Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 25 stycznia 2026 12:37
  • Data zakończenia: 25 stycznia 2026 12:39

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Podczas pomiarów kontrolnych, przed odbiorem mieszkania, wykryto usterkę w instalacji oświetleniowej. Na zdjęciu przedstawiono fragment pomieszczenia przed tynkowaniem i wykonaniem wylewek. W celu wymiany uszkodzonych przewodów typu DY 1,5 mm2, prowadzonych w rurach instalacyjnych giętkich, należy w pierwszej kolejności

Ilustracja do pytania
A. wyciągnąć stare przewody z rur i wciągnąć nowe za pomocą sprężystego drutu stalowego.
B. rozkuć ściany i podłogę oraz wymienić uszkodzone odcinki instalacji.
C. rozkuć ściany, wprowadzić nowe przewody w ścianach i listwach przypodłogowych.
D. do końców starych przewodów zamocować nowe i wyciągając stare wprowadzać do rur nowe przewody.
Podejście do rozkuwania ścian i podłóg w celu wymiany uszkodzonych odcinków instalacji elektrycznej jest nie tylko czasochłonne, ale również kosztowne i nieefektywne. Tego typu działanie może prowadzić do nadmiernych uszkodzeń w pomieszczeniu, co wymaga dodatkowych prac remontowych, takich jak tynkowanie i malowanie, co zwiększa całkowity koszt inwestycji. Ponadto, takie metody są wbrew zasadom dobrych praktyk budowlanych, które zalecają minimalizację prac demontażowych, aby uniknąć dodatkowych ryzyk związanych z remontami. Podejście polegające na wprowadzeniu nowych przewodów w ścianach i listwach przypodłogowych niesie ze sobą ryzyko uszkodzenia konstrukcji budowlanej oraz naruszenia istniejących instalacji, co może prowadzić do awarii. W przypadku wyciągania starych przewodów z rur, istnieje duże prawdopodobieństwo, że zapchają się one lub uszkodzą, co utrudni dalszą pracę. Takie metody nie tylko są nieefektywne, ale również mogą doprowadzić do poważnych problemów związanych z bezpieczeństwem instalacji elektrycznej, co jest szczególnie niebezpieczne w kontekście zagrożeń pożarowych. Dlatego kluczowe jest przyjęcie metody, która łączy efektywność z bezpieczeństwem i zgodnością z obowiązującymi standardami.

Pytanie 2

Jakiego łącznika używa się do zarządzania oświetleniem w klatce schodowej przy zastosowaniu automatu schodowego?

A. Dzwonkowego
B. Hotelowego
C. Krzyżowego
D. Schodowego
Wybór innych łączników do sterowania oświetleniem w klatkach schodowych może prowadzić do nieefektywnych i niewygodnych rozwiązań. Łącznik krzyżowy jest stosowany do sterowania jednym źródłem światła z wielu lokalizacji, co w kontekście klatki schodowej może być w niektórych przypadkach niewłaściwe, jeśli nie ma potrzeby włączania i wyłączania światła w różnych punktach. Użycie łącznika krzyżowego bez odpowiedniego zaplanowania może prowadzić do komplikacji w obwodzie i potencjalnych problemów z działaniem. Łącznik hotelowy, z kolei, jest przeznaczony do specyficznych instalacji w hotelach, gdzie goście mogą korzystać z różnych źródeł światła w pokojach, bez możliwości sterowania ogólnym oświetleniem korytarza. Taki system nie jest dedykowany do standardowego użytku w domach lub budynkach mieszkalnych, co czyni go mniej praktycznym wyborem dla klatki schodowej. Warto również zauważyć, że łącznik dzwonkowy charakteryzuje się inną funkcjonalnością i skutecznością, co jest kluczowe w sytuacjach, gdzie oświetlenie powinno być włączane i wyłączane szybko i efektywnie, np. podczas wchodzenia lub wychodzenia z klatki schodowej. Myląc zastosowanie tych łączników, można łatwo stworzyć nieprzyjazne i niepraktyczne warunki użytkowania, co z pewnością wpłynie na komfort i bezpieczeństwo użytkowników.

Pytanie 3

Które z wymienionych prac, związanych z konserwacją urządzeń elektrycznych do 1 kV, powinno się wykonywać w co najmniej dwuosobowym zespole?

A. Kontrolno-pomiarowe wykonywane stale przy urządzeniach elektroenergetycznych znajdujących się pod napięciem przez osoby upoważnione w ustalonych miejscach pracy na podstawie instrukcji eksploatacji.
B. Wykonywane przy urządzeniach wyłączonych spod napięcia i uziemionych w widoczny sposób.
C. Monterskie wykonywane na wysokości powyżej 2 m w przypadkach, w których wymagane jest zastosowanie środków ochrony indywidualnej przed upadkiem z wysokości.
D. Przeprowadzane w wykopach o głębokości do 2 m podczas modernizacji lub konserwacji linii kablowych.
W tego typu pytaniu bardzo łatwo skupić się tylko na napięciu i pominąć inne czynniki ryzyka, zwłaszcza wysokość i organizację stanowiska pracy. Wiele osób zakłada, że skoro chodzi o urządzenia do 1 kV i konserwację, to najważniejsze jest, czy urządzenie jest pod napięciem czy nie. To jest oczywiście kluczowe z punktu widzenia ochrony przeciwporażeniowej, ale nie wyczerpuje tematu bezpieczeństwa pracy. Prace wykonywane przy urządzeniach wyłączonych spod napięcia i uziemionych w widoczny sposób są z zasady jednymi z bezpieczniejszych, o ile zachowane są procedury: wyłączenie, zabezpieczenie przed załączeniem, sprawdzenie braku napięcia, uziemienie i oznakowanie. W takiej sytuacji przepisy nie wymagają standardowo, żeby każdą taką czynność wykonywać w dwuosobowym zespole, choć w praktyce przy bardziej skomplikowanych zadaniach i tak często pracuje więcej niż jedna osoba. Typowym błędem myślowym jest tu przekonanie, że każde dotknięcie instalacji elektrycznej od razu wymaga zespołu dwuosobowego – przepisy są jednak bardziej zniuansowane. Prace prowadzone w wykopach o głębokości do 2 m przy liniach kablowych też są obciążone ryzykiem, ale głównie związanym z osuwaniem gruntu, potknięciem, czy uszkodzeniem mechanicznie kabla. Dla takich warunków obowiązują osobne regulacje BHP dotyczące robót ziemnych. Zasadnicze wymagania dla pracy w zespole dwuosobowym częściej pojawiają się przy głębszych wykopach lub szczególnie trudnych warunkach gruntowych. Sam fakt wykonywania robót przy kablu do 1 kV w wykopie do 2 m nie oznacza automatycznie obowiązku pracy w parze, o ile są spełnione inne wymagania bezpieczeństwa, jak umocnienie ścian wykopu, zabezpieczenie przed dostępem osób postronnych, itp. Z kolei prace kontrolno-pomiarowe przy urządzeniach elektroenergetycznych znajdujących się pod napięciem są bardzo poważnym zagadnieniem, ale w pytaniu jest ważny szczegół: są to prace wykonywane stale, w ustalonych miejscach pracy, przez osoby upoważnione, na podstawie instrukcji eksploatacji. Jeżeli stanowisko jest zaprojektowane, osłonięte i opisane tak, że dopuszcza rutynowe pomiary, to nie każda taka czynność musi być od razu kwalifikowana jako praca wymagająca zespołu dwuosobowego. Jest to kwestia oceny ryzyka, zapisów w instrukcjach eksploatacji i wewnętrznych procedur zakładu. Najistotniejszy błąd w rozumowaniu polega zwykle na tym, że ignoruje się ryzyko upadku z wysokości jako równorzędne z ryzykiem porażenia. Przy pracach monterskich powyżej 2 m, z użyciem środków ochrony indywidualnej przed upadkiem, połączenie tych dwóch zagrożeń powoduje, że minimalny skład dwuosobowy staje się standardem wynikającym z dobrych praktyk i wymogów BHP. W innych wymienionych sytuacjach ryzyko jest istotne, ale inaczej klasyfikowane i zabezpieczane, dlatego tam sam wymóg pracy w parze nie jest tak jednoznacznie przypisany przepisami jak w przypadku robót na wysokości.

