Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 19 grudnia 2025 13:33
  • Data zakończenia: 19 grudnia 2025 13:44

Egzamin niezdany

Wynik: 15/40 punktów (37,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Internet Relay Chat (IRC) to protokół wykorzystywany do

A. transmisji dźwięku w sieci
B. prowadzenia konwersacji w konsoli tekstowej
C. przesyłania listów do grup dyskusyjnych
D. przesyłania wiadomości e-mail
Wybrana odpowiedź dotycząca e-maila jest złym wyborem, bo IRC nie jest do tego stworzony. Mówiąc prościej, protokół do e-maila, jak SMTP, służy do przesyłania wiadomości między serwerami pocztowymi i to jest coś zupełnie innego. Kolejna odpowiedź, która mówi o transmisji głosu, dotyczy protokołów jak VoIP, które są do rozmów głosowych, a IRC to tylko tekst, więc w ogóle się nie nadaje do takich rzeczy. Przesyłanie wiadomości w grupach dyskusyjnych z kolei związane jest z protokołami jak NNTP, które też nie mają nic wspólnego z IRC. Błędy w odpowiedziach można zrozumieć jako typowe zamieszanie związane z różnymi protokołami, które każdy mają swoje cele i zastosowania. Ważne jest, żeby zrozumieć, iż każdy protokół został zaprojektowany do konkretnych funkcji, a mieszanie ich ze sobą prowadzi do pomyłek. Żeby nie popełniać takich błędów w przyszłości, dobrze jest znać specyfikacje i praktyczne zastosowania protokołów.

Pytanie 2

Po włączeniu komputera wyświetlił się komunikat: "non-system disk or disk error. Replace and strike any key when ready". Jakie mogą być przyczyny?

A. skasowany BIOS komputera
B. brak pliku ntldr
C. dyskietka umieszczona w napędzie
D. uszkodzony kontroler DMA
Odpowiedź 'dyskietka włożona do napędu' jest prawidłowa, ponieważ komunikat o błędzie 'non-system disk or disk error' często pojawia się, gdy komputer nie może znaleźć prawidłowego nośnika systemowego do uruchomienia. W sytuacji, gdy w napędzie znajduje się dyskietka, a komputer jest skonfigurowany do rozruchu z napędu dyskietek, system operacyjny może próbować załadować z niej dane, co skutkuje błędem, jeśli dyskietka nie zawiera odpowiednich plików rozruchowych. Praktyka wskazuje, że należy sprawdzić, czy napęd nie jest zablokowany innym nośnikiem, co często jest pomijane przez użytkowników. Utrzymanie porządku w napędach oraz ich regularna kontrola jest zgodne z dobrymi praktykami zarządzania systemem i minimalizuje ryzyko wystąpienia podobnych problemów. Dobrze jest również znać opcje BIOS/UEFI, które pozwalają na modyfikację kolejności rozruchu, aby uniknąć tego typu komplikacji.

Pytanie 3

Aby usunąć konto użytkownika student w systemie operacyjnym Ubuntu, można skorzystać z komendy

A. del user student
B. userdel student
C. net user student /del
D. user net student /del
Polecenie 'userdel student' jest prawidłowe i służy do usuwania konta użytkownika w systemie operacyjnym Ubuntu oraz w innych dystrybucjach systemu Linux. Jest to standardowe polecenie w narzędziu zarządzania użytkownikami i pozwala na usunięcie zarówno samego konta, jak i powiązanych z nim plików, jeżeli użyty jest odpowiedni parametr. Na przykład, dodając opcję '-r', można również usunąć katalog domowy użytkownika, co jest szczególnie przydatne w sytuacjach, gdy chcemy całkowicie wyczyścić system z danych danego użytkownika. Warto zaznaczyć, że do wykonania tego polecenia niezbędne są uprawnienia administratora, co zazwyczaj oznacza konieczność użycia polecenia 'sudo'. W kontekście najlepszych praktyk, przed usunięciem konta użytkownika, warto upewnić się, że są wykonane kopie zapasowe ważnych danych, aby uniknąć ich nieodwracalnej utraty.

Pytanie 4

/dev/sda: Czas odczytu z pamięci podręcznej: 18100 MB w 2.00 sekundy = 9056.95 MB/sek. Przedstawiony wynik wykonania polecenia systemu Linux jest używany do diagnostyki

A. pamięci operacyjnej
B. karty sieciowej
C. dysku twardego
D. układu graficznego
Analizując inne opcje odpowiedzi, można zauważyć, że każda z nich odnosi się do różnych komponentów sprzętowych, które nie mają związku z przedstawionym wynikiem diagnostycznym. Karta graficzna jest odpowiedzialna za rendering grafiki i nie jest bezpośrednio związana z operacjami odczytu danych z dysku twardego. Jej wydajność mierzy się zazwyczaj w klatkach na sekundę (FPS) w kontekście gier lub w operacjach związanych z przetwarzaniem obrazu. Z kolei karta sieciowa zajmuje się transmisją danych w sieci komputerowej, co również nie ma związku z wydajnością odczytu danych z dysku. W kontekście tego pytania, karta sieciowa mierzy wydajność w Mbps lub Gbps, co również nie odnosi się do przedstawionego wyniku. Pamięć RAM z kolei odpowiada za przechowywanie danych operacyjnych dla procesora, a nie za odczyt danych z dysku. Jej działanie można diagnozować przy pomocy innych narzędzi i metryk, takich jak czas dostępu, przepustowość lub wykorzystanie pamięci, ale nie jest to związane z operacjami odczytu z dysku twardego. Typowym błędem myślowym jest mylenie funkcji tych komponentów oraz ich wpływu na wydajność całego systemu. Zrozumienie, że każdy z tych elementów ma swoją specyfikę i odpowiada za różne aspekty działania komputera, jest kluczowe dla analizy wyników diagnostycznych.

Pytanie 5

Analiza uszkodzonych elementów komputera poprzez ocenę stanu wyjściowego układu cyfrowego pozwala na

A. impulsator
B. kalibrator
C. sonometr
D. sonda logiczna
Kalibrator, impulsator i sonometr to narzędzia, które mają różne zastosowania i nie są dostosowane do diagnozowania uszkodzeń komponentów komputerowych. Kalibrator służy do precyzyjnego wzorcowania urządzeń pomiarowych, co oznacza, że jego główną funkcją jest zapewnienie dokładności pomiarów poprzez porównanie z wartościami odniesienia. Nie jest on jednak w stanie diagnozować stanów logicznych układów cyfrowych. Impulsator to urządzenie generujące impulsy elektryczne, które mogą być użyteczne w testowaniu niektórych układów, ale nie dostarcza informacji o bieżących stanach sygnałów w systemach cyfrowych. Co więcej, jego wykorzystanie w diagnostyce komponentów komputerowych jest ograniczone i nieefektywne w porównaniu do sondy logicznej. Sonometr, z kolei, jest narzędziem do pomiaru poziomów dźwięku, co nie ma związku z diagnostyką układów cyfrowych. Błędne podejście do diagnozowania problemów w sprzęcie komputerowym może prowadzić do niepotrzebnych kosztów, niszczenia komponentów lub wydłużenia czasu naprawy. Właściwe zrozumienie, które narzędzie jest właściwe do określonego zadania, jest kluczowe w inżynierii i serwisie komputerowym.

