanu ochrony przeciwporażeniowej są niezwykle istotnymi elementami w kontekście diagnostyki silników elektrycznych. Pomiar rezystancji uzwojeń dostarcza informacji o stanie izolacji oraz zużyciu uzwojeń, co jest kluczowe dla przewidywania żywotności silnika. Na przykład, niska rezystancja może sugerować uszkodzenie izolacji, co prowadzi do ryzyka zwarcia. Kolejnym ważnym aspektem jest ochrona przeciwporażeniowa, która ma na celu zapewnienie bezpieczeństwa operatorów. Sprawdzenie stanu ochrony jest wymagane przez normy, takie jak IEC 60204-1, które określają wymagania dotyczące bezpieczeństwa sprzętu elektrycznego w maszynach. Rozruch próbny to ostatni krok w procesie, który pozwala na testowanie silnika w rzeczywistych warunkach operacyjnych, co pozwala zidentyfikować ewentualne problemy w jego działaniu. Ignorowanie tych czynności może prowadzić do poważnych konsekwencji, w tym awarii silnika oraz zagrożeń dla bezpieczeństwa pracy. Dlatego kluczowe jest zrozumienie, że każda z wymienionych czynności ma swoje miejsce i znaczenie w kontekście eksploatacji silnika elektrycznego.

Pytanie 16

Na wyjściu układu zasilacza przedstawionego na schemacie zaobserwowano przebieg napięcia pokazany na rysunku. Oznacza to, że

Ilustracja do pytania
A. dioda jest sprawna, a uszkodzony jest kondensator.
B. uszkodzona jest dioda i kondensator.
C. układ pracuje prawidłowo.
D. uszkodzona jest dioda, a kondensator jest sprawny.
W analizowanym przypadku, błędne odpowiedzi sugerują nieprawidłowe interpretacje działania układu zasilacza. W pierwszym przypadku stwierdzono uszkodzenie diody i sprawność kondensatora, co jest niezgodne z obserwowanym przebiegiem napięcia, który pokazuje, że dioda działa poprawnie, a kondensator jest odpowiedzialny za pulsacje. Kolejna koncepcja zakłada, że zarówno dioda, jak i kondensator są uszkodzone. Taki wniosek prowadzi do błędnych założeń, ponieważ jeśli dioda byłaby uszkodzona, prąd nie przepływałby w ogóle, a przebieg napięcia byłby znacznie bardziej chaotyczny. W przypadku trzeciej opcji, twierdzenie, że układ pracuje prawidłowo, jest mylące, gdyż pulsujące napięcie wskazuje na problemy z kondensatorem. Uszkodzenie kondensatora skutkuje wzrostem tętnień, co nie jest akceptowalne w standardach dotyczących stabilności zasilania w urządzeniach elektronicznych. Typowe błędy myślowe obejmują ignorowanie kluczowej roli kondensatora w procesie filtrowania oraz niewłaściwe przypisanie funkcji diody. Zrozumienie tych podstawowych zasad działania układów zasilających jest niezbędne do poprawnej diagnostyki i konserwacji sprzętu elektronicznego.

Pytanie 17

Podczas wymiany uzwojeń w jednofazowym transformatorze o parametrach: SN = 200 VA , U1N = 230 V, U2N = 14,6 V, uzwojenie pierwotne powinno być wykonane z drutu nawojowego

A. o większej średnicy i większej liczbie zwojów niż uzwojenie wtórne
B. o mniejszej średnicy i mniejszej liczbie zwojów niż uzwojenie wtórne
C. o tej samej średnicy i większej liczbie zwojów niż uzwojenie wtórne
D. o większej średnicy i mniejszej liczbie zwojów w porównaniu do uzwojenia wtórnego
Udzielenie odpowiedzi dotyczącej większej średnicy i mniejszej liczby zwojów niż uzwojenie wtórne, czy jakiejkolwiek innej nieprawidłowej odpowiedzi, opiera się na zrozumieniu podstawowych zasad działania transformatorów. Prawidłowe projektowanie uzwojeń wymaga znajomości zależności między napięciem, liczbą zwojów oraz prądem. Uzwojenie pierwotne musi mieć większą liczbę zwojów, aby zapewnić odpowiedni spadek napięcia, gdyż transformator działa na zasadzie indukcji elektromagnetycznej, gdzie stosunek napięcia do liczby zwojów jest kluczowy. W transformatorze, na podstawie wzoru: U1/U2 = N1/N2, gdzie U1 i U2 to napięcia uzwojeń, a N1 i N2 to liczby zwojów, możemy zobaczyć, że musimy mieć więcej zwojów w uzwojeniu pierwotnym. Ponadto, koncepcja zastosowania drutu mniejszej średnicy w uzwojeniu pierwotnym prowadzi do problemów z wytrzymałością na prąd oraz ciepłem, co może skutkować przeciążeniem i awarią transformatora. W praktyce, stosowanie odpowiednich norm, takich jak IEC 60076, pozwala na zapobieganie takim błędom projektowym poprzez określenie minimalnych wymagań dotyczących materiałów i konstrukcji uzwojeń. Zrozumienie tych zasad jest kluczowe dla każdego inżyniera zajmującego się projektowaniem systemów elektroenergetycznych.

Pytanie 18

Jaka jest minimalna wartość natężenia oświetlenia, która powinna być zapewniona w klasie, jeżeli na biurkach uczniów nie są umieszczone monitory ekranowe?

