Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 1 lutego 2026 11:29
  • Data zakończenia: 1 lutego 2026 11:38

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakim kolorem oznaczona jest wkładka topikowa, której wartość prądu znamionowego wynosi 20 A?

A. czerwony
B. żółty
C. szary
D. niebieski
Wkładki topikowe, jako elementy zabezpieczające w obwodach elektrycznych, są klasyfikowane według wartości prądu znamionowego, co znajduje swoje odzwierciedlenie w kolorach obudowy. W przypadku wkładki o prądzie znamionowym 20 A stosuje się kolor niebieski, co jest zgodne z normami określającymi oznaczenia kolorystyczne. W praktyce, znajomość tych norm jest kluczowa dla właściwego doboru zabezpieczeń w instalacjach elektrycznych. Użycie wkładek topikowych o odpowiednich wartościach jest istotne, aby zminimalizować ryzyko przegrzania oraz uszkodzeń instalacji. Przykładowo, w przypadku awarii lub zwarcia, wkładka o odpowiednim prądzie znamionowym zadziała w odpowiednim czasie, co zapewnia bezpieczeństwo użytkowania urządzeń elektrycznych. Warto zaznaczyć, że standardy międzynarodowe, takie jak IEC 60269, precyzują klasyfikację wkładek topikowych, co potwierdza ich istotną rolę w zapewnieniu bezpieczeństwa w obwodach elektrycznych.

Pytanie 2

Jakie parametry ma wyłącznik różnicowoprądowy, zastosowany w instalacji zasilającej mieszkanie, której schemat ideowy przedstawiono na rysunku?

Ilustracja do pytania
A. Prąd znamionowy 25 A i prąd znamionowy różnicowy 30 mA
B. Prąd znamionowy 30 mA i prąd znamionowy różnicowy 25 A
C. Prąd znamionowy 16 A oraz charakterystykę B
D. Prąd znamionowy 10 A oraz charakterystykę B
Jeśli wybierzemy złe parametry dla wyłącznika różnicowoprądowego, to często wynika to z niejasności co do ich funkcji. Odpowiedzi z prądem znamionowym 16 A i charakterystyką B to wpadka, bo nie spełniają zwykłych wymagań dla domowych instalacji. Charakterystyka B jest dla obwodów z silnikami, a to nie jest to, co zazwyczaj mamy w domach. Prąd 16 A jest za mały dla typowych obciążeń i może się przepalić. Mylące jest też podanie 30 mA jako prądu znamionowego, bo prąd różnicowy powinien być niższy. Jak podasz 10 A i charakterystykę B, to też będzie zgrzyt, bo to nie pasuje do norm dla domu. Kluczowe jest zrozumienie, jak działają te prądy, bo od tego zależy, jakie urządzenia wybierzesz. Wiedza o tym jest naprawdę istotna dla bezpieczeństwa w instalacjach elektrycznych.

Pytanie 3

Obwód oświetleniowy zasilany z rozdzielnicy przedstawionej na rysunku może pobierać długotrwale prąd nieprzekraczający

Ilustracja do pytania
A. 32 A
B. 16 A
C. 6 A
D. 20 A
Poprawna odpowiedź to 20 A, ponieważ stycznik SM-320, który jest kluczowym elementem obwodu oświetleniowego, ma prąd znamionowy wynoszący 20 A. W praktyce oznacza to, że stycznik ten jest przystosowany do długotrwałego obciążenia prądowego o takiej wartości, co jest istotne w kontekście zapewnienia bezpieczeństwa i niezawodności systemu oświetleniowego. Włączenie obwodu oświetleniowego z prądem przekraczającym 20 A mogłoby prowadzić do przeciążenia stycznika, co w konsekwencji może doprowadzić do jego uszkodzenia oraz zwiększonego ryzyka pożaru. Ponadto, w standardach branżowych, takich jak normy IEC, podkreśla się, że elementy obwodów elektrycznych należy dobierać zgodnie z ich maksymalnymi parametrami znamionowymi, aby uniknąć potencjalnych awarii. W tym kontekście, znajomość i respektowanie wartości nominalnych elementów obwodów jest fundamentalne dla projektowania bezpiecznych instalacji elektrycznych. Przykładem zastosowania tej wiedzy jest dobór odpowiednich zabezpieczeń dla oświetlenia w budynkach użyteczności publicznej, gdzie nadmiarowy prąd mógłby prowadzić do niebezpiecznych sytuacji.

Pytanie 4

Ile wynosi częstotliwość przebiegu przedstawionego wzorem?
$$ u(t) = 50 \sin\left(628t - \frac{\pi}{2}\right) V $$

A. 314 Hz
B. 100 Hz
C. 50 Hz
D. 628 Hz
Wzór na przebieg napięcia ma postać: u(t) = 50·sin(628t − π/2) V. Kluczowy jest tutaj współczynnik przy czasie t, czyli 628. To jest pulsacja, oznaczana zwykle grecką literą ω. Dla przebiegów sinusoidalnych zachodzi zależność: ω = 2πf, gdzie f to częstotliwość w hercach. Żeby policzyć częstotliwość, podstawiamy: 628 = 2πf. Stąd f = 628 / (2π). Ponieważ 2π ≈ 6,28, to 628 / 6,28 ≈ 100 Hz. Dlatego poprawna odpowiedź to 100 Hz. Amplituda 50 V nie ma wpływu na częstotliwość, określa tylko maksymalną wartość napięcia. Podobnie przesunięcie fazowe −π/2 zmienia jedynie punkt startu sinusoidy w czasie, a nie to, ile cykli na sekundę przebieg wykonuje. W praktyce taka analiza jest bardzo przydatna przy pracy z przemiennikami częstotliwości, zasilaczami impulsowymi czy układami sterowania silnikami. Gdy widzisz równanie z sinusem lub cosinusem, warto od razu wyłuskać trzy rzeczy: amplitudę (tu 50 V), pulsację ω (tu 628 rad/s) i fazę początkową (tu −π/2). Z mojego doświadczenia w technikum wiele zadań kręci się wokół prostego przekształcania wzoru ω = 2πf, więc dobrze to mieć w małym palcu. W sieci energetycznej w Polsce standardowo mamy 50 Hz, ale w elektronice, zasilaczach, filtrach czy układach audio często spotyka się 100 Hz, 1 kHz, 10 kHz i znacznie wyższe częstotliwości. Umiejętność szybkiego rozpoznawania częstotliwości z równania pozwala ocenić, z jakimi zjawiskami mamy do czynienia: czy to jeszcze klasyczna energetyka, czy już typowa elektronika wysokoczęstotliwościowa. W normach dotyczących kompatybilności elektromagnetycznej i jakości energii też operuje się właśnie częstotliwością i jej harmonicznymi, więc takie przekształcenia to po prostu chleb powszedni elektryka i elektronika.

Pytanie 5

Który sposób podłączenia instalacji oświetleniowej jest poprawny?

Ilustracja do pytania
A. Sposób II.
B. Sposób I.
C. Sposób III.
D. Sposób IV.
Poprawny jest Sposób III, ponieważ faza L1 jest prowadzona do łącznika, a z łącznika wraca jako przewód załączany do oprawy, natomiast przewód neutralny N biegnie bezpośrednio do lampy. Taki układ spełnia podstawową zasadę PN‑HD 60364, że łącznik oświetleniowy ma rozłączać przewód fazowy, a nie neutralny. Dzięki temu po wyłączeniu światła na gwincie oprawy nie występuje napięcie fazowe, co znacząco poprawia bezpieczeństwo przy wymianie źródła światła czy pracach serwisowych. W Sposobie III zachowana jest też ciągłość przewodu ochronnego PE, który jest doprowadzony do puszki/oprawy i nigdzie nie jest rozłączany, zgodnie z wymaganiami ochrony przeciwporażeniowej. W praktyce taki schemat spotkasz w typowych instalacjach domowych: do puszki łącznika schodzi tylko faza z obwodu oświetleniowego oraz przewód powrotny do lampy, a przewód neutralny i ochronny są łączone w puszce rozgałęźnej lub bezpośrednio w oprawie. Moim zdaniem to też najczytelniejszy układ przy późniejszych modernizacjach – łatwo dołożyć drugi łącznik, czujnik ruchu czy automat schodowy, bo sygnał fazowy jest w łączniku, a tory N i PE są nieprzerywane. Warto zapamiętać, że każda inna konfiguracja, w której odcina się N albo – co gorsza – manipuluje przewodem ochronnym, jest sprzeczna z dobrą praktyką i może powodować niebezpieczne stany napięciowe na metalowych częściach oprawy. Sposób III po prostu trzyma się zasady: faza przez łącznik, neutralny i ochronny na stałe do lampy.