Pytanie 6

Aby zapewnić, że komputer uzyska od serwera DHCP określony adres IP, należy na serwerze zdefiniować

A. pulę adresów IP.
B. wykluczenie adresu IP urządzenia.
C. zastrzeżenie adresu IP urządzenia.
D. dzierżawę adresu IP.
Wykluczenie adresu IP komputera polega na usunięciu danego adresu z puli, co sprawia, że nie może być on przydzielony innym urządzeniom. Choć może wydawać się to logiczne, nie ma ono wpływu na to, że konkretne urządzenie zawsze otrzyma ten sam adres IP. Dzierżawa adresu IP oznacza, że adres jest tymczasowo przypisywany urządzeniu, co w przypadku dynamicznego DHCP oznacza, że adres może ulegać zmianie po upływie określonego czasu. Użytkownicy mogą nie zdawać sobie sprawy, że w typowej konfiguracji DHCP bez zastrzeżenia, adresy IP mogą być zmieniane w zależności od aktualnego obciążenia serwera DHCP oraz polityki przydzielania adresów. W kontekście puli adresów IP, jej definicja polega na zbiorze adresów, które serwer DHCP może przydzielić klientom. Jeśli nie zostanie zdefiniowane zastrzeżenie adresu, komputer może otrzymać inny adres z puli, co może prowadzić do problemów z łącznością, zwłaszcza jeśli inne urządzenia polegają na stałym adresie IP tego komputera. W praktyce, brak zastrzeżenia IP może prowadzić do zamieszania w zarządzaniu siecią oraz utrudniać identyfikację i rozwiązywanie problemów z połączeniem.

Pytanie 7

Przekształć liczbę dziesiętną 129(10) na reprezentację binarną.

A. 1000001(2)
B. 10000001(2)
C. 100000001(2)
D. 1000000001(2)
Odpowiedź 10000001(2) jest poprawna, ponieważ reprezentuje liczbę dziesiętną 129 w systemie binarnym. Aby dokonać konwersji, należy dzielić liczbę przez 2, zapisując reszty z dzielenia. Dzieląc 129 przez 2, otrzymujemy 64 z resztą 1. Kolejne dzielenie 64 przez 2 daje 32 z resztą 0, następnie 32 przez 2 daje 16 z resztą 0, 16 przez 2 daje 8 z resztą 0, 8 przez 2 daje 4 z resztą 0, 4 przez 2 daje 2 z resztą 0, a 2 przez 2 daje 1 z resztą 0. Ostatnie dzielenie 1 przez 2 daje 0 z resztą 1. Zapisując reszty od dołu do góry, otrzymujemy 10000001. W praktyce, konwersja ta jest użyteczna w programowaniu, gdzie często wykorzystuje się system binarny do reprezentowania danych oraz w elektronice cyfrowej, gdzie wykorzystuje się bity do kodowania informacji. Poznanie sposobu konwersji może pomóc w lepszym zrozumieniu działania algorytmów oraz architektur komputerowych, co jest niezbędne w takich dziedzinach jak informatyka czy inżynieria komputerowa.

Pytanie 8

Aby zdalnie i jednocześnie bezpiecznie zarządzać systemem Linux, należy zastosować protokół

A. SSH2
B. FTP
C. Telnet
D. SMTP
SMTP (Simple Mail Transfer Protocol) jest protokołem używanym do przesyłania wiadomości e-mail przez Internet, a nie do zdalnego administrowania systemami operacyjnymi. Nie zapewnia on żadnego szyfrowania ani zabezpieczeń, co czyni go nieodpowiednim do ochrony danych wrażliwych. FTP (File Transfer Protocol) z kolei jest protokołem zaprojektowanym do transferu plików, jednak również nie oferuje odpowiednich mechanizmów zabezpieczających, takich jak szyfrowanie. W przypadku korzystania z FTP, dane przesyłane w sieci mogą być przechwycone przez nieautoryzowane osoby, co stwarza poważne zagrożenie dla bezpieczeństwa. Telnet, podobnie jak FTP, jest protokołem, który umożliwia zdalne logowanie, lecz nie zapewnia bezpieczeństwa ani szyfrowania przesyłanych danych. Połączenia Telnet są podatne na ataki typu man-in-the-middle oraz podsłuchiwanie, co sprawia, że nie są one zalecane w środowiskach wymagających ochrony danych. Zrozumienie różnic między tymi protokołami jest kluczowe dla administratorów systemów, którzy muszą podejmować świadome decyzje dotyczące ochrony danych oraz bezpieczeństwa w zdalnej administracji.

Pytanie 9

W systemie Linux dane dotyczące haseł użytkowników są zapisywane w pliku:

A. users
B. groups
C. passwd
D. password
Odpowiedź 'passwd' jest prawidłowa, ponieważ w systemie Linux hasła użytkowników są przechowywane w pliku /etc/passwd. Plik ten zawiera informacje o użytkownikach systemu w formacie tekstowym, który jest czytelny dla administratorów. Każdy wpis w pliku passwd składa się z kilku pól, oddzielonych dwukropkami, w tym nazw użytkowników, identyfikatorów użytkownika (UID) oraz haszy haseł. Ważne jest, że od wersji Linux 2.6, hasła są zazwyczaj przechowywane w pliku /etc/shadow, co zwiększa bezpieczeństwo poprzez ograniczenie dostępu do informacji o hasłach tylko dla uprawnionych użytkowników. W praktyce, podczas zarządzania użytkownikami w systemie Linux, administratorzy korzystają z poleceń takich jak 'useradd', 'usermod' czy 'userdel', które modyfikują te pliki i zarządzają dostępem użytkowników. Dobre praktyki branżowe obejmują regularne aktualizowanie haseł oraz stosowanie silnych algorytmów haszujących, takich jak bcrypt czy SHA-512, w celu zapewnienia większego bezpieczeństwa danych użytkowników.

Pytanie 10

Liczba 129 w systemie dziesiętnym będzie przedstawiona w formacie binarnym na

A. 5 bitach
B. 6 bitach
C. 8 bitach
D. 7 bitach
Liczba dziesiętna 129 w systemie binarnym jest reprezentowana jako 10000001. Aby przeliczyć liczbę dziesiętną na system binarny, należy podzielić ją przez 2, zapisując reszty z każdego dzielenia, co w praktyce tworzy ciąg bitów. W przypadku 129 podzielimy ją przez 2, uzyskując 64 (reszta 1), następnie 64 przez 2 daje 32 (reszta 0), 32 przez 2 daje 16 (reszta 0), 16 przez 2 daje 8 (reszta 0), 8 przez 2 daje 4 (reszta 0), 4 przez 2 daje 2 (reszta 0), a 2 przez 2 daje 1 (reszta 0). Ostateczne dzielenie 1 przez 2 daje 0 (reszta 1). Zbierając wszystkie reszty od końca otrzymujemy 10000001, co wymaga 8 bitów. W praktyce, w inżynierii oprogramowania i systemów komputerowych, znajomość konwersji między systemami liczbowymi jest kluczowa, zwłaszcza przy programowaniu, gdzie operacje bitowe są powszechnie stosowane w optymalizacji kodu oraz w reprezentacji danych. Ponadto, 8 bitów odpowiada maksymalnie wartości 255 w systemie dziesiętnym, co jest zgodne z konwencjami kodowania, takie jak ASCII, gdzie każdy znak jest reprezentowany przez 8-bitowy kod.

Pytanie 11

Główną czynnością serwisową w drukarce igłowej jest zmiana pojemnika

A. z tonerem
B. z fluidem
C. z taśmą
D. z atramentem
Wybór odpowiedzi związanych z atramentem, tonerem czy fluidem jest błędny, ponieważ nie odpowiadają one podstawowemu mechanizmowi pracy drukarek igłowych. Drukarki atramentowe używają wkładów z atramentem, które nanoszą kolor za pomocą mikroskopijnych dysz. W przypadku tonerów, są one stosowane w drukarkach laserowych, gdzie obraz jest tworzony na zasadzie elektrostatycznej. Wykorzystywanie fluidów jest bardziej typowe w kontekście niektórych urządzeń do druku sublimacyjnego czy specjalistycznych procesów druku, które są całkowicie różne od technologii igłowej. Typowym błędem myślowym jest mylenie technologii drukowania z różnymi rodzajami drukarek. Każda technologia ma swoje charakterystyczne cechy i zastosowania, a zrozumienie ich różnic jest kluczowe dla prawidłowego doboru sprzętu do zadania. W praktyce, dla osób pracujących z drukarkami, ważne jest, aby znały one rodzaj posiadanego sprzętu i odpowiednie materiały eksploatacyjne, co pozwala uniknąć nieporozumień i zapewnić efektywność pracy. Dlatego fundamentalne jest prawidłowe rozumienie, że igły w drukarkach igłowych nie współpracują z atramentem ani tonerami, lecz z taśmami barwiącymi.