Pytanie 4

Zgodnie z aktualnymi przepisami prawa budowlanego, w nowych budynkach konieczne jest montowanie gniazdek z zabezpieczeniami.

A. we wszystkich pomieszczeniach.
B. w sypialniach.
C. w holach.
D. w łazienkach.
Odpowiedzi wskazujące na instalację gniazd z kołkami ochronnymi w holach, sypialniach czy we wszystkich pomieszczeniach mogą wynikać z niepełnego zrozumienia przepisów dotyczących bezpieczeństwa elektrycznego. Warto zaznaczyć, że chociaż gniazda z kołkami ochronnymi są ważnym elementem instalacji elektrycznych, ich umiejscowienie powinno być zgodne z warunkami panującymi w poszczególnych pomieszczeniach. Hol, jako przestrzeń o niskim ryzyku kontaktu z wodą, nie wymaga stosowania gniazd z kołkami ochronnymi w takim stopniu, jak łazienki. Z kolei w sypialniach również nie jest to standardem, ponieważ te pomieszczenia są mniej narażone na kontakt z wodą, co zmniejsza ryzyko porażenia prądem. W odniesieniu do odpowiedzi mówiącej o 'wszystkich pomieszczeniach', warto wskazać, że takie podejście może prowadzić do niewłaściwego planowania instalacji elektrycznych, które powinny być dostosowane do specyfiki każdego pomieszczenia. W praktyce, stosowanie gniazd z kołkami ochronnymi powinno być zróżnicowane w zależności od miejsca, aby zapewnić efektywne zabezpieczenia, które są zgodne z wymogami norm PN-IEC 60364. Dlatego ważne jest, aby projektanci i wykonawcy instalacji elektrycznych dokładnie znali przepisy i dostosowywali je do warunków panujących w każdym pomieszczeniu, co jest kluczowe dla zachowania bezpieczeństwa użytkowników.

Pytanie 5

Woltomierz działający na zasadzie magnetoelektrycznej, który mierzy napięcie sinusoidalnie z dodatkiem składowej stałej, wskaże wartość

A. skuteczną napięcia
B. średnią napięcia
C. znamionową napięcia
D. chwilową napięcia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Woltomierz magnetoelektryczny jest narzędziem wykorzystywanym do pomiaru napięcia, a w przypadku napięcia sinusoidalnego z składową stałą, jego wskazanie dotyczy wartości średniej. Wartość średnia napięcia sinusoidalnego, z uwzględnieniem składowej stałej, jest kluczowa w aplikacjach, gdzie istotne jest określenie efektywnego poziomu energii dostarczanej do obciążenia. W praktyce, woltomierze magnetoelektryczne są często używane w pomiarach w systemach zasilania, gdzie zrozumienie i kontrola napięcia oraz prądu są niezbędne dla zapewnienia prawidłowego działania urządzeń. Wartość średnia jest obliczana jako średnia arytmetyczna z okresu sygnału, co w przypadku napięcia sinusoidalnego z składową stałą prowadzi do lepszego zrozumienia zarówno efektywności, jak i bezpieczeństwa systemów elektrycznych. Ustalono w normach IEC, że pomiar wartości średniej jest istotny dla wielu aplikacji w inżynierii elektrycznej, co podkreśla znaczenie tej metody pomiarowej.

Pytanie 6

Jaką oprawę oświetleniową pokazano na rysunku?

Ilustracja do pytania
A. Punktową.
B. Przenośną.
C. Biurową.
D. Uliczną.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oprawa oświetleniowa przedstawiona na rysunku jest klasycznym przykładem oświetlenia ulicznego. Charakteryzuje się ona specyficznym kształtem i montażem, które są dostosowane do oświetlania przestrzeni publicznych, takich jak ulice, parki czy chodniki. W praktyce, oprawy uliczne są projektowane z myślą o maksymalnej efektywności świetlnej oraz odporności na warunki atmosferyczne. Standardy branżowe, takie jak normy PN-EN 13201, określają wymagania dotyczące oświetlenia dróg, co zapewnia bezpieczeństwo użytkowników dróg. W zależności od specyfiki terenu, oprawy te mogą być stosowane z różnymi źródłami światła, w tym LED, co zwiększa ich efektywność energetyczną i żywotność. Dobre praktyki w zakresie instalacji oświetlenia ulicznego uwzględniają także odpowiednie rozmieszczenie opraw, co ma kluczowe znaczenie dla zapewnienia równomiernego oświetlenia i minimalizacji efektu olśnienia dla kierowców i pieszych. Odpowiednia oprawa uliczna nie tylko poprawia widoczność, ale również wpływa na bezpieczeństwo oraz komfort użytkowników dróg.

Pytanie 7

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji kabla w temperaturze 20 oC, jeżeli rezystancja izolacji tego kabla zmierzona w temperaturze 10 oC wyniosła 8,1 MΩ.

Współczynniki przeliczeniowe K₂₀ dla rezystancji izolacji kabli z izolacją połwinnitową
R₂₀ = K₂₀·Rₜ
Temperatura w °C4810121620242628
Współczynnik przeliczeniowy K₂₀0,110,190,250,330,631,001,852,383,13
A. 4,1 MΩ
B. 2,0 MΩ
C. 32,4 MΩ
D. 16,2 MΩ

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość rezystancji izolacji kabla w temperaturze 20°C to 2,0 MΩ. Żeby to obliczyć, trzeba pamiętać, że rezystancja zmienia się z temperaturą. Na przykład, jeśli przy 10°C zmierzyłeś 8,1 MΩ, to musisz uwzględnić, że jak temperatura rośnie, to rezystancja maleje. W praktyce, według norm IEC, rezystancja izolacji nie powinna spadać poniżej 1 MΩ na każde 1000 V napięcia roboczego. Wiedza o tym, jak obliczyć rezystancję w wyższej temperaturze, jest ważna, żeby ocenić, w jakim stanie jest kabel i zapobiec awariom. Dobrze jest regularnie kontrolować rezystancję izolacji, bo to daje nam szansę na zauważenie problemów, zanim dojdzie do awarii, co ma ogromne znaczenie dla bezpieczeństwa ludzi.

Pytanie 8

Przed dokonaniem pomiaru rezystancji izolacji w instalacji elektrycznej najpierw należy odciąć napięcie zasilające, a potem

A. zamontować do opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, włączyć silniki trójfazowe
B. zamontować do opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, włączyć silniki trójfazowe
C. usunąć z opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, odłączyć silniki trójfazowe
D. usunąć z opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, odłączyć silniki trójfazowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobra robota z odpowiedzią! To, co napisałeś, dobrze pokazuje, jakie kroki warto podjąć przed pomiarem rezystancji izolacji w instalacji elektrycznej. Najpierw trzeba wymontować źródła światła z opraw – to naprawdę ważne, żeby nie ryzykować porażeniem prądem w trakcie pomiarów. Poza tym, wyłączenie jednofazowych odbiorników i silników trójfazowych jest konieczne, żeby nie zakłócały one wyników i nie zostały uszkodzone przez niewłaściwe napięcie. Te zasady są zgodne z przepisami, jak PN-EN 50110-1, które mówią, że trzeba wyłączyć zasilanie przed przeprowadzeniem testów izolacji. To, że stosujesz te procedury, nie tylko zwiększa bezpieczeństwo, ale też sprawia, że pomiary są dokładniejsze. A to jest bardzo istotne, żeby dobrze ocenić stan izolacji i upewnić się, że instalacja jest w dobrym stanie.