Pytanie 6

Który z wymienionych parametrów jest związany z polem elektrycznym?

A. Gęstość ładunku.
B. Natężenie koercji. 
C. Indukcja szczątkowa.
D. Indukcyjność wzajemna.
Prawidłowo powiązałeś pole elektryczne z gęstością ładunku. To jest bardzo podstawowa, ale jednocześnie kluczowa zależność z elektrostatyki. Z prawa Gaussa wynika, że źródłem pola elektrycznego są właśnie ładunki elektryczne, a w ujęciu bardziej „technicznym” mówimy o gęstości ładunku w przestrzeni. Gęstość ładunku opisuje, ile ładunku przypada na jednostkę objętości, powierzchni lub długości przewodnika, i to bezpośrednio wpływa na wartość natężenia pola elektrycznego w danym miejscu. Im większa gęstość ładunku, tym silniejsze pole – oczywiście przy zachowaniu tego samego układu geometrycznego. W praktyce, w technice wysokich napięć, rozkład gęstości ładunku na powierzchni przewodników decyduje o lokalnych wzmocnieniach pola, co ma znaczenie np. przy projektowaniu izolatorów, głowic kablowych, przepustów. Z mojego doświadczenia wynika, że w projektach instalacji i urządzeń, nawet jeśli na co dzień nie liczy się gęstości ładunku „z kartki”, to rozumienie, że pole elektryczne wynika z ładunków, pomaga lepiej ogarniać zjawiska przeskoków, wyładowań niezupełnych czy przebicia izolacji. W normach dotyczących izolacji, odstępów izolacyjnych i koordynacji izolacji (np. PN-EN z zakresu wysokich napięć) pośrednio zakłada się tę zależność: dopuszczalne natężenia pola wynikają z tego, jakie rozkłady ładunku są jeszcze bezpieczne dla danego materiału izolacyjnego. Można powiedzieć, że gęstość ładunku jest takim „źródłem” pola, a wszystkie dalsze parametry elektryczne i dielektryczne są konsekwencją tego, jak to pole działa w materiałach i układach przewodzących. Dlatego właśnie z podanych opcji tylko gęstość ładunku jest ściśle i bezpośrednio związana z polem elektrycznym.

Pytanie 7

Jakie akcesoria, oprócz szczypiec, trzeba pobrać z magazynu, aby zasilić zamontowany plafon sufitowy, kiedy instalacja została wykonana przewodami YDYp?

A. Lutownicę, wiertarkę, ściągacz izolacji
B. Nóż monterski, wiertarkę, ściągacz izolacji
C. Wiertarkę, lutownicę, wkrętak
D. Ściągacz izolacji, nóż monterski, wkrętak
Odpowiedź, która wskazuje na konieczność użycia ściągacza izolacji, noża monterskiego i wkrętaka, jest prawidłowa, ponieważ te narzędzia są kluczowe w procesie podłączania plafonu sufitowego do instalacji elektrycznej. Ściągacz izolacji pozwala na dokładne usunięcie izolacji z końców przewodów YDYp, co jest niezbędne do ich prawidłowego połączenia. Nóż monterski jest przydatny do precyzyjnego cięcia przewodów oraz do ogólnych prac związanych z instalacją. Wkrętak natomiast jest podstawowym narzędziem do mocowania plafonu do sufitu, co wymaga użycia odpowiednich śrub. W kontekście praktyki instalacyjnej, ważne jest, aby przestrzegać standardów BHP oraz zasad dotyczących instalacji elektrycznych, co zwiększa bezpieczeństwo i funkcjonalność wykonanej pracy. Dobre praktyki obejmują również upewnienie się, że zasilanie jest wyłączone przed przystąpieniem do jakichkolwiek prac elektrycznych, co minimalizuje ryzyko porażenia prądem.

Pytanie 8

Który element oznacza się na schematach elektrycznych symbolem graficznym przedstawionym na rysunku?

Ilustracja do pytania
A. Autotransformator.
B. Dławik.
C. Gniazdo z transformatorem separacyjnym.
D. Łącznik krańcowy.
Gniazdo z transformatorem separacyjnym, oznaczone na schematach elektrycznych odpowiednim symbolem graficznym, pełni kluczową rolę w instalacjach elektrycznych, szczególnie w kontekście zapewnienia bezpieczeństwa użytkowników. Transformator separacyjny oddziela obwody niskonapięciowe od wysokiego napięcia, co minimalizuje ryzyko porażenia prądem. Zgodnie z normą PN-EN 60617, symbol graficzny dla gniazda z transformatorem separacyjnym jest jasno określony, co pozwala na łatwe rozpoznanie tego elementu na schematach. Przykładowo, w zastosowaniach medycznych, takie gniazda są często używane w aparaturze, gdzie kluczowe jest oddzielenie obwodów dla bezpieczeństwa pacjentów. Dzięki zastosowaniu transformatora separacyjnego, użytkownicy mogą być pewni, że ich sprzęt działa w bezpieczny sposób, a także spełnia wymogi dotyczące ochrony przed porażeniem elektrycznym. W praktyce, instalacja gniazd z transformatorem separacyjnym jest istotnym elementem ochrony w wielu branżach, co podkreśla znaczenie poprawnego rozpoznawania symboli graficznych na schematach.

Pytanie 9

Do którego typu źródeł światła zalicza się lampę przedstawioną na rysunku?

Ilustracja do pytania
A. Żarowych.
B. Elektroluminescencyjnych.
C. Rtęciowych.
D. Indukcyjnych.
Lampa przedstawiona na rysunku to lampa LED, która należy do grupy źródeł światła elektroluminescencyjnych. Emituje ona światło dzięki procesowi elektroluminescencji, gdzie prąd elektryczny przepływa przez półprzewodnikowe diody, powodując emisję fotonów. W przeciwieństwie do lamp żarowych, które generują światło poprzez podgrzewanie włókna, lampy LED są znacznie bardziej energooszczędne i mają dłuższą żywotność. Zastosowanie diod LED w oświetleniu wnętrz, ulic, a także w elektronice użytkowej, przyczynia się do zmniejszenia zużycia energii i emisji dwutlenku węgla. Zgodnie z normami, lampy LED są preferowane w nowoczesnych rozwiązaniach oświetleniowych ze względu na ich wysoką efektywność energetyczną i niski poziom ciepła generowanego podczas pracy. Dobre praktyki w zakresie oświetlenia wskazują na coraz szersze wykorzystanie technologii LED w różnych sektorach, od komercyjnych po domowe, co czyni je kluczowym elementem zrównoważonego rozwoju w branży oświetleniowej.

Pytanie 10

Symbol graficzny którego przewodu przedstawiono na ilustracji?

Ilustracja do pytania
A. Neutralnego.
B. Ochronnego.
C. Fazowego.
D. Uziemiającego.
Odpowiedź wskazująca na przewód neutralny jest prawidłowa, ponieważ symbol przedstawiony na ilustracji jest zgodny z normami IEC (Międzynarodowej Komisji Elektrotechnicznej), które określają oznaczenia przewodów w instalacjach elektrycznych. Przewód neutralny, oznaczony symbolem 'N', pełni kluczową rolę w systemach zasilania, umożliwiając powrót prądu do źródła zasilania. W praktyce przewód neutralny jest stosowany w instalacjach jednofazowych oraz trójfazowych, gdzie jego obecność zapewnia stabilność pracy urządzeń elektrycznych. Ważnym aspektem jest również odpowiednie podłączenie przewodu neutralnego do uziemienia w rozdzielnicy, co zwiększa bezpieczeństwo użytkowania instalacji oraz minimalizuje ryzyko porażenia prądem. Wszelkie prace związane z instalacjami elektrycznymi powinny być przeprowadzane zgodnie z normami PN-IEC, a także z zasadami BHP, co podkreśla znaczenie właściwego rozpoznawania i stosowania symboli przewodów.

