Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 31 stycznia 2026 10:51
  • Data zakończenia: 31 stycznia 2026 11:00

Egzamin niezdany

Wynik: 15/40 punktów (37,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W którym wierszu tabeli protokołu ze sprawdzenia skuteczności samoczynnego wyłączenia napięcia, którego fragment przedstawiono na rysunku, należy w kolumnie "Ocena" wpisać "nie"?

Lp.Nazwa obwodu lub urządzeniaTyp zabezpieczeniaIn
A
Ia
A
Zs
Ω
Zs
Ω
tw
s
Ocena
tak/nie
parter
1tablica TO-1WT gG632690,440,785
2gniazdo 10A/ZS191 B10500,984,600,4
3gniazdo 10A/ZS191 B10508,804,600,4
4gniazdo podwójne 10A/Z bolec 1P 1210,030,03216670,2
In – prąd znamionowy urządzenia dla urządzeń RCD In = IΔn
Ia – prąd powodujący samoczynne wyłączenie: Ia = k·In, dla urządzeń RCD Ia = IΔn
k – współczynnik przeliczony z charakterystyki czasowo-prądowej badanego typu zabezpieczenia
Zs – impedancja pętli zmierzona
Zs – największa dopuszczalna impedancja pętli: Zs = Wk·U0/Ia
gdzie Wk - współczynnik korekcyjny obostrzający wartość wymaganą
tw – największy dopuszczalny czas zadziałania zabezpieczenia
A. 3
B. 4
C. 1
D. 2
Poprawna odpowiedź to 3, ponieważ wiersz ten wskazuje na zmierzoną impedancję pętli równą 8,80Ω, co znacznie przekracza maksymalną dopuszczalną wartość dla tego obwodu, wynoszącą 4,60Ω. Zgodnie z obowiązującymi normami, w tym z normą PN-EN 61008, która reguluje wymagania dotyczące urządzeń zabezpieczających, aby skutecznie zrealizować samoczynne wyłączenie napięcia, impedancja pętli musi mieścić się w określonych granicach. Jeśli wartość impedancji jest zbyt wysoka, oznacza to, że zabezpieczenie może nie zadziałać w odpowiednim czasie, co z kolei stwarza zagrożenie dla bezpieczeństwa użytkowników. Przykładowo, w instalacjach elektrycznych niskiego napięcia, przekroczenie wartości impedancji pętli może prowadzić do sytuacji, w której prąd zwarcia nie jest wystarczający, aby zadziałać wyłącznik automatyczny, co może skutkować poważnymi konsekwencjami. Dlatego ocena skuteczności samoczynnego wyłączenia napięcia w tym przypadku powinna być wpisana jako "nie".

Pytanie 2

Która z poniższych przyczyn powoduje, że przekaźnik Buchholza działa na wyłączenie transformatora?

A. Brak uziemienia punktu neutralnego
B. Niesymetryczne obciążenie transformatora
C. Zwarcie między uzwojeniem pierwotnym a wtórnym
D. Brak w uzwojeniu pierwotnym
Zwarcie między uzwojeniem pierwotnym i wtórnym to jedna z najpoważniejszych awarii, które mogą wystąpić w transformatorze. Przekaźnik Buchholza jest specjalnie zaprojektowany do detekcji i reagowania na tego typu problemy. W momencie, gdy dochodzi do zwarcia, prąd płynący przez uzwojenia gwałtownie wzrasta, co powoduje nagłe zmiany w przepływie oleju w transformatorze. Czujniki w przekaźniku Buchholza wykrywają te zmiany, co skutkuje jego aktywacją i wyłączeniem transformatora. Takie działanie ma na celu ochronę urządzenia przed dalszymi uszkodzeniami oraz minimalizację ryzyka wystąpienia poważnych awarii. W praktyce, stosowanie przekaźnika Buchholza jest normą w przemyśle energetycznym, działając zgodnie z wytycznymi Międzynarodowej Komisji Elektrotechnicznej (IEC) oraz krajowymi standardami ochrony urządzeń elektroenergetycznych. Regularne inspekcje i testy przekaźników Buchholza są kluczowe dla zapewnienia ich niezawodności i skuteczności w diagnostyce awarii, co jest istotne dla ciągłości dostaw energii.

Pytanie 3

W tabeli zamieszczono wyniki kontrolnych pomiarów rezystancji uzwojeń stojana silnika trójfazowego połączonych jak na przedstawionym schemacie. Przedstawione wyniki świadczą o

Rezystancja uzwojeń stojana
między zaciskami
Wartość
Ω
U1 – V1
V1 – W1
W1 – U115
Ilustracja do pytania
A. zwarciu międzyzwojowym w uzwojeniu V1 – V2
B. przerwie w uzwojeniu V1 – V2
C. zwarciu międzyzwojowym w uzwojeniu U1 – U2
D. przerwie w uzwojeniu W1 – W2
Zgłoszone odpowiedzi, które wskazują na zwarcie międzyzwojowe w uzwojęniach U1 – U2 lub V1 – V2, nie uwzględniają kluczowych zasad związanych z pomiarami rezystancji w silnikach trójfazowych. Zwarcia międzyzwojowe zazwyczaj objawiają się obniżeniem rezystancji, a w skrajnych przypadkach mogą prowadzić do przegrzewania się uzwojeń silnika, co z kolei może prowadzić do uszkodzeń termicznych. W omawianym przypadku, brak jakiejkolwiek wartości rezystancji (nieskończoność) w obwodach U1 – V1 oraz V1 – W1 jednoznacznie wskazuje na przerwę, a nie zwarcie. Takie nieprawidłowe wnioski mogą wynikać z braku zrozumienia przeprowadzonych pomiarów, gdzie mylenie przerwy z zwarciem jest powszechnym błędem. Ponadto, przerwy w uzwojeniach są często spowodowane czynnikami mechanicznymi, takimi jak wibracje czy niewłaściwe połączenia, co podkreśla znaczenie staranności w diagnostyce. W praktyce, błędne interpretacje wyników mogą prowadzić do nieodpowiednich działań serwisowych, co zwiększa ryzyko awarii i dodatkowych kosztów. Wnioskując, istotne jest, aby przy analizie wyników pomiarów stosować odpowiednie protokoły diagnostyczne i kierować się ich aktualnymi standardami, aby uniknąć nieporozumień w ocenie stanu technicznego silników.