Pytanie 12

Najmniejszymi kątami widzenia charakteryzują się matryce monitorów typu

A. IPS/S-IPS
B. TN
C. MVA
D. PVA
Matryce typu TN (Twisted Nematic) faktycznie mają najmniejsze kąty widzenia spośród wszystkich popularnych technologii LCD. Z mojego doświadczenia wynika, że nawet przy niewielkim odchyleniu od osi prostopadłej do ekranu kolory na monitorze TN potrafią się bardzo mocno zmieniać. Często można zaobserwować efekt zanikania kontrastu, przebarwień czy wręcz negatywu, jeżeli patrzymy z boku lub z góry. To duża wada, zwłaszcza w zastosowaniach, gdzie kilka osób ogląda obraz jednocześnie lub monitor jest używany jako wyświetlacz informacyjny w przestrzeni publicznej. Z kolei zaletą TN-ek jest ich bardzo szybki czas reakcji (nadal niektórzy gracze preferują te matryce), no i są przeważnie tańsze w produkcji. Jeśli chodzi o profesjonalne zastosowania graficzne, branża foto-wideo czy projektowanie, standardem stały się matryce IPS, które wygrywają pod względem szerokości kątów i wierności kolorów. Co ciekawe, nowoczesne matryce IPS i pochodne (np. S-IPS, AH-IPS) potrafią oferować kąty widzenia powyżej 170°, co jest już naprawdę blisko ideału. TN sprawdzi się raczej w podstawowych monitorach biurowych, laptopach budżetowych albo ekranach, gdzie liczy się niska cena lub bardzo szybkie odświeżanie. W praktyce, jeżeli zależy Ci na dobrej widoczności obrazu z różnych stron, TN po prostu się nie sprawdzi – i tutaj naprawdę nie ma co się łudzić.

Pytanie 13

Dezaktywacja automatycznych aktualizacji systemu Windows skutkuje

A. zablokowaniem wszelkich metod pobierania aktualizacji systemu
B. zablokowaniem samodzielnego ściągania uaktualnień przez system
C. automatycznym ściąganiem aktualizacji bez ich instalacji
D. automatycznym sprawdzeniem dostępności aktualizacji i informowaniem o tym użytkownika
Nieprawidłowe odpowiedzi często wynikają z nieporozumienia na temat funkcji aktualizacji w systemie Windows. Zablokowanie automatycznych aktualizacji nie oznacza, że użytkownik nie ma możliwości ręcznego pobierania aktualizacji, co jest istotne w kontekście pierwszej z błędnych opcji, ponieważ system operacyjny nadal pozwala na ręczne sprawdzanie oraz instalowanie aktualizacji. W przypadku drugiej opcji, zablokowanie każdego sposobu pobierania aktualizacji jest niepraktyczne, ponieważ system może być skonfigurowany tak, aby użytkownik miał pełną kontrolę nad tym procesem, co w praktyce oznacza, że użytkownik może wprowadzać zmiany w konfiguracji aktualizacji. Kolejna z błędnych koncepcji dotyczy automatycznego sprawdzania dostępności aktualizacji, co jest również mylne, ponieważ po wyłączeniu automatycznych aktualizacji system nie wykonuje tego procesu bez wyraźnego polecenia użytkownika. Warto zauważyć, że wiele osób myli pojęcia związane z aktualizacjami, co prowadzi do nieporozumień. Użytkownicy powinni być świadomi, że wyłączenie automatycznych aktualizacji nie eliminuje potrzeby regularnego aktualizowania systemu, co jest kluczowe dla zapewnienia bezpieczeństwa i stabilności pracy systemu operacyjnego.

Pytanie 14

Jak nazywa się protokół oparty na architekturze klient-serwer oraz modelu żądanie-odpowiedź, wykorzystywany do przesyłania plików?

A. SSH
B. SSL
C. ARP
D. FTP
Protokół SSL (Secure Socket Layer) to technologia zabezpieczeń, która umożliwia nawiązywanie zaszyfrowanych połączeń w Internecie. Jego głównym celem jest ochrona przesyłanych danych przed nieautoryzowanym dostępem, co czyni go kluczowym w kontekście zabezpieczania komunikacji, ale nie jest protokołem do transferu plików. Z kolei SSH (Secure Shell) to protokół służący do zdalnego logowania oraz zarządzania systemami operacyjnymi, oferujący szyfrowanie oraz autoryzację, ale również nie jest przeznaczony wyłącznie do przesyłania plików. ARP (Address Resolution Protocol) ma zupełnie inne zadanie, bowiem odpowiada za mapowanie adresów IP na adresy MAC w lokalnej sieci, co jest kluczowe dla komunikacji w warstwie łącza danych, a nie transferu plików. Typowym błędem myślowym prowadzącym do wyboru błędnej odpowiedzi jest mylenie funkcji protokołów oraz ich zastosowań; użytkownicy często mogą pokusić się o klasyfikowanie protokołów według ich ogólnych funkcji, zamiast skupić się na ich specyficznych zastosowaniach. Zrozumienie, że protokoły takie jak SSL i SSH pełnią inne role w architekturze sieci, jest kluczowe dla efektywnego korzystania z technologii internetowych.

Pytanie 15

Trzech użytkowników komputera z systemem operacyjnym Windows XP Pro posiada swoje foldery z dokumentami w głównym katalogu dysku C:. Na dysku znajduje się system plików NTFS. Użytkownicy mają utworzone konta z ograniczonymi uprawnieniami. Jak można zabezpieczyć folder każdego z użytkowników, aby inni nie mieli możliwości modyfikacji jego zawartości?

A. Zmierzyć każdemu z użytkowników typ konta na konto z ograniczeniami
B. Przydzielić uprawnienia NTFS do edytowania folderu jedynie odpowiedniemu użytkownikowi
C. Nie udostępniać dokumentów w sekcji Udostępnianie w ustawieniach folderu
D. Ustawić dla dokumentów atrybut Ukryty w ustawieniach folderów
Podczas rozważania ochrony folderów użytkowników, warto zwrócić uwagę na kilka nieprawidłowych podejść. Nieudostępnienie dokumentów w zakładce 'Udostępnianie' może z pozoru wydawać się rozwiązaniem, ale w rzeczywistości nie eliminuje to problemu z dostępem do folderów. Użytkownicy mogą nadal mieć dostęp do folderów poprzez system uprawnień NTFS. Jeśli foldery nie są odpowiednio zabezpieczone poprzez przypisanie uprawnień, inni użytkownicy z tym samym dostępem do systemu będą mogli wprowadzać zmiany. Nadanie atrybutu ukrytego folderom również nie zabezpiecza ich przed dostępem. Atrybut ten jedynie sprawia, że foldery są niewidoczne w standardowym widoku, ale nie uniemożliwia to ich otwierania ani modyfikowania przez użytkowników, którzy znają ścieżkę dostępu. Zmiana typu konta na konto z ograniczeniami nie rozwiązuje problemu, ponieważ konta z ograniczeniami nadal mogą mieć dostęp do folderów, chyba że uprawnienia NTFS są prawidłowo skonfigurowane. W praktyce, brak zrozumienia zasadności przypisywania szczegółowych uprawnień prowadzi do sytuacji, w której dane są narażone na nieautoryzowany dostęp, co jest sprzeczne z zasadami bezpieczeństwa. Aby skutecznie chronić dane, należy zawsze bazować na zaawansowanych mechanizmach zabezpieczeń, takich jak NTFS, które oferują precyzyjną kontrolę dostępu.