Pytanie 11

W celu wyrównania potencjałów na elementach metalowych, występujących w budynku, które w normalnych warunkach nie są częścią obwodu elektrycznego, należy zainstalować element oznaczony cyfrą

Ilustracja do pytania
A. 1
B. 7
C. 5
D. 3
Odpowiedź ta jest poprawna, ponieważ wyrównanie potencjałów na elementach metalowych w budynku, które nie są częścią obwodu elektrycznego, jest kluczowym zagadnieniem w zakresie bezpieczeństwa elektrycznego. Szyna wyrównawcza, oznaczona cyfrą '1', pełni istotną funkcję w zapewnieniu, że wszystkie metalowe elementy, takie jak rury, obudowy urządzeń czy inne konstrukcje, są połączone z uziemieniem. Dzięki temu zapobiega się powstawaniu niebezpiecznych różnic potencjałów, które mogą prowadzić do porażeń elektrycznych. W praktyce, stosowanie szyn wyrównawczych jest zgodne z normami, takimi jak PN-EN 62305, które określają wymagania dotyczące ochrony przed porażeniem elektrycznym i zjawiskami wyładowań atmosferycznych. Dobrą praktyką jest regularne sprawdzanie stanu tych połączeń oraz ich integralności, co przyczynia się do zwiększenia bezpieczeństwa użytkowników budynków. W przypadku awarii lub uszkodzenia instalacji, odpowiednio zainstalowana szyna wyrównawcza umożliwia skuteczne odprowadzenie prądów upływowych, zminimalizowanie ryzyka uszkodzenia sprzętu oraz ochronę zdrowia osób przebywających w danym obiekcie.

Pytanie 12

Podczas pomiarów kontrolnych, przed odbiorem mieszkania, wykryto usterkę w instalacji oświetleniowej. Na zdjęciu przedstawiono fragment pomieszczenia przed tynkowaniem i wykonaniem wylewek. W celu wymiany uszkodzonych przewodów typu DY 1,5 mm2, prowadzonych w rurach instalacyjnych giętkich, należy w pierwszej kolejności

Ilustracja do pytania
A. do końców starych przewodów zamocować nowe i wyciągając stare wprowadzać do rur nowe przewody.
B. rozkuć ściany, wprowadzić nowe przewody w ścianach i listwach przypodłogowych.
C. rozkuć ściany i podłogę oraz wymienić uszkodzone odcinki instalacji.
D. wyciągnąć stare przewody z rur i wciągnąć nowe za pomocą sprężystego drutu stalowego.
Podejście do rozkuwania ścian i podłóg w celu wymiany uszkodzonych odcinków instalacji elektrycznej jest nie tylko czasochłonne, ale również kosztowne i nieefektywne. Tego typu działanie może prowadzić do nadmiernych uszkodzeń w pomieszczeniu, co wymaga dodatkowych prac remontowych, takich jak tynkowanie i malowanie, co zwiększa całkowity koszt inwestycji. Ponadto, takie metody są wbrew zasadom dobrych praktyk budowlanych, które zalecają minimalizację prac demontażowych, aby uniknąć dodatkowych ryzyk związanych z remontami. Podejście polegające na wprowadzeniu nowych przewodów w ścianach i listwach przypodłogowych niesie ze sobą ryzyko uszkodzenia konstrukcji budowlanej oraz naruszenia istniejących instalacji, co może prowadzić do awarii. W przypadku wyciągania starych przewodów z rur, istnieje duże prawdopodobieństwo, że zapchają się one lub uszkodzą, co utrudni dalszą pracę. Takie metody nie tylko są nieefektywne, ale również mogą doprowadzić do poważnych problemów związanych z bezpieczeństwem instalacji elektrycznej, co jest szczególnie niebezpieczne w kontekście zagrożeń pożarowych. Dlatego kluczowe jest przyjęcie metody, która łączy efektywność z bezpieczeństwem i zgodnością z obowiązującymi standardami.

Pytanie 13

Na rysunku przedstawiono oprawę oświetleniową

Ilustracja do pytania
A. wewnętrzną do lampy punktowej.
B. lampy przenośnej warsztatowej.
C. wewnętrzną do lampy sodowej.
D. lampy biurowej z odbłyśnikiem.
Oprawa oświetleniowa, która została przedstawiona na rysunku, charakteryzuje się cechami typowymi dla lamp przenośnych warsztatowych. Takie lampy są projektowane w sposób zapewniający odporność na uszkodzenia mechaniczne, co jest kluczowe w środowisku roboczym, gdzie mogą być narażone na upadki lub uderzenia. Dodatkowo, zastosowanie materiałów odpornych na wilgoć jest istotnym aspektem, który pozwala na używanie tych lamp w trudniejszych warunkach, na przykład w warsztatach lub podczas prac na zewnątrz. Kabel zasilający w tego typu lampach jest zazwyczaj wydłużony, co umożliwia elastyczne ustawienie lampy w różnych lokalizacjach. Warto zwrócić uwagę na standardy bezpieczeństwa, takie jak IP (Ingress Protection), które definiują poziom ochrony przed ciałami stałymi oraz cieczy. Dobre praktyki w zakresie użytkowania lamp przenośnych obejmują również regularne sprawdzanie stanu technicznego, co zapewnia ich długotrwałość i bezpieczeństwo użytkowania.

Pytanie 14

Jaką wartość maksymalnej dopuszczalnej impedancji pętli zwarcia należy zastosować w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, przy założeniu, że wyłączenie zasilania będzie realizowane przez instalacyjny wyłącznik nadprądowy C20?

A. 2,30 Ω
B. 1,15 Ω
C. 2,00 Ω
D. 3,83 Ω
Maksymalna dopuszczalna wartość impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, dla zapewnienia skutecznej ochrony przeciwporażeniowej przy uszkodzeniu izolacji, wynosi 1,15 Ω. Wartość ta jest kluczowa, ponieważ umożliwia szybkie zadziałanie instalacyjnego wyłącznika nadprądowego, takiego jak C20, który ma zdolność wyłączenia w ciągu 0,4 sekundy przy prądzie zwarciowym wynoszącym 5 kA. W praktyce, impedancja pętli zwarcia powinna być obliczana zgodnie z obowiązującymi normami, takimi jak PN-EN 60364, które określają zasady projektowania i wykonawstwa instalacji elektrycznych. Dla wyłącznika C20, wartość impedancji pętli zwarcia nie powinna przekraczać 1,15 Ω, aby zapewnić odpowiednią ochronę przed porażeniem prądem elektrycznym. Przykładowo, w instalacjach zasilających do budynków mieszkalnych, regularne pomiary impedancji pętli zwarcia są niezbędne do utrzymania bezpieczeństwa użytkowników.

Pytanie 15

Przy jakiej wartości prądu różnicowego zmiennego sinusoidalnie nie powinien zadziałać sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA?

A. IΔ = 30 mA
B. IΔ = 10 mA
C. IΔ = 20 mA
D. IΔ = 40 mA
Zrozumienie, dlaczego odpowiedzi takie jak IΔ = 20 mA, IΔ = 30 mA oraz IΔ = 40 mA są błędne, wymaga analizy zasad funkcjonowania wyłączników różnicowoprądowych. Wyłącznik różnicowoprądowy o prądzie nominalnym 30 mA ma być zaprojektowany tak, aby działał w przypadku wykrycia różnicy prądów na poziomie 30 mA lub wyższym. Odpowiedzi wskazujące wartości 20 mA, 30 mA i 40 mA przedstawiają różne błędne koncepcje. W szczególności, prąd IΔ = 20 mA jest nadal w obrębie zakresu, w którym wyłącznik może zadziałać, ponieważ jest on niższy niż 30 mA, co oznacza, że w sytuacji, gdy wystąpi prąd różnicowy na tym poziomie, wyłącznik zareaguje, aby chronić użytkowników. Odpowiedź 30 mA jest marnotrawstwem, ponieważ wyłącznik zadziała w momencie osiągnięcia tego poziomu prądu, co nie jest zgodne z pytaniem, które dotyczy wartości, przy której nie powinien zadziałać. Natomiast prąd 40 mA przekracza wartość nominalną wyłącznika, co wskazuje, że w takim przypadku powinien on zadziałać, aby zapobiec niebezpieczeństwu. Takie błędne rozumowanie wynika często z nieprawidłowego zrozumienia funkcji wyłączników różnicowoprądowych oraz ich działania w kontekście ochrony elektrycznej, co potwierdzają standardy takie jak IEC 60364, które podkreślają konieczność stosowania odpowiednich wartości progowych dla zabezpieczeń.

Pytanie 16

Zgodnie z danymi przestawionymi w tabeli dobierz minimalny przekrój przewodu miedzianego jednożyłowego do wykonania jednofazowej natynkowej instalacji o napięciu 230 V, zasilającej piec rezystancyjny o mocy 5 000 W.