A. 200 lx
B. 300 lx
C. 400 lx
D. 500 lx
Minimalne natężenie światła w klasie, gdzie nie ma monitorów, to 300 lx. Mamy takie przepisy, jak PN-EN 12464-1, które mówią, jakie powinno być oświetlenie w miejscach pracy. W klasach odpowiednie oświetlenie to klucz dla dobrej nauki i komfortu uczniów. 300 lx pomaga skupić się, zmniejsza zmęczenie oczu i sprawia, że łatwiej jest czytać i pisać. W praktyce oznacza to, że w salach powinny być lampy, które równomiernie oświetlają wszystkie miejsca, żeby nie było cieni. Na przykład, można zastosować lampy LED o dobrej mocy. Są one energooszczędne i długotrwałe, a przy tym spełniają normy. Dobre oświetlenie wpływa pozytywnie na przyswajanie wiedzy i ogólne samopoczucie uczniów.

Pytanie 19

Jakie z wymienionych uszkodzeń można zidentyfikować podczas inspekcji instalacji elektrycznej?

A. Pogorszenie stanu mechanicznego połączeń przewodów
B. Obniżenie rezystancji izolacji przewodów
C. Przerwanie pionowego uziomu w ziemi
D. Zbyt długi czas reakcji wyłącznika różnicowoprądowego
W kontekście oględzin instalacji elektrycznej, zmniejszenie rezystancji izolacji przewodów, zbyt długi czas działania wyłącznika różnicowoprądowego oraz przerwanie uziomu pionowego w ziemi stanowią koncepcje, które mogą być mylące w kontekście ich lokalizacji podczas inspekcji. Zmniejszenie rezystancji izolacji przewodów jest krytycznym parametrem w ocenie stanu technicznego instalacji, jednak podczas wizualnej weryfikacji nie jest możliwe bezpośrednie zidentyfikowanie tego problemu. Wymaga to odpowiednich pomiarów przy użyciu specjalistycznych narzędzi, takich jak megger. Z kolei zbyt długi czas działania wyłącznika różnicowoprądowego może świadczyć o nieprawidłowościach w instalacji, ale również wymaga szczegółowych testów diagnostycznych, aby określić przyczynę opóźnienia. Ostatecznie przerwanie uziomu pionowego w ziemi, mimo że istotne dla bezpieczeństwa, również nie jest bezpośrednio zauważalne podczas podstawowej wizualizacji. Podczas inspekcji należy kierować się zasadą, że wiele ukrytych usterek wymaga użycia specjalistycznych narzędzi i technik, co wzmacnia potrzebę kompetentnych przeglądów i pomiarów, aby właściwie ocenić stan instalacji elektrycznej oraz zapewnić jej bezpieczeństwo i funkcjonalność.

Pytanie 20

Jakim przyrządem należy przeprowadzić bezpośredni pomiar mocy biernej?

A. Częstościomierza
B. Fazomierza
C. Watomierza
D. Waromierza
Waromierz jest specjalistycznym przyrządem pomiarowym, który umożliwia bezpośredni pomiar mocy biernej w obwodach prądu zmiennego. Działa na zasadzie pomiaru wartości mocy w układzie, w którym występuje przesunięcie fazowe między napięciem a prądem. Odpowiednią wartość mocy biernej można określić, wykorzystując wzór P = V * I * cos(ϕ), gdzie P to moc pozorna, a ϕ to kąt przesunięcia fazowego. Waromierz jest szczególnie przydatny w zastosowaniach przemysłowych, gdzie występują silniki elektryczne i inne urządzenia indukcyjne, które generują moc bierną. W praktyce, pomiar mocy biernej jest kluczowy dla optymalizacji efektywności energetycznej oraz dla zapobiegania nadmiernym kosztom związanym z opłatami za moc bierną. Przykładem zastosowania waromierza może być analiza obciążeń w zakładzie produkcyjnym, gdzie identyfikacja mocy biernej pozwala na odpowiednie dostosowanie charakterystyk urządzeń do potrzeb sieci energetycznej.

Pytanie 21

W tabeli przedstawiono parametry znamionowe silnika jednofazowego. Uruchomienie tego silnika bez kondensatora rozruchowego spowoduje

Typ silnikaSEh 80-2BF
Moc1,1 kW
Prędkość obrotowa2780 obr/min
Sprawność72%
Napięcie zasilania230 V, 50 Hz
Stopień ochronyIP 54
Rodzaj pracyS1
Współczynnik mocy0,97
Pojemność kondensatora pracy25 μF
Pojemność kondensatora rozruchowego70 μF
A. uszkodzenie silnika.
B. zmniejszenie mocy silnika.
C. zadziałanie wyłącznika różnicowoprądowego.
D. zmniejszenie momentu rozruchowego.
Silnik jednofazowy rzeczywiście wymaga kondensatora rozruchowego do prawidłowego startu. Kondensator ten wytwarza przesunięcie fazowe, co jest kluczowe dla generowania odpowiedniego momentu obrotowego. Kiedy silnik jest uruchamiany, kondensator rozruchowy tworzy pole magnetyczne, które pozwala na zainicjowanie ruchu wirnika. Bez tego kondensatora silnik nie jest w stanie wytworzyć wystarczającego momentu obrotowego, co prowadzi do problemów z uruchomieniem. W praktyce, takie silniki są powszechnie stosowane w domowych urządzeniach, takich jak wentylatory czy pompy, gdzie ich niezawodność jest kluczowa. W standardach branżowych, zgodnie z zasadami eksploatacji silników elektrycznych, konieczne jest stosowanie odpowiednich komponentów, aby zapewnić optymalne warunki pracy. Dlatego brak kondensatora rozruchowego skutkuje nie tylko trudnościami w uruchomieniu, ale także może prowadzić do uszkodzeń silnika w dłuższej perspektywie czasowej.