Pytanie 9

W jakiej z poniższych sytuacji poślizg silnika indukcyjnego będzie najmniejszy?

A. Podczas zasilania silnika jego wirnik będzie stał
B. Silnik będzie pracować na biegu jałowym
C. Silnik będzie zasilany prądem w kierunku przeciwnym
D. Silnik działa w nominalnych warunkach zasilania oraz obciążenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Silnik pozostający na biegu jałowym charakteryzuje się minimalnym poślizgiem, ponieważ nie jest obciążony zewnętrznie, co sprawia, że jego wirnik obraca się blisko prędkości synchronicznej. W praktyce oznacza to, że nie ma znacznego oporu mechanicznego, który mógłby wpłynąć na różnicę między prędkością wirnika a polem magnetycznym statora. W takich warunkach obroty wirnika są prawie zgodne z obrotami pola magnetycznego. W zastosowaniach przemysłowych, takich jak wentylatory czy pompy, silniki indukcyjne często pracują w trybie jałowym, co minimalizuje straty energii. Dobrą praktyką jest monitorowanie poślizgu silników w celu optymalizacji ich wydajności i zużycia energii. Zmniejszenie poślizgu wpływa na obniżenie kosztów eksploatacji, co jest kluczowe w kontekście zarządzania energią w zakładach produkcyjnych.

Pytanie 10

Na którym rysunku przedstawiono adapter z gniazda E27 na gniazdo GU10?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Adapter oznaczony literą A jest prawidłową odpowiedzią, ponieważ łączy gniazdo E27 z gniazdem GU10, co czyni go niezwykle praktycznym elementem w zastosowaniach oświetleniowych. Gniazdo E27, szerokie i standardowe, jest powszechnie stosowane w oprawach żarówkowych, co pozwala na łatwe wkręcanie tradycyjnych żarówek. Z kolei gniazdo GU10, charakteryzujące się dwoma bolcami, jest szeroko używane w nowoczesnych żarówkach halogenowych oraz LED, dając możliwość uzyskania pożądanego efektu świetlnego i oszczędności energii. W praktyce adaptery tego typu ułatwiają modernizację oświetlenia, umożliwiając użytkownikom wykorzystanie różnych typów żarówek, nawet w istniejących instalacjach. Zastosowanie adapterów E27-GU10 jest zgodne z dobrymi praktykami branżowymi, które zalecają elastyczność i dostosowanie systemów oświetleniowych do potrzeb użytkowników.

Pytanie 11

Przystępując do działań konserwacyjnych, takich jak wymiana uszkodzonych elementów instalacji elektrycznej, należy postępować w następującej kolejności:

A. zabezpieczyć przed przypadkowym włączeniem, oznakować obszar prac, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
B. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
C. odłączyć instalację od źródła zasilania, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, oznakować obszar prac
D. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, odłączyć instalację od źródła zasilania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź skupia się na fundamentalnych zasadach bezpieczeństwa, które powinny być przestrzegane podczas wykonywania prac konserwacyjnych w instalacjach elektrycznych. Kluczowym krokiem jest wyłączenie instalacji spod napięcia, co zapobiega przypadkowemu porażeniu prądem podczas pracy. Po wyłączeniu instalacji, zabezpieczenie miejsca pracy przed przypadkowym załączeniem jest kolejnym istotnym krokiem; może to obejmować zablokowanie dostępu do przycisków włączających lub umieszczenie odpowiednich osłon. Następnie, potwierdzenie braku napięcia za pomocą odpowiednich narzędzi pomiarowych, takich jak wskaźniki napięcia, jest niezbędne, aby upewnić się, że instalacja jest bezpieczna do pracy. Ostatecznie, oznakowanie miejsca prac jest kluczowe, aby ostrzec innych o prowadzonych działaniach. Ta kolejność działań jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które podkreślają znaczenie systematycznego podejścia do prac konserwacyjnych. W praktyce, stosowanie się do tych zasad może znacząco zmniejszyć ryzyko wypadków i poprawić bezpieczeństwo personelu.

Pytanie 12

Którego narzędzia należy użyć do demontażu w rozdzielnicy piętrowej uszkodzonego urządzenia pokazanego na rysunku?

Ilustracja do pytania
A. Szczypiec uniwersalnych.
B. Wkrętaka płaskiego.
C. Wkrętaka imbusowego.
D. Szczypiec typu Segera.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to wkrętak płaski, który jest narzędziem niezbędnym do demontażu wyłącznika nadprądowego zamontowanego na szynie DIN w rozdzielnicy. Wyłączniki nadprądowe są zabezpieczeniami elektrycznymi, które chronią instalacje przed przeciążeniem i zwarciami. Aby skutecznie usunąć taki element, należy użyć wkrętaka płaskiego do odblokowania mechanizmu zatrzaskowego, który uniemożliwia swobodne wyjęcie wyłącznika. W przypadku użycia niewłaściwego narzędzia, jak szczypce uniwersalne czy wkrętak imbusowy, istnieje ryzyko uszkodzenia obudowy urządzenia lub samej rozdzielnicy. Stosowanie wkrętaka płaskiego jest zgodne z najlepszymi praktykami w branży elektrycznej, które podkreślają potrzebę użycia odpowiednich narzędzi do danej aplikacji, co zapewnia bezpieczeństwo i integralność instalacji. Dodatkowo, warto pamiętać o konieczności odłączenia zasilania przed rozpoczęciem jakichkolwiek prac, aby zapobiec porażeniu prądem. Zastosowanie wkrętaka płaskiego nie tylko ułatwia proces demontażu, ale również minimalizuje ryzyko uszkodzeń, co jest kluczowe w pracach konstruujących i serwisujących instalacje elektryczne.

Pytanie 13

Jaką z poniższych wkładek bezpiecznikowych powinno się zastosować w celu zabezpieczenia przewodów przed skutkami zwarć oraz przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. aM 16 A
B. gG 20 A
C. aM 20 A
D. gG 16 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór wkładki bezpiecznikowej gG 16 A do zabezpieczenia obwodu jednofazowego bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V jest uzasadniony z kilku powodów. Po pierwsze, moc bojlera wynosząca 3 kW przy 230 V generuje prąd znamionowy równy około 13 A (obliczane według wzoru I = P/U). W tym przypadku wkładka gG, zaprojektowana do ochrony przewodów przed przeciążeniem i zwarciem, jest odpowiednia, gdyż może wytrzymać chwilowe przeciążenia, jakie mogą wystąpić podczas rozruchu bojlera. Ponadto, wkładki gG mają charakterystykę czasowo-prądową, co oznacza, że mogą tolerować krótkotrwałe przeciążenia, co czyni je idealnym wyborem w aplikacjach, gdzie występują takie zjawiska. Stosowanie wkładek aM, które są bardziej przystosowane do ochrony obwodów silnikowych, nie jest wskazane w tym przypadku, ponieważ ich charakterystyka nie jest optymalna do zabezpieczenia obwodu grzewczego. W praktyce, dobór wkładek bezpiecznikowych powinien opierać się na analizie specyfiki obciążenia oraz na standardach takich jak PN-EN 60269, które definiują wymagania dla wkładek bezpiecznikowych. Dlatego wkładka gG 16 A jest najlepszym wyborem dla tego zastosowania.

Pytanie 14

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Identyfikuje przeciążenia
B. Zatrzymuje łuk elektryczny
C. Rozpoznaje zwarcia
D. Napina sprężynę mechanizmu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyzwalacz elektromagnetyczny w wyłączniku nadprądowym pełni kluczową rolę w detekcji zwarć w obwodach elektrycznych. Jego działanie opiera się na zasadzie pomiaru prądu płynącego przez obwód. W momencie wystąpienia zwarcia, prąd znacznie wzrasta, co prowadzi do aktywacji wyzwalacza. Przykładowo, w przypadku zwarcia doziemnego, występujące wartości prądu mogą przekroczyć normalne poziomy, co wyzwala mechanizm odłączający obwód i zabezpieczający instalację przed uszkodzeniami. Tego typu rozwiązania są zgodne z normami IEC 60947-2, które określają wymagania dotyczące sprzętu niskonapięciowego. Poprawne działanie wyzwalacza elektromagnetycznego jest zatem niezbędne dla zapewnienia bezpieczeństwa w instalacjach elektrycznych, minimalizując ryzyko pożaru czy uszkodzenia urządzeń. W praktyce, wyłączniki nadprądowe z wyzwalaczami elektromagnetycznymi są powszechnie stosowane w domach, biurach oraz przemysłowych środowiskach pracy, gdzie ochrona przed skutkami zwarć jest kluczowa.