Pytanie 4

W tabeli przedstawiono parametry znamionowe silnika jednofazowego. Uruchomienie tego silnika bez kondensatora rozruchowego spowoduje

Typ silnikaSEh 80-2BF
Moc1,1 kW
Prędkość obrotowa2780 obr/min
Sprawność72%
Napięcie zasilania230 V, 50 Hz
Stopień ochronyIP 54
Rodzaj pracyS1
Współczynnik mocy0,97
Pojemność kondensatora pracy25 μF
Pojemność kondensatora rozruchowego70 μF
A. zadziałanie wyłącznika różnicowoprądowego.
B. zmniejszenie mocy silnika.
C. zmniejszenie momentu rozruchowego.
D. uszkodzenie silnika.
Wybór odpowiedzi, że uruchomienie silnika jednofazowego bez kondensatora rozruchowego skutkuje zmniejszeniem mocy silnika, jest oparty na nieporozumieniu dotyczących zasad działania silników jednofazowych. Przede wszystkim, moc silnika jest zdefiniowana jako iloczyn momentu obrotowego i prędkości kątowej. Zmniejszenie mocy nie jest bezpośrednim skutkiem braku kondensatora, ale raczej niewłaściwego momentu obrotowego, który uniemożliwia start silnika. W pozostałych odpowiedziach również pojawiają się nieprawidłowe rozumowania. Na przykład, stwierdzenie, że brak kondensatora spowoduje zadziałanie wyłącznika różnicowoprądowego, jest mylne, ponieważ wyłączniki te działają w odpowiedzi na różnice prądów między przewodami, co nie ma związku z momentem rozruchowym silnika. Ostatnia odpowiedź sugerująca uszkodzenie silnika również jest nieprecyzyjna, ponieważ sam fakt braku kondensatora niekoniecznie prowadzi do uszkodzenia, lecz do niezdolności do uruchomienia. W praktyce, ważne jest zrozumienie, że silnik jednofazowy działający bez kondensatora może nie zacząć pracować, co w dłuższym okresie może prowadzić do jego uszkodzenia, ale samo w sobie nie jest to natychmiastowym skutkiem działania. Błędne odpowiedzi często wynikają z nieznajomości podstawowych zasad elektrotechniki oraz mechaniki ruchu obrotowego, dlatego kluczowe jest zapoznanie się z literaturą fachową oraz standardami, które dokładnie opisują zasady działania silników elektrycznych.

Pytanie 5

Który z wymienionych parametrów silnika indukcyjnego klatkowego można zmierzyć za pomocą przyrządu przedstawionego na rysunku?

Ilustracja do pytania
A. Rezystancję uzwojenia wirnika.
B. Rezystancję izolacji uzwojenia stojana.
C. Rezystancję uzwojenia stojana.
D. Rezystancję izolacji uzwojenia wirnika.
Odpowiedzi dotyczące pomiaru rezystancji uzwojenia wirnika oraz rezystancji izolacji uzwojeń wskazują na pewne nieporozumienia w zakresie działania miernika LCR oraz specyfiki pomiarów w silnikach indukcyjnych. Miernik LCR, będący narzędziem przeznaczonym do pomiarów wartości elektrycznych, jest w stanie mierzyć rezystancję uzwojeń, ale nie jest odpowiedni do pomiaru rezystancji izolacji, co jest zadaniem innych przyrządów, takich jak mierniki izolacji. Rezystancja izolacji jest kluczowym parametrem oceniającym stan izolacji w silnikach, a niedoszacowanie jej znaczenia może prowadzić do niebezpiecznych sytuacji, takich jak zwarcia czy uszkodzenia komponentów elektrycznych. Odpowiedzi dotyczące rezystancji uzwojenia wirnika nie uwzględniają faktu, że pomiar ten wymaga innych metod, które uwzględniają zarówno konstrukcję wirnika, jak i jego specyfikacje. To typowe błędy myślowe, które mogą wynikać z braku zrozumienia, jak różne komponenty silnika współdziałają oraz jakie narzędzia są wymagane do ich efektywnego pomiaru. Aby unikać takich nieporozumień, konieczne jest ciągłe kształcenie się w zakresie zasad działania urządzeń elektrycznych oraz ich diagnostyki.

Pytanie 6

Czym charakteryzują się urządzenia oznaczone znakiem pokazanym na rysunku?

Ilustracja do pytania
A. Wymagają ogrodzeń, jako ochrony przeciwporażeniowej.
B. Mają podwójną lub wzmocnioną izolację.
C. Muszą być zasilane bardzo niskim napięciem bezpiecznym.
D. Muszą być umieszczane poza zasięgiem ręki.
Wybór odpowiedzi, że urządzenia muszą być poza zasięgiem ręki, nie jest do końca trafny. Symbol klasy III pokazuje, że te urządzenia są tak zaprojektowane, żeby nie stwarzały ryzyka porażenia prądem w normalnych warunkach użytkowania. Umieszczanie ich poza zasięgiem ręki po prostu nie ma sensu w kontekście ich klasyfikacji. Kolejna mylna koncepcja to przekonanie, że potrzebują one ogrodzeń dla ochrony przed porażeniem. Urządzenia klasy III, które są zasilane bardzo niskim napięciem, nie wymagają dodatkowych środków ochrony, bo ich sama konstrukcja oraz niskie napięcie już zapewniają odpowiednie zabezpieczenia. Takie błędne zrozumienie może wynikać z braku wiedzy na temat norm i specyfikacji technicznych, co podkreśla, jak ważne jest, żeby znać zasady bezpieczeństwa elektrycznego oraz obowiązujące regulacje, jak na przykład PN-EN 61140.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Który z wymienionych zestawów narzędzi jest niezbędny do wymiany łożysk silnika przedstawionego na rysunku?

Ilustracja do pytania
A. Komplet kluczy, komplet wkrętaków, ściągacz łożysk, tuleja do łożysk, młotek.
B. Komplet kluczy, komplet wkrętaków płaskich, szczypce boczne, ściągacz łożysk, młotek.
C. Komplet wkrętaków, młotek, przecinak, tuleja do łożysk.
D. Klucz francuski nastawny, komplet wkrętaków, młotek gumowy, nóż monterski.
Analizując inne zestawy narzędzi, można zauważyć, że niektóre z nich nie zawierają kluczowych elementów potrzebnych do wymiany łożysk. Przykładowo, zestaw z wkrętakami, młotkiem, przecinakiem i tuleją do łożysk jest niewystarczający, ponieważ brakuje w nim ściegacza łożysk. Przecinak nie jest narzędziem odpowiednim do demontażu łożysk, a jego użycie może prowadzić do uszkodzenia silnika. Inny zestaw, zawierający klucz francuski, młotek gumowy i nóż monterski, również nie spełnia wymogów. Klucz francuski jest zbyt ogólnym narzędziem, które nie jest zawsze odpowiedni do pracy w ciasnych przestrzeniach silnika. Młotek gumowy może być użyty do montażu, ale nie jest kluczowy w procesie wymiany łożysk, a nóż monterski nie ma zastosowania w tym kontekście. Kluczowe jest, aby w procesie wymiany łożysk korzystać z narzędzi, które są dostosowane do specyfiki zadania, co zapewnia nie tylko bezpieczeństwo, ale także efektywność pracy. Pominięcie istotnych narzędzi, takich jak ściągacz łożysk, może prowadzić do problemów z montażem nowych łożysk oraz potencjalnych uszkodzeń silnika podczas prac serwisowych. Zawsze należy kierować się zasadami dobrych praktyk oraz standardami branżowymi, aby uniknąć błędów, które mogą wpływać na późniejszą eksploatację urządzenia.