Pytanie 16

Jaką konfigurację sieciową powinien mieć komputer, który jest częścią tej samej sieci LAN co komputer z adresem 10.8.1.10/24?

A. 10.8.0.101 i 255.255.255.0
B. 10.8.1.101 i 255.255.0.0
C. 10.8.0.101 i 255.255.0.0
D. 10.8.1.101 i 255.255.255.0
Adres IP 10.8.1.101 z maską podsieci 255.255.255.0 znajduje się w tej samej sieci LAN co adres 10.8.1.10. W przypadku maski 255.255.255.0 (znanej również jako /24), adresy IP w zakresie 10.8.1.1 do 10.8.1.254 są dostępne dla urządzeń w tej samej podsieci. Adres 10.8.1.10 jest jednym z tych adresów, więc każdy adres w tym zakresie, w tym 10.8.1.101, może komunikować się z nim bez potrzeby użycia routera. Zastosowanie odpowiedniej maski podsieci jest kluczowe w projektowaniu sieci LAN, ponieważ pozwala na efektywne zarządzanie adresacją IP oraz izolację ruchu między różnymi grupami urządzeń. Przy ustawieniu maski 255.255.255.0, wszystkie urządzenia w tej samej podsieci mogą się wzajemnie wykrywać i wymieniać dane bez dodatkowych ustawień. To podejście jest zgodne z najlepszymi praktykami w zakresie projektowania sieci, które zalecają wykorzystanie odpowiednich masek podsieci do organizacji i zarządzania ruchem sieciowym.

Pytanie 17

Aktywacja opcji Udostępnienie połączenia internetowego w systemie Windows powoduje automatyczne przydzielanie adresów IP dla komputerów (hostów) z niej korzystających. W tym celu używana jest usługa

A. DHCP
B. DNS
C. NFS
D. WINS
Kiedy zastanawiamy się nad innymi protokołami, które mogłyby teoretycznie pełnić funkcję przypisywania adresów IP, od razu możemy zauważyć, że WINS (Windows Internet Name Service) jest usługą, która odpowiada za mapowanie nazw komputerów na adresy IP w środowiskach Windows, ale nie przydziela adresów IP. To błędne rozumienie może wynikać z mylenia funkcji WINS z DHCP, co prowadzi do nieporozumień w kontekście zarządzania sieciami. NFS (Network File System) to protokół umożliwiający zdalny dostęp do plików, a nie przypisywanie adresów IP. Dlatego jego wybór jako odpowiedzi w kontekście pytania jest nieadekwatny. DNS (Domain Name System) z kolei jest systemem, który tłumaczy nazwy domen na adresy IP, jednak również nie jest odpowiedzialny za ich dynamiczne przydzielanie. Typowym błędem myślowym jest zatem zakładanie, że każdy protokół sieciowy, który w jakiś sposób operuje na adresach IP, może pełnić rolę DHCP. Kluczowe jest zrozumienie, że DHCP jest specjalistycznym protokołem zaprojektowanym z myślą o automatyzacji i uproszczeniu zarządzania adresami IP w sieciach, co nie każda usługa sieciowa oferuje. Zrozumienie tych różnic jest niezbędne do skutecznego zarządzania infrastrukturą sieciową oraz unikania potencjalnych problemów związanych z konfiguracją sieci.

Pytanie 18

Ilustracja pokazuje schemat fizycznej topologii będącej kombinacją topologii

Ilustracja do pytania
A. siatki i magistrali
B. pierścienia i gwiazdy
C. siatki i gwiazdy
D. magistrali i gwiazdy
Rozróżnianie topologii sieciowych jest naprawdę ważne, jeśli chcesz dobrze projektować i zarządzać sieciami. Często ludzie mylą topologię siatki z magistralą, a gwiazdę z pierścieniem. Topologia siatki to taka, gdzie każde urządzenie jest połączone z każdym innym. To zwiększa redundancję, ale jest drogie i trudne w dużych sieciach, więc nie jest to często najlepszy wybór. Z kolei topologia pierścienia łączy wszystkie urządzenia w krąg, co niby eliminuje kolizje danych, ale jak coś się zepsuje, to cała sieć może paść. W porównaniu do gwiazdy, która lepiej radzi sobie z awariami, ma to swoje minusy. Mylenie tych topologii zazwyczaj bierze się z tego, że ludzie nie do końca rozumieją, jak one działają i gdzie je stosować. Ważne jest, by pamiętać, że każda z nich ma swoje cechy, które decydują o tym, kiedy ich użyć. Wybierając topologię, warto przemyśleć potrzeby firmy, budżet oraz to, jak bardzo system ma być niezawodny.

Pytanie 19

Jakie polecenie uruchamia edytor polityk grup w systemach z rodziny Windows Server?

A. regedit.exe
B. dcpromo.exe
C. gpedit.msc
D. services.msc
Wybór odpowiedzi, która nie wskazuje na gpedit.msc, może prowadzić do niedokładnych wniosków dotyczących narzędzi administracyjnych w systemach Windows Server. regedit.exe jest narzędziem do edycji rejestru systemowego, co czyni je nieodpowiednim do zarządzania zasadami grup. Edycja rejestru może wprowadzić zmiany w konfiguracji systemu, ale nie zapewnia struktury ani funkcjonalności dedykowanej do centralnego zarządzania politykami grupowymi, co jest kluczowe w środowisku serwerowym. services.msc umożliwia zarządzanie usługami uruchomionymi w systemie, co również nie ma związku z zasadami grup. Użytkownicy mogą błędnie utożsamiać zarządzanie usługami z administracją politykami bezpieczeństwa, co prowadzi do mylnych interpretacji. dcpromo.exe z kolei jest używane do promowania serwera do roli kontrolera domeny, co również odbiega od tematu zarządzania politykami. Użytkownicy mogą myśleć, że promowanie serwera jest związane z administracją zasad grup, ale w rzeczywistości jest to proces konfiguracyjny dotyczący architektury Active Directory. Rozróżnienie tych narzędzi jest kluczowe dla zrozumienia, jak efektywnie zarządzać środowiskiem Windows Server oraz jakie narzędzia są właściwe do realizacji konkretnych zadań administracyjnych. Wiedza na temat funkcji i zastosowań poszczególnych narzędzi jest fundamentalna dla każdego, kto chce skutecznie zarządzać infrastrukturą IT.

Pytanie 20

Zjawisko przenikania, które ma miejsce w sieciach komputerowych, polega na

A. opóźnieniach w propagacji sygnału w trakcie przesyłania
B. utratach sygnału w ścieżce transmisyjnej
C. niedoskonałości ścieżki, spowodowanej zmianą konfiguracji par przewodów
D. przenikaniu sygnału pomiędzy sąsiadującymi w kablu parami przewodów
Przenikanie sygnału między sąsiadującymi parami przewodów to zjawisko, które występuje w kontekście transmisji danych w sieciach komputerowych, zwłaszcza w kablach ekranowanych i skrętkach. W praktyce, gdy sygnały elektryczne przepływają przez przewody, mogą one wpływać na siebie nawzajem, co prowadzi do niepożądanych zakłóceń. Przykładem mogą być systemy Ethernet, które korzystają z kabli kategorii 5e lub 6, gdzie jakość transmisji jest kluczowa. Standardy takie jak ANSI/TIA-568 i ISO/IEC 11801 określają wymagania dotyczące minimalnych wartości tłumienia i parametrów, które muszą być spełnione, aby zminimalizować efekty przenikania. Właściwe zarządzanie torami transmisyjnymi, takie jak zachowanie odpowiednich odległości między przewodami oraz stosowanie odpowiednich ekranów, umożliwia maksymalne ograniczenie przenikania, co przyczynia się do poprawy jakości sygnału oraz wydajności systemów komunikacyjnych. Zrozumienie zjawiska przenikania jest kluczowe dla projektantów systemów sieciowych, aby zapewnić niezawodność i stabilność połączeń.