Pytanie 22

W łazience mieszkania konieczna jest wymiana uszkodzonej oprawy oświetleniowej, która znajduje się w odległości 30 cm od strefy prysznica. Jaki minimalny stopień ochrony powinna posiadać nowa oprawa?

A. IPX4
B. IPX7
C. IPX2
D. IPX1
Wybór oprawy oświetleniowej o stopniu ochrony IPX4 jest prawidłowy, ponieważ oznaczenie to wskazuje na odporność na zachlapania wodą z dowolnego kierunku. W łazienkach, zwłaszcza w strefie bliskiej prysznica, gdzie występuje ryzyko kontaktu z wodą, stosowanie opraw z odpowiednim stopniem ochrony jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz trwałości urządzeń. W strefach, gdzie woda może być w bezpośrednim kontakcie z oprawą, takie jak odległość 30 cm od kabiny prysznicowej, zaleca się stosowanie opraw o stopniu ochrony co najmniej IPX4. Przykłady zastosowania opraw oświetleniowych IPX4 obejmują nie tylko łazienki, ale również inne pomieszczenia narażone na wilgoć, takie jak kuchnie czy piwnice. Dobre praktyki sugerują również regularne kontrole stanu technicznego opraw oraz ich właściwą konserwację, aby zminimalizować ryzyko awarii i zapewnić długotrwałe użytkowanie.

Pytanie 23

Wkładki topikowe, jak przedstawiona na ilustracji, przeznaczone są do zabezpieczania

Ilustracja do pytania
A. urządzeń energoelektronicznych przed skutkami zwarć i przeciążeń.
B. przewodów elektrycznych wyłącznie przed skutkami zwarć.
C. urządzeń energoelektronicznych wyłącznie przed skutkami przeciążeń.
D. przewodów elektrycznych przed skutkami zwarć i przeciążeń.
Wkładki topikowe są kluczowymi elementami ochrony elektrycznej, które zapobiegają uszkodzeniom przewodów elektrycznych w wyniku przeciążeń i zwarć. Kiedy prąd przepływający przez obwód przekracza bezpieczny poziom, wkładka topikowa ulega przepaleniu, co przerywa obwód i chroni przed dalszymi szkodami. Jest to istotne w kontekście norm ochrony elektrycznej, takich jak PN-EN 60269, które określają wymagania dotyczące zabezpieczeń przed przeciążeniem i zwarciem. W praktyce wkładki topikowe są powszechnie stosowane w rozdzielniach elektrycznych oraz w instalacjach przemysłowych, gdzie odpowiednia ochrona przewodów jest niezbędna do zapewnienia bezpieczeństwa pracy oraz ochrony urządzeń. Dzięki zastosowaniu wkładek topikowych, użytkownicy mogą mieć pewność, że ich instalacje są zabezpieczone przed niebezpiecznymi sytuacjami, co jest kluczowe dla minimalizacji ryzyka pożaru i awarii sprzętu.

Pytanie 24

które z poniższych stwierdzeń dotyczących działania silnika bocznikowego prądu stałego wskazuje na występującą w nim nieprawidłowość?

A. Natężenie prądu w obwodzie wzbudzenia jest niższe niż w obwodzie twornika
B. Prędkość obrotowa wirnika na biegu jałowym jest wyższa od prędkości znamionowej
C. Natężenie prądu w obwodzie wzbudzenia przekracza to w obwodzie twornika
D. Prędkość obrotowa wirnika rośnie przy osłabieniu wzbudzenia
W analizowanych stwierdzeniach, błędne odpowiedzi mogą wynikać z nieporozumień dotyczących podstawowych zasad działania silników bocznikowych prądu stałego. Prąd w obwodzie wzbudzenia nie powinien być mniejszy niż w obwodzie twornika, ponieważ może to sugerować niedostateczne wzbudzenie, co prowadzi do zmniejszenia momentu obrotowego i osłabienia pracy silnika. Prędkość obrotowa wirnika wzrasta przy osłabieniu wzbudzenia, co jest zjawiskiem typowym dla silników prądu stałego, ale nie powinno być to mylone z normalnym działaniem. W rzeczywistości, obniżenie wzbudzenia prowadzi do zwiększenia prędkości obrotowej, ale również może prowadzić do niestabilności w pracy silnika i zwiększonego ryzyka przegrzania. Jednocześnie prędkość obrotowa na biegu jałowym nie powinna przekraczać prędkości znamionowej, ponieważ może to skutkować niewłaściwym działaniem silnika i potencjalnym uszkodzeniem komponentów. Kluczowe jest, aby operatorzy silników elektrycznych zrozumieli te zależności oraz systematycznie monitorowali parametry silnika, aby unikać sytuacji mogących prowadzić do awarii. Zrozumienie tych zasad jest niezbędne dla uzyskania efektywności oraz długowieczności systemów napędowych.