Pytanie 9

Przeglądu przeciwpożarowego wyłącznika prądu należy dokonywać w okresach ustalonych przez producenta, lecz nie rzadziej niż raz na

A. pięć lat.
B. rok.
C. trzy lata.
D. dwa lata.
W przypadku przeciwpożarowego wyłącznika prądu kluczowe jest zrozumienie, że nie jest to zwykły aparat łączeniowy, tylko element systemu bezpieczeństwa pożarowego. Dlatego przyjęcie okresu co dwa, trzy czy pięć lat jest po prostu zbyt ryzykowne, nawet jeśli komuś wydaje się, że przecież „nic się nie dzieje” i instalacja działa latami. W praktyce takie wydłużanie interwałów przeglądów wynika często z myślenia w stylu: skoro wyłącznik jest rzadko używany, to zapewne się nie zużywa. To jest typowy błąd – aparatura, która długo stoi bez ruchu, potrafi się wręcz szybciej degradować: utleniają się styki, zapiekają się mechanizmy, uszczelki twardnieją, a środowisko (wilgoć, kurz, drgania) robi swoje. Okresy rzędu dwóch czy trzech lat mogą komuś kojarzyć się z przeglądami niektórych instalacji elektrycznych albo z kontrolą innych urządzeń, ale dla urządzeń przeciwpożarowych standardem jest cykliczność co najmniej roczna. Przy pięciu latach przerwy ryzyko, że w momencie pożaru wyłącznik nie zadziała prawidłowo, rośnie w sposób trudny do zaakceptowania, zarówno z punktu widzenia bezpieczeństwa ludzi, jak i odpowiedzialności prawnej właściciela obiektu. Moim zdaniem największy problem przy wybieraniu zbyt długiego okresu polega na tym, że ignoruje się rolę dokumentacji i wymogów producenta – instrukcje eksploatacji i zapisy przepisów ochrony przeciwpożarowej jasno wskazują, że urządzenia tego typu muszą być utrzymywane w stanie pełnej sprawności, a to bez regularnego, corocznego sprawdzania po prostu się nie uda. Dłuższe interwały mogą być kuszące z punktu widzenia kosztów, ale technicznie i formalnie nie bronią się, bo nie zapewniają wymaganej niezawodności w sytuacji zagrożenia.

Pytanie 10

Jeżeli w łączniku prądu stałego, którego schemat zamieszczono na rysunku, dokona się zamiany tyrystora GTOna tranzystor BJT, to szybkość działania łącznika

Ilustracja do pytania
A. zmniejszy się przy prostszym układzie sterowania.
B. zwiększy się przy prostszym układzie sterowania.
C. zwiększy się przy bardziej złożonym układzie sterowania.
D. zmniejszy się przy bardziej złożonym układzie sterowania.
W przypadku zamiany tyrystora GTO na tranzystor BJT w omawianym łączniku prądu stałego, wiele osób może błędnie zakładać, że układ sterowania stanie się bardziej złożony lub że szybkość działania łącznika nie ulegnie poprawie. Warto jednak zauważyć, że tyrystory GTO, mimo że mogą być wyłączane przez sygnał napięciowy, wymagają bardziej skomplikowanych układów sterujących, aby zapewnić ich prawidłowe funkcjonowanie. W związku z tym, przy prostszym układzie sterowania, można oczekiwać, że zastosowanie tranzystora BJT, który działa na zasadzie sterowania prądowego, uprości całą architekturę. Możliwe myślenie, że złożoność układu sterowania wzrośnie, może wynikać z niepełnego zrozumienia zasad działania obu typów półprzewodników. W rzeczywistości, BJT oferuje lepszą dynamikę przełączania, co oznacza, że będą one pracować szybciej w sytuacjach, gdzie wymagana jest szybka reakcja. Zatem, wybór BJT w zastosowaniach wymagających prostoty i szybkości, jak na przykład w układach zasilających, jest zgodny z zaleceniami dobrych praktyk inżynieryjnych, które dążą do optymalizacji zarówno funkcjonalności, jak i kosztów. Ignorowanie tych aspektów może prowadzić do błędnych decyzji inżynieryjnych, które mogą negatywnie wpłynąć na wydajność i niezawodność całego systemu.

Pytanie 11

Który z wymienionych bezpieczników powinien być użyty, aby chronić przed skutkami zwarć trójfazowego silnika klatkowego o prądzie znamionowym In = 12 A, jeśli jego prąd rozruchowy Ir = 5×In, a współczynnik rozruchu α = 3?

A. aM 20A
B. gR 20A
C. aM 16A
D. gF 35A
Wybór odpowiedzi gR 20A, aM 16A oraz gF 35A jest nieodpowiedni z kilku kluczowych powodów, które dotyczą zarówno charakterystyki tych bezpieczników, jak i obliczeń prądów związanych z zabezpieczeniem silnika klatkowego. Bezpiecznik gR, który jest stosowany głównie w aplikacjach o charakterze ogólnym, nie jest przystosowany do obsługi dużych prądów rozruchowych, które mogą wystąpić w przypadku silników. W przypadku prądu rozruchowego wynoszącego 60 A, a tym bardziej maksymalnego prądu 180 A, zastosowanie bezpiecznika gR może prowadzić do jego częstego przepalania, co skutkuje przestojami w pracy maszyny. Z kolei bezpiecznik aM 16A, mimo że jest lepszy od gR, wciąż nie wytrzyma prądów rozruchowych, które przewyższają jego zdolności, co prowadzi do niewłaściwego działania zabezpieczenia. Natomiast, wybór gF 35A, mimo że teoretycznie mógłby wydawać się odpowiedni, jest nieodpowiedni ze względu na fakt, że gF to bezpieczniki o charakterystyce szybkiej, które nie tolerują dużych prądów rozruchowych, co może skutkować ich uszkodzeniem w krytycznych momentach rozruchu maszyny. Zrozumienie charakterystyki prądów rozruchowych i wyboru odpowiednich zabezpieczeń jest kluczowe w kontekście bezpieczeństwa i efektywności pracy instalacji elektrycznych, a także w zgodności z normami i najlepszymi praktykami w branży.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Do pomiaru którego z wymienionych parametrów maszyn i urządzeń elektrycznych przygotowany jest przyrząd przedstawiony na rysunku?