Ilustracja do pytania
A. 2,5 mm2
B. 1,5 mm2
C. 6 mm2
D. 4 mm2
Wybór przewodu miedzianego 2,5 mm2 do zasilania pieca rezystancyjnego o mocy 5000 W przy napięciu 230 V jest jak najbardziej na miejscu. Obliczenia wskazują, że prąd będzie wynosił około 21,74 A, a przewód 2,5 mm2 bez problemu to wytrzyma, bo wg normy PN-IEC 60364 może prowadzić do 25 A. Dzięki temu mamy fajny zapas, a to zawsze dobrze, bo unikamy ryzyka przegrzania się przewodów. Jak wiadomo, przegrzanie to nie żarty – może to prowadzić do ich uszkodzenia albo nawet pożaru. Warto też pamiętać, że przy instalacji natynkowej trzeba odpowiednio zabezpieczyć przewody przed uszkodzeniami mechanicznymi i wpływem czynnika zewnętrznego, co jest całkiem standardem w branży. Oczywiście, dobrym pomysłem jest też zainstalowanie odpowiednich bezpieczników, żeby ochraniały nas przed przeciążeniem. Ogólnie rzecz biorąc, dobrze dobrany przekrój przewodu to klucz do bezpieczeństwa i sprawności całej instalacji elektrycznej.

Pytanie 17

Zdjęcie przedstawia

Ilustracja do pytania
A. wyłącznik krzyżowy.
B. łącznik żaluzjowy.
C. wyłącznik schodowy.
D. łącznik wielofunkcyjny.
Właściwa odpowiedź to łącznik żaluzjowy, ponieważ na zdjęciu widoczny jest element sterujący z dwoma przyciskami, które są oznaczone symbolami wskazującymi na ruch żaluzji w górę i w dół. Łącznik żaluzjowy jest stosowany w celu precyzyjnego sterowania pozycją żaluzji, co jest niezwykle przydatne w przypadku regulacji natężenia światła wpadającego do wnętrza pomieszczeń. W praktyce, umożliwia on komfortowe dostosowywanie osłony okiennej do zmieniających się warunków oświetleniowych, co przyczynia się do oszczędności energii oraz zwiększenia wygody użytkowników. Standardowe oznaczenia na łącznikach żaluzjowych są zgodne z normami branżowymi, co pozwala na ich łatwe rozpoznawanie. Przykładem zastosowania łącznika żaluzjowego może być instalacja w biurach, gdzie użytkownicy chcą mieć kontrolę nad ilością światła oraz prywatnością, a także w domach jednorodzinnych, gdzie można zautomatyzować proces otwierania i zamykania żaluzji.

Pytanie 18

Przed zainstalowaniem uzwojenia wsypywanego stojana w silniku indukcyjnym, należy odpowiednio przygotować jego żłobki przez

A. nałożenie lakieru elektroizolacyjnego
B. wyłożenie izolacją żłobkową
C. nałożenie oleju elektroizolacyjnego
D. zabezpieczenie klinami ochronnymi
Właściwe wyłożenie żłobków izolacją żłobkową przed umieszczeniem uzwojenia w silniku indukcyjnym jest kluczowe dla zapewnienia efektywności i bezpieczeństwa pracy silnika. Izolacja żłobkowa stanowi barierę między uzwojeniem a żłobkiem, chroniąc przed zwarciami oraz poprawiając trwałość elementów. Dzięki zastosowaniu odpowiednich materiałów izolacyjnych, takich jak żywice epoksydowe lub poliuretanowe, uzyskujemy wysoką odporność na działanie wysokich temperatur i wilgoci. Przykładem zastosowania tych materiałów jest przemysł motoryzacyjny, gdzie silniki są narażone na ekstremalne warunki. Ponadto, zgodnie z normami IEC 60034 dotyczącymi silników elektrycznych, odpowiednia izolacja żłobków jest niezbędna do zachowania parametrów pracy silnika oraz spełnienia wymogów bezpieczeństwa. W praktyce, stosowanie wysokiej jakości izolacji przekłada się na mniejsze straty energii oraz wydłużenie żywotności silnika, co jest kluczowe z punktu widzenia efektywności kosztowej i ekologicznej.

Pytanie 19

Jaką oprawę oświetleniową pokazano na rysunku?

Ilustracja do pytania
A. Uliczną.
B. Przenośną.
C. Biurową.
D. Punktową.
Oprawa oświetleniowa przedstawiona na rysunku jest klasycznym przykładem oświetlenia ulicznego. Charakteryzuje się ona specyficznym kształtem i montażem, które są dostosowane do oświetlania przestrzeni publicznych, takich jak ulice, parki czy chodniki. W praktyce, oprawy uliczne są projektowane z myślą o maksymalnej efektywności świetlnej oraz odporności na warunki atmosferyczne. Standardy branżowe, takie jak normy PN-EN 13201, określają wymagania dotyczące oświetlenia dróg, co zapewnia bezpieczeństwo użytkowników dróg. W zależności od specyfiki terenu, oprawy te mogą być stosowane z różnymi źródłami światła, w tym LED, co zwiększa ich efektywność energetyczną i żywotność. Dobre praktyki w zakresie instalacji oświetlenia ulicznego uwzględniają także odpowiednie rozmieszczenie opraw, co ma kluczowe znaczenie dla zapewnienia równomiernego oświetlenia i minimalizacji efektu olśnienia dla kierowców i pieszych. Odpowiednia oprawa uliczna nie tylko poprawia widoczność, ale również wpływa na bezpieczeństwo oraz komfort użytkowników dróg.

Pytanie 20

Który z przedstawionych na rysunkach zestawów narzędzi należy dobrać do montażu elementów mieszkaniowych instalacji elektrycznych?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Zestaw narzędzi oznaczony literą C to właściwy wybór do montażu elementów mieszkaniowych instalacji elektrycznych, ponieważ zawiera narzędzia izolowane. Narzędzia te mają specjalną powłokę, która minimalizuje ryzyko porażenia prądem, co jest kluczowe, gdy pracujemy z instalacjami elektrycznymi. Przykładowo, obcęgi i szczypce izolowane pozwalają na precyzyjne manipulowanie przewodami bez obawy o kontakt z napięciem. Standardy bezpieczeństwa, takie jak normy IEC 60900, definiują wymagania dotyczące narzędzi używanych w środowiskach elektrycznych, w tym wymagania dotyczące izolacji. Ponadto, dobór narzędzi zgodnych z tymi normami jest często wymogiem w profesjonalnych pracach elektrycznych, co zapewnia nie tylko bezpieczeństwo, ale również efektywność pracy. Zastosowanie odpowiednich narzędzi może znacząco zwiększyć komfort oraz bezpieczeństwo w trakcie realizacji zadań montażowych.

Pytanie 21

Rysunek przedstawia schemat

Ilustracja do pytania
A. przekaźnika.
B. wyłącznika różnicowoprądowego.
C. stycznika.
D. łącznika wielofunkcyjnego.
Poprawna odpowiedź to stycznik, co znajduje potwierdzenie w charakterystycznym schemacie jego połączeń. Cewka stycznika oznaczona jako A1 i A2 służy do załączania i wyłączania obwodu elektrycznego zdalnie, co jest kluczowe w automatyce i sterowaniu. Styki L1, L2, L3, będące stykami głównymi, są przeznaczone do załączania obwodów mocy, co jest niezbędne w instalacjach elektrycznych o dużych obciążeniach. Styki pomocnicze T1, T2, T3 oraz NC (normalnie zamknięty) pozwalają na dodatkowe funkcje, takie jak sygnalizacja czy zabezpieczenia automatyczne. Zastosowanie styczników w automatyce przemysłowej jest szerokie; od prostych układów sterujących po złożone systemy automatyzacji, styczniki są niezbędnymi elementami w wielu aplikacjach. Zgodnie z normami IEC 60947, dobór stycznika powinien uwzględniać zarówno parametry elektryczne, jak i warunki pracy, co zapewnia bezpieczeństwo i niezawodność układów. Warto zauważyć, że stosowanie styczników zamiast przełączników ręcznych zwiększa komfort pracy i możliwość automatyzacji procesów.

Pytanie 22

W pomieszczeniu przyłączowym budynku sprawdzono ciągłość głównego połączenia wyrównawczego między główną szyną wyrównawczą a czterema punktami, jak na rysunku. Który pomiar powinien wykazać brak ciągłości połączenia?