Pytanie 21

Zatrzymując pracę na komputerze, możemy szybko wznowić działania po wybraniu w systemie Windows opcji

A. zamknięcia systemu
B. wylogowania
C. stanu wstrzymania
D. uruchomienia ponownego
Opcja 'stanu wstrzymania' w systemie Windows to funkcja, która pozwala na szybkie wstrzymanie pracy komputera, co umożliwia użytkownikowi powrót do tej samej sesji pracy w bardzo krótkim czasie. Gdy komputer jest w stanie wstrzymania, zawartość pamięci RAM jest zachowywana, co oznacza, że wszystkie otwarte aplikacje i dokumenty pozostają w takim samym stanie, w jakim były przed wstrzymaniem. Przykładem zastosowania może być sytuacja, gdy użytkownik chce na chwilę odejść od komputera, na przykład na przerwę, i chce szybko wznowić pracę bez potrzeby ponownego uruchamiania programów. Stan wstrzymania jest zgodny z najlepszymi praktykami zarządzania energią, ponieważ komputer zużywa znacznie mniej energii w tym trybie, co jest korzystne zarówno dla środowiska, jak i dla użytkowników, którzy korzystają z laptopów. Warto również zaznaczyć, że funkcja ta może być używana w połączeniu z innymi ustawieniami oszczędzania energii, co pozwala na optymalne zarządzanie zasobami systemowymi.

Pytanie 22

Wskaź, które zdanie dotyczące zapory sieciowej jest nieprawdziwe?

A. Jest częścią oprogramowania wielu routerów
B. Jest narzędziem ochronnym sieci przed atakami
C. Jest zainstalowana na każdym przełączniku
D. Stanowi składnik systemu operacyjnego Windows
Stwierdzenie, że zapora sieciowa jest zainstalowana na każdym przełączniku, jest fałszywe, ponieważ nie wszystkie przełączniki posiadają funkcjonalność zapory. Zaporą sieciową nazywamy system zabezpieczeń, który kontroluje ruch sieciowy na podstawie ustalonych reguł. W przypadku większości przełączników, ich podstawową rolą jest przekazywanie pakietów danych w sieci lokalnej, a nie filtrowanie ruchu. Zabezpieczenie sieciowe często jest realizowane na poziomie routerów lub dedykowanych urządzeń zaporowych. Praktyczne zastosowanie zapór sieciowych obejmuje ochronę przed atakami z zewnątrz, co jest kluczowe w kontekście bezpieczeństwa informacji oraz zgodności z regulacjami takimi jak RODO czy PCI DSS. Dlatego zrozumienie, gdzie i jak umieszczać zapory, jest kluczowe dla budowy bezpiecznej infrastruktury IT.

Pytanie 23

Jakiego rekordu DNS należy użyć w strefie wyszukiwania do przodu, aby powiązać nazwę domeny DNS z adresem IP?

A. MX lub PTR
B. NS lub CNAME
C. A lub AAAA
D. SRV lub TXT
Jak chodzi o mapowanie nazw domen na adresy IP, te odpowiedzi jak MX, PTR, SRV, TXT, NS i CNAME, to są kompletnie inne rzeczy. Rekord MX na przykład jest od wiadomości e-mail i nie ma nic wspólnego z tym, jak nazwy stają się adresami IP. Rekord PTR wręcz działa w odwrotną stronę – zamienia adresy IP na nazwy. Są też rekordy SRV i TXT, które mają swoje unikalne funkcje, a rekord NS to informacja o serwerach nazw. CNAME natomiast służy do tworzenia aliasów, a nie do bezpośredniego mapowania. Moim zdaniem, ważne jest, żeby te różnice zrozumieć, bo to może pomóc uniknąć błędów w zarządzaniu DNS.

Pytanie 24

W celu zainstalowania serwera proxy w systemie Linux, należy wykorzystać oprogramowanie

A. Samba
B. Squid
C. Postfix
D. Webmin
Wybór programów takich jak Samba, Postfix czy Webmin do zainstalowania serwera proxy w systemie Linux jest błędny, ponieważ każde z tych narzędzi ma zupełnie inne zastosowania. Samba to oprogramowanie, które umożliwia współdzielenie plików oraz drukarek między systemami Windows a Linux. Oferuje możliwość integracji w środowisku Windows, ale nie ma funkcji serwera proxy, które są kluczowe do pośredniczenia w ruchu sieciowym. Postfix to z kolei system pocztowy, który służy do obsługi wiadomości email, pozwalając na zarządzanie przesyłaniem i odbieraniem poczty elektronicznej. Brak funkcji proxy sprawia, że jego zastosowanie w tej roli jest całkowicie nieadekwatne. Webmin to narzędzie do zarządzania różnymi aspektami systemu Linux z interfejsem webowym, które pozwala na administrację serwerem, ale nie pełni funkcji serwera proxy ani nie zapewnia buforowania ani filtrowania ruchu. Typowe błędy myślowe przy wyborze tych programów wynikają z mylenia funkcji i ról, które każde z nich odgrywa w ekosystemie Linux, co często prowadzi do nieefektywności w zarządzaniu infrastrukturą IT.

Pytanie 25

Komputer jest połączony z myszą bezprzewodową, a kursor w trakcie używania nie porusza się płynnie, tylko "skacze" po ekranie. Możliwą przyczyną awarii urządzenia może być

A. wyczerpywanie się akumulatora zasilającego
B. brak akumulatora
C. uszkodzenie przycisku lewego
D. uszkodzenie mikroprzełącznika
Problemy z myszką bezprzewodową, w której kursor "skacze" po ekranie, mogą być mylnie interpretowane jako wynik uszkodzeń mechanicznych, takich jak uszkodzenie lewego przycisku czy mikroprzełącznika. Jednak te opcje nie odnoszą się bezpośrednio do problemu z poruszaniem się kursora. Uszkodzenie lewego przycisku najczęściej objawia się brakiem reakcji na kliknięcia lub zacinaniem się przycisku, co nie ma związku z niestabilnością kursora. Podobnie uszkodzenie mikroprzełącznika, który jest odpowiedzialny za sygnalizowanie kliknięcia, nie wpływa na samą funkcję ruchu kursora, choć może prowadzić do innych problemów z użytkowaniem. Z kolei brak baterii zasilającej, choć może wyłączyć myszkę, nie spowoduje "skakania" kursora, lecz jego całkowity brak. Typowe błędy myślowe prowadzące do mylnego wniosku dotyczące uszkodzeń mechanicznych mogą wynikać z braku zrozumienia, jak działają urządzenia bezprzewodowe oraz ich zależność od stabilności sygnału. Właściwe zrozumienie przyczyn problemów z myszkami bezprzewodowymi jest kluczowe dla ich efektywnego używania i zwiększenia komfortu pracy z komputerem.

Pytanie 26

Protokół SNMP (Simple Network Management Protocol) służy do

A. konfiguracji urządzeń sieciowych i zbierania informacji o nich
B. odbierania wiadomości e-mail
C. szyfrowania połączenia terminalowego z komputerami zdalnymi
D. przydzielania adresów IP, bramy oraz DNS-a
Wybór odpowiedzi dotyczącej odbioru poczty elektronicznej jest błędny, ponieważ protokół SNMP nie ma związku z przesyłaniem wiadomości e-mail. Poczta elektroniczna korzysta z takich protokołów jak SMTP (Simple Mail Transfer Protocol) do wysyłania wiadomości, POP3 (Post Office Protocol) lub IMAP (Internet Message Access Protocol) do ich odbierania. SNMP natomiast służy do zarządzania i monitorowania urządzeń w sieci, co jest całkowicie odmiennym zastosowaniem. Z kolei przydzielanie adresów IP oraz konfigurowanie bramy i DNS-a jest realizowane przez protokół DHCP (Dynamic Host Configuration Protocol), który automatycznie przypisuje adresy IP urządzeniom w sieci, co również jest niezwiązane z funkcjonalnością SNMP. Próba powiązania SNMP z szyfrowaniem terminalowego połączenia z komputerami zdalnymi wprowadza dodatkowe nieporozumienia, ponieważ za takie zabezpieczenia odpowiadają protokoły takie jak SSH (Secure Shell). W praktyce, błędne przypisanie funkcji SNMP do zarządzania pocztą czy przydzielania adresów IP wynika z nieznajomości roli, jaką ten protokół odgrywa w architekturze sieciowej. SNMP jest używane do zbierania danych i monitorowania stanu urządzeń, a nie do bezpośredniego zarządzania lub przesyłania informacji użytkowych, jak to ma miejsce w przypadku poczty elektronicznej czy zdalnego dostępu.