Pytanie 15

Jakie narzędzia powinny być zastosowane przy trasowaniu instalacji elektrycznej w ścianach w pomieszczeniach mieszkalnych?

A. Ołówek, miarka taśmowa, kleszcze monterskie, młotek
B. Ołówek, poziomnica, miarka taśmowa, sznurek traserski
C. Zestaw wkrętaków, kleszcze monterskie, sznurek traserski, młotek
D. Poziomnica, kleszcze monterskie, zestaw wkrętaków, młotek

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi "Ołówek, poziomnica, przymiar taśmowy, sznurek traserski" jest właściwy, ponieważ te narzędzia są kluczowe dla precyzyjnego trasowania instalacji elektrycznej podtynkowej w pomieszczeniach mieszkalnych. Ołówek służy do nanoszenia punktów oraz linii na ścianach, co ułatwia późniejsze wiercenie i układanie kabli. Poziomnica jest niezastąpiona przy sprawdzaniu poziomu instalacji, co jest niezbędne dla zachowania estetyki i funkcjonalności. Przymiar taśmowy pozwala na dokładne mierzenie odległości, co jest kluczowe dla precyzyjnego układania kabli, gniazdek oraz przełączników. Sznurek traserski umożliwia szybkie i łatwe zaznaczanie prostych linii na dużych powierzchniach, co znacznie przyspiesza proces trasowania. Te narzędzia są zgodne z najlepszymi praktykami branżowymi oraz standardami bezpieczeństwa, co czyni je niezbędnymi w procesie przygotowawczym przed wykonaniem instalacji elektrycznej.

Pytanie 16

Które z przedstawionych na rysunkach narzędzi najlepiej nadaje się do wyznaczania tras przebiegu przewodów przed montażem instalacji elektrycznej w pomieszczeniu o dużej powierzchni?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź B jest prawidłowa, ponieważ laser krzyżowy jest narzędziem wykorzystywanym w budownictwie i instalacjach elektrycznych do precyzyjnego wyznaczania linii. Jego działanie opiera się na emisji dwóch linii - pionowej i poziomej - które są widoczne na powierzchni roboczej, co ułatwia planowanie i montaż instalacji. Dzięki zastosowaniu lasera krzyżowego, technik może z łatwością wyznaczyć trasy dla przewodów elektrycznych na dużych powierzchniach, co jest kluczowe przy instalacjach w przestronnych pomieszczeniach. W praktyce, użycie lasera krzyżowego minimalizuje ryzyko błędów, które mogą wyniknąć z ręcznego mierzenia i rysowania linii. Zgodnie z normami branżowymi, precyzyjność w wyznaczaniu tras jest niezwykle istotna dla bezpieczeństwa i efektywności instalacji elektrycznych, co czyni laser krzyżowy niezastąpionym narzędziem w tej dziedzinie. Dodatkowo, wiele modeli laserów krzyżowych oferuje funkcje automatycznego poziomowania, co jeszcze bardziej zwiększa ich użyteczność.

Pytanie 17

Jaką wartość ma prąd obciążenia przewodów fazowych, które zasilają odbiornik trójfazowy, jeśli pobiera on moc 2,2 kW przy napięciu 400 V oraz współczynniku mocy równym 0,82?

A. 3,2 A
B. 6,7 A
C. 3,9 A
D. 2,2 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć prąd obciążenia przewodów fazowych zasilających odbiornik trójfazowy, możemy skorzystać z wzoru na moc czynna w układzie trójfazowym: P = √3 * U * I * cos(φ), gdzie P to moc w watach, U to napięcie międzyfazowe w woltach, I to prąd w amperach, a cos(φ) to współczynnik mocy. W naszym przypadku moc wynosi 2,2 kW (czyli 2200 W), napięcie to 400 V, a współczynnik mocy wynosi 0,82. Przekształcamy wzór: I = P / (√3 * U * cos(φ)). Podstawiając wartości, mamy: I = 2200 / (√3 * 400 * 0,82). Po obliczeniach otrzymujemy I ≈ 3,9 A. Wiedza o obliczaniu prądu w obwodach trójfazowych jest niezbędna w praktyce, szczególnie w kontekście projektowania instalacji elektrycznych oraz ich późniejszej eksploatacji. Zrozumienie, jak różne czynniki wpływają na prąd, jest kluczowe dla bezpieczeństwa i efektywności energetycznej. Przykładem praktycznego zastosowania tej wiedzy może być dobór odpowiednich przewodów oraz zabezpieczeń w instalacjach elektrycznych.

Pytanie 18

Jakie oznaczenie powinno być umieszczone na puszce instalacyjnej, która ma być użyta do połączenia uszkodzonego przewodu YDYo 5x4 mm2 w obszarze myjni samochodowej?

A. IP45 5x6 mm2
B. IP56 5x4 mm2
C. IP54 4x4 mm2
D. IP43 5x4 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź, IP56 5x4 mm2, odnosi się do odpowiednich standardów ochrony przed pyłem i wodą, które są kluczowe w środowisku myjni samochodowych. Oznaczenie IP56 wskazuje na wysoką odporność na kurz oraz możliwość ochrony przed silnymi strumieniami wody, co jest istotne w kontekście pracy w mokrym środowisku. W przypadku połączeń elektrycznych w takich miejscach, szczególnie przy przewodach o przekroju 5x4 mm2, ważne jest, aby wybrać elementy spełniające normy bezpieczeństwa. W praktyce, zastosowanie puszki z oznaczeniem IP56 zapewnia, że instalacja będzie chroniona przed niekorzystnymi warunkami zewnętrznymi, co przekłada się na dłuższą żywotność komponentów oraz mniejsze ryzyko awarii. Standardy takie jak IEC 60529 definiują klasyfikację ochrony, co pozwala na dobór odpowiednich materiałów w zależności od specyfiki danego miejsca. W przypadku myjni, wytrzymałość na działanie wody oraz odporność na pył są niezbędne dla zapewnienia niezawodności i bezpieczeństwa eksploatacji urządzeń elektrycznych.

Pytanie 19

Jakie urządzenie, oprócz lutownicy, jest kluczowe podczas naprawy przeciętego przewodu LY poprzez połączenie lutowane?

A. Nóż monterski
B. Płaskoszczypce
C. Zagniatarka
D. Szczypce boczne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Nóż monterski jest kluczowym narzędziem przy naprawie przeciętego przewodu, gdyż umożliwia precyzyjne przygotowanie końcówek przewodów do lutowania. W praktyce, przed przystąpieniem do lutowania, należy odpowiednio odizolować końce przewodów, co wymaga użycia ostrego noża monterskiego. Dzięki odpowiedniej technice użycia noża, możemy uniknąć uszkodzenia żył przewodu oraz zapewnić ich czystą powierzchnię lutowniczą. Istotne jest, aby stosować nóż monterski zgodnie z zasadami BHP, co zapobiega urazom. Ponadto, zgodnie z normami branżowymi, każda naprawa powinna być przeprowadzana z użyciem narzędzi zapewniających dokładność oraz bezpieczeństwo. Dlatego nóż monterski powinien być zawsze w dobrym stanie, a jego ostrze powinno być regularnie wymieniane, aby zminimalizować ryzyko uszkodzenia przewodu. Stosowanie noża monterskiego w połączeniu z lutownicą jest zgodne z najlepszymi praktykami w branży elektrycznej oraz elektronicznej.