Ilustracja do pytania
A. 1
B. 3
C. 4
D. 2
Prawidłowa odpowiedź to 4, ponieważ wskazuje na punkt, który może wykazywać brak ciągłości połączenia wyrównawczego. Punkt 4 jest połączony z rurą gazową, a jeśli instalacja gazowa została wykonana z materiału nieprzewodzącego prąd elektryczny, na przykład z plastiku, to brak ciągłości jest całkowicie uzasadniony. W praktyce, aby zapewnić bezpieczeństwo instalacji elektrycznej, istotne jest, aby wszystkie elementy metalowe były odpowiednio połączone, aby uniknąć ryzyka wystąpienia różnicy potencjałów. Zgodnie z normami, takimi jak PN-EN 62305, połączenia wyrównawcze powinny zapewniać skuteczne odprowadzanie prądów zakłócających oraz zabezpieczać przed niebezpiecznymi napięciami. Kiedy mówimy o punktach 1, 2 i 3, są one połączone z elementami metalowymi, które są przewodnikami elektryczności, co oznacza, że powinny wykazywać ciągłość połączenia. To pokazuje, jak ważne jest zrozumienie materiałów używanych w instalacji i ich właściwości przewodzących w kontekście bezpieczeństwa elektrycznego.

Pytanie 23

Przy wykonywaniu oględzin układu pracy silnika trójfazowego pracującego w obrabiarce należy sprawdzić

A. rezystancję izolacji uzwojeń silnika. 
B. czas zadziałania zabezpieczenia zwarciowego. 
C. stan osłon części wirujących.
D. impedancję pętli zwarcia.
W tym pytaniu haczyk polega na tym, że mowa jest o „oględzinach” układu pracy silnika trójfazowego w obrabiarce. W praktyce zawodowej oględziny oznaczają prostą, ale bardzo ważną czynność: ocenę wzrokową, czasem z lekkim dotykiem, bez używania mierników i bez ingerencji w obwód. Typowy błąd myślowy polega na tym, że skoro mamy silnik trójfazowy i układ jego pracy, to od razu kojarzymy to z pomiarami elektrycznymi: impedancją pętli zwarcia, rezystancją izolacji czy czasem zadziałania zabezpieczeń. To są oczywiście bardzo ważne parametry, ale one nie należą do zakresu samych oględzin, tylko do badań pomiarowych i prób eksploatacyjnych. Impedancja pętli zwarcia jest badana przyrządem pomiarowym w celu sprawdzenia skuteczności ochrony przeciwporażeniowej i doboru zabezpieczeń; nie da się jej ocenić „na oko”. Podobnie rezystancja izolacji uzwojeń silnika – mierzy się ją induktorem lub miernikiem typu megomierz, zwykle przy napięciu pomiarowym 500 V lub wyższym, zgodnie z odpowiednimi normami. To jest już pełnoprawny pomiar elektryczny, nie element zwykłej wizualnej kontroli. Czas zadziałania zabezpieczenia zwarciowego też wymaga specjalnych testerów i wykonywany jest w ramach pomiarów instalacji lub prób rozruchowych, a nie podczas szybkich oględzin przed uruchomieniem obrabiarki. W oględzinach skupiamy się na rzeczach, które widać: kompletność i stan osłon, czy nie ma uszkodzeń mechanicznych, obluzowanych przewodów, śladów przegrzania, zacieków oleju na zaciskach, czy tabliczki znamionowe są czytelne. Z mojego doświadczenia wynika, że wielu uczniów „przestrzeliwuje” poziom szczegółowości – wybierają odpowiedzi pomiarowe, bo brzmią bardziej profesjonalnie, a zapominają, że pierwszym i podstawowym etapem każdej diagnostyki są zwykłe, rzetelnie przeprowadzone oględziny. Pomiary typu impedancja pętli zwarcia, rezystancja izolacji czy czasy zadziałania zabezpieczeń są konieczne, ale wykonuje się je w innym etapie przeglądu, przy użyciu odpowiednich mierników i procedur, a nie w trakcie samej wizualnej oceny układu pracy silnika.

Pytanie 24

Na rysunku przedstawiono schemat

Ilustracja do pytania
A. łącznika zmierzchowego.
B. wyłącznika różnicowoprądowego.
C. programowalnego przełącznika czasowego.
D. wyłącznika schodowego.
Wybór odpowiedzi innej niż wyłącznik różnicowoprądowy wskazuje na nieporozumienia dotyczące funkcji i budowy różnych urządzeń elektrycznych. Programowalny przełącznik czasowy to urządzenie, które pozwala na automatyczne włączanie i wyłączanie obwodów elektrycznych w określonym czasie, co jest zupełnie inną funkcjonalnością niż zabezpieczanie przed porażeniem prądem. Łącznik zmierzchowy z kolei działa na zasadzie aktywacji oświetlenia w zależności od natężenia światła, co również nie ma nic wspólnego z ochroną przed upływem prądu. Wyłącznik schodowy, stosowany w instalacjach oświetleniowych, umożliwia sterowanie jednym źródłem światła z dwóch miejsc, jednak nie pełni funkcji zabezpieczających. Kluczowym błędem jest nieznajomość zasad działania wyłączników różnicowoprądowych, które są zaprojektowane specjalnie do wykrywania niebezpiecznych różnic prądów. Niezrozumienie tego zagadnienia może prowadzić do nieodpowiedniego doboru urządzeń w instalacjach elektrycznych, co z kolei może zwiększać ryzyko wypadków oraz zagrożeń dla zdrowia i życia. Wiedza na temat funkcji każdego z tych urządzeń jest kluczowa dla zapewnienia bezpieczeństwa w infrastrukturze elektrycznej.

Pytanie 25

Który symbol graficzny na schemacie ideowym projektowanej instalacji elektrycznej oznacza sposób prowadzenia przewodów w tynku?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Poprawna odpowiedź to B, ponieważ w polskich normach dotyczących schematów instalacji elektrycznych, sposób prowadzenia przewodów w tynku jest zazwyczaj reprezentowany przez symbol składający się z dwóch równoległych linii. Jedna z tych linii jest ciągła, co wskazuje na przewód zamontowany w tynku, a druga jest przerywana, sugerując ewentualne miejsce, w którym przewód jest ukryty lub prowadzenie w trudnych warunkach. Tego rodzaju symbol nie tylko ułatwia zrozumienie schematu instalacji, ale również przyczynia się do zachowania bezpieczeństwa oraz efektywności w projektowaniu i wykonywaniu instalacji elektrycznych. Przykładowo, w praktyce, stosowanie się do tego symbolu pozwala instalatorom na dokładne zaplanowanie trasy przewodów w ścianach budynków, co ma kluczowe znaczenie dla estetyki oraz funkcjonalności instalacji. Ponadto, stosowanie jednolitych symboli zgodnych z normami branżowymi, jak PN-EN 60617, zapewnia, że wszyscy uczestnicy procesu budowlanego mają wspólne zrozumienie projektu, co minimalizuje ryzyko błędów w realizacji.

Pytanie 26

Stosując kryterium obciążalności prądowej, dobierz przewód kabelkowy o najmniejszym przekroju żył miedzianych do wykonania trójfazowej instalacji wtynkowej w układzie TN-S, która jest zabezpieczona wyłącznikiem instalacyjnym z oznaczeniem B16.