Ilustracja do pytania
A. Prądu sterującego tyrystorem mocy.
B. Prądu pobieranego z sieci przez spawarkę transformatorową.
C. Prądu rozruchu silnika szeregowego.
D. Prądu wzbudzenia silnika pierścieniowego.
Odpowiedź, że przyrząd służy do pomiaru prądu rozruchu silnika szeregowego, jest poprawna, ponieważ miernik cęgowy jest idealnym narzędziem do takich zastosowań. Silniki szeregowe, dzięki swojej konstrukcji, przy rozruchu pobierają znacznie wyższy prąd niż podczas normalnej pracy, co może stanowić nawet kilkukrotność prądu nominalnego. Miernik cęgowy pozwala na szybki i nieinwazyjny pomiar, co jest nieocenione w praktyce, zwłaszcza w przypadku, gdy dostęp do obwodu jest ograniczony. Stosowanie tego typu mierników zgodne jest z najlepszymi praktykami w branży elektrycznej, gdzie minimalizacja ryzyka związanego z manipulowaniem przyłączonymi urządzeniami jest kluczowa. Dzięki możliwości pomiaru prądu w czasie rzeczywistym technicy mogą szybko ocenić stan urządzenia, co jest szczególnie ważne w kontekście diagnostyki i konserwacji. Warto również dodać, że zgodnie z normami IEC 61010, mierniki cęgowe muszą być odpowiednio skalibrowane, aby zapewnić dokładność pomiarów i bezpieczeństwo użytkowników.

Pytanie 14

W układzie prostego jednofazowego przekształtnika AC-DC zasilanego z sieci 230 V, którego schemat ideowy przedstawiono na rysunku, uległa uszkodzeniu jedna z diod prostowniczych. W czasie pracy odbiornik R0 pobiera znamionowy prąd o wartości 20 A. Pojemność kondensatora wynosi 1 mF. Którą z wymienionych diod można zastosować w miejsce uszkodzonej?

Ilustracja do pytania
A. D22-10R-04
B. D22-10R-02
C. D22-20R-04
D. D22-20R-02
Stosowanie diod o niewłaściwych parametrach może prowadzić do poważnych problemów w działaniu układów elektronicznych. Odpowiedzi, które nie spełniają wymagań dotyczących napięcia wstecznego lub prądu znamionowego, mogą w warunkach rzeczywistych prowadzić do ich uszkodzenia. Na przykład, dioda D22-10R-02 ma maksymalne napięcie wsteczne, które jest zbyt niskie, ponieważ nie osiąga wymaganego progu 325 V. Użycie takiej diody w układzie zasilającym 230 V może prowadzić do sytuacji, w której dioda nie wytrzyma napięcia, co skutkuje jej zniszczeniem i potencjalnym uszkodzeniem całego układu. Podobnie, dioda D22-10R-04, mimo że ma odpowiednie napięcie wsteczne, ma zaledwie 10 A prądu znamionowego, co jest niewystarczające w odniesieniu do 20 A pobieranego przez odbiornik. W kontekście przekształtników AC-DC, dążenie do zastosowania komponentów o wyższych parametrach niż podstawa jest kluczowe. Wiele osób nie zdaje sobie sprawy, że błędny dobór diod może prowadzić do nieprzewidywalnych awarii, które są nie tylko kosztowne, ale też czasochłonne w naprawie. Warto przypomnieć, że w elektronice, w szczególności przy projektowaniu zasilaczy, kluczowe jest stosowanie się do dobrych praktyk inżynieryjnych, które podkreślają znaczenie odpowiedniego doboru elementów dla zapewnienia stabilności i bezpieczeństwa działania układu.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Na rysunkach przedstawiono schemat prostownika oraz przebieg czasowy napięcia wyjściowego, który świadczy o uszkodzeniu

Ilustracja do pytania
A. uzwojenia wtórnego transformatora.
B. uzwojenia pierwotnego transformatora.
C. diody.
D. kondensatora.
Wybór odpowiedzi sugerujących uszkodzenie uzwojeń transformatora lub diody nie uwzględnia podstawowych zasad działania prostownika. Uzwojenia transformatora, zarówno pierwotne, jak i wtórne, odpowiedzialne są przede wszystkim za przekształcanie napięcia z jednego poziomu na inny. Ich uszkodzenie skutkowałoby brakiem napięcia na wyjściu prostownika, co jest zupełnie innym zjawiskiem niż obecność tętnień w napięciu. Uszkodzenie diody mogłoby prowadzić do niepełnej prostacji napięcia, ale w takim przypadku również wystąpiłyby wyraźne zmiany w kształcie fali, inne niż te, które obserwujemy przy problemach z kondensatorem. Typowe błędy myślowe prowadzące do tych niepoprawnych odpowiedzi dotyczą zrozumienia funkcji poszczególnych elementów w układzie. W praktyce, aby zdiagnozować problemy w układzie prostownika, nie wystarczy tylko spojrzeć na jedną charakterystykę, jaką jest kształt napięcia wyjściowego. Właściwe podejście wymaga zrozumienia interakcji między wszystkimi komponentami oraz ich wpływu na ogólne działanie układu. Konsekwentne stosowanie dobrych praktyk w diagnostyce oraz znajomość podstawowych parametrów technicznych elementów układu jest kluczem do prawidłowego rozwiązywania problemów. Dlatego tak ważne jest zrozumienie, że kondensator to kluczowy element zapewniający stabilność napięcia w układzie prostownika, a nie transformator czy dioda.

Pytanie 17

Przeglądy okresowe instalacji elektrycznej w budynkach mieszkalnych powinny być realizowane co najmniej raz na

A. 4 lata
B. 1 rok
C. 5 lat
D. 3 lata
Badania okresowe mieszkaniowej instalacji elektrycznej powinny być przeprowadzane co pięć lat, co jest zgodne z obowiązującymi przepisami prawa budowlanego oraz normami PN-HD 60364. Regularne kontrole instalacji elektrycznej są kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania systemu. W trakcie takich badań specjaliści sprawdzają między innymi stan izolacji przewodów, działanie zabezpieczeń oraz ich prawidłowe umiejscowienie. W praktyce oznacza to, że po pięciu latach użytkowania instalacji, warto zlecić jej audyt, aby upewnić się, że nie doszło do degradacji elementów elektrycznych, co mogłoby prowadzić do zwarcia lub pożaru. Dobrą praktyką jest również prowadzenie dokumentacji z przeprowadzonych badań, co ułatwia późniejsze analizy i decyzje dotyczące eksploatacji oraz ewentualnych modernizacji. Osoby wynajmujące mieszkania powinny być świadome, że odpowiedzialność za stan instalacji spoczywa na właścicielu, a regularne przeglądy są nie tylko wyrazem dbałości o bezpieczeństwo, ale również wymaganiem prawnym.

Pytanie 18

Jakie z wymienionych uszkodzeń można zidentyfikować podczas przeglądów podtynkowej instalacji elektrycznej?