Pytanie 20

Jakie narzędzia, poza przymiaru kreskowego i młotka, należy wybrać do instalacji sztywnych rur elektroinstalacyjnych z PVC?

A. Wiertarka, płaskoszczypce, pion, poziomica
B. Cęgi do izolacji, obcinaczki, wkrętarka, płaskoszczypce
C. Cęgi do izolacji, pion, piła do cięcia, obcinaczki
D. Wiertarka, piła do cięcia, poziomica, wkrętarka

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór zestawu zawierającego wiertarkę, piłę do cięcia, poziomicę i wkrętarkę jest kluczowy dla prawidłowego montażu elektroinstalacyjnych rur sztywnych z PVC. Wiertarka jest niezbędna do wykonywania otworów w różnorodnych materiałach, co jest istotne podczas tworzenia połączeń i montażu w uchwytach. Piła do cięcia zapewnia dokładne i równe cięcia rur, co jest kluczowe dla szczelności i estetyki instalacji. Poziomica pozwala na precyzyjne ustawienie rur w osi poziomej, co jest podstawą dla uniknięcia problemów z odpływem i estetyką instalacji. Wkrętarka, z kolei, jest używana do mocowania różnych elementów, takich jak uchwyty i złącza, co pozwala na stabilne i bezpieczne wykonanie całej instalacji. Te narzędzia są zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie precyzji i jakości wykonania w instalacjach elektrycznych.

Pytanie 21

Na schematach instalacji elektrycznych symbolem przedstawionym na ilustracji oznacza się przewód prowadzony

Ilustracja do pytania
A. nad sufitem podwieszanym.
B. pod tynkiem.
C. w korytku instalacyjnym.
D. w tynku.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "w tynku" jest poprawna, ponieważ symbol przedstawiony na ilustracji jest standardowym oznaczeniem przewodu prowadzonego w tynku. W instalacjach elektrycznych przewody często prowadzi się w ścianach, aby zapewnić estetykę i ochronę przed uszkodzeniami mechanicznymi. Zgodnie z normą PN-IEC 60364, przewody układane w tynku muszą być odpowiednio zabezpieczone, aby zminimalizować ryzyko uszkodzeń. W praktyce, implementacja takiego rozwiązania wymaga staranności w wykonaniu bruzd, gdzie przewody powinny być umieszczane w odpowiednich korytkach lub rurkach osłonowych, co zapobiega ich bezpośredniemu kontaktowi z tynkiem, a tym samym przedłuża ich żywotność. Przykładem mogą być instalacje oświetleniowe, w których przewody są prowadzone w tynku, co pozwala na ich łatwe ukrycie i dostępność podczas ewentualnych napraw. Dodatkowo, stosowanie przewodów w tynku jest zgodne z przyjętymi praktykami branżowymi, co podkreśla istotność znajomości symboliki elektrycznej w projektowaniu instalacji.

Pytanie 22

Na zdjęciu przedstawiono kabel

Ilustracja do pytania
A. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
B. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w osłonie polwinitowej.
C. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V.
D. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź odnosi się do kabla sygnalizacyjnego, który charakteryzuje się wieloma żyłami skręconymi parami. Tego typu kable są powszechnie stosowane w systemach telekomunikacyjnych oraz w instalacjach automatyki przemysłowej, gdzie przesyłane sygnały muszą być odporne na zakłócenia elektromagnetyczne. Warto zwrócić uwagę, że napięcie 300/500 V jest typowe dla kabli wykorzystywanych w obwodach sygnalizacyjnych, które nie wymagają tak wysokiej izolacji jak kable elektroenergetyczne. Kable sygnalizacyjne o wiązkach parowych zostały opracowane w celu zminimalizowania interferencji między żyłami, co czyni je idealnym wyborem tam, gdzie wymagana jest stabilna transmisja danych. Zgodnie z normą PN-EN 50288, odpowiednie oznakowanie oraz dobór materiałów izolacyjnych mają kluczowe znaczenie dla niezawodności i bezpieczeństwa instalacji. W praktyce, stosowanie kabli sygnalizacyjnych w automatyce przemysłowej pozwala na efektywne zarządzanie procesami oraz monitorowanie stanu urządzeń, co przekłada się na zwiększenie wydajności operacyjnej.

Pytanie 23

Który rodzaj układu sieciowego przedstawiono na schemacie?

Ilustracja do pytania
A. TT
B. TN-C
C. TN-S
D. IT

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź TN-C jest prawidłowa, ponieważ w układzie tym przewód neutralny (N) i przewód ochronny (PE) są połączone w jeden przewód PEN w całej sieci. Taki układ jest korzystny w przypadku redukcji liczby żył w instalacji, co może przyczynić się do zmniejszenia kosztów i uproszczenia wykonania instalacji elektrycznej. TN-C znajduje zastosowanie w różnych obiektach, od budynków mieszkalnych po przemysłowe, gdzie istnieją odpowiednie zabezpieczenia przed porażeniem prądem. W Polsce układ TN-C jest stosowany zgodnie z normą PN-IEC 60364, która określa wymagania dotyczące instalacji elektrycznych. Ważne jest przestrzeganie zasad dotyczących układów uziemiających i ochrony przed przepięciami, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W przypadku połączeń z ziemią w systemie TN-C, stosuje się odpowiednie rozwiązania techniczne, aby zapewnić skuteczną ochronę w przypadku awarii i minimalizować ryzyko wystąpienia niebezpiecznych napięć na obudowach urządzeń elektrycznych.

Pytanie 24

Która z wymienionych przyczyn może spowodować samoczynne wyłączenie wyłącznika nadprądowego obwodu gniazd wtyczkowych kuchni w przedstawionej instalacji?

Ilustracja do pytania
A. Włączenie odbiornika drugiej klasy ochronności.
B. Zwarcie przewodu ochronnego z przewodem neutralnym.
C. Przerwa w przewodzie uziemiającym instalację.
D. Jednoczesne podłączenie odbiorników o zbyt dużej mocy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Jednoczesne podłączenie odbiorników o zbyt dużej mocy jest kluczowym czynnikiem, który może spowodować samoczynne wyłączenie wyłącznika nadprądowego. Wyłącznik nadprądowy, taki jak B16, jest zaprojektowany w celu ochrony obwodu przed przeciążeniem i zwarciem. Kiedy do obwodu podłączone są urządzenia o dużym zapotrzebowaniu na moc, ich łączny prąd może przekroczyć wartość znamionową wyłącznika, co automatycznie prowadzi do jego zadziałania. Przykładem może być jednoczesne włączenie kuchenki elektrycznej, piekarnika oraz zmywarki, co w wielu przypadkach przekracza 16 A, a tym samym powoduje wyłączenie. Zgodnie z normami PN-IEC 60898, każda instalacja elektryczna powinna być projektowana z uwzględnieniem maksymalnych obciążeń oraz odpowiednich zabezpieczeń, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, aby uniknąć problemów z wyłącznikami, należy świadomie dobierać moc urządzeń oraz rozważać ich jednoczesne użycie.