Przekrój przewodu mm²Jeden lub kilka kabli 1-żyłowych ułożonych w rurzeKilka kabli np.: przewody płaszczowe, rurowe, wtynkowePojedynczy w powietrzu, przy czym odstęp odpowiada przynajmniej średnicy kabla
Żyła Cu AŻyła Al AŻyła Cu AŻyła Al AŻyła Cu AŻyła Al A
0,75--12-15-
1,011-15-19-
1,515-18-24-
2,5201526203226
4252034274233
6332644355442
A. YDY 5x2,5 mm2
B. YDY 5x1,5 mm2
C. YDY 5x1 mm2
D. YADY 5x4 mm2
Wybór innych przewodów, takich jak YDY 5x1 mm2, YADY 5x4 mm2 czy YDY 5x2,5 mm2, nie spełnia wymagań technicznych związanych z obciążalnością prądową w danej instalacji. Przewód YDY 5x1 mm2 ma zbyt mały przekrój, co uniemożliwia mu bezpieczne przewodzenie prądu o natężeniu 16A, a jego obciążalność długotrwała jest zdecydowanie poniżej wymaganego poziomu. Zastosowanie przewodu o zbyt małym przekroju może prowadzić do przegrzewania, uszkodzenia izolacji, a w konsekwencji do ryzyka pożaru. Natomiast YADY 5x4 mm2, mimo że ma większy przekrój, nie jest odpowiedni w tej konkretnej instalacji, ponieważ nie jest konieczne stosowanie tak dużego przewodu dla obciążenia 16A, co zwiększa koszty materiałów. Z kolei YDY 5x2,5 mm2, choć ma większy przekrój niż wymagany, również nie jest optymalnym rozwiązaniem w tej sytuacji, ponieważ może prowadzić do nieefektywnego wykorzystania zasobów oraz niepotrzebnego zwiększenia kosztów instalacji. Kluczowe w doborze przewodów jest przestrzeganie standardów branżowych oraz obliczeń dotyczących rzeczywistego obciążenia, co zapewnia bezpieczeństwo oraz efektywność energetyczną instalacji. Należy pamiętać, że odpowiednie podejście do projektowania instalacji elektrycznych nie tylko zabezpiecza przed awariami, ale także spełnia normy i przepisy prawne, co jest niezbędne w każdym projekcie budowlanym.

Pytanie 27

Rodzaj której maszyny wirującej przedstawiono na ilustracji?

Ilustracja do pytania
A. Indukcyjnej klatkowej.
B. Indukcyjnej pierścieniowej.
C. Komutatorowej prądu przemiennego.
D. Synchronicznej.
Wybrane przez Ciebie odpowiedzi dotyczą różnych typów maszyn wirujących, jednak żadna z nich nie opisuje maszyny synchronicznej, która jest poprawną odpowiedzią. Maszyny indukcyjne, zarówno pierścieniowe, jak i klatkowe, działają na zasadzie indukcji elektromagnetycznej, gdzie prędkość wirnika nie jest zsynchronizowana z częstotliwością prądu. W przypadku maszyny indukcyjnej klatkowej, wirnik składa się z aluminiowych lub miedzianych prętów, co prowadzi do powstawania momentu obrotowego gdy wirnik porusza się w polu magnetycznym wytworzonym przez uzwojenia stojana. Maszyna komutatorowa prądu przemiennego natomiast, łączy elementy zarówno maszyn prądu stałego, jak i przemiennego, co czyni ją bardziej skomplikowaną, a jej działanie opiera się na mechanizmie komutacji, który nie jest typowy dla maszyn synchronicznych. Wybierając błędne odpowiedzi, można popaść w pułapkę myślenia, że wszystkie maszyny wirujące działają w sposób zbliżony, co jest nieprawidłowe. Kluczowe różnice między tymi typami maszyn dotyczą zasad ich działania oraz konstrukcji, co wpływa na ich zastosowania w praktyce. Zrozumienie tych różnic jest istotne dla inżynierów i techników, aby mogli skutecznie dobierać maszyny do konkretnych zastosowań w przemyśle.

Pytanie 28

Łącznik przedstawiony na zdjęciu oznaczamy symbolem graficznym

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Wybór innych opcji jako odpowiedzi wskazuje na błędne zrozumienie zasad klasyfikacji łączników elektrycznych. Wiele osób myli różne typy łączników, co może prowadzić do nieodpowiednich wyborów w kontekście ich zastosowania. Opcja A sugeruje, że mamy do czynienia z łącznikiem wielobiegunowym, co jest nieprawidłowe, gdyż łącznik przedstawiony w pytaniu jest jednobiegunowy. Łączniki wielobiegunowe są stosowane w bardziej skomplikowanych instalacjach, gdzie wymagane jest włączanie i wyłączanie więcej niż jednego obwodu jednocześnie. W przypadku opcji C, błędna klasyfikacja jako łącznik krzyżowy, prowadzi do mylnego założenia, że można nim kontrolować kilka źródeł światła z różnych miejsc. Łączniki krzyżowe są używane w połączeniu z łącznikami schodowymi, co jest znacznie bardziej skomplikowanym rozwiązaniem. Z kolei opcja D, dotycząca łącznika podwójnego, również jest niewłaściwa, ponieważ taki łącznik byłby zdolny do włączania i wyłączania dwóch niezależnych obwodów, co nie ma miejsca w omawianym przypadku. Prawidłowe zrozumienie typów łączników oraz ich odpowiadających symboli graficznych jest kluczowe dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych. Pomyłki w identyfikacji mogą prowadzić do niebezpiecznych sytuacji, takich jak zwarcia czy uszkodzenia sprzętu. Zrozumienie tych podstawowych zasad jest niezbędne dla każdego, kto pracuje w branży elektrycznej.

Pytanie 29

Które z wymienionych stwierdzeń nie jest zasadą poprawnego wykonywania ideowego schematu elektrycznego?

A. Liczba linii przecinających się, a oznaczających przewody, powinna być jak najmniejsza.
B. Łączniki należy pokazywać w stanie zamknięcia lub w tzw. położeniu końcowym.
C. Łączniki należy pokazywać w stanie otwarcia lub w tzw. położeniu początkowym.
D. Linie połączeń powinny być możliwie krótkie i prowadzone poziomo lub pionowo.
W tym pytaniu haczyk polega na zrozumieniu, jak na schematach ideowych przedstawia się elementy przełączające i jakie są ogólne zasady czytelnego rysowania obwodów. Wiele osób intuicyjnie myśli: „przecież w praktyce łącznik ma być włączony, więc na rysunku też lepiej pokazać go zamkniętego”. I właśnie to jest typowy błąd myślowy. Normy i dobre praktyki mówią wyraźnie: na schemacie ideowym łączniki, przyciski, styki styczników, przekaźniki pokazujemy w stanie spoczynkowym, bez zasilania i bez działania człowieka. Czyli w tzw. położeniu początkowym. W przypadku zwykłych łączników oświetleniowych czy styczników silnikowych oznacza to najczęściej stan otwarty. Dlatego zasada mówiąca, że „łączniki należy pokazywać w stanie zamknięcia lub w położeniu końcowym” jest nieprawidłowa – prowadziłaby do nieporozumień przy analizie schematu, przy wyszukiwaniu usterek i podczas szkolenia nowych pracowników. Pozostałe stwierdzenia w pytaniu to klasyczne zasady wykonywania schematów. Linie połączeń powinny być możliwie krótkie i prowadzone poziomo lub pionowo, bo to po prostu poprawia czytelność. Skośne, poszarpane, kręte linie sprawiają, że łatwo się pomylić, trudno śledzić przebieg obwodu i rośnie ryzyko pomyłki przy montażu instalacji. To nie jest tylko estetyka, ale realny wpływ na bezpieczeństwo i czas pracy. Z tego samego powodu dąży się do tego, żeby liczba przecięć linii przewodów była jak najmniejsza. Im więcej skrzyżowań na rysunku, tym łatwiej coś źle odczytać – szczególnie, jeśli ktoś nie zaznacza konsekwentnie kropek na połączeniach. W praktyce projektanci często przestawiają elementy na schemacie tylko po to, żeby uniknąć zbędnych krzyżowań przewodów, bo lepiej poświęcić chwilę na czysty rysunek niż potem godzinę na tłumaczenie monterowi, jak to naprawdę ma być połączone. Moim zdaniem warto zapamiętać, że schemat ideowy ma przede wszystkim jasno pokazywać zasadę działania układu, a nie chwilowy stan pracy. Dlatego położenie początkowe łączników i minimalizacja chaosu na rysunku są kluczowe, a rysowanie wszystkiego w stanie „włączonym” tylko zaciemnia obraz.

Pytanie 30

Na którym rysunku przedstawiono poprawny sposób podłączenia dwóch wyłączników RCD zgodnie ze schematem?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Odpowiedź C jest poprawna, gdyż ilustruje prawidłowy sposób podłączenia dwóch wyłączników RCD, co jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych. Rozdzielenie obwodów dla pokoju i łazienki oraz zastosowanie osobnych wyłączników RCD dla każdego z nich gwarantuje, że w przypadku wystąpienia awarii w jednym z obwodów, drugi obwód pozostanie funkcjonalny. To podejście jest zgodne z zaleceniami normy PN-IEC 61008, która podkreśla znaczenie stosowania wyłączników różnicowoprądowych w miejscach o zwiększonym ryzyku, takich jak łazienki. Dodatkowo, stosowanie RCD w oddzielnych obwodach minimalizuje ryzyko porażenia prądem, co jest niezwykle istotne w kontekście ochrony użytkowników. W praktyce, odpowiedni dobór wyłączników RCD oraz ich lokalizacja w instalacji poprawia nie tylko bezpieczeństwo, ale także komfort użytkowania. Przykładowo, w przypadku awarii w obwodzie łazienkowym, użytkownicy pokoju nie będą narażeni na problemy związane z brakiem zasilania, co może być szczególnie istotne w codziennym użytkowaniu.