A. Uszkodzenia mechaniczne obudów oraz osłon urządzeń elektrycznych
B. Przekroczenie maksymalnego czasu reakcji RCD
C. Pogorszenie jakości izolacji przewodów instalacji
D. Zerwanie w układzie przewodów ochronnych
Uszkodzenia mechaniczne obudów i osłon urządzeń elektrycznych są jednymi z najłatwiejszych do zidentyfikowania podczas oględzin podtynkowej instalacji elektrycznej. Obejmują one widoczne wgniecenia, pęknięcia oraz inne defekty zewnętrzne, które mogą negatywnie wpłynąć na bezpieczeństwo i funkcjonowanie instalacji. Obudowy urządzeń elektrycznych, takie jak skrzynki rozdzielcze czy osłony gniazdek, pełnią kluczową rolę w ochronie przed uszkodzeniami mechanicznymi oraz zapewnieniu bezpieczeństwa użytkowników. Regularne oględziny tych elementów są zalecane w ramach przeglądów okresowych, zgodnie z normami PN-EN 60204-1 dotyczącymi bezpieczeństwa maszyn oraz obowiązującymi przepisami prawa budowlanego. Przykładowo, w przypadku pękniętej obudowy gniazdka, istnieje ryzyko kontaktu z elementami przewodzącymi prąd, co może prowadzić do porażenia elektrycznego. Dlatego kluczowym jest, aby wszelkie uszkodzenia były niezwłocznie naprawiane, co podkreśla znaczenie systematycznych kontroli i odpowiednich działań prewencyjnych w zakresie utrzymania instalacji elektrycznych w dobrym stanie.

Pytanie 19

W czasie pracy urządzenia napędzanego silnikiem, którego układ połączeń przedstawiono na rysunku, stwierdzono zły stan osłon części wirujących. Określ kolejność otwierania wyłączników przy zatrzymywaniu silnika, a następnie kolejność ich zamykania podczas uruchamiania silnika, po dokonaniu wymiany osłon.

Zatrzymywanie silnika
(otwieranie wyłączników)
Uruchamianie silnika
(zamykanie wyłączników)
A.W2, W1W2, W1
B.W1, W2W2, W1
C.W1, W2W1, W2
D.W2, W1W1, W2
Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Analizując inne odpowiedzi, można zauważyć, że pominięcie kolejności wyłączania wyłącznika awaryjnego W2 wskazuje na brak zrozumienia podstawowych zasad bezpieczeństwa w obszarze eksploatacji urządzeń elektrycznych. Wyłącznik awaryjny jest kluczowym elementem zabezpieczającym, mającym na celu natychmiastowe odcięcie zasilania w sytuacjach kryzysowych. Zmiana kolejności wyłączania i włączania może prowadzić do poważnych konsekwencji, takich jak uszkodzenie sprzętu lub nawet zagrożenie zdrowia operatora. Typowym błędem myślowym jest przekonanie, że najpierw należy wyłączyć zasilanie główne, co może ograniczyć dostęp do mechanizmów zatrzymania. Bez przestrzegania właściwej procedury, operatorzy mogą spotkać się z nieprzewidzianymi okolicznościami, które prowadzą do niebezpiecznych sytuacji. Ponadto, wiedza na temat działania wyłączników i systemów zabezpieczeń jest kluczowa w kontekście norm i regulacji, które wymagają od przedsiębiorstw wdrażania skutecznych metod zarządzania ryzykiem. Ignorowanie tych zasad nie tylko zagraża bezpieczeństwu, ale również naraża organizacje na konsekwencje prawne związane z niewłaściwym przestrzeganiem przepisów BHP.

Pytanie 20

Jakiego typu zakłócenie zabezpieczają samodzielnie wkładki topikowe typu aM w przypadku przewodów zasilających urządzenia odbiorcze?

A. Przed przepięciem i przeciążeniem
B. Wyłącznie przed przeciążeniem
C. Wyłącznie przed zwarciem
D. Przed zwarciem i przeciążeniem
Zrozumienie funkcji wkładek topikowych aM w kontekście zabezpieczeń elektrycznych wymaga znajomości mechanizmów, które je definiują. Odpowiedzi sugerujące, że wkładki aM chronią tylko przed przeciążeniem, są błędne, ponieważ te elementy nie mają zdolności do wykrywania długotrwałych przeciążeń prądowych. W przypadku przeciążenia, wkładki te w ogóle nie reagują, co prowadzi do ich powolnego przegrzewania się, a w konsekwencji może doprowadzić do uszkodzenia instalacji. Ponadto, twierdzenie, że wkładki aM chronią przed przepięciem, jest również mylące. Przepięcia, które są nagłymi wzrostami napięcia, wymagają innych typów zabezpieczeń, takich jak ograniczniki przepięć, które są zaprojektowane do szybkiej reakcji na zmiany napięcia. Właściwe zrozumienie zabezpieczeń elektrycznych polega na znajomości ich specyfikacji i zastosowań, co jest kluczowe dla zapewnienia bezpieczeństwa i efektywności działania instalacji. Często dochodzi do pomylenia funkcji różnych zabezpieczeń, co prowadzi do niewłaściwego ich doboru i tym samym zwiększa ryzyko awarii lub pożaru. Dlatego ważne jest, aby projektując instalacje elektryczne, opierać się na standardach branżowych, które jasno definiują wymagania dla zabezpieczeń, tak aby każda ich funkcja była zrozumiana i stosowana w odpowiednich warunkach.

Pytanie 21

Podczas inspekcji silnika indukcyjnego klatkowego o mocy 11 kW, który działa bez obciążenia, można usłyszeć głośne stuki dochodzące z wnętrza urządzenia. Jaką przyczynę tej usterki można uznać za najbardziej prawdopodobną?

A. Niestabilne przymocowanie silnika do podłoża
B. Zanik napięcia w jednej z faz
C. Zużyte łożyska kulkowe na wale silnika
D. Zbyt wysoka temperatura urządzenia
Zbyt wysoka temperatura silnika zazwyczaj nie prowadzi do stuków, tylko do przegrzania i uszkodzenia izolacji uzwojeń. To sprawia, że silnik może tracić wydajność. Wpływ temperatury jest ważny, ale objawy z tym związane, jak przeciążenie, są bardziej subtelne i nie zawsze dają o sobie znać przez hałas. Jeżeli w jednej z faz napięcie zanika, to silnik może zacząć działać asymetrycznie i to może powodować drgania, ale to nie jest typowy powód stuków. Takie problemy częściej prowadzą do całkowitego zatrzymania silnika czy niestabilności, a nie do hałasu. Jeśli silnik nie jest stabilnie przymocowany do podłoża, to może to wpływać na jego działanie, ale nie ma to bezpośredniego związku z uderzeniami wewnętrznymi. Takie sytuacje mogą wywoływać wibracje, ale nie generują głośnych dźwięków, jak to ma miejsce przy zużytych łożyskach. W praktyce, szukanie przyczyn hałasu w silnikach wymaga zrozumienia, że wiele czynników może mieć wpływ na ich pracę. Często źle przeprowadzona analiza prowadzi do błędnych wniosków i nieefektywnej naprawy.

Pytanie 22

Silnik szeregowy prądu stałego pracuje w trybie dorywczym. Co może być najczęstszą przyczyną braku reakcji silnika po włączeniu napięcia zasilającego?