Pytanie 25

Zespół elektryków ma wykonać na polecenie pisemne prace konserwacyjne przy urządzeniu elektrycznym.
Jak powinien postąpić kierujący zespołem w przypadku stwierdzenia niedostatecznego oświetlenia w miejscu pracy?

Wykonać zleconą pracęPowiadomić przełożonego
o niedostatecznym oświetleniu
A.TAKNIE
B.TAKTAK
C.NIETAK
D.NIENIE
A. A.
B. B.
C. D.
D. C.
Wybór odpowiedzi C jest zgodny z zasadami BHP, które nakładają na kierownika zespołu obowiązek zapewnienia bezpiecznych warunków pracy. Niedostateczne oświetlenie stwarza ryzyko wypadków, co może prowadzić do poważnych konsekwencji zarówno dla pracowników, jak i dla pracodawcy. W sytuacji, gdy oświetlenie nie spełnia norm, kierujący zespołem powinien niezwłocznie zaprzestać wszelkich prac i poinformować przełożonego. Zgodnie z normą PN-EN 12464-1, miejsca pracy powinny być odpowiednio oświetlone, aby zminimalizować ryzyko błędów i wypadków. Przykładowo, w przypadku prac konserwacyjnych na wysokości, odpowiednie oświetlenie jest kluczowe dla bezpiecznej nawigacji i wykonywania zadań. Oprócz tego, zgodnie z wytycznymi BHP, pracownicy powinni być szkoleni w zakresie identyfikacji zagrożeń związanych z oświetleniem i wiedzieć, jak reagować w takich sytuacjach. Dlatego odpowiedź C nie tylko wskazuje na właściwe postępowanie, ale także na dbałość o bezpieczeństwo i zdrowie zespołu.

Pytanie 26

Podczas pracy z urządzeniami elektrycznymi na wysokościach, jakiego środka ochrony indywidualnej należy użyć?

A. Rękawice ochronne
B. Uprząż ochronna
C. Kask ochronny
D. Buty robocze
Uprząż ochronna jest kluczowym elementem zabezpieczenia podczas pracy na wysokościach, szczególnie w przypadku pracy z urządzeniami elektrycznymi. Główne zadanie uprzęży to zapewnienie bezpieczeństwa użytkownikowi przez zapobieganie upadkom z wysokości. Praca na wysokościach wiąże się z ryzykiem, które może prowadzić do poważnych obrażeń lub nawet śmierci. Dlatego przestrzeganie norm BHP i stosowanie odpowiednich środków ochrony indywidualnej jest absolutnie niezbędne. Standardy w branży elektrycznej, takie jak normy EN 361, dokładnie określają wymagania dotyczące uprzęży, w tym ich wytrzymałość oraz sposób użycia. Ważne jest, aby uprzęże były prawidłowo dopasowane i regularnie kontrolowane pod kątem uszkodzeń. Dodatkowo, w kontekście pracy z elektryką, warto zwrócić uwagę na to, aby uprząż nie zawierała metalowych elementów, które mogłyby przewodzić prąd. Moim zdaniem, stosowanie uprzęży ochronnych to nie tylko wymóg prawny, ale przede wszystkim kwestia odpowiedzialności za własne życie i zdrowie.

Pytanie 27

Jaką maksymalną wartość prądu ustawioną na przekaźniku termobimetalowym można zastosować w obwodzie zasilania silnika asynchronicznego o parametrach znamionowych UN = 400 V, PN = 0,37 kW, I = 1,05 A, n = 2710 l/min, aby zapewnić skuteczną ochronę przed przeciążeniem?

A. It = 1,15 A
B. It = 1,33 A
C. It = 0,88 A
D. It = 1,05 A
Odpowiedź It = 1,15 A jest prawidłowa, ponieważ przekaźniki termobimetalowe są stosowane do zabezpieczania silników elektrycznych przed przeciążeniem. W przypadku silnika o mocy 0,37 kW i prądzie znamionowym 1,05 A, kluczowe jest, aby wartość prądu zadziałania przekaźnika była odpowiednio wyższa od prądu znamionowego, jednak nie możemy jej ustawić zbyt wysoko, aby nie narazić silnika na przeciążenie. Ustalenie wartości na 1,15 A zapewnia odpowiedni margines, który pozwala na chwilowe przeciążenia, ale jednocześnie chroni silnik przed długotrwałym działaniem w warunkach przeciążenia. W praktyce, przekaźniki termobimetalowe są często ustawiane na wartości 1,1-1,2-krotności prądu znamionowego, co odpowiada normom bezpieczeństwa i wydajności. Stosując taką wartość, możemy zminimalizować ryzyko uszkodzenia silnika oraz zwiększyć jego trwałość i niezawodność. Przykładem zastosowania mogą być układy zasilania silników w przemysłowych aplikacjach, gdzie kontrola prądu jest kluczowa dla zachowania efektywności operacyjnej.

Pytanie 28

Jakie elementy wykorzystuje się w silnikach elektrycznych, aby chronić je przed negatywnymi skutkami wzrostu temperatury uzwojeń?