Pytanie 25

W instalacji elektrycznej, której schemat przedstawiono na rysunku, po wykonanym montażu włączono pierwszy klawisz łącznika i wszystkie żarówki się tylko żarzyły, natomiast po włączeniu drugiego klawisza, przy włączonym pierwszym, zaświeciły się cztery żarówki. W celu ustalenia przyczyny nieprawidłowego działania instalacji należy sprawdzić poprawność połączeń przewodów do zacisków

Ilustracja do pytania
A. żyrandola.
B. łącznika.
C. puszki zasilającej.
D. gniazda wtyczkowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź wskazuje na konieczność zweryfikowania połączeń w żyrandolu, co jest kluczowe dla prawidłowego działania instalacji elektrycznej. W sytuacji opisanej w pytaniu, kiedy żarówki się tylko żarzą, to może sugerować, że obwód nie jest w pełni zamknięty, co prowadzi do nieprawidłowego przepływu prądu. Połączenie przewodów w żyrandolu powinno być zgodne z ustalonymi standardami, takimi jak PN-IEC 60364, które regulują zasady bezpieczeństwa w instalacjach elektrycznych. W przypadku braku odpowiednich połączeń lub niewłaściwej konfiguracji, nie tylko może dojść do awarii, ale także do wystąpienia zagrożeń związanych z porażeniem prądem elektrycznym. Warto również zwrócić uwagę na prawidłowe podłączenie przewodów ochronnych, które mają na celu zapewnienie bezpieczeństwa użytkowników. Przykładem zastosowania tej wiedzy w praktyce jest regularne przeprowadzanie przeglądów instalacji oraz stosowanie się do zasad prawidłowego montażu urządzeń elektrycznych, co znacząco minimalizuje ryzyko awarii.

Pytanie 26

Z oznaczenia kabla YDYp 3x1 mm2 300/500 V wynika, że maksymalne wartości skuteczne napięć pomiędzy żyłą przewodu a ziemią oraz pomiędzy poszczególnymi żyłami wynoszą odpowiednio

A. 300 V i 500 V
B. 500 V i 300 V
C. 200 V i 300 V
D. 200 V i 500 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór 300 V i 500 V jest jak najbardziej trafny. Przewód YDYp 3x1 mm2 300/500 V ma dwa ważne parametry. Pierwszy, 300 V, to maksymalne napięcie między żyłą a ziemią, a drugi, 500 V, dotyczy napięcia między żyłami. Te oznaczenia są zgodne z normami bezpieczeństwa, co jest istotne, gdy instalujemy elektrykę w domach czy biurach. W praktyce używa się takich przewodów do zasilania różnych rzeczy, jak oświetlenie czy gniazdka. Dzięki tym wartościom nie tylko efektywnie działamy, ale przede wszystkim dbamy o bezpieczeństwo, zmniejszając ryzyko porażenia prądem. Pamiętaj, że wybór odpowiednich przewodów jest kluczowy, by spełniały one polskie normy PN-IEC dotyczące instalacji elektrycznych.

Pytanie 27

Przygotowując się do wymiany uszkodzonego gniazda trójfazowego w systemie elektrycznym, po odłączeniu napięcia w obwodzie tego gniazda, należy przede wszystkim

A. poinformować dostawcę energii o zamiarze przeprowadzenia naprawy
B. zabezpieczyć obwód przed niezamierzonym włączeniem napięcia
C. rozłożyć dywanik elektroizolacyjny w obszarze roboczym
D. oznaczyć miejsce pracy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zabezpieczenie obwodu przed przypadkowym załączeniem napięcia jest kluczowym krokiem w procesie wymiany gniazda trójfazowego, co wynika z podstawowych zasad bezpieczeństwa w pracy z instalacjami elektrycznymi. Po wyłączeniu napięcia, warto zastosować wyłącznik rozłączający lub blokadę, aby uniemożliwić przypadkowe włączenie zasilania. Dobrym przykładem praktycznym jest użycie blokady w systemach, w których dostęp do urządzeń jest wspólny, co minimalizuje ryzyko niebezpiecznych sytuacji. Dodatkowo, zgodnie z normami PN-IEC 60364, należy stosować odpowiednie procedury bezpieczeństwa, w tym oznaczenie obszaru pracy oraz zapewnienie, że osoba pracująca ma odpowiednie kwalifikacje. Takie działania nie tylko chronią pracowników, ale również klientów i innych osób znajdujących się w pobliżu. Warto również pamiętać o stosowaniu odpowiednich środków ochrony osobistej, takich jak rękawice izolacyjne oraz okulary ochronne, aby dodatkowo zminimalizować ryzyko wystąpienia wypadków.

Pytanie 28

Do zacisku odbiornika podłączonego na stałe w instalacji TN-S oznaczonego symbolem graficznym przedstawionym na rysunku należy podłączyć przewód

Ilustracja do pytania
A. ochronny.
B. odgromowy.
C. wyrównawczy.
D. neutralny.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi "ochronny" jest trafiony! W instalacji TN-S przewód, który widzisz na rysunku, to rzeczywiście przewód ochronny (PE). Jego głównym zadaniem jest ochrona użytkowników przed porażeniem prądem. Dzięki temu przewód odprowadza niebezpieczne napięcia do ziemi, co zmniejsza ryzyko wypadków. W systemach TN-S przewód ochronny jest oddzielony od neutralnego (N), co jest zgodne z zasadami bezpieczeństwa. Ważne, żeby ten przewód był dobrze podłączony, bo wtedy ochronne urządzenia, jak wyłącznik różnicowoprądowy, będą działać tak jak powinny. Dobrze jest też regularnie sprawdzać, czy przewody ochronne są w dobrym stanie, żeby mieć pewność, że ich działanie jest skuteczne. Jeśli chcesz bardziej zgłębić temat, popatrz na normy PN-IEC 60364 i PN-HD 60364 – tam znajdziesz konkretne wytyczne dotyczące instalacji elektrycznych.

Pytanie 29

Którą wielkość fizyczną można zmierzyć przyrządem pokazanym na rysunku?

Ilustracja do pytania
A. Luminancję.
B. Temperaturę barwową światła.
C. Światłość.
D. Natężenie oświetlenia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to natężenie oświetlenia, które jest mierzonym parametrem przez luksomierz, przyrząd specjalistyczny zaprojektowany do oceny ilości światła padającego na określoną powierzchnię. Natężenie oświetlenia wyrażane jest w luksach (lx), co odnosi się do strumienia świetlnego padającego na powierzchnię jednego metra kwadratowego. W praktyce, luksomierze są używane w wielu dziedzinach, takich jak architektura, fotografia czy ergonomia, aby zapewnić odpowiednie warunki oświetleniowe, które wpływają na komfort oraz efektywność pracy. Na przykład, w biurach często normy dotyczące natężenia oświetlenia wynoszą od 300 do 500 luksów, co jest wystarczające do prowadzenia typowych prac biurowych. Użycie luksomierzy pozwala na optymalizację warunków oświetleniowych, co jest istotne dla zdrowia i wydajności pracowników. To narzędzie jest również kluczowe w budownictwie ekologicznym, gdzie odpowiednie oświetlenie wpływa na oszczędność energii.

Pytanie 30

Który osprzęt przedstawiono na ilustracji?

Ilustracja do pytania
A. Mufy przelotowe.
B. Złączki skrętne.
C. Kapturki termokurczliwe.
D. Dławnice.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Na ilustracji są pokazane typowe dławnice kablowe, czyli element osprzętu służący do wprowadzania przewodów i kabli do obudów urządzeń, rozdzielnic, puszek czy szaf sterowniczych. Charakterystyczny wygląd: korpus z gwintem, nakrętka dociskowa oraz uszczelka gumowa lub elastomerowa, od razu zdradza, że to właśnie dławnice, a nie złączki czy mufy. Po dokręceniu nakrętki wkład uszczelniający zaciska się na płaszczu kabla, zapewniając odciążenie naprężeń mechanicznych oraz szczelność na poziomie np. IP54, IP65 czy IP68 – zależnie od typu. W praktyce stosuje się je wszędzie tam, gdzie przewód przechodzi przez ściankę obudowy: w falownikach, sterownikach PLC, puszkach instalacyjnych na elewacji, lampach ulicznych itp. Dobrze dobrana dławnica musi pasować średnicą do zewnętrznej średnicy kabla, mieć odpowiedni materiał (najczęściej poliamid, czasem metal) oraz klasę szczelności zgodną z wymaganiami norm PN‑EN 60529 i dokumentacją urządzenia. Moim zdaniem warto też pamiętać o stosowaniu podkładek uszczelniających przy montażu w cienkich blachach, bo bez tego łatwo stracić deklarowany stopień IP. Dławnice chronią też przed wyrwaniem kabla z urządzenia, co jest jedną z podstawowych dobrych praktyk montażowych – nie wolno polegać tylko na zaciskach w kostce czy złączce. W wielu zakładach to wręcz standard: każdy kabel wchodzący do szafy musi być wprowadzony przez odpowiednio dobraną dławnicę z odciążeniem.