A. Przerwa w obwodzie twornika
B. Zabrudzony komutator
C. Nieodpowiednio dobrane szczotki
D. Wystająca izolacja między działkami komutatora
Zabrudzony komutator, choć może wpływać na działanie silnika, nie jest główną przyczyną braku reakcji silnika na załączenie napięcia. Zabrudzenie komutatora prowadzi do problemów z przewodnictwem prądu i może powodować niestabilne działanie lub przerywanie pracy silnika, jednak nie powoduje całkowitego braku reakcji na napięcie. Nieprawidłowo dobrane szczotki również mogą przyczyniać się do słabego kontaktu z komutatorem, co wpływa na wydajność, ale nie wyklucza możliwości działania silnika w przypadku przyłożenia napięcia. Wystająca izolacja między działkami komutatora może prowadzić do lokalnych zwarć, ale z reguły nie blokuje całkowicie funkcji silnika. W praktyce, aby uniknąć mylnych wniosków, należy dokładnie analizować objawy i zrozumieć, jak każdy element układu wpływa na jego funkcjonowanie. Kluczowe jest, by podczas diagnostyki silników prądu stałego podejść do problemu z perspektywy systemowej, rozpatrując wszystkie potencjalne przyczyny, a nie tylko te, które wydają się oczywiste. Właściwe techniki diagnostyczne oraz regularne przeglądy mogą pomóc w identyfikacji problemów zanim staną się poważnymi usterkami, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 23

Jaka może być przyczyna pojawienia się ujemnych wartości w przebiegu napięcia na odbiorniku o charakterze rezystancyjno-indukcyjnym zasilanym z prostownika, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. Zmiana parametrów odbiornika.
B. Nieprawidłowa praca układu sterującego.
C. Uszkodzenie jednego z tyrystorów.
D. Uszkodzenie diody.
Właściwie to ujemne wartości napięcia na odbiorniku rezystancyjno-indukcyjnym mogą się zdarzyć z różnych powodów, ale nie wszystkie powody są trafne. Na przykład zmiana parametrów odbiornika może coś namieszać, ale sama w sobie nie spowoduje ujemnych napięć. Odbiorniki pracują w określonym zakresie i ich zmiana raczej nie sprawi, że nagle dostaniemy napięcie ujemne. Co do tyrystorów, to one też nie są głównym winowajcą, bo działają w innych układach, a nie w prostownikach diodowych. Jak zepsuje się tyrystor, to może zajść przegrzanie, ale nie będzie to miało wpływu na kierunek prądu. A układ sterujący, chociaż może wprowadzać zamieszanie, też nie wyjaśnia ujemnych napięć. Warto te różnice zrozumieć, żeby lepiej diagnozować i naprawiać systemy elektroniczne.

Pytanie 24

Podczas pracy z urządzeniami elektrycznymi na wysokościach, jakiego środka ochrony indywidualnej należy użyć?

A. Rękawice ochronne
B. Kask ochronny
C. Uprząż ochronna
D. Buty robocze
Uprząż ochronna jest kluczowym elementem zabezpieczenia podczas pracy na wysokościach, szczególnie w przypadku pracy z urządzeniami elektrycznymi. Główne zadanie uprzęży to zapewnienie bezpieczeństwa użytkownikowi przez zapobieganie upadkom z wysokości. Praca na wysokościach wiąże się z ryzykiem, które może prowadzić do poważnych obrażeń lub nawet śmierci. Dlatego przestrzeganie norm BHP i stosowanie odpowiednich środków ochrony indywidualnej jest absolutnie niezbędne. Standardy w branży elektrycznej, takie jak normy EN 361, dokładnie określają wymagania dotyczące uprzęży, w tym ich wytrzymałość oraz sposób użycia. Ważne jest, aby uprzęże były prawidłowo dopasowane i regularnie kontrolowane pod kątem uszkodzeń. Dodatkowo, w kontekście pracy z elektryką, warto zwrócić uwagę na to, aby uprząż nie zawierała metalowych elementów, które mogłyby przewodzić prąd. Moim zdaniem, stosowanie uprzęży ochronnych to nie tylko wymóg prawny, ale przede wszystkim kwestia odpowiedzialności za własne życie i zdrowie.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Aby zapewnić dodatkową ochronę, obwody zasilające gniazda wtyczkowe, w których prąd nie przekracza 32 A, powinny być chronione przez wyłącznik RCD o prądzie różnicowym

A. 30 mA
B. 1 000 mA
C. 500 mA
D. 100 mA
Odpowiedź 30 mA jest prawidłowa, ponieważ wyłączniki różnicowoprądowe (RCD) o prądzie różnicowym 30 mA są zalecane do ochrony osób przed porażeniem prądem elektrycznym w instalacjach domowych i komercyjnych. W przypadku gniazd wtyczkowych, które obsługują urządzenia przenośne, istotne jest, aby ochrona była jak najszybsza i najskuteczniejsza, co osiąga się stosując RCD o niskim prądzie różnicowym. Wyłącznik 30 mA działa na zasadzie wykrywania różnicy prądów między przewodami fazowym a neutralnym, co pozwala na natychmiastowe odłączenie zasilania w przypadku wykrycia upływu prądu, który może być wynikiem zwarcia lub kontaktu z ciałem człowieka. Użycie wyłącznika o wyższym prądzie różnicowym, jak 100 mA lub 500 mA, nie zapewnia wystarczającej ochrony i może prowadzić do tragicznych skutków w przypadku porażenia. Przykładowo, w łazienkach, gdzie ryzyko kontaktu z wodą i prądem jest szczególnie wysokie, stosowanie RCD 30 mA jest wręcz obowiązkowe zgodnie z normami bezpieczeństwa elektrycznego.

Pytanie 29

Który z przedstawionych znaków bezpieczeństwa należy umieścić w widocznym miejscu przy urządzeniu elektrycznym, dla którego obowiązuje czasowy zakaz uruchamiania?

A. Znak 2.
Ilustracja do odpowiedzi A
B. Znak 3.
Ilustracja do odpowiedzi B
C. Znak 4.
Ilustracja do odpowiedzi C
D. Znak 1.
Ilustracja do odpowiedzi D
W tym zadaniu łatwo wpaść w pułapkę kojarzenia ogólnego zakazu z czasowym zakazem uruchamiania urządzenia. Wszystkie pokazane znaki są znakami zakazu, mają ten sam czerwony okrąg i ukośną kreskę, ale różni je znaczenie piktogramu w środku. Dla eksploatacji urządzeń elektrycznych kluczowe jest nie tyle ogólne „coś jest zabronione”, tylko dokładne wskazanie, jaka czynność ma być zakazana. Przy urządzeniu, którego nie wolno czasowo uruchamiać, chodzi konkretnie o zakaz załączania napędu, dźwigni, łącznika czy innego elementu sterowniczego. Z tego powodu właściwy jest znak z ręką na dźwigni, a nie np. symbol błyskawicy czy samą rękę nad powierzchnią. Znak z błyskawicą, mimo że kojarzy się z elektrycznością, zwykle oznacza zakaz zbliżania się lub określone ograniczenia związane z napięciem, a nie jednoznaczny zakaz uruchomienia. Może sugerować ogólne zagrożenie porażeniem, ale nie informuje operatora, że nie wolno przełączyć łącznika czy wcisnąć przycisku, bo trwają prace pod napięciem lub w stanie beznapięciowym. Podobnie znak z podeszwą buta odnosi się do zakazu chodzenia, wchodzenia lub naciskania stopą na daną powierzchnię, co ma znaczenie np. przy ochronie delikatnych elementów lub środków ochrony indywidualnej, ale nie ma nic wspólnego z czynnością załączania urządzenia. Znak z palcem nad powierzchnią z kolei dotyczy zakazu dotykania, wciskania czy opierania dłoni o element – bywa stosowany przy gorących, ostrych lub precyzyjnych częściach maszyn. W kontekście czasowego zakazu uruchamiania to za mało precyzyjne i może być źle zinterpretowane. Typowy błąd myślowy polega tutaj na wybieraniu znaku, który „ogólnie pasuje do elektryki” lub „ogólnie coś zabrania”, zamiast skojarzyć konkretną czynność eksploatacyjną: załączenie łącznika. Dobre praktyki BHP i normy dotyczące znaków bezpieczeństwa wymagają, żeby komunikat był jednoznaczny dla obsługi – operator musi od razu wiedzieć, że nie wolno przełączyć dźwigni ani uruchomić napędu. Dlatego tak ważne jest rozróżnianie znaków zakazu nie tylko po kolorze i kształcie, ale przede wszystkim po piktogramie czynności, której zakaz dotyczy.