A. Termistor
B. Przekaźnik nadprądowy
C. Wyłącznik silnikowy
D. Bezpiecznik
Termistor to element półprzewodnikowy, który zmienia swoją rezystancję w zależności od temperatury. W silnikach elektrycznych termistory są powszechnie stosowane do monitorowania temperatury uzwojeń. Gdy temperatura wzrasta, rezystancja termistora zmienia się, co pozwala na wczesne wykrywanie przegrzewania. W praktyce, jeśli temperatura osiągnie ustalony próg, termistor może aktywować sygnał alarmowy lub bezpośrednio wyłączyć silnik, zapobiegając uszkodzeniom. Zastosowanie termistorów w silnikach elektrycznych jest zgodne z normami IEC 60034-1, które zalecają stosowanie odpowiednich zabezpieczeń termicznych w urządzeniach elektrycznych. Dobrą praktyką jest umieszczanie termistorów w pobliżu uzwojeń lub w ich konstrukcji, co pozwala na szybką reakcję na zmiany temperatury i ochronę przed przegrzewaniem, co może prowadzić do awarii. Termistory są stosowane nie tylko w silnikach, ale również w wielu aplikacjach, takich jak urządzenia AGD czy systemy HVAC, gdzie kontrola temperatury jest kluczowa dla prawidłowego funkcjonowania.

Pytanie 29

Jakie jest minimalne natężenie prądu wymagane do pomiaru ciągłości przewodu ochronnego?

A. 100 mA
B. 500 mA
C. 200 mA
D. 400 mA
Zauważ, że wartości takie jak 500 mA, 100 mA albo 400 mA mogą wydawać się w porządku, ale to nie jest to, co potrzebujemy do testowania ciągłości przewodów ochronnych. Na przykład 500 mA to za dużo, bo może uszkodzić elementy instalacji i stworzyć ryzyko dla osób przeprowadzających pomiary. Z kolei 100 mA może być za mało, żeby wychwycić problemy w dłuższych przewodach. Czasami ludzie myślą, że im wyższy prąd, tym lepsze wyniki, a to nie jest tak proste, jeśli chodzi o pomiary ciągłości. Ważne jest, żeby zrozumieć, że chodzi o wykrycie przerw, a nie testowanie wytrzymałości przewodu na wysokie prądy. Musisz dobierać natężenie zgodnie z normami, a w przypadku pomiarów ciągłości przewodów ochronnych, 200 mA to optymalna wartość.

Pytanie 30

Jakie warunki muszą zostać spełnione podczas pomiaru rezystancji izolacji w instalacji elektrycznej po wcześniejszym odłączeniu napięcia zasilającego?

A. Odłączone odbiorniki od gniazd wtyczkowych, włączone przełączniki oświetleniowe, wymontowane źródła światła
B. Włączone odbiorniki do gniazd wtyczkowych, włączone przełączniki oświetleniowe, wymontowane źródła światła
C. Odłączone odbiorniki od gniazd wtyczkowych, włączone przełączniki oświetleniowe, zamontowane źródła światła
D. Włączone odbiorniki do gniazd wtyczkowych, włączone przełączniki oświetleniowe, zamontowane źródła światła
Przy wykonywaniu pomiaru rezystancji izolacji w instalacji elektrycznej, kluczowe jest zapewnienie kompletnego bezpieczeństwa oraz dokładności uzyskiwanych wyników. Wyłączenie odbiorników z gniazd wtyczkowych eliminuje ryzyko przypadkowego załączenia obwodu, co mogłoby zafałszować wyniki pomiarów lub spowodować niebezpieczne sytuacje. Włączone łączniki oświetleniowe pozwalają na uzyskanie pełnej charakterystyki instalacji, ponieważ pomiar dotyczy także przewodów i elementów, które są podłączone do tych łączników. Wymontowanie źródeł światła jest istotne, ponieważ ich obecność może wprowadzać dodatkowe oporności i niepożądane elementy do obwodu, co może również wpłynąć na wynik pomiaru. Zgodnie z normami, takimi jak PN-EN 61557-2, poprawne wykonanie pomiarów rezystancji izolacji jest podstawą do oceny stanu technicznego instalacji oraz zapewnienia jej bezpieczeństwa użytkowania. W praktyce, przestrzeganie tych zasad jest kluczowe dla administratorów budynków, elektryków oraz firm zajmujących się konserwacją i modernizacją instalacji elektrycznych.

Pytanie 31

Na podstawie wyników pomiarów przedstawionych w tabeli określ, który z obwodów nie spełnia warunków ochrony przeciwporażeniowej.

ObwódNazwa urządzenia elektrycznegoZastosowane zabezpieczeniePrąd wyłączalny z charakterystykiCzas wyłączeniaZmierzona impedancjaPrąd zwarcia obliczeniowy
Ib w AIw w AT≤... w sZz w ΩIzw w A
A.gniazdo jednofazoweB16800,22,30100,00
B.gniazdo jednofazoweB16800,22,5390,09
C.gniazdo jednofazoweB16800,23,3668,45
D.gniazdo jednofazoweB16800,21,32174,24
A. D.
B. B.
C. A.
D. C.
Obwód C został zidentyfikowany jako ten, który nie spełnia warunków ochrony przeciwporażeniowej ze względu na prąd różnicowy równy 68,45A, który jest niższy niż prąd wyzwalający zabezpieczenia wynoszący 80A. Zgodnie z normą IEC 60364-4-41, prąd różnicowy powinien być wystarczająco duży, aby zapewnić skuteczne zadziałanie zabezpieczenia w przypadku awarii. W praktyce oznacza to, że jeśli wystąpiłby prąd upływowy, zabezpieczenie nie zadziałałoby, co stwarzałoby ryzyko porażenia prądem. Przykładem zastosowania tych norm może być instalacja zabezpieczeń różnicowoprądowych w budynkach mieszkalnych. Wysokiej jakości zabezpieczenia są niezbędne, aby zminimalizować ryzyko porażenia i pożaru, co jest kluczowe dla bezpieczeństwa użytkowników. Ponadto, regularne kontrole i testy tych zabezpieczeń są zalecane w celu upewnienia się, że działają one prawidłowo, co jest zgodne z praktykami utrzymania bezpieczeństwa elektrycznego.