Pytanie 31

Które z oznaczeń określa przewód przeznaczony do wykonania obwodu jednofazowych gniazd wtyczkowych w instalacji wtynkowej w sieci TN-S?

A. \( \text{YDYp 2} \times 1{,}5 \, \text{mm}^2 \)
B. \( \text{YDYt 2} \times 2{,}5 \, \text{mm}^2 \)
C. \( \text{YLYżo 3} \times 1{,}5 \, \text{mm}^2 \)
D. \( \text{YDYtżo 3} \times 2{,}5 \, \text{mm}^2 \)

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawnie wybrałeś przewód YDYtżo 3 × 2,5 mm², bo właśnie taki typowo stosuje się do obwodów jednofazowych gniazd wtyczkowych w instalacjach wtynkowych w systemie TN-S. Rozbijmy sobie to oznaczenie na części, bo ono dużo mówi. YDY – przewód o izolacji i powłoce z PVC, przeznaczony do instalacji stałych. Literka „t” oznacza wersję okrągłą do układania pod tynkiem, dobrze znosi ona typowe warunki w bruździe tynkarskiej. Z kolei „żo” informuje, że wśród żył jest żyła ochronna w barwach żółto-zielonych, co w sieci TN-S jest absolutnym standardem: osobny PE i osobny N. Zapis „3 × 2,5 mm²” oznacza trzy żyły (L, N, PE) o przekroju 2,5 mm². Dla obwodów gniazd w instalacjach mieszkaniowych przyjmuje się właśnie 2,5 mm² miedzi jako dobrą praktykę i zgodność z wymaganiami obciążalności długotrwałej i spadków napięcia, szczególnie przy zabezpieczeniach 16 A. W praktyce, jeśli wykonujesz obwód gniazd w pokoju, kuchni czy garażu, to elektrycy z przyzwyczajenia i doświadczenia sięgają właśnie po YDYtżo 3 × 2,5 mm². Dzięki trzem żyłom możesz poprawnie zrealizować układ TN-S: faza, neutralny i ochronny rozdzielone już od rozdzielnicy. Moim zdaniem warto zapamiętać, że do oświetlenia zwykle idzie 1,5 mm², a do gniazd – 2,5 mm², bo to pojawia się non stop zarówno na egzaminach, jak i na budowie. Dodatkowo przewód YDYt w tynku układa się wygodnie, dobrze się go mocuje w bruździe i bez problemu mieści się w typowych peszlach czy korytkach w ścianie. To jest po prostu branżowy standard w budownictwie mieszkaniowym i małym usługowym.

Pytanie 32

Na której ilustracji przedstawiono symbol graficzny przewodu neutralnego?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 4.
C. Na ilustracji 3.
D. Na ilustracji 2.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol graficzny przewodu neutralnego, oznaczony jako linia z kropką na końcu, jest kluczowym elementem w instalacjach elektrycznych. Na ilustracji 1 widzimy ten symbol, co potwierdza jego zgodność z międzynarodowymi standardami, takimi jak IEC 60446, które regulują oznaczanie przewodów i kolorów w systemach elektroenergetycznych. Przewód neutralny odgrywa ważną rolę w systemie elektrycznym, odpowiedzialny za zamknięcie obwodu i zapewnienie równowagi w instalacji. W praktyce, poprawne zidentyfikowanie przewodu neutralnego jest niezwykle istotne, aby uniknąć błędów w podłączaniu urządzeń oraz zapewnić bezpieczeństwo użytkowników. Wiedza o tym, jak rozpoznać symbol przewodu neutralnego, wspiera właściwe wykonywanie instalacji elektrycznych i konserwacji, co jest zgodne z najlepszymi praktykami branżowymi. Dodatkowo, zrozumienie ról poszczególnych przewodów w obwodzie elektrycznym, takich jak przewód fazowy oraz przewód ochronny, przyczynia się do tworzenia bezpiecznych i efektywnych instalacji.

Pytanie 33

W strefie 0 przedstawionego na rysunku pomieszczenia z wanną można instalować

Ilustracja do pytania
A. elektryczne podgrzewacze wody.
B. oprawy oświetleniowe o II klasie ochronności.
C. urządzenia zasilanie prądem zmiennym do 12 V.
D. przenośne odbiorniki o II klasie ochronności.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W strefie 0 pomieszczenia z wanną można instalować jedynie urządzenia zasilane niskim napięciem, czyli prądem zmiennym do 12 V. Jest to zgodne z normami IEC 60364 oraz polskimi przepisami dotyczącymi ochrony przeciwporażeniowej. Niskie napięcie zapewnia znacznie wyższy poziom bezpieczeństwa w obszarach narażonych na kontakt z wodą, gdzie ryzyko porażenia prądem jest znacząco zwiększone. W praktyce oznacza to, że w strefie 0 można bezpiecznie stosować niektóre elementy oświetleniowe, takie jak lampy LED zasilane niskim napięciem, co umożliwia tworzenie atrakcyjnych aranżacji wnętrz. Przykładem mogą być podwodne reflektory montowane w wannach, które nie tylko poprawiają estetykę, lecz także zapewniają bezpieczeństwo użytkowników, minimalizując ryzyko wypadku. Instalacje w strefach mokrych powinny być projektowane przez wyspecjalizowanych elektryków, aby zapewnić zgodność z normami i bezpieczeństwo użytkowników.

Pytanie 34

Przedstawione w tabeli parametry techniczne dotyczą

Parametry techniczne
  • Moc przyłączeniowa
  • Rodzaj przyłącza
  • Rodzaj uziomu
  • Typy przewodów
  • Liczba obwodów
A. instalacji elektrycznej.
B. linii napowietrznej niskiego napięcia.
C. linii kablowej zasilającej budynek.
D. instalacji odgromowej budynku.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór instalacji elektrycznej jako poprawnej odpowiedzi jest zasłużony, ponieważ parametry techniczne przedstawione w tabeli, takie jak moc przyłączeniowa, rodzaj przyłącza, uziemienie oraz liczba obwodów, są kluczowe dla prawidłowego zaprojektowania i funkcjonowania instalacji elektrycznej w obiektach budowlanych. Moc przyłączeniowa wskazuje na maksymalne zapotrzebowanie na energię elektryczną, co jest istotne przy doborze odpowiednich przewodów i zabezpieczeń. Rodzaj przyłącza oraz system uziemienia są niezwykle ważne dla bezpieczeństwa użytkowników, gdyż wpływają na właściwe odprowadzenie ładunków elektrycznych i ochronę przed porażeniem prądem. Typy przewodów oraz liczba obwodów są również kluczowe dla zapewnienia stabilności i elastyczności instalacji, umożliwiając podział obciążenia oraz efektywne zarządzanie energią w budynku. Zgodność z normami PN-IEC 60364 oraz innymi standardami branżowymi jest niezbędna dla osiągnięcia wysokich standardów bezpieczeństwa oraz efektywności energetycznej.

Pytanie 35

Jaką liczbę klawiszy oraz zacisków ma tradycyjny jeden łącznik świecznikowy?