Pytanie 31

W instalacji domowej jako dodatkowy element zabezpieczający przed porażeniem prądem powinno się użyć wyłącznika różnicowoprądowego o wartościach prądu różnicowego

A. 300 mA
B. 30 mA
C. 100 mA
D. 10 mA
Jak dobrze wiesz, wybór wyłącznika różnicowoprądowego o prądzie na przykład 100 mA, 300 mA czy nawet 10 mA może mieć spore znaczenie dla bezpieczeństwa elektrycznego w naszych domach. Te wyłączniki na 100 mA i 300 mA są bardziej zaprojektowane do ochrony sprzętu niż do ochrony ludzi przed porażeniem prądem. Ich wysoki próg zadziałania to problem, bo mogą nie zauważyć małych nieszczelności, które mogą być niebezpieczne dla człowieka. Zazwyczaj stosuje się je w obwodach, gdzie nie chodzi głównie o chronienie ludzi. Z drugiej strony, wyłącznik na 10 mA, chociaż świetny w miejscach z wysokim ryzykiem, jak szpitale, może być za czuły w normalnych warunkach domowych i powodować niepotrzebne wyłączenia. Dlatego ważne jest, żeby wybierać wyłączniki zgodne z normami i przepisami, by naprawdę zapewnić bezpieczeństwo w instalacjach elektrycznych.

Pytanie 32

Przeciążenie w instalacji elektrycznej polega na

A. nagłym wzroście napięcia elektrycznego w sieci powyżej wartości nominalnej.
B. bezpośrednim połączeniu dwóch faz w systemie.
C. wystąpieniu w instalacji fali przepięciowej spowodowanej wyładowaniem atmosferycznym.
D. przekroczeniu maksymalnego prądu znamionowego instalacji.
Przeciążenie instalacji elektrycznej polega na przekroczeniu prądu znamionowego, co ma istotne znaczenie dla bezpieczeństwa i funkcjonowania systemów elektrycznych. Prąd znamionowy to maksymalny prąd, jaki instalacja lub urządzenie może bezpiecznie przewodzić bez ryzyka uszkodzenia. Przekroczenie tej wartości może prowadzić do przegrzewania się przewodów, co z kolei może skutkować uszkodzeniem izolacji, a w skrajnych przypadkach nawet pożarem. Dlatego tak ważne jest, aby projektując instalację elektryczną, odpowiednio dobrać przekroje przewodów oraz zabezpieczenia, takie jak bezpieczniki czy wyłączniki różnicowoprądowe, które chronią przed skutkami przeciążenia. W praktyce, w przypadku zakupu nowych urządzeń elektrycznych, należy zwracać uwagę na ich moc i prąd znamionowy, aby uniknąć przeciążenia instalacji. Przykładowo, jeżeli w danym obwodzie zainstalowane są urządzenia, których łączna moc przekracza wartość znamionową obwodu, może to prowadzić do poważnych problemów z bezpieczeństwem elektrycznym.

Pytanie 33

Strzałka na rysunku wskazuje

Ilustracja do pytania
A. przycisk rozwierny.
B. przycisk zwiemy.
C. styk pomocniczy rozwierny.
D. styk pomocniczy zwiemy.
Wybór niepoprawnej odpowiedzi może sprawiać kłopot przez to, że oznaczenia w schematach elektrycznych są czasem mylące. Przyciski rozwierne, styk pomocniczy rozwierny oraz styk pomocniczy zwiemy to różne typy styków i przycisków, które pełnią różne funkcje w obwodach elektrycznych. Przyciski rozwierne to te normalnie zamknięte (NC), więc w spoczynku obwód jest zamknięty, a naciśnięcie przycisku go otwiera. Używa się ich zazwyczaj tam, gdzie jest potrzeba interakcji ze strony użytkownika, żeby wyłączyć jakieś urządzenie, co może czasami prowadzić do nieprzewidzianych skutków w systemach bezpieczeństwa, gdy są źle zastosowane. Styki pomocnicze, zarówno rozwierne, jak i zwiemy, służą do rozszerzania funkcji głównych przełączników. Styki pomocnicze zwiemy (NO) zamykają obwód po aktywacji, a rozwierne (NC) działają na zasadzie przeciwnej. Dosyć łatwo je pomylić z przyciskami przez ich podobieństwo, ale różnią się swoją podstawową funkcją. Kluczowym błędem, przy wyborze odpowiedzi, może być pomylenie funkcji normalnie otwartych z normalnie zamkniętymi stykami. Zrozumienie tych różnic jest naprawdę ważne w inżynierii elektrycznej, bo poprawna identyfikacja i wykorzystanie tych komponentów mogą decydować o bezpieczeństwie i efektywności całego systemu. Może warto jeszcze raz zastanowić się nad funkcjami i zastosowaniem każdego z tych elementów, żeby lepiej uchwycić ich rolę w obwodach elektrycznych.

Pytanie 34

Wystąpienie prądu doziemienia o wartości 2,5 A w fazie L3 obwodu jednofazowych gniazd wtyczkowych przedstawionej instalacji spowoduje zadziałanie wyłącznika oznaczonego symbolem

Ilustracja do pytania
A. S304 C25
B. P301 25A
C. S301 B16
D. P301 40A
Wybór innej odpowiedzi może wynikać z niepełnego zrozumienia roli wyłączników w instalacjach elektrycznych. Wyłącznik P301 25A oraz P301 40A to urządzenia delikatnie różniące się w zakresie wartości prądowych, jednak nie są one odpowiednie do rozwiązywania problemu prądu doziemienia. Odpowiedź P301 25A byłaby niewłaściwa, ponieważ przy prądzie 2,5 A wyłącznik różnicowoprądowy zadziałałby, ale jedynie w kontekście ochrony przed porażeniem, co nie jest wystarczające w przypadku większych wartości prądu. Wartości prądów znamionowych, takie jak 16A (S301 B16) czy 25A (S304 C25), dotyczą wyłączników nadprądowych, które innego rodzaju sytuacjach mogą być przydatne, lecz nie oferują odpowiedniej ochrony przed prądem różnicowym. W przypadku prądów doziemnych, kluczowe jest korzystanie z wyłączników różnicowoprądowych, które działają na zasadzie monitorowania różnicy prądów między przewodami fazowymi a neutralnym. Wybór wyłącznika różnicowoprądowego zgodnie z odpowiednią normą, taką jak PN-EN 61008, jest kluczowy dla zapewnienia bezpieczeństwa elektrycznego. Ważne jest, aby nie mylić tych dwóch rodzajów wyłączników i ich zastosowania w praktyce, ponieważ prowadzi to do potencjalnych zagrożeń dla użytkowników instalacji elektrycznej.

Pytanie 35

Zakres oględzin urządzeń napędowych w czasie postoju nie obejmuje sprawdzenia

A. stanu przewodów ochronnych oraz ich połączeń
B. poziomu drgań i skuteczności układu chłodzenia
C. ustawienia zabezpieczeń i stanu osłon części wirujących
D. stanu pierścieni ślizgowych oraz komutatorów
W kontekście oględzin urządzeń napędowych w czasie postoju, istotne jest zrozumienie zakresu przeglądów i ich celów. Sprawdzanie stanu przewodów ochronnych i ich podłączenia to kluczowy aspekt zapewnienia bezpieczeństwa. Przewody te pełnią istotną rolę w ochronie operatorów przed porażeniem prądem elektrycznym oraz awariami urządzeń. Oprócz tego, poziom drgań jest ważnym wskaźnikiem stanu mechanicznego urządzeń; nadmierne drgania mogą wskazywać na niewłaściwe wyważenie, zużycie łożysk lub inne problemy, które mogą prowadzić do krytycznych awarii. Układ chłodzenia także zasługuje na szczególną uwagę, ponieważ jego nieprawidłowe działanie może prowadzić do przegrzewania się maszyn i ich uszkodzeń, co wymagałoby kosztownych napraw. Z kolei kontrola ustawienia zabezpieczeń oraz stanu osłon części wirujących jest kluczowa dla ochrony personelu i zapobiegania wypadkom. Często pomija się te aspekty, co prowadzi do niebezpiecznych sytuacji. Prawidłowe podejście do oględzin urządzeń napędowych wymaga zatem kompleksowej analizy wszystkich wymienionych elementów, aby zapewnić nieprzerwaną operacyjność i bezpieczeństwo. Zatem zrozumienie, które elementy wymagają regularnych kontroli, a które są mniej krytyczne, jest niezbędne dla efektywnego zarządzania bezpieczeństwem i wydajnością urządzeń.