Pytanie 32

Aby ocenić efektywność ochrony przeciwporażeniowej w silniku trójfazowym działającym w systemie TN-S, konieczne jest przeprowadzenie pomiaru

A. rezystancji uzwojeń fazowych silnika
B. impedancji pętli zwarcia w instalacji
C. prądu zadziałania wyłącznika instalacyjnego nadprądowego
D. czasu reakcji przekaźnika termobimetalowego
Odpowiedzi, które nie wskazują na pomiar impedancji pętli zwarcia, nie są właściwe w kontekście oceny skuteczności ochrony przeciwporażeniowej. Pomiar prądu zadziałania wyłącznika instalacyjnego nadprądowego, choć istotny, nie dostarcza pełnej informacji o skuteczności ochrony. Wyłącznik nadprądowy nie jest jedynym elementem ochrony, a jego prawidłowe działanie nie gwarantuje, że system jest odporny na wszystkie rodzaje uszkodzeń. Oprócz tego, pomiar rezystancji uzwojeń fazowych silnika, choć może być przydatny w diagnostyce silnika, nie odnosi się bezpośrednio do kwestii zadziałania zabezpieczeń w przypadku zwarcia. Z kolei pomiar czasu zadziałania przekaźnika termobimetalowego dotyczy ochrony przeciążeniowej, a nie bezpośrednio ochrony przeciwporażeniowej. Należy pamiętać, że skuteczna ochrona przeciwporażeniowa wymaga systematycznego monitora impedancji pętli zwarcia, co pozwala na identyfikację potencjalnych problemów w instalacji, które mogą prowadzić do poważnych zagrożeń. Kluczowym błędem jest zatem skupienie się na elementach, które nie dotyczą bezpośrednio ochrony przed porażeniem elektrycznym, co może prowadzić do fałszywego poczucia bezpieczeństwa.

Pytanie 33

Jakiego rodzaju zabezpieczenie powinno być zastosowane, gdy rozruch silnika indukcyjnego pierścieniowego bez urządzeń rozruchowych jest niedopuszczalny?

A. Zabezpieczenia przeciążeniowego
B. Zabezpieczenia nadnapięciowego
C. Zabezpieczenia podnapięciowego
D. Zabezpieczenia zwarciowego
Zastosowanie zabezpieczeń przeciążeniowych, zwarciowych, czy nadnapięciowych w kontekście rozruchu silników indukcyjnych pierścieniowych nie jest może najlepszym rozwiązaniem, bo jak rozruch się odbywa bez odpowiednich urządzeń, to może być kłopot. Zabezpieczenie przeciążeniowe niby chroni silnik przed przeciążeniem, no ale nie radzi sobie z problemem za niskiego napięcia. Z kolei zabezpieczenia zwarciowe mają na celu ochronę przed krótkimi spięciami, ale nie zapobiegają uruchomieniu przy niskim napięciu, co może prowadzić do uszkodzenia. Producenci sprzętu elektrycznego i dostawcy energii czasem zalecają stosowanie zabezpieczeń podnapięciowych jako ważny element w systemie ochrony silników, aby uniknąć złego rozruchu. Nadnapięcie to inny temat, jest groźne dla silnika, ale w kontekście rozruchu ważne jest to, żeby napięcie nie było za niskie, bo wtedy silnik nie ruszy, albo jeszcze gorzej – działa źle. Warto pomyśleć o tym, że wybór złego zabezpieczenia może prowadzić do dużych problemów i wyższych kosztów, co pokazuje, jak ważne jest, aby stosować odpowiednie rozwiązania według norm i dobrych praktyk inżynieryjnych.

Pytanie 34

Jakie części zamienne są najczęściej wymagane do serwisowania odkurzacza z jednofazowym silnikiem komutatorowym?

A. Przekładnie i skrzynki przekładniowe
B. Termostaty i czujniki temperatury
C. Grzałki oraz spirale grzejne
D. Szczotkotrzymacze oraz szczotki węglowe
Termostaty i czujniki temperatury, grzałki i spirale grzejne oraz przekładnie i skrzynki przekładniowe są elementami, które nie są typowe dla odkurzaczy z jednofazowym silnikiem komutatorowym, mimo że mogą mieć zastosowanie w innych urządzeniach elektrycznych. Termostaty i czujniki temperatury zajmują się monitorowaniem i kontrolą temperatury pracy urządzenia, co jest bardziej istotne w kontekście urządzeń grzewczych, a nie odkurzaczy. Użytkownicy często mylą funkcje tych komponentów, myśląc, że są one kluczowe dla działania odkurzacza, podczas gdy ich rola jest marginalna. Grzałki i spirale grzejne to elementy, które są stosowane w urządzeniach takich jak czajniki czy ogrzewacze, a nie w odkurzaczach, gdzie nie występuje potrzeba wytwarzania ciepła. Z kolei przekładnie i skrzynki przekładniowe są typowe dla urządzeń mechanicznych, w których wymagane jest zwiększenie momentu obrotowego, co nie ma zastosowania w przypadku odkurzaczy elektrycznych. W kontekście napraw odkurzaczy, koncentrowanie się na tych elementach prowadzi do nieefektywności i niepotrzebnych kosztów, co podkreśla znaczenie znajomości specyfiki urządzenia oraz odpowiednich części zamiennych. Dobrą praktyką przy serwisie odkurzacza jest zrozumienie, które elementy są rzeczywiście podatne na zużycie oraz jakie naprawy są najczęściej wykonywane.