Pytanie 27

Który adres IP jest powiązany z nazwą mnemoniczna localhost?

A. 192.168.1.255
B. 192.168.1.0
C. 192.168.1.1
D. 127.0.0.1
Adresy IP 192.168.1.0, 192.168.1.1 i 192.168.1.255 są przykładami lokalnych adresów IP, które są używane w prywatnych sieciach. Adres 192.168.1.0 jest adresem sieciowym, co oznacza, że nie może być przypisany do żadnego urządzenia w sieci. Z kolei adres 192.168.1.255 jest adresatem rozgłoszeniowym, co pozwala na wysyłanie danych do wszystkich urządzeń w danej sieci lokalnej, ale również nie może być przypisany do pojedynczego urządzenia. Adres 192.168.1.1 najczęściej jest używany jako domyślny adres bramy w wielu routerach, co sprawia, że jest to adres, który pozwala na komunikację z siecią zewnętrzną. Biorąc pod uwagę te różnice, nie powinno się mylić tych adresów z adresem 127.0.0.1, który ma zupełnie inną funkcję. Typowym błędem jest myślenie, że wszystkie adresy IP, które zaczynają się od 192.168, są adresami dla localhost, co jest nieprawidłowe. Adresy te są stosowane w lokalnych sieciach, ale nie mają zastosowania w kontekście lokalnego loopbacku, gdzie tylko 127.0.0.1 ma znaczenie. Zrozumienie różnicy między adresami sieciowymi a adresami loopback jest kluczowe dla prawidłowego projektowania i zarządzania sieciami komputerowymi.

Pytanie 28

W którym systemie operacyjnym może pojawić się komunikat podczas instalacji sterowników dla nowego urządzenia?

System.......nie może zweryfikować wydawcy tego sterownika. Ten sterownik nie ma podpisu cyfrowego albo podpis nie został zweryfikowany przez urząd certyfikacji. Nie należy instalować tego sterownika, jeżeli nie pochodzi z oryginalnego dysku producenta lub od administratora systemu.
A. Linux
B. Windows 98
C. Windows XP
D. Unix
Windows XP to system operacyjny, który wprowadził istotne zmiany w zarządzaniu bezpieczeństwem sterowników urządzeń. Jednym z kluczowych elementów było wprowadzenie wymagania podpisów cyfrowych dla sterowników jako środka zapewnienia ich autentyczności i integralności. Gdy instalowany sterownik nie posiadał poprawnego podpisu, system wyświetlał ostrzeżenie, co miało na celu ochronę użytkownika przed potencjalnie szkodliwym oprogramowaniem. Dzięki temu użytkownicy byli zachęcani do korzystania z certyfikowanych sterowników, co minimalizowało ryzyko problemów z kompatybilnością i stabilnością systemu. System Windows XP korzystał z infrastruktury klucza publicznego (PKI) do weryfikacji podpisów cyfrowych, co było zgodne z najlepszymi praktykami w branży IT. Instalacja niepodpisanych sterowników była możliwa, lecz wymagała świadomego działania użytkownika, który musiał zaakceptować ryzyko. W praktyce, oznaczało to, że administratorzy systemów byli bardziej świadomi źródeł pochodzenia sterowników i ich potencjalnych zagrożeń. Takie podejście do zarządzania sterownikami pozwoliło na zwiększenie bezpieczeństwa systemu i jego użytkowników, co było istotnym krokiem w kierunku implementacji bardziej rygorystycznych standardów bezpieczeństwa w przyszłych wersjach Windows.

Pytanie 29

Przydzielaniem adresów IP w sieci zajmuje się serwer

A. NMP
B. DNS
C. DHCP
D. WINS
Odpowiedzi związane z DNS, WINS oraz NMP są niepoprawne w kontekście przydzielania adresów IP w sieci. DNS (Domain Name System) jest systemem, który tłumaczy nazwy domenowe na adresy IP, co umożliwia użytkownikom korzystanie z prostych nazw zamiast skomplikowanych liczbowych adresów IP. Jego głównym celem jest ułatwienie dostępu do zasobów w sieci przez konwersję bardziej przystępnych nazw na zrozumiałe dla komputerów adresy IP. Odpowiedź dotycząca WINS (Windows Internet Name Service) odnosi się do usługi, która rozwiązuje nazwy NetBIOS na adresy IP w sieciach opartych na systemie Windows. WINS nie ma nic wspólnego z dynamicznym przydzielaniem adresów IP, a jego rola jest ograniczona do specyficznych warunków w sieciach lokalnych. Natomiast NMP (Network Management Protocol) to protokół związany z zarządzaniem sieciami, który nie zajmuje się przydzielaniem adresów IP, lecz monitorowaniem i zarządzaniem urządzeniami w sieci. Typowym błędem jest mylenie ról różnych protokołów sieciowych. Przydzielanie adresów IP to kluczowe zadanie dla serwera DHCP, a nie wymienionych odpowiedzi, które pełnią zupełnie różne funkcje w infrastrukturze sieciowej. Dobrze jest zrozumieć, że różne protokoły w sieci mają swoje specyficzne zadania i nie można ich stosować zamiennie, co jest kluczowe dla skutecznego zarządzania siecią.

Pytanie 30

Połączenia typu point-to-point, realizowane za pośrednictwem publicznej infrastruktury telekomunikacyjnej, oznacza się skrótem

A. VLAN
B. PAN
C. WLAN
D. VPN
VLAN, WLAN oraz PAN to terminy, które odnoszą się do różnych typów sieci, jednak żaden z nich nie opisuje technologii, która umożliwia bezpieczne połączenia przez publiczną infrastrukturę telekomunikacyjną. VLAN (Virtual Local Area Network) to metoda segmentacji sieci lokalnej, która pozwala na tworzenie wielu logicznych sieci w ramach jednego fizycznego medium. VLAN-y są często używane w dużych organizacjach do zwiększenia wydajności i bezpieczeństwa, umożliwiając separację ruchu sieciowego. WLAN (Wireless Local Area Network) odnosi się do sieci lokalnych opartych na technologii bezprzewodowej, co umożliwia urządzeniom mobilnym łączenie się z internetem bez użycia kabli. Z kolei PAN (Personal Area Network) to sieć o bardzo małym zasięgu, używana do komunikacji między urządzeniami osobistymi, takimi jak telefony czy laptopy, zazwyczaj za pośrednictwem technologii Bluetooth. Skupiając się na tych terminach, można zauważyć, że koncentrują się one na różnych aspektach lokalej komunikacji, zamiast na tworzeniu bezpiecznych połączeń przez publiczną infrastrukturę. Zrozumienie tych różnic jest kluczowe, aby unikać pomyłek w kontekście zastosowań technologii sieciowych oraz ich bezpieczeństwa.

Pytanie 31

Jaką maksymalną liczbę adresów można przypisać urządzeniom w sieci 10.0.0.0/22?