Pytanie 30

Która z poniższych przyczyn powoduje nagły wzrost obrotów w trakcie działania silnika bocznikowego prądu stałego?

A. Przerwa w uzwojeniu wzbudzenia
B. Zwarcie w uzwojeniu komutacyjnym
C. Zwarcie w obwodzie twornika
D. Przerwa w obwodzie twornika
Przerwa w uzwojeniu wzbudzenia silnika bocznikowego prądu stałego prowadzi do nagłego wzrostu prędkości obrotowej, ponieważ uzwojenie wzbudzenia jest odpowiedzialne za generowanie pola magnetycznego, które współdziała z wirnikiem. Gdy uzwojenie wzbudzenia jest przerwane, pole magnetyczne gwałtownie słabnie, co skutkuje zmniejszeniem oporu elektromotorycznego. W efekcie, prąd w obwodzie twornika wzrasta, co prowadzi do przyspieszenia prędkości obrotowej wirnika. To zjawisko jest zgodne z zasadą działania silników prądu stałego, gdzie zmiana pola magnetycznego wpływa bezpośrednio na obroty silnika. W praktyce, takie nagłe zmiany mogą prowadzić do uszkodzenia silnika, a zatem w przypadku silników stosowanych w przemyśle, niezbędne jest monitorowanie stanu uzwojeń oraz stosowanie zabezpieczeń, takich jak urządzenia do detekcji przerwy w uzwojeniu, aby uniknąć niepożądanych skutków operacyjnych.

Pytanie 31

Czas pomiędzy kolejnymi kontrolami oraz próbami instalacji elektrycznych w budynkach mieszkalnych zbiorowego użytku nie powinien przekraczać okresu

A. 3 lata
B. 5 lat
C. 1 rok
D. 2 lata
Odpowiedź '5 lat' jest jak najbardziej zgodna z przepisami prawa i normami bezpieczeństwa, które dotyczą elektryki w budynkach. Ustalono ten okres, żeby zapewnić bezpieczeństwo dla użytkowników i zmniejszyć ryzyko awarii. Regularne przeglądy co pięć lat pomagają dostrzegać ewentualne usterki, zużycie materiałów albo niezgodności ze standardami. W budynkach wielorodzinnych, gdzie mieszka dużo ludzi, ważne jest, żeby instalacje były nie tylko sprawne, ale też bezpieczne. Jakby przeglądy były robione rzadziej, mogłoby to spowodować poważne zagrożenia, jak pożar czy porażenie prądem. W praktyce dobrze jest nie tylko trzymać się tej pięcioletniej zasady, ale i wprowadzać częstsze przeglądy, jeśli widzisz, że instalacja ma jakieś oznaki zużycia albo w przypadku obiektów, które są w większym ryzyku.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Który z wymienionych środków ochrony w przypadku uszkodzenia można stosować jedynie w sytuacji, gdy instalacja jest nadzorowana przez wykwalifikowane osoby?

A. Izolacja wzmocniona
B. Bardzo niskie napięcie SELV
C. Bardzo niskie napięcie PELV
D. Izolowanie stanowiska
Bardzo niskie napięcie PELV, izolacja wzmocniona oraz bardzo niskie napięcie SELV to metody ochrony, które, choć mają swoje zastosowanie, nie są właściwe w kontekście pracy pod nadzorem osób wykwalifikowanych przy uszkodzeniu instalacji elektrycznej. PELV (Protective Extra Low Voltage) to system, który zapewnia bezpieczeństwo dzięki zastosowaniu niskiego napięcia, jednak jego stosowanie nie wyklucza konieczności nadzoru. Izolacja wzmocniona odnosi się do zastosowania materiałów o podwyższonej odporności dielektrycznej, ale nie eliminuje możliwości wystąpienia niebezpiecznych napięć, zwłaszcza w przypadku uszkodzeń. Z kolei SELV (Separated Extra Low Voltage) to system, który zapewnia separację od wysokich napięć, ale jego efektywność polega na odpowiedniej konstrukcji instalacji i nie zastępuje bezpiecznych praktyk, takich jak stały nadzór wykwalifikowanych osób. W kontekście uszkodzenia instalacji, te metody ochrony mogą być niedostateczne, gdyż mogą nie zapewnić wystarczającego bezpieczeństwa w sytuacjach awaryjnych. Typowym błędem myślowym jest założenie, że niskie napięcia eliminują ryzyko, co jest niezgodne z rzeczywistością, szczególnie gdy instalacja wykazuje oznaki uszkodzenia. W takim przypadku kluczowe jest zapewnienie dodatkowych środków ochrony, takich jak izolowanie stanowiska, które pozwala na bezpieczne i profesjonalne podejście do naprawy oraz konserwacji instalacji elektrycznych.

Pytanie 34

W instalacjach oświetleniowych w mieszkaniach nie wolno używać opraw oświetleniowych stałych i regulowanych wykonanych w klasie ochronności

A. I
B. II
C. III
D. 0
Wybór klas I, II czy III wydaje się sensowny, ale tu trzeba zwrócić uwagę na bezpieczeństwo. Klasa I jest spoko, bo ma uziemienie, ale w wilgotnych miejscach może nie być wystarczająca. Klasa II, z dodatkową izolacją, też nie zawsze się sprawdzi, bo wciąż można mieć problem z porażeniem w miejscach, gdzie jest kontakt z wodą. Klasa III może wydawać się bezpieczniejsza, ale to dotyczy raczej specyficznych warunków. Używanie opraw klasy 0, które nie mają izolacji, jest po prostu niezgodne z normami, bo to nie tylko zagraża życiu, ale też nie spełnia wymagań norm PN-IEC 61140 i PN-EN 60598. Dlatego warto wiedzieć, że odpowiednia klasa ochronności jest kluczowa dla bezpieczeństwa w elektryce, a zły wybór może prowadzić do poważnych konsekwencji.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Na podstawie wyników pomiarów przedstawionych w tabeli określ, który z obwodów nie spełnia warunków ochrony przeciwporażeniowej.