A. Jeden klawisz i cztery niezależne zaciski
B. Jeden klawisz i trzy niezależne zaciski
C. Dwa klawisze i cztery niezależne zaciski
D. Dwa klawisze i trzy niezależne zaciski

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klasyczny pojedynczy łącznik świecznikowy, znany również jako łącznik z podwójnym klawiszem, składa się z dwóch klawiszy oraz trzech niezależnych zacisków. Każdy klawisz pozwala na sterowanie oddzielnym obwodem elektrycznym, co umożliwia niezależne włączanie i wyłączanie dwóch źródeł światła lub innych urządzeń elektrycznych. Trzy zaciski są standardem w takim rozwiązaniu – dwa z nich służą do podłączenia fazy (zasilania), natomiast trzeci zacisk jest zaciskiem neutralnym lub wspólnym. Tego typu łączniki są powszechnie stosowane w instalacjach oświetleniowych, szczególnie w pomieszczeniach, gdzie chcemy kontrolować więcej niż jedno źródło światła za pomocą jednego urządzenia. Dzięki użyciu łącznika świecznikowego z dwoma klawiszami, możliwe jest oszczędzenie miejsca oraz ułatwienie dostępu do sterowania oświetleniem, co jest zgodne z nowoczesnymi standardami projektowania wnętrz oraz efektywności energetycznej.

Pytanie 36

Parametry której maszyny elektrycznej zapisano na przedstawionej tabliczce znamionowej?

Ilustracja do pytania
A. Dławika.
B. Silnika jednofazowego.
C. Prądnicy synchronicznej.
D. Transformatora jednofazowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tabliczka znamionowa, którą analizujesz, zawiera kluczowe informacje dotyczące silnika jednofazowego. W szczególności, moc znamionowa wynosząca 1.1 kW oraz prąd znamionowy 7.1 A są typowe dla tego typu silników, które są powszechnie stosowane w aplikacjach domowych oraz przemysłowych. Napięcie 230 V / 50 Hz wskazuje na standardowe parametry zasilania w Europie, co czyni ten silnik odpowiednim do zasilania z sieci elektrycznej. Dodatkowo, prędkość obrotowa 1400 min-1 sugeruje, że silnik jest przystosowany do zastosowań wymagających umiarkowanej prędkości, takich jak małe pompy czy wentylatory. Również obecność kondensatora rozruchowego, o wartości 160 µF/320V, jest charakterystyczna dla silników jednofazowych, które w przeciwieństwie do silników trójfazowych, często wymagają takiego elementu do uruchomienia. Takie silniki są szeroko stosowane w codziennych urządzeniach, takich jak pralki czy odkurzacze, co potwierdza ich znaczenie w nowoczesnym świecie. Zrozumienie tych parametrów jest kluczowe dla prawidłowego doboru silnika do konkretnej aplikacji, co jest zgodne z zasadami efektywnego projektowania systemów elektrycznych.

Pytanie 37

Aby wymienić wadliwy łącznik w instalacji, należy wykonać następujące kroki:

A. podłączyć napięcie, zweryfikować ciągłość połączeń, wyjąć uszkodzony łącznik
B. usunąć uszkodzony łącznik, odłączyć napięcie, sprawdzić ciągłość połączeń
C. wyłączyć napięcie, upewnić się o braku napięcia, wyjąć uszkodzony łącznik
D. wyłączyć napięcie, usunąć uszkodzony łącznik, zweryfikować ciągłość połączeń

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź odłączająca napięcie, sprawdzająca brak napięcia, a następnie wymontowująca uszkodzony łącznik jest zgodna z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego. Odłączenie napięcia przed przystąpieniem do jakiejkolwiek pracy na instalacji elektrycznej jest kluczowe, aby zminimalizować ryzyko porażenia prądem. Sprawdzenie braku napięcia za pomocą odpowiednich narzędzi, takich jak tester napięcia, jest niezbędne, aby potwierdzić, że instalacja jest bezpieczna do pracy. Po wykonaniu tych dwóch kroków można bezpiecznie wymontować uszkodzony łącznik. Przykładem praktycznym może być sytuacja, w której technik serwisowy wymienia łącznik w oświetleniu sufitowym. Stosując powyższe kroki, zapewnia sobie bezpieczeństwo oraz minimalizuje ryzyko uszkodzeń innych elementów instalacji. Zgodnie z normami IEC i PN-EN, przestrzeganie tych zasad jest obligatoryjne, aby utrzymać wysokie standardy bezpieczeństwa w pracy z instalacjami elektrycznymi.

Pytanie 38

Na którym rysunku przedstawiono symbol graficzny przycisku zwiernego?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rysunek A przedstawia graficzny symbol przycisku zwiernego, który jest powszechnie stosowany w systemach automatyki oraz w instalacjach elektrycznych. Symbol ten oznacza kontakt, który zamyka się pod wpływem naciśnięcia, co jest kluczowe w wielu aplikacjach, takich jak przyciski dzwonków, włączniki oświetlenia czy inne urządzenia sterujące. Zgodnie z normą IEC 60617, symbol ten przedstawia kontakt, który po aktywacji przełącza obwód, co pozwala na załączenie lub wyłączenie prądu. W praktyce, przyciski zwierne są niezwykle użyteczne w sytuacjach, gdzie wymagana jest prosta interakcja użytkownika z systemem, na przykład w domowych instalacjach oświetleniowych, gdzie naciśnięcie przycisku włącza światło. Wiedza o rozpoznawaniu tych symboli jest niezbędna dla każdego specjalisty zajmującego się projektowaniem oraz analizą układów elektrycznych, ponieważ umożliwia prawidłowe zrozumienie schematów elektrycznych i poprawną interpretację ich działania.

Pytanie 39

Jakiego urządzenia należy użyć do pomiaru rezystancji izolacji w instalacji elektrycznej?

A. Watomierza
B. Megawoltomierza
C. Omomierza
D. Megaomomierza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Megaomomierz, znany również jako miernik izolacji, jest specjalistycznym urządzeniem stosowanym do pomiaru rezystancji izolacji instalacji elektrycznych. Jego głównym celem jest ocena stanu izolacji przewodów oraz urządzeń elektrycznych, co ma kluczowe znaczenie dla zapewnienia bezpieczeństwa systemu. Pomiar rezystancji izolacji przeprowadza się zazwyczaj przy zastosowaniu napięcia wyższego niż standardowe napięcie robocze, co pozwala na wykrycie potencjalnych uszkodzeń i degradacji materiałów izolacyjnych. Przykładowo, w instalacjach o napięciu 230V, pomiar izolacji przeprowadza się zazwyczaj przy napięciu 500V lub 1000V, co jest zgodne z normami IEC 61010 oraz IEC 60364. Dzięki temu jesteśmy w stanie zidentyfikować uszkodzenia, które mogą prowadzić do porażeń prądem lub zwarć, co czyni ten pomiar niezbędnym w każdej rutynowej konserwacji instalacji elektrycznych.

Pytanie 40

Który rodzaj pomiaru pokazany jest na rysunku?

Ilustracja do pytania
A. Ciągłości przewodów.
B. Napięcia dotykowego.
C. Rezystancji izolacji stanowiska.
D. Impedancji zwarciowej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji izolacji to naprawdę ważny element, jeśli chodzi o ocenę stanu instalacji elektrycznych. Bez tego nie da się mówić o bezpieczeństwie użytkowników, zwłaszcza w różnych warunkach. Na rysunku widzisz miernik rezystancji, który jest podłączony do badanego elementu i do ziemi. Taki sposób pomiaru pozwala ocenić jakość izolacji oraz wykryć ewentualne usterki. To ważne, bo niektóre problemy mogą prowadzić do groźnych sytuacji, jak na przykład porażenie prądem. W instalacjach przemysłowych regularne pomiary rezystancji izolacji to konieczność, żeby zapewnić, że wszystko działa jak należy, zgodnie z normami IEC 61557. Mierzenie z odpowiednim dociskiem elektrody, w tym przypadku 750 N, też jest kluczowe. Wartości rezystancji powinny być zgodne z normami, a przynajmniej 1 MΩ, żeby mieć pewność, że wszystko jest w porządku i bezpieczne. Znajomość tych parametrów i umiejętność ich analizy jest mega ważna dla każdego, kto zajmuje się elektryką.