A. 1024 adresy
B. 1022 adresy
C. 510 adresów
D. 512 adresów
W sieci o masce /22, mamy do dyspozycji 2^(32-22) = 2^10 = 1024 adresy IP. Jednakże, w każdej sieci IP, dwa adresy są zarezerwowane: jeden dla adresu sieci (w tym przypadku 10.0.0.0) oraz jeden dla adresu rozgłoszeniowego (broadcast) (10.0.3.255). Z tego powodu liczba dostępnych adresów dla hostów wynosi 1024 - 2 = 1022. W praktyce oznacza to, że w tak skonfigurowanej sieci można przydzielić 1022 urządzenia, co jest przydatne w wielu zastosowaniach, takich jak większe organizacje, gdzie potrzeba komunikacji w ramach lokalnych podsieci jest istotna. Używanie właściwej klasy adresów IP oraz odpowiedniego maskowania jest kluczowe w planowaniu sieci, co zapobiega marnotrawieniu adresów i pozwala na lepsze zarządzanie zasobami w sieciach o różnych rozmiarach.

Pytanie 32

W systemie Windows zastosowanie zaprezentowanego polecenia spowoduje chwilową modyfikację koloru

Ilustracja do pytania
A. paska tytułowego okna Windows
B. tła oraz tekstu okna Windows
C. tła okna wiersza poleceń, które zostało uruchomione z domyślnymi ustawieniami
D. czcionki wiersza poleceń, która była uruchomiona z ustawieniami domyślnymi
Rozważając użycie polecenia color w systemie Windows, konieczne jest zrozumienie jego specyfiki i zakresu działania. Częstym błędem jest zakładanie, że zmiana dotyczy całego systemu operacyjnego. W rzeczywistości polecenie to zmienia jedynie kolory czcionki i tła w oknie wiersza poleceń, które zostało uruchomione z domyślnymi ustawieniami. Nie wpływa na żadne inne elementy interfejsu użytkownika systemu Windows, takie jak pasek nazwy okna, ani na tło i czcionki okien systemowych. Takie rozumienie jest zgodne z dobrymi praktykami, które wymagają precyzyjnego zrozumienia zakresu działania narzędzi systemowych. Zakładając, że polecenie wpływa na systemowe elementy interfejsu, można doprowadzić do błędnych konfiguracji, szczególnie w kontekście automatyzacji i skryptowania. Administracja systemami Windows wymaga wiedzy o tym, jak lokalne zmiany w konsoli mogą być używane do konfiguracji środowiska pracy, bez wpływu na globalne ustawienia użytkownika czy systemu. Zrozumienie tych niuansów jest kluczowe dla efektywnego zarządzania systemem i dostosowywania go do potrzeb użytkownika oraz organizacji.

Pytanie 33

Protokół ARP (Address Resolution Protocol) służy do konwersji adresu IP na

A. nazwę domenową
B. adres IPv6
C. adres sprzętowy
D. nazwę komputera
Czasem możesz się pomylić w odpowiedziach, co może być związane z niejasnościami co do ról różnych protokołów i pojęć w sieciach. Zgłoszenie, że ARP zmienia adres IP na adres IPv6, to błąd, bo ARP działa tylko w przypadku adresów IPv4. Dla IPv6 mamy NDP, który ma bardziej zaawansowane funkcje, takie jak nie tylko mapowanie adresów, ale też zarządzanie komunikacją. Można też się pomylić, myląc adresy IP z witryną komputera. Adres IP to unikalny identyfikator urządzenia w sieci, podczas gdy nazwa komputera to taki bardziej przyjazny sposób identyfikacji, który można zamienić na IP przez DNS, ale nie przez ARP. Dlatego też, jeśli pomylisz adres sprzętowy z nazwą domenową, możesz się pogubić w tym, jak działają różne protokoły sieciowe. Nazwa domenowa jest używana do identyfikacji zasobów, ale nie jest bezpośrednio powiązana z adresowaniem sprzętowym. Takie błędy mogą prowadzić do mylnych wniosków o tym, jak działają różne protokoły w sieciach, co jest naprawdę istotne dla zrozumienia i kierowania nowoczesnymi systemami IT.

Pytanie 34

Spuchnięte kondensatory elektrolityczne w sekcji zasilania monitora LCD mogą spowodować uszkodzenie

A. układu odchylania poziomego.
B. przycisków znajdujących na panelu monitora.
C. inwertera oraz podświetlania matrycy.
D. przewodów sygnałowych.
Spuchnięte kondensatory elektrolityczne w sekcji zasilania monitora LCD to dość częsty widok, zwłaszcza w starszych modelach albo tam, gdzie zastosowano elementy gorszej jakości. Elektrolity w zasilaczach odpowiadają za filtrowanie napięcia, eliminowanie zakłóceń i stabilizację zasilania dla różnych układów monitora. Gdy się wybrzuszają, ich pojemność spada, pojawiają się prądy upływu, a napięcie staje się coraz bardziej niestabilne. To właśnie inwerter i układ podświetlania matrycy są najbardziej wrażliwe na takie wahania – pracują na wyższych napięciach, wymagają stabilnych parametrów i jeśli coś pójdzie nie tak, potrafią bardzo szybko ulec awarii. W praktyce, z mojego doświadczenia serwisowego, bardzo wiele monitorów LCD z ciemnym ekranem czy migającym podświetleniem miało właśnie uszkodzone kondensatory w zasilaczu. Czasami wymiana kilku takich elementów przywraca monitor do życia bez potrzeby wymiany droższych części. Warto pamiętać, że w standardach naprawczych zaleca się zawsze sprawdzenie kondensatorów w pierwszej kolejności przy problemach z podświetleniem. To naprawdę typowy przypadek i ważna umiejętność dla każdego technika – rozpoznawać objawy i kojarzyć je z uszkodzeniami sekcji zasilania, a nie od razu podejrzewać matrycę lub płytę główną. Gdy kondensatory są spuchnięte, napięcia zasilające inwerter stają się niestabilne, przez co inwerter albo w ogóle nie startuje, albo uszkadza się z czasem. Technicy dobrze wiedzą, że przy pierwszych objawach problemów z podświetleniem warto zerknąć na płytę zasilacza i szukać właśnie takich objawów.

Pytanie 35

Jakie jest oznaczenie sieci, w której funkcjonuje host o IP 10.10.10.6 klasy A?

A. 10.0.0.0
B. 10.10.0.0
C. 10.255.255.255
D. 10.10.10.255
Adres 10.10.0.0 jest nieprawidłowym adresem sieci dla hosta o adresie IP 10.10.10.6, ponieważ sugeruje, że sieć ma maskę podsieci, która uwzględnia tylko pierwsze dwa oktety, co jest niezgodne z zasadami klasyfikacji adresów IP. W klasie A, adres IP 10.10.10.6 wskazuje, że cały pierwszy oktet (10) powinien być użyty do określenia adresu sieci, a nie dwóch. Adres 10.10.10.255 jest w ogóle adresem rozgłoszeniowym (broadcast), co oznacza, że nie może być traktowany jako adres sieci. Adresy rozgłoszeniowe są używane do jednoczesnego wysyłania danych do wszystkich urządzeń w danej sieci, co czyni je w pełni niewłaściwymi w kontekście adresów sieciowych. Ponadto, 10.255.255.255 jest adresem rozgłoszeniowym dla całej sieci klasy A, co również wyklucza go z możliwości bycia adresem sieci. Kluczowe błędy w myśleniu, które prowadzą do tych nieprawidłowych wniosków, obejmują pomylenie adresów sieciowych z adresami hostów oraz nieprawidłowe stosowanie maski podsieci. W rzeczywistości, aby dokładnie określić adres sieci, należy zawsze odnosić się do zasad klasyfikacji adresów oraz do standardów takich jak RFC 1918, które określają zasady używania adresów prywatnych. Zrozumienie tych zasad jest kluczowe dla prawidłowego projektowania i zarządzania sieciami.