Pytanie 36

Wyznacz znamionowy współczynnik mocy dla silnika trójfazowego z następującymi danymi: PN = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,57
B. 0,69
C. 0,99
D. 0,82
Obliczenie znamionowego współczynnika mocy (cos φ) dla silnika trójfazowego to dość prosta sprawa, jeśli mamy wszystkie potrzebne dane. Mówiąc w skrócie, ten współczynnik to stosunek mocy czynnej (P) do mocy pozornej (S). Może być obliczony za pomocą wzoru: cos φ = P / (√3 * U * I), gdzie P to moc czynna, U to napięcie, a I to prąd znamionowy. Jak podstawimy wartości z pytania: P = 2,2 kW, U = 400 V, I = 4,6 A, to najpierw liczymy S = √3 * 400 V * 4,6 A, co daje nam 2,664 kVA. Potem obliczamy cos φ = 2,2 kW / 2,664 kVA, co wychodzi około 0,826. Jak zaokrąglimy, to dostaniemy 0,82. Wiesz, czemu to jest ważne? Bo dobrze obliczony współczynnik mocy pomaga w projektowaniu układów elektroenergetycznych, a to z kolei przekłada się na lepszą efektywność energetyczną i mniejsze straty energii. Silniki z wyższym współczynnikiem mocy są bardziej efektywne i można na nich zaoszczędzić, co jest korzystne zarówno dla nas, jak i dla sieci zasilającej.

Pytanie 37

Na zdjęciu przedstawiono kabel

Ilustracja do pytania
A. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
B. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V.
C. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.
D. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w osłonie polwinitowej.
Poprawna odpowiedź odnosi się do kabla sygnalizacyjnego, który charakteryzuje się wieloma żyłami skręconymi parami. Tego typu kable są powszechnie stosowane w systemach telekomunikacyjnych oraz w instalacjach automatyki przemysłowej, gdzie przesyłane sygnały muszą być odporne na zakłócenia elektromagnetyczne. Warto zwrócić uwagę, że napięcie 300/500 V jest typowe dla kabli wykorzystywanych w obwodach sygnalizacyjnych, które nie wymagają tak wysokiej izolacji jak kable elektroenergetyczne. Kable sygnalizacyjne o wiązkach parowych zostały opracowane w celu zminimalizowania interferencji między żyłami, co czyni je idealnym wyborem tam, gdzie wymagana jest stabilna transmisja danych. Zgodnie z normą PN-EN 50288, odpowiednie oznakowanie oraz dobór materiałów izolacyjnych mają kluczowe znaczenie dla niezawodności i bezpieczeństwa instalacji. W praktyce, stosowanie kabli sygnalizacyjnych w automatyce przemysłowej pozwala na efektywne zarządzanie procesami oraz monitorowanie stanu urządzeń, co przekłada się na zwiększenie wydajności operacyjnej.

Pytanie 38

Na którym rysunku przedstawiono źródło światła z trzonkiem typu B?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Wybór odpowiedzi, która nie wskazuje na źródło światła z trzonkiem typu B, może wynikać z nieznajomości podstawowych różnic między różnymi typami trzonków. Trzonek igiełkowy, jak w przypadku odpowiedzi B, ma zupełnie inny mechanizm mocowania, który polega na osadzeniu żarówki w oprawie poprzez włożenie jej w odpowiednie gniazdo, a nie na blokowaniu poprzez wystające elementy. Tego typu trzonki są popularne w halogenach, które charakteryzują się większą efektywnością energetyczną, ale nie są kompatybilne z oprawami zaprojektowanymi dla trzonków baionetowych. Świetlówki, przedstawione w odpowiedzi C, wykorzystują całkowicie odmienną technologię, opartą na zasadzie wyładowania elektrycznego, co czyni je nieodpowiednimi dla zastosowań wymagających trzonka typu B. Na zakończenie, trzonek gwintowy, jak w przypadku odpowiedzi D, jest powszechnie używany w tradycyjnych żarówkach i różni się konstrukcyjnie oraz funkcjonalnie od trzonka baionetowego, co może prowadzić do błędnych założeń o kompatybilności. Kluczowym błędem w ocenie tej kwestii jest nieprawidłowe rozumienie różnorodności typów trzonków w kontekście ich zastosowań, co może prowadzić do niewłaściwych wyborów przy zakupie źródeł światła.

Pytanie 39

Które z poniższych elementów nie są częścią dokumentacji technicznej urządzeń elektrycznych?

A. Opis metod użytych do eliminacji zagrożeń stwarzanych przez urządzenie
B. Szczegółowe rysunki techniczne poszczególnych elementów urządzenia
C. Rysunek ogólny urządzenia wraz ze schematami obwodów zasilających
D. Instrukcja obsługi urządzenia
Rysunek ogólny urządzenia wraz ze schematami obwodów zasilania, szczegółowe rysunki techniczne poszczególnych elementów urządzenia oraz instrukcja obsługi są kluczowymi komponentami dokumentacji technicznej, ale nie wszystkie odpowiadają wymogom formalnym. Rysunek ogólny ma na celu przedstawienie całości urządzenia, uwzględniając jego główne komponenty. Schematy obwodów zasilania są niezbędne dla zrozumienia, jak energia elektryczna jest dostarczana i przetwarzana w urządzeniu, co jest istotne dla diagnostyki i napraw. Instrukcja obsługi z kolei dostarcza użytkownikom informacji nie tylko o obsludze, ale także o wymaganiach bezpieczeństwa oraz wskazówkach dotyczących eksploatacji. Opis metod zastosowanych do wyeliminowania zagrożeń stwarzanych przez urządzenie podkreśla znaczenie bezpieczeństwa w projektowaniu urządzeń elektrycznych, co jest zgodne z normami ISO 12100 i IEC 61508, które koncentrują się na ocenie ryzyka. Wiele osób mylnie uważa, że szczegółowe rysunki techniczne są konieczne do pełnej dokumentacji, jednak w kontekście ogólnej dokumentacji technicznej, najważniejsze jest, aby skupić się na aspektach ogólnych i bezpieczeństwie, które są bardziej istotne dla użytkowników i serwisantów. Dlatego istotne jest, aby zrozumieć, które elementy są kluczowe dla dokumentacji w kontekście przepisów i praktyk inżynieryjnych.

Pytanie 40

Jakie parametry powinno się zmierzyć podczas przeglądu instalacji elektrycznej funkcjonującej w systemie TN-S?

A. Rezystancję przewodów ochronnych i rezystancję uziemienia
B. Rezystancję izolacji przewodów oraz rezystancję uziemienia
C. Impedancję pętli zwarcia oraz pomiar prądu upływu
D. Rezystancję izolacji przewodów oraz impedancję pętli zwarcia
W instalacji elektrycznej pracującej w sieci TN-S kluczowe jest zapewnienie odpowiedniego poziomu bezpieczeństwa oraz właściwej funkcjonalności systemu. Pomiar rezystancji izolacji przewodów jest niezbędny, aby upewnić się, że izolacja nie zawiera uszkodzeń, które mogłyby prowadzić do niebezpiecznego przebicia czy upływu prądu. Normy takie jak PN-EN 61557-1 i PN-EN 61557-2 wskazują na konieczność regularnego przeprowadzania takich pomiarów. Drugi aspekt, czyli pomiar impedancji pętli zwarcia, jest kluczowy dla oceny skuteczności zabezpieczeń nadprądowych oraz wyłączników różnicowoprądowych. Zgodnie z wymaganiami normy DIN VDE 0100, impedancja pętli zwarcia powinna być na tyle niska, aby zapewnić szybkie wyłączenie obwodu w przypadku wystąpienia zwarcia. Praktycznie, te pomiary umożliwiają ocenę stanu instalacji oraz podejmowanie odpowiednich działań konserwacyjnych lub naprawczych, co przekłada się na bezpieczeństwo użytkowników i ciągłość pracy instalacji elektrycznych.