Pytanie 35

Podczas wykonywania pomiarów okresowych na kablowej linii zasilającej 110 kV będzie mierzona rezystancja izolacji jednego z żył kabla w stosunku do pozostałych uziemionych żył. Jaki zakres pomiarowy powinien być ustawiony na urządzeniu pomiarowym, aby dokonany pomiar był poprawny?

A. 2000 MΩ, 2500 V
B. 200 MΩ, 1000 V
C. 2000 MΩ, 1000 V
D. 200 MΩ, 2500 V
Wybór zakresu 200 MΩ oraz 1000 V nie jest odpowiedni do pomiaru rezystancji izolacji wysokiego napięcia, jak w przypadku kabli 110 kV. Ustawienie na 200 MΩ ogranicza maksymalną rezystancję, jaką można zmierzyć, co może prowadzić do niedoszacowania stanu izolacji, szczególnie w przypadku kabli o wysokiej rezystancji, które mogą osiągać wartości znacznie przekraczające ten próg. Z kolei, wybór 1000 V jako napięcia pomiarowego nie jest wystarczający do przeprowadzenia wiarygodnych testów na kablach 110 kV. Przemysł elektroenergetyczny zaleca stosowanie wyższych napięć, takich jak 2500 V, aby uzyskać adekwatne wyniki, które odzwierciedlają rzeczywistą jakość izolacji. Przy pomiarach rezystancji izolacji istotna jest nie tylko sama wartość rezystancji, ale również odpowiednie napięcie, które pozwala na zdiagnozowanie potencjalnych defektów, takich jak mikropęknięcia czy degradacja materiałów izolacyjnych. Zbyt niskie napięcie i zakres mogą prowadzić do błędnych wniosków, co w dłuższej perspektywie może skutkować poważnymi awariami, zagrażającymi bezpieczeństwu instalacji oraz osób z nią związanych.

Pytanie 36

Który z poniższych rodzajów silników wyróżnia się najlepszą kontrolą prędkości obrotowej poprzez modyfikację wartości napięcia zasilającego?

A. Asynchroniczny pierścieniowy
B. Synchroniczny jawnobiegunowy
C. Asynchroniczny klatkowy
D. Prądu stałego
Silniki prądu stałego charakteryzują się doskonałą regulacją prędkości obrotowej, co czyni je idealnym wyborem w aplikacjach wymagających precyzyjnego sterowania. Dzięki prostocie zmiany napięcia zasilającego, można łatwo dostosować prędkość obrotową silnika do konkretnego zadania. Przykłady zastosowania obejmują napędy w robotyce, gdzie wymagana jest zmienna prędkość w zależności od zadań do wykonania, czy też w wentylatorach, gdzie regulacja obrotów wpływa na efektywność energetyczną. W przemyśle, silniki prądu stałego są wykorzystywane w maszynach takich jak dźwigi czy taśmociągi, gdzie precyzyjne zarządzanie prędkością jest kluczowe dla bezpieczeństwa i efektywności procesu. Dobre praktyki wskazują na wykorzystanie kontrolerów PWM (Pulse Width Modulation) do efektywnej regulacji napięcia oraz ograniczenia strat energii. Warto również zauważyć, że silniki te są bardziej odpowiednie do zadań, gdzie wymagana jest często zmiana kierunku obrotów, co również wpływa na ich popularność w różnorodnych aplikacjach.

Pytanie 37

Jakie oznaczenie będzie miał przewód – alternatywa dla przewodu OW 4×2,5 mm2 zasilającego przenośny trójfazowy silnik indukcyjny używany w warsztacie ślusarskim?

A. H03V2V2-F 3X2,5
B. H07RR-F 4G2,5
C. H07VV-U 4G2,5
D. H03V2V2H2-F 3X2,5
Odpowiedź H07RR-F 4G2,5 jest poprawna, ponieważ to oznaczenie odnosi się do elastycznego przewodu gumowego, który jest szczególnie przystosowany do zasilania urządzeń elektrycznych w warunkach przemysłowych, takich jak przenośne silniki indukcyjne. Przewód ten charakteryzuje się wysoką odpornością na działanie olejów, chemikaliów oraz mechanicznych uszkodzeń, co czyni go idealnym wyborem do użycia w warsztatach, gdzie występuje ryzyko uszkodzeń. Oznaczenie 4G2,5 wskazuje na to, że przewód składa się z czterech żył, z czego trzy mają przekrój 2,5 mm², co zapewnia odpowiednią wydajność prądową dla silników o mocy do około 7,5 kW w układzie trójfazowym. Ponadto, zgodnie ze standardami IEC, przewody takie jak H07RR-F spełniają wymagania dotyczące bezpieczeństwa i niezawodności, co jest niezbędne w środowisku pracy. W praktyce używając tego przewodu, można mieć pewność, że zapewnia on właściwe parametry zasilania oraz bezpieczeństwo użytkowania urządzeń elektrycznych.