Pytanie 36

Usługa umożliwiająca przechowywanie danych na zewnętrznym serwerze, do którego dostęp możliwy jest przez Internet to

A. żadna z powyższych
B. Cloud
C. VPN
D. PSTN
Cloud, czyli chmura obliczeniowa, to usługa przechowywania danych oraz zasobów na zewnętrznych serwerach, które są dostępne przez Internet. Dzięki temu użytkownicy nie muszą inwestować w drogi sprzęt ani konfigurować lokalnych serwerów, co znacznie obniża koszty infrastruktury IT. W praktyce, usługi chmurowe oferują elastyczność oraz skalowalność, co oznacza, że użytkownicy mogą szybko dostosowywać swoje zasoby do zmieniających się potrzeb. Przykłady popularnych rozwiązań chmurowych to Amazon Web Services (AWS), Microsoft Azure czy Google Cloud Platform, które stosują standardy takie jak ISO/IEC 27001 dla zarządzania bezpieczeństwem informacji. Chmura obliczeniowa wspiera także zdalną współpracę, umożliwiając zespołom pracę zdalną oraz dostęp do zasobów z dowolnego miejsca na świecie. Warto także zwrócić uwagę na modele chmurowe, takie jak IaaS (Infrastructure as a Service), PaaS (Platform as a Service) i SaaS (Software as a Service), które oferują różne poziomy zarządzania i kontroli nad zasobami.

Pytanie 37

Administrator pragnie udostępnić w sieci folder c:\instrukcje tylko trzem użytkownikom z grupy Serwisanci. Jakie działanie powinien podjąć?

A. Udostępnić grupie Serwisanci folder c:\instrukcje i nie wprowadzać ograniczeń na liczbę połączeń równoczesnych
B. Udostępnić grupie Wszyscy folder C:\instrukcje z ograniczeniem do 3 równoczesnych połączeń
C. Udostępnić grupie Wszyscy cały dysk C: i ustawić limit równoczesnych połączeń na 3
D. Udostępnić grupie Serwisanci dysk C: bez ograniczeń dotyczących liczby połączeń równoczesnych
Udostępnienie dysku C: grupie Wszyscy, nawet z ograniczeniem liczby równoczesnych połączeń, jest nieoptymalnym rozwiązaniem, które wprowadza poważne zagrożenia bezpieczeństwa. Przydzielając uprawnienia do całego dysku, administrator naraża system na niebezpieczeństwo, umożliwiając użytkownikom dostęp do wszystkich plików i folderów, które mogą zawierać wrażliwe dane. Taki dostęp mógłby prowadzić do przypadkowego usunięcia lub modyfikacji krytycznych plików systemowych lub danych firmowych. Ograniczenie liczby połączeń równoczesnych nie rozwiązuje tego problemu, ponieważ nawet z ograniczeniem, dostęp do całego dysku pozostaje otwarty. Udostępnienie folderu C:\instrukcje grupie Wszyscy narusza zasady zarządzania bezpieczeństwem, które zalecają stosowanie zasady najmniejszych uprawnień. Zamiast tego, należy tworzyć grupy i przydzielać im dostęp do wybranych plików, co pozwala minimalizować ryzyko. Rozwiązania, które udostępniają cały dysk, są niezgodne z najlepszymi praktykami w zakresie ochrony danych i mogą prowadzić do poważnych naruszeń bezpieczeństwa, które mogą mieć dalekosiężne konsekwencje dla organizacji.

Pytanie 38

Element trwale zainstalowany, w którym znajduje się zakończenie poziomego okablowania strukturalnego abonenta, to

A. gniazdo energetyczne
B. punkt konsolidacyjny
C. punkt rozdzielczy
D. gniazdo teleinformatyczne
Punkt rozdzielczy jest elementem, który pełni rolę centralnej jednostki w systemach okablowania, jednak jego zadaniem jest rozdzielenie sygnałów na różne kierunki, a nie kończenie okablowania. W praktyce oznacza to, że choć punkt rozdzielczy jest istotny dla zarządzania sygnałami w sieci, to nie jest on odpowiednim rozwiązaniem dla zakończenia okablowania strukturalnego, co sprawia, że nie może być uznawany za poprawną odpowiedź w tym kontekście. Punkt konsolidacyjny działa jako połączenie pomiędzy okablowaniem pionowym a poziomym, ale również nie jest jego końcowym elementem. Jego rola polega na ułatwieniu zarządzania i organizacji kabli, co może prowadzić do pomyłek w interpretacji jego funkcji. Gniazdo energetyczne, choć ważne w kontekście zasilania urządzeń, nie ma nic wspólnego z okablowaniem strukturalnym i nie obsługuje sygnałów teleinformatycznych. Często możemy spotkać się z mylnym rozumieniem tych terminów, co prowadzi do nieprawidłowego doboru komponentów w instalacji. Kluczowe jest zrozumienie, że każdy z tych elementów ma swoją określoną funkcję, a ich zamiana może skutkować poważnymi problemami w działaniu infrastruktury sieciowej.

Pytanie 39

Jakie cechy posiadają procesory CISC?

A. wielką liczbę instrukcji
B. prostą oraz szybką jednostkę zarządzającą
C. ograniczoną wymianę danych między pamięcią a procesorem
D. małą liczbę metod adresowania
Jednostki sterujące w procesorach CISC nie są proste ani szybkie, ponieważ ich architektura wymaga obsługi złożonych rozkazów, co prowadzi do większego skomplikowania jednostek sterujących i dłuższego czasu wykonania instrukcji. Takie złożoności mogą wprowadzać opóźnienia, co jest sprzeczne z ideą szybkiego przetwarzania. W kontekście rozkazów, procesory CISC nie cechują się niewielką ich liczbą, ale wręcz przeciwnie: charakteryzują się dużą ich ilością, co sprawia, że programiści mają do dyspozycji wiele narzędzi do realizacji złożonych zadań. Ścisły związek pomiędzy pamięcią a procesorem w architekturze CISC jest również kluczowy – nie można mówić o ograniczonej komunikacji, gdyż złożony zestaw instrukcji wymaga rozbudowanej interakcji z pamięcią. Typowym błędem myślowym jest przyjęcie, że kompleksowość architektury oznacza prostotę i szybkość; w rzeczywistości złożoność architektury wpływa na wydajność i szybkość działania jednostek obliczeniowych. Wiedza na temat różnic między CISC a RISC (Reduced Instruction Set Computing) jest istotna dla zrozumienia, jak różne podejścia do projektowania procesorów wpływają na wydajność i złożoność kodu aplikacji.

Pytanie 40

Protokół ARP (Address Resolution Protocol) służy do konwersji adresu IP na

A. nazwa komputera
B. adres e-mailowy
C. adres fizyczny
D. domenę
ARP, czyli Address Resolution Protocol, to naprawdę ważny element w sieciach komputerowych. Jego główne zadanie to przekształcanie adresów IP na adresy MAC, czyli sprzętowe. W lokalnych sieciach komunikacja między urządzeniami odbywa się głównie na poziomie warstwy łącza danych, gdzie te adresy MAC są kluczowe. Wyobraź sobie, że komputer chce przesłać dane do innego urządzenia. Jeśli zna tylko adres IP, to musi wysłać zapytanie ARP, by dowiedzieć się, jaki jest odpowiedni adres MAC. Bez ARP wszystko by się trochę zacięło, bo to on pozwala na prawidłowe połączenia w sieciach lokalnych. Na przykład, gdy komputer A chce wysłać dane do komputera B, ale zna tylko adres IP, to wysyła zapytanie ARP, które dociera do wszystkich urządzeń w sieci. Komputer B odsyła swój adres MAC, dzięki czemu komputer A może skonstruować ramkę i wysłać dane. Jak dobrze rozumiesz, jak działa ARP, to stajesz się lepszym specjalistą w sieciach, bo to dosłownie fundament komunikacji w sieciach TCP/IP. Takie rzeczy są mega istotne w branży, dlatego warto je dobrze ogarnąć.