ObwódNazwa urządzenia elektrycznegoZastosowane zabezpieczeniePrąd wyłączalny z charakterystykiCzas wyłączeniaZmierzona impedancjaPrąd zwarcia obliczeniowy
Ib w AIw w AT≤... w sZz w ΩIzw w A
A.gniazdo jednofazoweB16800,22,30100,00
B.gniazdo jednofazoweB16800,22,5390,09
C.gniazdo jednofazoweB16800,23,3668,45
D.gniazdo jednofazoweB16800,21,32174,24
A. C.
B. A.
C. B.
D. D.
Obwód C został zidentyfikowany jako ten, który nie spełnia warunków ochrony przeciwporażeniowej ze względu na prąd różnicowy równy 68,45A, który jest niższy niż prąd wyzwalający zabezpieczenia wynoszący 80A. Zgodnie z normą IEC 60364-4-41, prąd różnicowy powinien być wystarczająco duży, aby zapewnić skuteczne zadziałanie zabezpieczenia w przypadku awarii. W praktyce oznacza to, że jeśli wystąpiłby prąd upływowy, zabezpieczenie nie zadziałałoby, co stwarzałoby ryzyko porażenia prądem. Przykładem zastosowania tych norm może być instalacja zabezpieczeń różnicowoprądowych w budynkach mieszkalnych. Wysokiej jakości zabezpieczenia są niezbędne, aby zminimalizować ryzyko porażenia i pożaru, co jest kluczowe dla bezpieczeństwa użytkowników. Ponadto, regularne kontrole i testy tych zabezpieczeń są zalecane w celu upewnienia się, że działają one prawidłowo, co jest zgodne z praktykami utrzymania bezpieczeństwa elektrycznego.

Pytanie 37

Jakie czynności związane z użytkowaniem urządzeń elektrycznych są obowiązkiem personelu odpowiedzialnego za te urządzenia?

A. Zarządzanie czasem pracy
B. Przeglądy wymagające demontażu
C. Włączanie i wyłączanie
D. Oględziny wymagające demontażu
Uruchamianie i zatrzymywanie urządzeń elektrycznych to kluczowe zadanie pracowników obsługi, które wymaga znajomości procedur operacyjnych oraz bezpieczeństwa. Te czynności są istotne dla zapewnienia prawidłowego funkcjonowania urządzeń, co ma bezpośredni wpływ na efektywność produkcji. Przykładowo, w przemyśle wytwórczym, gdzie linie produkcyjne są często zautomatyzowane, pracownicy muszą umieć bezpiecznie uruchamiać i zatrzymywać maszyny, aby uniknąć przestojów lub uszkodzeń sprzętu. Ponadto, zgodnie z normami ISO 9001 dotyczącymi zarządzania jakością, skuteczne zarządzanie procesami, w tym właściwe uruchamianie i zatrzymywanie urządzeń, jest kluczowe dla zachowania wysokiej jakości produktów. Dobrą praktyką jest regularne szkolenie pracowników w zakresie procedur operacyjnych oraz stosowanie checklist, co zwiększa bezpieczeństwo i minimalizuje ryzyko wystąpienia awarii.

Pytanie 38

Który z poniższych środków ostrożności nie jest wymagany do bezpiecznego przeprowadzenia prac na linii napowietrznej odłączonej od zasilania?

A. Zarządzanie pracą w grupie
B. Ogrodzenie obszaru pracy
C. Używanie sprzętu izolacyjnego
D. Uziemienie odłączonej linii
Prace przy linii napowietrznej wyłączonej spod napięcia wymagają przestrzegania określonych zasad bezpieczeństwa, które zapewniają ochronę pracowników i minimalizują ryzyko wystąpienia niebezpiecznych sytuacji. Wykonywanie pracy zespołowo jest kluczowym elementem, ponieważ zespół wzajemnie się wspiera, co pozwala na szybsze reagowanie w przypadku niespodziewanych okoliczności. Pracownicy powinni być świadomi otoczenia i potencjalnych zagrożeń, co skutkuje zwiększoną ochroną. Uziemienie wyłączonej linii jest kolejnym kluczowym środkiem ostrożności. Uziemienie nie tylko chroni przed przypadkowym porażeniem, ale także zapewnia, że w przypadku jakiejkolwiek nieprzewidzianej sytuacji, nie wystąpi niebezpieczne napięcie. Ogrodzenie miejsca wykonywania pracy również odgrywa ważną rolę; zabezpiecza obszar przed dostępem osób nieuprawnionych, co jest zgodne z zasadami BHP. Błędne jest przekonanie, że te środki są zbędne, ponieważ każdy moment pracy przy instalacjach elektrycznych wiąże się z potencjalnym niebezpieczeństwem, nawet jeśli linia jest wyłączona. Standardy BHP oraz normy krajowe wyraźnie wskazują, że zabezpieczenie miejsca pracy i stosowanie odpowiednich procedur są nie tylko zalecane, ale wręcz wymagane, aby zapewnić maksymalne bezpieczeństwo w miejscu pracy.

Pytanie 39

Na placu budowy budynku mieszkalnego należy wykonać i zabezpieczyć instalację elektryczną tymczasową.
Który z symboli przedstawionych na rysunkach powinien być umieszczony na wyłączniku różnicowoprądowym wysokoczułym, aby ten był przystosowany do warunków środowiskowych?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Symbol D na wyłączniku różnicowoprądowym wysokoczułym jest kluczowy dla zapewnienia bezpieczeństwa elektrycznego na placu budowy budynku mieszkalnego. Jego zastosowanie jest zgodne z wymaganiami normy PN-EN 62423, która podkreśla znaczenie dostosowania urządzeń elektrycznych do trudnych warunków atmosferycznych. Na placach budowy często występują niskie temperatury, które mogą wpływać na działanie urządzeń elektrycznych. Wyłączniki różnicowoprądowe, oznaczone symbolem D, są przystosowane do pracy w takich warunkach, co oznacza, że ich czułość i funkcjonalność są zachowane nawet w ekstremalnych temperaturach. To istotne, ponieważ niewłaściwie dobrany sprzęt może prowadzić do awarii systemu, co w konsekwencji zagraża bezpieczeństwu pracowników. W praktyce, zastosowanie odpowiednich urządzeń elektrycznych, takich jak wyłączniki różnicowoprądowe wysokoczułe z symbolem D, jest standardem stosowanym w branży budowlanej, co zwiększa niezawodność instalacji elektrycznych i minimalizuje ryzyko porażenia prądem. Dodatkowo, warto zwrócić uwagę na regularne kontrole stanu technicznego takich urządzeń, aby zapewnić ich prawidłowe działanie w każdych warunkach.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.