Pytanie 38

Symbol graficzny którego przekaźnika przedstawiono na rysunku?

Ilustracja do pytania
A. Podnapięciowego.
B. Nadnapięciowego.
C. Nadprądowego.
D. Podczęstotliwościowego.
Wybór odpowiedzi na temat przekaźników wymaga zrozumienia ich funkcji oraz zastosowań w systemach automatyki. Odpowiedzi takie jak nadprądowy, podczęstotliwościowy oraz nadnapięciowy odnoszą się do różnych typów przekaźników, które działają w innych warunkach i mają różne funkcje. Przekaźnik nadprądowy, na przykład, jest używany do ochrony obwodów przed przeciążeniem; aktywuje się, gdy natężenie prądu przekroczy ustalony próg. Z kolei przekaźnik nadnapięciowy działa wtedy, gdy napięcie wzrośnie powyżej bezpiecznego poziomu. Oba te typy przekaźników są kluczowe dla zabezpieczenia układów elektrycznych, jednak ich działanie nie jest związane z niskim napięciem, co jest kluczowym aspektem w kontekście przekaźników podnapięciowych. Przekaźniki podczęstotliwościowe są rzadziej spotykane i służą do detekcji niskich częstotliwości sygnałów, co nie ma bezpośredniego związku z problematyką napięcia. Zrozumienie tych różnic jest kluczowe, aby uniknąć typowych błędów myślowych, które mogą prowadzić do niepoprawnych wniosków w kontekście projektowania obwodów i systemów kontrolnych. W praktyce, nieodpowiedni dobór przekaźników może prowadzić do awarii systemów, co podkreśla znaczenie wiedzy na temat ich działania i zastosowania w różnych sytuacjach inżynieryjnych.

Pytanie 39

Której z poniższych czynności nie da się zrealizować podczas próbnego uruchamiania zgrzewarki oporowej?

A. Pomiaru czasu poszczególnych etapów zgrzewania: docisku i przerwy
B. Pomiaru rezystancji izolacji pomiędzy uzwojeniem pierwotnym transformatora a obudową
C. Sprawdzenia działania przełącznika do zgrzewania pojedynczego oraz ciągłego
D. Sprawdzenia stanu oraz prawidłowości ustawienia elektrod
Pomiar rezystancji izolacji między uzwojeniem pierwotnym transformatora a obudową jest kluczowym krokiem w zapewnieniu bezpieczeństwa i niezawodności zgrzewarki oporowej. Wykonanie tego pomiaru przed rozpoczęciem użytkowania urządzenia pozwala na wykrycie ewentualnych uszkodzeń izolacji, co może prowadzić do zwarć elektrycznych czy porażenia prądem użytkowników. W praktyce, standardowe normy dotyczące bezpieczeństwa elektrycznego, takie jak IEC 60204-1, nakładają na producentów i operatorów obowiązek regularnego sprawdzania stanu izolacji urządzeń. Pomiar rezystancji izolacji można przeprowadzić za pomocą specjalistycznych mierników, które umożliwiają określenie wartości rezystancji w stosunku do wymaganych norm. Przykładowo, minimalna wartość rezystancji izolacji powinna wynosić co najmniej 1 MΩ w urządzeniach przemysłowych, co zapewnia odpowiedni poziom bezpieczeństwa. Regularne kontrole i pomiary takich parametrów, jak rezystancja izolacji, są częścią dobrych praktyk konserwacyjnych, które zapewniają długotrwałą sprawność i bezpieczeństwo urządzenia.

Pytanie 40

Ile minimum osób powinno zajmować się pracami w warunkach szczególnego zagrożenia?

A. Jedna osoba
B. Trzy osoby
C. Dwie osoby
D. Cztery osoby
Odpowiedź, że co najmniej dwie osoby powinny wykonywać prace w warunkach szczególnego zagrożenia, jest zgodna z zasadami bezpieczeństwa i higieny pracy (BHP). W praktyce oznacza to, że w sytuacjach stwarzających ryzyko dla zdrowia lub życia, konieczne jest, aby jedna osoba mogła nie tylko wykonać dane zadanie, ale także zapewnić wsparcie oraz interwencję w przypadku nagłego wypadku. Taka zasada jest szczególnie ważna w środowiskach, gdzie występują czynniki niebezpieczne, takie jak substancje chemiczne, prace na wysokości czy w zamkniętych przestrzeniach. W odniesieniu do standardów OSHA (Occupational Safety and Health Administration) oraz normy ISO 45001, które dotyczą zarządzania bezpieczeństwem i zdrowiem w pracy, posiadanie co najmniej dwóch pracowników przy takich zadaniach jest kluczowe dla zapewnienia odpowiedniej reakcji na potencjalne zagrożenia. Przykładem może być sytuacja, w której jeden pracownik może doznać kontuzji lub stracić przytomność, a drugi będzie w stanie wezwać pomoc lub udzielić pierwszej pomocy, co może uratować życie. Dwuosobowa obsada w trudnych warunkach stanowi także dodatkowy element kontroli i bezpieczeństwa, co jest zalecane w wielu branżach, takich jak budownictwo czy przemysł chemiczny.